
F28PL1 Programming
Languages

Lecture 20: Summary

Overview

• started by characterising a computer as a
memory machine

• considered programming languages as
abstractions from:

– memory as address/byte associations

– instructions as sequences of changes to
address/byte associations

Overview

• layers of abstraction

• hierarchy of
expressiveness

• tension between:

– expressive
power/ease of use

– ease of
implementation/
performance

CPU

memory

I/O

machine
code

assembly

system

high level

declarative

“distanc
e” from

CPU

Overview

• greater distance from
CPU 

– increased expressiveness/
succinctness

– increased implementation
effort

– decreased performance

– more memory

– less speed

CPU

memory

I/O

“distanc
e” from

CPU

machine
code

assembly

system

high level

declarative

Summarising language
characteristics

• how does a language abstract away from
underlying byte machines?

– types

– data abstraction

– control abstraction

• what are pragmatic consequences of
language characteristics?

– i.e. how do characteristics affect use?

Types

• values & operations

• what are base types?

– e.g. Java: int, float, char etc

• what are structured types?

– e.g. Java: object, array, String etc

Types

• how do types constrain language?

• weak v strong typing

– i.e. whether type associated with entity can
change (weak) or can’t change (strong)

– e.g. Java: strong typing

• static v dynamic typing

– i.e. whether types checked at compile time
(static) or run time (dynamic)

– e.g. Java: static typing

Polymorphism

• type abstraction

– can types be generalised?

– polymorphism == many shapes

• ad-hoc v parametric polymorphism

– ad-hoc == “for this”

– i.e. language/context specific

– parametric == controlled by parameters

Polymorphism

• e.g. Java

– ad-hoc polymorphism

– operator overloading

– i.e. can use some operators with
different types e.g. arithmetic

– parametric polymorphism

– i.e. generic types with type variables

Assembler summary: types

• no types

– everything is a byte

• representations for:

– numbers, characters etc

• no type checking

– representation are conventional

– can apply any operation to any byte sequence
regardless of representation

– i.e. ad-hoc polymorphism

C summary: types

• strong, static types

– but... can override types with casts & address
manipulation

• base types

– int, short, long, char, float, double

• structured types

– array, struct, pointer, union, function

• ad-hoc polymorphism

– operator overloading & cast

SML summary: types

• strong, static types

• base types

– int, real, char, bool

• structured types

– tuple, list, user defined

• ad-hoc polymorphism

– operator overloading

• parametric polymorphism

– functions, lists, user defined types

Prolog summary: types

• weak, dynamic types

• base types

– integer, atom

• structured types

– structure, list

• ad-hoc polymorphism

– arbitrary types can appear in structures

Data abstraction

• memory abstraction

• variable as name/value abstraction from
address/contents

– e.g. Java: variables

• where may variables be introduced?

– e.g. Java: class fields, method formal
parameters, block/method bodies,
iteration control

Data abstraction

• how may variables be bound to values?

• e.g Java:

– initialising declaration

– assignment

– parameter passing

Data abstraction

• scope

– i.e. where is something visible?

– lexical v dynamic scope

– i.e. constrained or not by site of
definition/declaration

• extent

– i.e. how long does something exist?

Data abstraction

• e.g. Java: lexical scope

– class field/method names visible via object

– variables in block/ method body visible in block
unless redefined

– method formal parameter visible in method
body only

• e.g. Java: block extent

– variables only exist in defining block/method
body

Assembler summary: data
abstraction

• names R0-R15, PC, LR, SP etc abstract from
CPU registers

• labels abstract from memory addresses

• names and labels used as variables

• i.e. use name as operand to access/change
register/memory

• no data structures

– must craft explicitly from byte sequences

Assembler summary: data
abstraction

• registers:

– scope/extent - whole program

• labels:

– scope whole file + where imported

– extent – whole program

C summary: data abstraction

• variable

– name/value association

– abstracts address/contents

• can still expose low level memory:

