
Python

Jamie Gabbay
(adapted from slides by Hans-Wolfgang Loidl)

Semester 1 2015/16

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 1 / 123

Contents

1 Python Overview

2 Getting started with Python

3 Control structures

4 Functions

5 Classes

6 Exceptions

7 Iterators and Generators

8 Overloading

9 Interpretation and Compilation

10 Libraries

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 2 / 123

Resources

www.python.org: official website
Learning Python, by Mark Lutz.
learnpythonthehardway.org/book/.
www.python-course.eu/.
My current favourite:
docs.python.org/3.4/library/index.html. A treasure trove.

The Internet is bursting at the seams with great info on Python.
Explore.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 3 / 123

www.python.org
https://www.google.co.uk/search?q=learning+python+o%27reilly+pdf
learnpythonthehardway.org/book/
www.python-course.eu/
docs.python.org/3.4/library/index.html

Python

Python is named after Monty Python’s Flying Circus
Open source
Highly portable
First version was made available 1990
Current stable version is 3.4

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 4 / 123

Python 3 vs Python 2

Python 3 offers new concepts over Python 2 (and drops some old
ones).
Warning: Python 2 code samples online might not run on Python 3. A
tool python3-2to3 says what to change, and mostly works.
Common issues are:

In Python 3, print is treated as any other function, especially you
need to use parentheses as in write print(x) NOT print x.
Focus on iterators: pattern-like functions (e.g. map) now return
iterators, i.e. a handle to a computation, rather than a result. More
on this later (e.g. range).

For details check:
https://www.python.org/download/releases/3.0/

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 5 / 123

https://www.python.org/download/releases/3.0/

Runtime behaviour

Python source code is compiled to bytecode—a portable machine
code optimised for rapid execution by a software interpreter.
Compilation is performed transparently: your programs ‘just run’
but are actually being compiled to bytecode, and then run.
Automatic memory management using reference counting based
garbage collection. This is like Java, but unlike C where memory
must be explicitly allocated and deallocated.
No uncontrolled crash (as in segfaults)

You are expected to know, in general terms, about bytecode and
automatic memory management. E.g. “Q. Explain why C programs
may suffer from memory leaks and Python programs do not.” or
“Python and Java compile to bytecode. Explain in general terms what
the previous sentence means.” We’re not looking for expertise; just
general knowledge. Read up on this if you need to.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 6 / 123

https://en.wikipedia.org/wiki/Bytecode
https://en.wikipedia.org/wiki/Reference_counting

Language features

Everything is an object (pure object-oriented design).
Features classes and multiple inheritance.
Higher-order functions (like ML).
Dynamic typing and polymorphism.
Exceptions as in Java.
Static scoping and modules.
Operator overloading.
Block structure with semantic-bearing indentation (“off-side rule”
as in Haskell).

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 7 / 123

Data types

int, float, and complex numbers.
Strings.
List, tuple, and range.
Sets and frozensets.
Dictionaries.
Add-on modules can define new data-types.
Can model arbitrary data-structures using classes.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 8 / 123

https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex
https://docs.python.org/3/library/stdtypes.html#textseq
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#mapping-types-dict

Data types

You are expected to be familiar with the int, float, string, list, tuple,
range, set, frozenset, and dictionary types.
You are expected to be able to explain what they are and how they
differ.

E.g.
Q: Explain the difference between set and frozenset, with
specific reference to the x.issubset(y) and x.add(i) methods
(3 marks).
A: set is mutable, frozenset is immutable (1 mark). Thus if x has
set type then it supports both methods (1 mark), whereas if x has
type frozenset then it supports issubset but not add (1 mark).

See Slide 71 and surrounding slides.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 9 / 123

Why Python?

Code 2-10× shorter than C#, C++, Java.
Code is easy to comprehend.
Good for web scripting.
Scientific applications (numerical computation, natural language
processing, data visualisation, etc).
Already familiar to many of you, e.g. from the Raspberry Pi.
Rich libraries for XML, Databases, Graphics, etc.
Web content management (Zope/Plone).
GNU Mailman
JPython

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 10 / 123

Why Python?

Active community
Good libraries
Used in famous teaching institutes (MIT, Berkeley, Heriot-Watt,
etc)
Excellent online teaching material, e.g. Online Python Tutor
Includes advanced language features, such as functional
programming.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 11 / 123

www.pythontutor.com

Launching Python

Interactive Python shell: rlwrap python3

Exit with eof (Unix: Ctrl-D, Windows: Ctrl-Z)
Or: import sys; sys.exit()

Execute a script: python myfile.py

python3 ..python-args.. script.py ..script-args..

