
Programming Paradigms Languages F28PL,
Lecture 1

Jamie Gabbay

October 14, 2015

1 / 37

About me

My name is Murdoch James Gabbay—everybody calls me Jamie. I
got a PhD in Cambridge in 2001. Since then I have been a
professional researcher—that is, I make my living by discovering and
proving mathematical certainties.

My job consists of 50% academic research (into logic and
lambda-calculus), 50% teaching, and 50% administration.

Lectures are:

I Wednesday at 12:15 in EM1.82.
I Thursday at 10:15 in EM1.83.
I Thursday at 13:15 in EM2.50 (lab/tutorial).
I Thursday at 15:15 in JN302.

The course webpage is
http://www.macs.hw.ac.uk/~gabbay/F28PL/.

2 / 37

http://www.macs.hw.ac.uk/~gabbay/F28PL/

About you

You are about twenty years old (unless you are a mature student).
You are in your second year at university. You must:

I Turn up to lectures.
I Understand the course as it is delivered.
I Do not last-minute labs.

No exceptions.

3 / 37

Please note:

I don’t teach. I offer learning opportunities. You aren’t at school
any more. You are at university.

It is up to you to take advantage of the Internet, exercise sheets,
books, your colleagues, and your own intelligence. Your lecturers
cannot and will not do this for you.

4 / 37

About the course

This course is ostensibly about programming languages, and it is
indeed about three of them: ML, Python, and Prolog.

But there is a deeper message encoded in our putting these three
very different languages together: they have different paradigms.

I ML and Prolog are declarative languages; there are two types
of declarative languages:

I ML is a functional programming language.
I Prolog is a logic programming language.

I Python is an imperative programming language.

5 / 37

Let’s do an exam question:

Q. Explain, with specific examples, the differences between
imperative and declarative programming languages. (4 marks)
Give the specific examples! If you don’t give ’em, I can’t give you the

marks.

Q. Comment on the different programming styles promoted by
imperative and declarative programming languages. (2 marks)
Only 2 marks: be brief, but precise.

Q. Suggest one concrete advantage and one concrete disadvantage
each to imperative vs. declarative programming. (6 marks)
‘Concrete’ means concrete, specific, precise. Vaguenessisms such as

“It’s better” score . . . zero.

6 marks. Hmm. Best give 3 distinct reasons each. Repeated reasons

count only once!

6 / 37

Answers:

A. In an imperative such as Java (1 mark) language we instruct
the computer what to do (1 mark). In a declarative language
such as ML (1 mark) we instruct the computer what should be
done, but without necessarily giving much detail how (1 mark).

A. Imperative languages promote a relatively detailed stepwise
programming style. Declarative languages promote a relatively
undetailed high-level style (precisely because we do not give
details of execution).

A. Imperative: sometimes easier to hand-optimise e.g. for specific
hardware (note specific example), harder to write and debug,
more programmers familiar with imperative style.
Declarative: generally much quicker and easier to write, and
also easier to automatically optimise. May run slower and may
have poorer OS interface support, again because of the lack of
detail. Programmers may be harder to find (but likely to be
more productive once hired).

7 / 37

Imperative languages:

Imperative languages are concrete realisations of von Neumann
machines (this is no coincidence!). They have:

I stored program
I memory
I associations between addresses and values.

A language is Church-Rosser when it doesn’t matter what order you
evaluate the instructions in. Imperative language instructions
change memory—i.e. they change address/value association. Thus:

I Order of evaluation is fundamental. Imperative languages are
not Church-Rosser.

8 / 37

Imperative languages:

Most languages you know are imperative: C, Java, Bash scripting,
Fortran, Pascal, COBOL, Perl, Python, and so on.

You probably believed that ‘Programming’=‘Imperative
programming’. Prepare to enter a wider, brighter, crazier world.

Many languages are declarative: ML, Haskell, Erlang, Prolog, F#,
and so on. Some of them are research languages. Some are
industrial languages.