– & and *

– can request that variable be bound to
register

C summary: data abstraction

• variable introduction

– declaration at start of program

– declaration at start of block

– formal parameters

• scope

– lexical

• extent

– block

SML summary: data abstraction

• variable

– name/value association

– cannot be changed

• address/memory not visible

SML summary: data abstraction

• variable introduction

– global definition

– local definition

– formal parameter

• scope

– lexical

• extent

– local definition, function body,

Prolog summary: data abstraction

• variable

– name/value association

– changed by backtracking

– variable sharing

• memory not visible

Prolog summary: data abstraction

• variable introduction

– term

• scope

– lexical

• extent

– goal of which term is part

Control abstraction

• structured operations as commands

• how are calculations performed?

– e.g. Java: expression

• how is memory accessed?

– e.g. Java: use variable name in
expression context

• how is memory changed?

– e.g. Java: assignment to variable

Control abstraction

• how are commands structured?

• e.g. Java:

– sequence

– block, nested method calls

– choice

– if, switch

– repetition

– while, for, iterators, recursion

Control abstraction

• e.g. Java

– control flow

– method call, return & break

– procedural

– void method

– i.e. from control sequences

– functional

– method with return type

– i.e. from expressions

– call by reference parameter passing

Program abstraction

• encapsulation

– abstract over data & control

• e.g. Java

– classes/objects

Assembler summary: control
abstraction

• operators abstract from machine code

• must craft structured constructs from
operator sequences

• no universal standards or conventions

– but compilers/operating will define
standards

– e.g. for parameter passing

C summary: control abstraction

• expressions

– abstract from arithmetic/logic
sequences

• commands

– abstract from:

– memory/register manipulation
sequences

– flag test, branch & address

C summary: control abstraction

• commands

– assignment

– sequence

– block & function body

– choice

– if & switch

– repetition

– for & while

– flow of control

– function call, return, break & goto

C summary: control abstraction

• functions

– functional abstraction

– with return type

– procedural abstraction

– no return type

– call by value & by reference parameter
passing

SML summary: control abstraction

• expressions

– abstract from arithmetic/logic/flow of control
sequences

• conditional expression

• pattern matching

– abstracts from constant matching

• functions

– call by value parameter passing

• recursion

Prolog summary: control abstraction

• term

– abstracts from arithmetic/logic/flow of control
sequences

• DB

– disjunction of facts/rules

• rule body/question

– conjunction of terms

• pattern matching

– abstracts from constant matching

Prolog summary: control abstraction

• question/goal/sub-goal

– analogous to function call

– binds variables to terms

• recursion

• backtracking

– reverses variable bindings

Pragmatics

• what is mapping to byte machine?

• how implemented?

• how easy to read/write/debug?

• performance?

• use?

• etc...

Assembler summary: pragmatics

• direct machine code abstraction

• 1 to 1 mapping from assembly language to
machine code

• easier to program than machine code

• must be assembled to machine code

• very fast

– same as machine code

Assembler summary: pragmatics

• hard to read/write/debug

• CPU specific

– not portable

– 1950s attempts at universal machine
code (UNCOL) failed

• used for mission/system critical software

– e.g. device drivers, BIOS, small
embedded systems

C summary: pragmatics

• in-between assembler & high-level

• one to many mapping from command to machine
code

• must be compiled to machine code (or interpreted)

• easier to read/write/debug than assembler

• can manipulate low level byte machine

• weak typing  errors from pointers & casts

• must manage memory explicitly

– e.g. allocate free memory for dynamic structures

C summary: pragmatics

• not as fast as assembler

• CPU independent

– ISO standard

– mostly portable

– but size of type depends on implementation

• used for system level programming, real-
time/embedded control

• rapidly replacing assembler for lower-level
programming

SML summary: pragmatics

• higher level than imperative programs

• many to one mapping from expression to machine code

• must be compiled to machine code (or interpreted)