Evaluate a Python expression
python3 -c "print (5*6*7)"
python3 -c "import sys; print (sys.maxint)"
python3 -c "import sys; print (sys.argv)" 1 2 3 4

Executable Python script
#!/usr/bin/env python3
-*- coding: iso-8859-15 -*-

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 12 / 123

Our first Python interaction

> rlwrap python3
Python 3.4.0 (default, Jun 19 2015, 14:20:21)
[GCC 4.8.2] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> # A comment
... x = "Hello World" # Let’s stop faffing: set x
>>> x # What’s x?
’Hello World’ # x is a string ’Hello World’
>>> print(x) # Go on, print it
Hello World # OK
>>> type(x) # What’s the type of x?
<class ’str’> # A string, I told you
>>> x*3 # Copy it three times, please
’Hello WorldHello WorldHello World’ # OK

Handy tip: type(v) yields the type of v.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 13 / 123

Numbers

>>> 2+2 # start simple
4
>>> 7/3 # weak types;
2.3333333333333335 # return float
>>> 7/-3
-2.3333333333333335
>>> 7//3 # integer division
2
>>> 7//-3
-3
>>> 10**8 # ‘To the power of’
100000000

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 14 / 123

More fun with numbers

>>> x = 7/3
>>> x.is_integer()
False
>>> x.__round__

<built-in method __round__ of float object at 0x7f9b27a35af8>
>>> x.__round__()
2
>>> type(x)
<class ’float’>
>>> type(x.__round__())
<class ’int’>
>>> x.as_integer_ratio()
(5254199565265579, 2251799813685248)

Floats aren’t infinite precision, then!
Handy tip: Type ‘x.’ then double-tab (thanks to Chris). Lists methods
of x.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 15 / 123

More fun with numbers

Integers are infinite precision, floats aren’t. This can lead to innocent
fun:

>>> 10**30 # integer computation
1000000000000000000000000000000
>>> int(1E30) # float computation, convert to integer
1000000000000000019884624838656
>>> int(1E30)-10**30 # seems like rounding error crept in
19884624838656 # only 20 trillion out!

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 16 / 123

More fun with numbers

More innocent fun:

>>> def tower(n): # Recursive function
... if n==0: # What does it calculate?
... return 2
... else:
... return 2**(tower(n-1))
>>> tower(3)
65536
>>> tower(4)
Answer several pages long (try it)
>>> tower(5)
Crashes my machine

Python eats memory, trying to calculate tower(5) to infinite precision.
Let’s try it with floats instead . . .

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 17 / 123

More fun with numbers

>>> def tower(n):
... if n==0:
... return 2.0
... else:
... return 2.0**(tower(n-1))
...
>>> tower(3)
65536.0
>>> tower(4)
OverflowError: (34, ’Numerical result out of range’)

In other words, float just throws up its hands and gives up.
You are required to know that integers are infinite precision in Python
and floats aren’t, by default, and e.g. predict the behaviour of the two
tower functions above.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 18 / 123

(Non-examinable aside:) Arbitrary precision float

For arbitrary precision floats, mpmath seems the package to use. You
may need to install it
(on my machine: apt-cache install python3-mpmath).

>>> from mpmath import *
>>> mp.dps = 50; mp.pretty = True
>>> fdiv(7,3)
2.333
>>> +pi
3.1415926535897932384626433832795028841971693993751
>>> +sqrt(2)
1.4142135623730950488016887242096980785696718753769

That’s more like it!
Here’s a page with 100 one-liners for calculating pi in Python:
fredrikj.net/blog/2011/03/100-mpmath-one-liners-for-pi/

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 19 / 123

fredrikj.net/blog/2011/03/100-mpmath-one-liners-for-pi/

Assignment

Variables don’t have to be declared (scripting language).
>>> width = 20
>>> height = 5*9
>>> width * height
900

Parallel assignments:
>>> width, height = height, width + height

Short-hand notation for parallel assignments:
>>> x = y = z = 0 # Zero x, y and z
>>> x
0
>>> z
0
>>> x = 0 = y = z # Worth a try
Error

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 20 / 123

Back to floating point

Arithmetic operations overloaded between int and float.
Integers converted to float on demand:

>>> 3 * 3.75 / .5
22.5
>>> 7. / 2
3.5
>>> float(7) / 2
3.5

Exponent notation: 1e0 1.0e+1 1e-1 .1e-2

Typically 53 bit precision (as double in C).