9 / 37

Imperative is not Church-Rosser
Program parts communicate by accessing common variables. Order
determines result; e.g. swap x and y: Correct:

int x=3,y=2; {(x,3),(y,2)}

t=x; {(x,3),(y,2),(t,3)}

x=y; {(x,2),(y,2),(t,3)}

y=t; {(x,2),(y,3),(t,3)}

Exchange second two statements:

int x=3,y=2; {(x,3),(y,2)}

x=y; {(x,2),(y,2)}

t=x; {(x,2),(y,2),(t,2)}

y=t; {(x,2),(y,2),(t,2)}

Exchange first two statements:

int x=3,y=2; {(x,3),(y,2)}

t=x; {(x,3),(y,2),(t,3)}

y=t; {(x,3),(y,3),(t,3)}

x=y; {(x,3),(y,3),(t,3)}

10 / 37

Imperative is not Church Rosser

Another example:

int inc(int * x)

{ return ++(*x); }

inc changes *x as a side-effect.

int i = 0;

printf("%d\n",inc(&i)+i); ==> 2

printf("%d\n",i+inc(&i)); ==> 1

11 / 37

Declarative languages

Describe what is to be done, not how to do it. Two kinds of
declarative language:

I Logic languages, like Prolog. These implement predicate
calculus.

I Functional languages like ML and Haskell. These implement
the lambda calculus.

So: imperative languages implement von Neumann machines, logic
languages implement predicate calculus, and functional languages
implement the λ-calculus.

12 / 37

Functional programming
What we don’t have:

I No global state. All variables immutable (but we can use
accumulators instead).

I No side-effects.
I Program often runs slower than well-optimised bug-free

declarative code (if you can get it).
I Code may copy-with-changes instead of modify-in-place;

inefficient for large structures.

What we do have is:

I Church-Rosser. Evaluation order irrelevant to final result.
I Easy to parallelise.
I Easier to formally certify (i.e. prove) programs correct.
I (Much) higher-level of programming. A little code can go a

very long way. Less code = fewer errors.
I Easier to machine-optimise, thus shifting work from end-users

(programmers) to compiler designers.
13 / 37

Running ML

I suggest this:

rlwrap sml

Standard ML of New Jersey v110 .76 [built: Tue Oct 22 14:04:11 2013]

-

or

rlwrap poly

Poly/ML 5.2 Release

>

(To exit, type Control-D.)

Check out the Standard ML Basis Library
http://sml-family.org/Basis/manpages.html.

14 / 37

http://sml-family.org/Basis/manpages.html

Running ML

Suggested program development cycle:

I Prepare program in file in one window

I Run SML system in another window

I While program not perfect do
load program file into SML system
if errors then
change program in file & save file

else
test program

if errors then
change program in file & save file

15 / 37

Running ML

To load a file type:

- use "file name";

File name is any valid file path enclosed in string quotes “. . . ”.

By convention SML file names end with .sml.

To leave SML typoe Control-D.

16 / 37

Some ML features

I Strong types. You can’t change the type associated with
variable.

I Static typing. Types are checked at compile time. A program
with a type error won’t even compile.

I Parametric polymorphism. Type variables (similar to Java
generics).

I Strict parameter passing / eager evaluation order. Parameters
are evaluated before a function is applied to them, so that e.g.
in (fn x => x*x)(1+1), the calculation 1+1 is carried out
once (for the one function application), not twice (for the two
instances of x).

I Left to right evaluation. In (1+1,2+2), 1+1 is calculated first,
then 2+2. In st (s applied to t) s is calculated first, then t.

17 / 37

Our first ML programs

- 42;

val it = 42 : int

- ~42;

> ~42 : int

val it = ~42 : int

- "Hello world";

val it = "Hello world" : string

Three programs: 42, ~42, and "Hello world". They compute
three values, which are the programs themselves.

18 / 37

Integers

int is the type of positive and negative integers.

- 42;

> 42 : int

- ~42;

> ~42 : int

~ is the unary minus/negation function.

How large is int?

19 / 37

Integers
How large is int? Depends!