• very succinct

• strong typing  reduces run-time errors

• good correspondence between program structure & data
structure

• automatic memory management

– garbage collection

SML summary: pragmatics

• not as fast as some imperative languages

– garbage collection overhead

• CPU independent

– formal definition

– highly portable

• used for:

– rapid prototyping

– reasoning about programs

– designing parallel frameworks e.g. Google map-reduce

Prolog: pragmatics

• higher level than imperative programs

• many to one mapping from expression to machine
code

• must be compiled to machine code (or interpreted)

• very succinct

• good correspondence between program structure &
data structure

• automatic memory management

– garbage collection

Prolog: pragmatics

• weak types/static typing/ad-hoc polymorphism

– space overhead: must have explicit
representation on type in memory

– time overhead: must check types for typed
operation

• backtracking

– space overhead: must keep track of
execution history

• garbage collection overhead

Prolog: pragmatics

• very different model to
imperative/functional languages

– long way from von Neumann model

– key concepts drawn from logic

• claims to be entirely implementation
independent but need to understand:

– variable sharing

– backtracking

Prolog: pragmatics

• CPU independent

– ISO standard

– highly portable

• used for:

– rapid prototyping

– AI

Language choice
• formally, programming language choice is arbitrary

• Church-Turing thesis

– all formal models of computability are equivalent

• thesis, not a theorem

– can’t be proved as unknown number of models

• simplest way is to demonstrate Turing completeness

– show model can be used to implement an arbitrary Turing
Machine

– Alan Turing’s 1936 model for computability

Language choice

• all models of computability so far have been shown to
satisfy Church-Turing thesis

• including:

– lambda calculus

– recursive function theory

– generalised von Neumann computers

– programming languages with arbitrarily large
values/structures

• so, in principle, can do anything in any programming
language

• but...

Technical constraints on language
choice

• language may not support key constructs

– e.g. lower level system/platform manipulation/control

– e.g. high level control abstractions suitable for parallelism

• language may not be supported on mandated platform

• implementation may not be able to deliver required
performance

• implementation may not have particular:

– functionality

– libraries

• could fix these but adds time/effort/cost to project

Social constraints on language
choice

• may prefer one language over another

– why do you prefer the language?

– not necessarily a good basis for choice...

• language may be mandated by:

– employer

– customer

– either may have:

– substantial investment in specific language technology

– requirement for specific system/platform/external
interoperability

Socio-technical constraints on
language choice

• need to be future proof

• language should be:

– stable

– widely used

– widely supported by different
platform/language tool manufacturers

	Slide 1
	Overview
	Overview
	Overview
	Summarising language characteristics
	Types
	Types
	Polymorphism
	Polymorphism
	Assembler summary: types
	C summary: types
	SML summary: types
	Prolog summary: types
	Data abstraction
	Data abstraction
	Data abstraction
	Data abstraction
	Assembler summary: data abstraction
	Assembler summary: data abstraction
	C summary: data abstraction
	C summary: data abstraction
	SML summary: data abstraction
	SML summary: data abstraction
	Prolog summary: data abstraction
	Prolog summary: data abstraction
	Control abstraction
	Control abstraction
	Control abstraction
	Program abstraction
	Assembler summary: control abstraction
	C summary: control abstraction
	C summary: control abstraction
	C summary: control abstraction
	SML summary: control abstraction
	Prolog summary: control abstraction
	Prolog summary: control abstraction
	Pragmatics
	Assembler summary: pragmatics
	Assembler summary: pragmatics
	C summary: pragmatics
	C summary: pragmatics
	SML summary: pragmatics
	SML summary: pragmatics
	Prolog: pragmatics
	Prolog: pragmatics
	Prolog: pragmatics
	Prolog: pragmatics
	Language choice
	Language choice
	Technical constraints on language choice
	Social constraints on language choice
	Socio-technical constraints on language choice