>>> 1e-323
9.8813129168249309e-324
>>> 1e-324
0.0

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 21 / 123

Back to floating point

>>> 1e-323
9.8813129168249309e-324
>>> 1e-324
0.0

If we loaded mpmath we can use its power function:

>>> power(10,-324)
mpf(’1.0e-324’)
>>> power(10,-325)
mpf(’9.9999999999999997e-326’)

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 22 / 123

Further arithmetic operations

Remainder:
>>> 4 % 3
1
>>> -4 % 3
2
>>> 4 % -3
-2
>>> -4 % -3
-1
>>> 3.9 % 1.3
1.2999999999999998

Division and Floor:
>>> 7.0 // 4.4
1.0

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 23 / 123

Complex Numbers

Imaginary numbers have the suffix j.
>>> 1j * complex(0,1)
(-1+0j)
>>> complex(-1,0) ** 0.5
(6.1230317691118863e-17+1j)

Real- and imaginary components:
>>> a=1.5+0.5j
>>> a.real + a.imag
2.0

Absolute value is also defined on complex.
>>> abs(3 + 4j)
5.0

You’re not expected to know complex numbers off by heart, though in
an exam I may give relevant definitions and set a question using them,
just because.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 24 / 123

Bit operations

Left- (<<) and right-shift (>>)
>>> 1 << 16
65536

Bitwise and (&), or (|), xor (^) and negation (~).
>>> 254 & 127
126
>>> 254 | 127
255
>>> 254 ^ 127
129
>>> ~0
-1

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 25 / 123

Bit operations

Binary representation using bin, go back using int.
>>> bin(1<<16)
’0b10000000000000000’
>>> type(bin(1<<16))
<class ’str’>
>>> int(bin(1<<16),2)
65536
>>> bin(0b11111110 & 0b01111111)
’0b1111110’ #lost leading zero; see below
>>> bin(0b11111110 | 0b01111111)
’0b11111111’
>>> bin(0b11111110 ^ 0b01111111)
’0b10000001’

What to keep leading zeroes? Use format instead (bit abstruse):
>>> format(0b11111110 & 0b01111111, ’#010b’)
’0b01111110’

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 26 / 123

Strings

Type: str.

>> type("Hello world")
<class ’str’>

Single- and double-quotes can be used
Input Output
------- ---------
’Python tutorial’ ’Python tutorial’
’doesn\’t’ "doesn’t"
"doesn’t" "doesn’t"
’"Yes," he said.’ ’"Yes," he said.’
"\"Yes,\" he said." ’"Yes," he said.’
’"Isn\’t," she said.’ ’"Isn\’t," she said.’

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 27 / 123

Escape-Sequences

\\ backslash
\’ single quote
\" double quote
\t tab
\n newline
\r carriage return
\b backspace

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 28 / 123

Multi-line string constants

The expression
print ("This is a rather long string containing\n\
several lines of text as you would do in C.\n\

Whitespace at the beginning of the line is\
significant.")

displays this text
This is a rather long string containing
several lines of text as you would do in C.

Whitespace at the beginning of the line is significant.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 29 / 123

Triple-quote

Multi-line string including line-breaks:
print ("""
Usage: thingy [OPTIONS]

-h Display this usage message
-H hostname Hostname to connect to

""")

gives
Usage: thingy [OPTIONS]

-h Display this usage message
-H hostname Hostname to connect to

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 30 / 123

Raw strings

An r as prefix preserves all escape-sequences.
>>> print ("Hello! \n\"How are you?\"")
Hello!
"How are you?"
>>> print (r"Hello! \n\"How are you?\"")
Hello! \n\"How are you?\"

Raw strings also have type str.
>>> type ("\n")
<type ’str’>
>>> type (r"\n")
<type ’str’>

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 31 / 123

Unicode

Unicode-strings (own type) start with u.
>>> print (u"a\u0020b")
a b
>>> u"ö"
u’\xf6’
>>> type (_)
<type ’unicode’>

Standard strings are converted to unicode-strings on demand:
>>> "this " + u"\u00f6" + " umlaut"
u’this \xf6 umlaut’
>>> print _

this ö umlaut

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 32 / 123

String operations

"hello"+"world" "helloworld" # concat.
"hello"*3 "hellohellohello" # repetition
"hello"[0] "h" # indexing
"hello"[-1] "o" # (from end)
"hello"[1:4] "ell" # slicing
len("hello") 5 # size
"hello" < "jello" True # comparison
"e" in "hello" True # search

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 33 / 123

String operations

You are required to understand that string comparison is lexicographic
on the underlying ASCII representation—and that this can have
counter-intuitive consequences:

>>> "z"<"a"
False
>>> "Z"<"a"
True
>>> "Z" < "aardvark"
True
>>> "z" < "aardvark"
False
>>> "a"<"A"
False
>>> "9"<"10"
False

See this page for more on ‘human’ sorting.
Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 34 / 123

http://stackoverflow.com/questions/6810619/how-to-explain-sorting-numerical-lexicographical-and-collation-with-examples
http://blog.codinghorror.com/sorting-for-humans-natural-sort-order/

Lists

Lists are mutable arrays.
a = [99, "bottles of beer", ["on", "the", "wall"]]

String operations work on lists.
a+b, a*3, a[0], a[-1], a[1:], len(a)