- open Int;

[autoloading]

...

- maxInt;

val it = SOME 1073741823 : int option

- open Int64;

[autoloading]

...

- maxInt;

val it = SOME 9223372036854775807 : int option

- open LargeInt;

[autoloading]

...

- maxInt;

val it = NONE : int option

Check out http://www.it.uu.se/edu/course/homepage/
funpro/ht07/handout/f10-stdlib.html.

20 / 37

http://www.it.uu.se/edu/course/homepage/funpro/ht07/handout/f10-stdlib.html
http://www.it.uu.se/edu/course/homepage/funpro/ht07/handout/f10-stdlib.html

Boring basic stuff for reference
+ is addition. * is multiplication. div is integer division. mod is
remainder. We group operations with brackets.

More interesting:

- op +;

val it = fn : int * int -> int

- (op +,op *,op div ,op mod);

val it = (fn ,fn ,fn ,fn)

: (int * int -> int) * (int * int -> int) *

(int * int -> int) * (int * int -> int)

Make sure you understand exactly what is going on here, including
why we have to type op, and what the types mean, and why the
interpreter displays (fn,fn,fn,fn).

Precedence: (. . .) then ~ then * and div and mod then + and -.
Left to right evaluation order.

So ~1+1 computes zero, not minus 2.

21 / 37

Real numbers
Much like integers; ad hoc polymorphism of + and *.

Differences: division on reals is / instead of div. Why? Because
div is not division, it is division plus rounding down.

- op /;

val it = fn : real * real -> real

- 1E10;

val it = 10000000000.0 : real

- Real.maxFinite;

[autoloading]

...

val it = 1.79769313486 E308 : real

- LargeReal.maxFinite;

[autoloading]

...

val it = 1.79769313486 E308 : real

So Real is the same as LargeReal in the implementation on my
machine. Largest floating point number is 1.79769313486 ∗ 10308.

22 / 37

Ad hoc polymorphism

Also called overloading.

~, +, -, and * are overloaded for integers and reals.

Must be applied to two integers only or two reals only; try typing
1+1.0.

Conversion functions are available:

- real;

val it = fn : int -> real

- floor;

val it = fn : real -> int

We distinguish between real the type and real:int->real the
function.

23 / 37

Functions

This is functional programming, after all.

Functions are written prefix. Evaluation is strict, meaning that given
st (s applied to t) we evaluate s, then evaluate t, then evaluate
the application.

So for instance, (fn x => (x,x))(floor 6.789) rounds 6.789
down once, not twice.

Function application takes high precedence. For instance floor ~1

raises a type error, as does floor real 1. Try it.

You need to type floor(~1) and floor(real 1).

floor 12.3+4 is fine. floor 12.3 evaluates to the integer 12
first.

(Much) more on functions later!

24 / 37

Strings

Type string of strings.

Any sequence of characters within quotes ”...”.

- "Hello World";

> "Hello World" : string

Escape sequences for non-printing characters:

I \n for newline,

I \t for tab.

25 / 37

Strings

There is a function size : string -> int.

What do you think it calculates? Yes, that’s right.

- size "hello";

> 5 : int

There is a binary infix operator op ^:string*string -> string.

What do you think it does? Yes, that’s right.

- "Hello"^" "^"World";

> "Hello World" : string

The name of a function and its type are informative. Pay attention
to them.

26 / 37

Chars
So if I tell you there’s a type char and show you this

- #"a";

> #"a" : char

- chr;

val it = fn : int -> char

- ord;

val it = fn : char -> int

You should work out what this does. Let’s take it further:

- open Char;

... opening Char

type char = ?.char

type string = ?. string

val chr : int -> char

val ord : char -> int

val minChar : char

val maxChar : char

val maxOrd : int

...
27 / 37

Chars and strings

Note: a string is not a list of chars. But we do have functions:

- explode;

val it = fn : string -> char list

- implode;

val it = fn : char list -> string

- toString;

val it = fn : char -> string

What do you think they do? Why not try it out. For instance, type
explode "Hello world" and see what you get.