Elements and segments can be modified.
a[0] = 98
a[1:2] = ["bottles", "of", "beer"]

-> [98, "bottles", "of", "beer",
["on", "the", "wall"]]

del a[-1] # -> [98, "bottles", "of", "beer"]

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 35 / 123

More list operations

>>> a = range(5) # [0,1,2,3,4]
>>> a.append(5) # [0,1,2,3,4,5]
>>> a.pop() # [0,1,2,3,4]
5
>>> a.insert(0, 42) # [42,0,1,2,3,4]
>>> a.pop(0) # [0,1,2,3,4]
42
>>> a.reverse() # [4,3,2,1,0]
>>> a.sort() # [0,1,2,3,4]

You are required to understand that these methods modify the data
in-place . . .

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 36 / 123

More list operations

. . . and that if you want the computation itself then use functions such
as reversed or sorted:

>>> a = [’0’,’1’]
>>> a.reverse() # a reversed in-place
>>> a
[’1’, ’0’]
>>> type([’0’,’1’].reverse()) # Here, [’0’,’1’] is reversed ...
<class ’NoneType’> # and garbage-collected!
>>> reversed([’0’,’1’]) # You probably meant this
<list_reverseiterator object at 0x7f9ea58b72b0>
>>> list(reversed([’0’,’1’])) # Oops. Force execution with list()
[’1’, ’0’] # Perfect
>>> sorted(reversed([’0’,’1’])) # Now sort it, just for fun
[’0’, ’1’]

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 37 / 123

More list operations

Really thinking about this is enough to make my head hurt. Watch this:

>>> a = [0,1] # Make a list
>>> a.reverse() # Reverse it
>>> a
[1, 0] # Yup, reversed
>>> type(a) # What’s its type?
<class ’list’> # A list.
>>> a.reverse() # Reverse it again.
>>> a = reversed(a) # Now reverse it again ...
>>> type(a) # What’s the result type?
<class ’list_reverseiterator’>
>>> a # Not a list; a computation!
<list_reverseiterator object at 0x7f9ea5957f28>
>>> list(a) # Force evaluation
[0, 1] # Phew!

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 38 / 123

Lists and strings

If a is a list of strings and s is a string, then s.join(a) concatenates
the elements of a using s as a separator.
E.g. if s is a list of strings then ’,’.joins) is a comma-separated list.
You are required to understand the code below, including the reason
for the error message:

>>> a = [99, "bottles of beer", ["on", "the", "wall"]]
>>> a[1]+a[2]
TypeError: Can’t convert ’list’ object to str implicitly
>>> a[1:2]+a[2]
[’bottles of beer’, ’on’, ’the’, ’wall’]
>>> ’ ’.join(a[1:2]+a[2])
’bottles of beer on the wall’
>>> # Note list comprehension [exp for range]; see later
>>> ’,’.join(reversed([str(i) for i in range(11)]))+’,liftoff!’
’10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, liftoff!’

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 39 / 123

Booleans

0, ’’, [], None, etc. are interpreted as False.
All other values are interpreted as True (also functions!).
is checks for object identity: [] == [] is true, but [] is [] isn’t.
5 is 5 is true. More on this in Slide 75.
Comparisons can be chained like this: a < b == c > d.
The boolean operators not, and, or are short-cutting.
def noisy(x): print (x); return x

a = noisy(True) or noisy(False)

This technique can also be used with non-Boolean values:
>>> ’’ or ’you’ or ’me’
’you’

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 40 / 123

While

Print all Fibonacci numbers up to 100:
>>> a, b = 0, 1
>>> while b <= 100:
... print (b)
... a, b = b, a+b
...

Comparison operators: == < > <= >= !=

NB: Indentation carries semantics in Python:
I Indentation starts a block
I De-indentation ends a block

Or:
>>> a, b = 0, 1
>>> while b <= 100: print (b); a,b = b, a+b
...

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 41 / 123

If

Example
x = int(input("Please enter an integer: "))
if x < 0:

x = -1
print(’Sign is Minus’)

elif x == 0:
print(’Sign is Zero’)

elif x > 0:
print(’Sign is Plus’)

else:
print(’Should never see that’)

NB: elif instead od else if to avoid further indentations.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 42 / 123

For

for iterates over a sequence (e.g. list, string)

Example

a = [’cat’, ’window’, ’defenestrate’]
for x in a:

print(x, len(x))

This prints:

cat 3
window 6
defenestrate 12

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 43 / 123

For

The iterated sequence must not be modified in the body of the loop!

Example

a = [’Hi’,’De’]
for x in a: print(x,end=’ ’); a.extend(a[0:1])
This loops forever. Run it and see. Why?
a = [’Hi’,’De’]
for x in a: print(x,end=’ ’); a.extend(a[0:])
This may crash your machine. Why?
(Run it after saving all documents.)

In the second example, the length of a is doubled at each cycle.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 44 / 123

For

We can force creation of a copy first, e.g. using segment a[:] or list.

Example

>>> a = [’Hi’,’De’]
This is dangerous
for x in a: print(x,end=’ ’); a.extend(a[0:])
This is mostly harmless
>>> for x in a[:]: print(x,end=’ ’); a.extend(a[0:])
... # Fingers crossed ...
Hi De # Phew!
>>> a # Why 8 elements?
[’Hi’, ’De’, ’Hi’, ’De’, ’Hi’, ’De’, ’Hi’, ’De’]
>>> a = [’Hi’,’De’] # Reset a
>>> for x in list(a): print(x,end=’ ’); a.extend(a[0:])
Hi De Hi De Hi De Hi De
>>> a
[’Hi’, ’De’, ’Hi’, ’De’, ’Hi’, ’De’, ’Hi’, ’De’]

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 45 / 123

Range function

range() generates a computation for a range of numbers:

>>> range(10)
range(0, 10) # Range from 0 unless otherwise stated
>>> type(range(10)) # What’s its type?
<class ’range’> # It’s a range computation
>>> list(range(10)) # Please execute this computation
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # OK: numbers from 0 to 9
>>> range(10)[2:4]
range(2, 3) # Slicing doesn’t trigger evaluation!
>>> list(range(10)[2:4])
[2, 3] # List triggers evaluation.
>>> list(range(10))[2:4] # Move one tiny bracket left ...
[2, 3] # ... now evaluates first,

then slices (inefficient) ...

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 46 / 123

Range function

>>> range(10**8) # ... so take some big range
range(0, 100000000)
>>> list(range(10**8))[2:4] # Bracket one way
[2, 3] # Runs slow
>>> list(range(10**8)[2:4]) # Bracket the other
[2, 3] # Runs fast

list(range(10**10) froze my system up.
You are expected to understand that range does not compute a range,
it creates a computation for a range, which may or may not be
triggered.
You are expected to recognise the implications, e.g. for efficiency.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 47 / 123

Range function

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(5, 10) # Can specify start point
[5, 6, 7, 8, 9]
>>> range(0, 10, 3) # Can specify jump
[0, 3, 6, 9]
>>> range(-10, -100, -30) # Also negative numbers
[-10, -40, -70]
>>> list(range(-10)) # Be careful ...
[]
>>> list(range(0,-10,-1)) # ... you probably meant this!
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

Typical application: iteration over the indices of an array.
a = [’Mary’, ’had’, ’a’, ’little’, ’lamb’]
for i in range(len(a)):

print(i, a[i])

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 48 / 123

For-/While-loops: break, continue, else

break (as in C), terminates the enclosing loop immediately.
continue (as in C), jumps to the next iteration of the enclosing
loop.
The else-part of a loop will only be executed, if the loop hasn’t
been terminated using break construct.

Example
for n in range(2, 10):

for x in range(2, n):
if n % x == 0:

print (n, ’equals’, x, ’*’, n//x)
break

else: # loop completed, no factor
print (n, ’is a prime number’)

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 49 / 123

The empty expression

The expression pass does nothing.

while True:
pass # Busy ... wait for keyboard interrupt

Use if an expression is syntactically required but doesn’t have to
do any work.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 50 / 123

The None value

None is handy for implementing partial functions. Suppose you want to
implement division division; what to do with divide-by-zero?
You could raise an exception . . . or just return a None value. Try these
programs:

def mydiv(x,y):
if y==0: return None;
else: return (x/y)

print(mydiv(1,0))
output: "None"
superman_todo={1:"Get out bed",2:"Save World",3:"Eat breakfast"}
print(superman_todo.get(4)) # 4th item of Superman’s todo?
output: "None"

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 51 / 123

Procedures

Procedures are defined using the key word def.

def fib(n): # write Fibonacci series up to n
"""Print a Fibonacci series up to n."""
a, b = 0, 1
while b < n:

print (b)
a, b = b, a+b

Variables n, a, b are local.
The return value is None (hence, it is a procedure rather than a
function).
print (fib(10))

More on fib in Slide 83.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 52 / 123

A procedure as an object

Procedures are values in-themselves.
>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
1 1 2 3 5 8 13 21 34 55 89

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 53 / 123

On parameters

Assignment to parameters of a function are local.
def bla(l):

l = []

l = [’not’, ’empty’]
bla(l)
print(l) # Output: [’not’, ’empty’], not []

l is a reference to an object.
The referenced object can be modified:
def exclamate(l):

l.append(’!’)

exclamate(l)
print(l) # ’!’ added!