For more innocent fun, try

I (implode o rev o explode) "Hello world"; and
I (implode o rev o explode)

"A man, a plan, a canal: Panama";

28 / 37

Booleans

Booleans are a type bool. Values are true and false. See also
negation not:

> true;

val it = true : bool

> not;

val it = fn : bool -> bool

> not true;

val it = false : bool

Binary infix operators andalso (conjunction) and orelse

(disjunction).

Precedence is not, then andalso, then orelse. This can matter!

> true orelse false andalso false;

val it = true : bool

> not true orelse false;

val it = false : bool

29 / 37

Booleans
Equality (is polymorphic and) generates boolean values:

> op =;

val it = fn : ’’a * ’’a -> bool

> 1 = 1;

val it = true : bool

> 1 = 2;

val it = false : bool

andalso will not bother to evaluate its second argument if its first
argument evaluates to false.

orelse will not bother to evaluate its second argument if its first
argument evaluates to true.

This can matter!

> true orelse (5 div 0 = 0);

val it = true : bool

> (5 div 0 = 0) orelse true;

Exception - Div raised

30 / 37

Tuples

A tuple is a collection of values of fixed length and type, muchlike
the fields of a Java object (exp1, exp2, ..., expN).

> (1,1.0,"one");

val it = (1, 1.0, "one") : int * real * string

Select index:

> #1 (1,1.0,"one");

val it = 1 : int

> #2 (1,1.0,"one");

val it = 1.0 : real

> #3 (1,1.0,"one");

val it = "one" : string

> #4 (1,1.0,"one");

Error - ...

> #0 (1,1.0,"one");

Error -Labels must be 1,2,3,....

31 / 37

Tuples

Can be nested:

> (("Bianca","Castafiore"),"singer");

val it = (("Bianca", "Castafiore"), "singer") : (string * string) * string

Can pull nested indexes:

> #2 (#1 (("Cuthbert","Calculus"),"inventor"));

val it = "Calculus" : string

32 / 37

Equality types

An equality type is any type which allows equality testing.

All types except real, functions, and streams. ’a (read α) ranges
over all types; ’’a (read ′α) ranges over equality types.

Equality types have = and <>:

> op =;

val it = fn : ’’a * ’’a -> bool

> op <>;

val it = fn : ’’a * ’’a -> bool

33 / 37

Equality types
"banana" = "banana";

val it = true : bool

"banana" <> "banana";

val it = false : bool

true = true;

val it = true : bool

true = false;

val it = false : bool

(("Captain","Haddock"),"sailor") =

(("Captain","Haddock"),"sailor");

val it = true : bool

Reals are not an equality type; types must match:

> 1.0=1.0;

Error -Can ’t unify ’’a with real

(Requires equality type)

> 1=1.0;

Error -Can ’t unify Int32.int/int with real

34 / 37

Comparisons

Binary infix order operators returning bool:

> (op >,op <,op >=,op <=);

val it = (fn , fn , fn , fn)

: (int * int -> bool) * (int * int -> bool) *

(int * int -> bool) * (int * int -> bool)

35 / 37

Comparisons
Overloaded for reals and strings by ad hoc polymorphism:

> 1<1;

val it = false : bool

> 1.0 <1.0;

val it = false : bool

> "1"<"1";

val it = false : bool

> (op <):(real*real)->bool;

val it = fn : real * real -> bool

> (op <):(int*int)->bool;

val it = fn : int * int -> bool

> "1"<"1";

val it = false : bool

> (op <):(string*string)->bool;

val it = fn : string * string -> bool

Note: comparison of strings is lexicographic:

> "aa"<"z";

val it = true : bool
36 / 37

Comparisons

Precendence:

I (...) then
I function call, then
I arithmetic operator, then
I comparison, then
I boolean operator.

> 3*4 >5*6;

val it = false : bool

not is a function so must bracket a comparison to negate it.

> not 1<2;

Error

> not (1 <2);

val it = false : bool

37 / 37