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 54 / 123

Global Variables

The access to a global variable has to be explicitly declared.
def clear_l():

global l
l = []

l = [’not’, ’empty’]
clear_l()
print(l)

. . . prints the empty list.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 55 / 123

Return values

The return construct immediately terminates the procedure.
The return ...value... construct also returns a concrete result
value.
def fib2(n):

"""Return the Fibonacci series up to n."""
result = []
a, b = 0, 1
while b < n:

result.append(b) # see below
a, b = b, a+b

return result

f100 = fib2(100) # call it
f100 # write the result

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 56 / 123

Doc-strings

The first expression in a function can be a string (as in elisp).
def my_function():

"""Do nothing, but document it.

No, really, it doesn’t do anything.
"""
pass

The first line typically contains usage information (starting with an
upper-case letter, and terminated with a full stop).
After that several more paragraphs can be added, explaining
details of the usage information.
This information can be accessed using .__doc__ or help
constructs.
my_function.__doc__ # return doc string
help(my_function) # print doc string

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 57 / 123

Anonymous Functions

A function can be passed as an expression to another function:
>>> lambda x, y: x # in ML: fn x => fn y => x
<function <lambda> at 0xb77900d4>

This is a factory-pattern for a function incrementing a value:
def make_incrementor(n):

return lambda x: x + n
in ML: fn x => x+n

f = make_incrementor(42)
f(0)
f(1)

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 58 / 123

Anonymous Functions

Functions are compared using the address of their representation in
memory:

>>> (lambda x:x)==(lambda x:x) # Make 2 functions, compare addresses
False # Different!
>>> x = (lambda x:x) # Make 1 function
>>> x == x # compare its address with itself.
True # The same!

What does this return?

>>> x = [lambda x:x]*2
>>> x[0]==x[1]
True

This tells us that *2 generates a link rather than trigger a copy.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 59 / 123

Exercises

Implement Euclid’s greatest common divisor algorithm as a
function over 2 int parameters.
Implement matrix multiplication as a function taking 2
2-dimensional arrays as arguments.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 60 / 123

More list operations

Modifiers:
I l.extend(l2) means l[len(l):] = l2, i.e. add l2 to the end of

the list l.
I l.remove(x) removes the first instance of x in l. Error, if
x not in l.

Read-only:
I l.index(x) returns the position of x in l. Error, if x not in l.
I l.count(x) returns the number of occurrences of x in l.
I sorted(l) returns a new list, which is the sorted version of l.
I reversed(l) returns an iterator, which lists the elements in l in

reverse order.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 61 / 123

Usage of lists

Lists can be used to model a stack: append and pop().
Lists can be used to model a queue: append und pop(0).

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 62 / 123

Higher-order functions on lists

filter(test, sequence) returns a sequence, whose elements
are those of sequence that fulfill the predicate test. E.g.
filter(lambda x: x % 2 == 0, range(10))

map(f, sequence) applies the function f to every element of
sequence and returns it as a new sequence.
map(lambda x: x*x*x, range(10))
map(lambda x,y: x+y, range(1,51), range(100,50,-1))

reduce(f, [a1,a2,a3,...,an]) computes
f(...f(f(a1,a2),a3),...,an)

reduce(lambda x,y:x*y, range(1,11))

reduce(f, [a1,a2,...,an], e) computes
f(...f(f(e,a1),a2),...,an)

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 63 / 123

List comprehensions

More readable notation for combinations of map and filter.
Motivated by set comprehensions in mathematical notation.
[e(x,y) for x in seq1 if p(x) for y in seq2]

>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [(x, x**2) for x in vec]
[(2, 4), (4, 16), (6, 36)]
>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 64 / 123

Deletion

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0] # Kill first element
>>> a
[1, 66.25, 333, 333, 1234.5] # Gone!
>>> del a[2:4] # Kill 3rd + 4th elements
>>> a
[1, 66.25, 1234.5] # Gone!
>>> del a[:] # Kill them all!!
>>> a # (Who says megalomania can’t be fun?)
[] # Gone!
>>> del a # Now ... kill the var itself.
>>> a
NameError: name ’a’ is not defined # What var?

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 65 / 123

Tuples

>>> t = 12345, 54321, ’hello!’
>>> t[0]
12345
>>> t
(12345, 54321, ’hello!’)
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, ’hello!’), (1, 2, 3, 4, 5))
>>> x, y, z = t
>>> empty = ()
>>> singleton = ’hello’, # trailing comma

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 66 / 123

Sets

set(l) generates a set, formed out of the elements in the list l.
set(l) generates a frozenset (an immutable set), formed out of
the elements in the list l. More on this in Slide 71.
list(s) generates a list, formed out of the elements in the set s.
tuple(s) generates a tuple (an immutable list), formed out of
. . . you know the rest.
x in s tests for set membership
Operations: - (difference), | (union), & (intersection), ^ (xor).
for v in s iterates over the set (sorted!).

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 67 / 123

Sets

Warning: set and list treat string arguments as lists of chars.
>>> x = "Supercalifragilisticexpialidocious"
>>> list(x)
[’S’, ’u’, ’p’, ’e’, ’r’, ’c’, ’a’, ’l’, ’i’, ’f’, ’r’, ’a’,
’g’, ’i’, ’l’, ’i’, ’s’, ’t’, ’i’, ’c’, ’e’, ’x’, ’p’, ’i’,
’a’, ’l’, ’i’, ’d’, ’o’, ’c’, ’i’, ’o’, ’u’, ’s’]
>>> tuple(x)
(’S’, ’u’, ’p’, ’e’, ’r’, ’c’, ’a’, ’l’, ’i’, ’f’, ’r’, ’a’, ...
>>> set(x) # Sets can’t have repeated elements
{’S’, ’i’, ’c’, ’t’, ’u’, ’x’, ’e’, ’s’, ’a’, ’r’, ’g’, ’d’,
’l’, ’f’, ’o’, ’p’}
>>> list([x]) # We probably meant this
[’Supercalifragilisticexpialidocious’]
>>> tuple([x])
(’Supercalifragilisticexpialidocious’,)
>>> set([x])
{’Supercalifragilisticexpialidocious’}

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 68 / 123

Dictionaries

Dictionaries are finite maps, hash maps, associative arrays. They
represent unordered sets of (key, value) pairs.

tel = {’jack’: 4098, ’guido’: 4127} # These are
tel = dict([(’guido’, 4127), (’jack’, 4098)]) # equivalent
print(tel)
output: {’jack’: 4098, ’guido’: 4127}
print(tel[’jack’]) # Access is through the key
output: 4098
tel[’jack’] = 4099
print(tel)
output: {’jack’: 4099, ’guido’: 4127}
tel = {’jack’: 4098, ’jack’: 4099 } # A key may occur at most once
print(tel)
output: {’jack’: 4099}

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 69 / 123

Deletion + more

tel = {’jack’:4098}
del[’jack’] # Delete key once
print(tel) # output: {}
del[’jack’] # Delete now-non-existent key: Error
tel = {’jack’: 4098, ’guido’: 4127}

More fun:
>>> tel.keys()
dict_keys([’jack’, ’guido’])
>>> tel.values()
dict_values([4098, 4127])
>>> tel.items()
dict_items([(’jack’, 4098), (’guido’, 4127)])
>>> list(tel.items()) # Why the ’list’ wrapper here?
[(’jack’, 4098), (’guido’, 4127)]
>>> list(enumerate(tel))
[(0, ’jack’), (1, ’guido’)]

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 70 / 123

Mutable vs immutable types

Python distinguishes between mutable and immutable types. Mutable
types have methods to change the value; immutable types don’t.
See https://docs.python.org/3.0/library/stdtypes.html#
typesseq-mutable onwards.
You are expected to know that dictionary hashes must be immutable,
and know which types are mutable and which aren’t (and so can’t hash
in dictionaries).
Lists are mutable, strings and tuples are immutable. Thus:
>>> tel = { ’jack’: 1234 } # Fine
>>> tel = { (’jack’,): 1234 } # Fine
>>> tel = { [’jack’]: 1234 } # Not fine
TypeError: unhashable type: ’list’

Sets are mutable, frozensets are immutable. Thus:
>>> tel = { {’jack’}: 1234 } # Not fine
>>> tel = { frozenset([’jack’]): 1234 } # Fine

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 71 / 123

https://docs.python.org/3.0/library/stdtypes.html#typesseq-mutable
https://docs.python.org/3.0/library/stdtypes.html#typesseq-mutable

Mutable vs immutable types

set and list have add/append; frozenset and tuple don’t:

>>> x = set([])
>>> x.add("*")
>>> x
{’*’}
>>> x = frozenset([])
>>> x.add("*")
AttributeError: ’frozenset’ object has no attribute ’add’
>>> x = list([]) # Or just x=[]
>>> x.append("*")
>>> x
[’*’]
>>> x = tuple([]) # Or just x=()
>>> x.append("*")
AttributeError: ’tuple’ object has no attribute ’append’

Warning: x={} creates an empty dictionary (not an empty set).
Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 72 / 123

Loop techniques

Here are some useful patterns involving loops over dictionaries.
Simultaneous iteration over both keys and elements of a
dictionary:
l = [’tic’, ’tac’, ’toe’]
for i, v in enumerate(l):

print (i, v)

Simultaneous iteration over two or more sequences:
for i, v in zip(range(len(l)),l):

print (i, v)

Iteration in sorted and reversed order:
for v in reversed(sorted(l)):
print (v)

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 73 / 123

Comparison of sequences and other types

Sequences are compared lexicographically, and in a nested way:
() < (’\x00’,)
(’a’, (5, 3), ’c’) < (’a’, (6,) , ’a’)

Warning: The comparison of values of different types doesn’t
produce an error. It returns an arbitrary value!
>>> "1" < 2
False
>>> () < (’\x00’)
False
>>> [0] < (0,)
True

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 74 / 123

Equality and identity in Python

Equality is x == y. Seems simple—but it isn’t. Equality is just a
method; we can program ‘equality’ to do anything at all:
class Equal(): # class equal to everything (thanks to Jared Grubb)

def __eq__(self, other):
print("Equality test alert!!!")
return True

So watch this:
>>> Equal() == 5
Equality test alert!!!
True
>>> Equal() == 6
Equality test alert!!!
True

Worse, it is possible to silently overwrite the equality methods of
familiar datatypes. You cannot be sure what code is actually being
called when you call ==.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 75 / 123

Equality and identity in Python

Python has a primitive is; tests identity, cannot be overwritten:

>>> Equal() is 7
False

This seems simple, right? No, it isn’t. Functions are compared by
address not mathematical equality (cf Slide 59):

>>> (lambda x:x) == (lambda x:x)
False
>>> (lambda x:x) is (lambda x:x)
False

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 76 / 123

Equality and identity in Python

Also, Python may link substructures rather than copy them:

>>> x = [[]]
>>> y = x*2
>>> z = [[],[]]
>>> y[0]==y[1]
True
>>> y[0] is y[1]
True
>>> z[0]==z[1]
True
>>> z[0] is z[1] # What’s happened here?
False

*2 creates a link; it doesn’t copy. So y[0] and y[1] are indeed
identical.
You are expected to understand this. So for instance . . .

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 77 / 123

Equality and identity in Python

>>> x = [[]]*3
>>> x
[[],[],[]]
>>> x[0].append("Ha")
>>> x
[[’Ha’],[’Ha’],[’Ha’]]
>>> x = [[],[],[]]
>>> x[0].append("Ha")
>>> x
[[’Ha’],[],[]]

I understand the logic: Python is just being efficient. But personally,
this gives me the heebie-jeebies.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 78 / 123

https://en.wikipedia.org/wiki/The_Scream#/media/File:The_Scream.jpg

Equality and identity in Python

You are expected to understand what’s happening here:

>>> x = []
>>> y = []
>>> x == y
True
>>> x is y
False
>>> x.append("Gotcha")
>>> y
[]

>>> x = []
>>> y = x
>>> x == y
True
>>> x is y
True
>>> x.append("Gotcha")
>>> y
[’Gotcha’]

Be careful!

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 79 / 123

Copy and deepcopy

Python, of course, has a library for this.

>>> import copy
>>> l = [[]]
>>> m = copy.copy(l)
>>> n = copy.deepcopy(l)
>>> l[0].append("Hi")
>>> l
[[’Hi’]]
>>> m
[[’Hi’]]
>>> n
[[]]

So copy.copy makes a copy with links to original structure;
copy.deepcopy makes a ‘true’ copy . . .

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 80 / 123

Copy and deepcopy

. . . so let’s have some innocent fun with this.

def biglist(n): # create *a lot* of copies of [].
if n==0:

return [[]];
else:

return biglist(n-1)*(n**n)

biglist(n) increases as O(n!2).

l = biglist(5)
m1 = l # very fast
m2 = copy.copy(l) # quite fast
m3 = copy.deepcopy(l) # rather slow

You are expected to anticipate what happens to m1, m2, and m3 if we
execute l[0].append(’Hi’).

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 81 / 123

More on recursion

You are expected to know:
Recursion is when a program calls itself. See the notes on ML.
Tail-recursion is when a program calls itself and this is the end of
that program’s computation. Therefore, the local state of the
program does not need to be stored, and indeed, it can be
re-used.
Tail-recursion is, in effect, equal to iteration.

For more reading I recommend this webpage on recursion:
python-course.eu/python3_recursive_functions.php

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 82 / 123

python-course.eu/python3_recursive_functions.php

More on recursion

Let’s look at four implementations of Fibonacci:

def fibi(n): # iterative
a, b = 1, 1
for i in range(n):
a, b = b, a+b
return(a)

def fibr(n): # recursive
print(n,end=’ ’)
if n==0 or n==1:
return(1)
else:
return fibr(n-1)+fibr(n-2)

memo = { 0:1, 1:1 } # memoised
def fibm(n):
if not n in memo:
memo[n] = fibm(n-1)+fibm(n-2)
return memo[n]

def fibg(n): # with static local
if not hasattr(fibg, "memo"):
fibg.memo = { 0:1, 1:1 }
if not n in fibg.memo:
fibg.memo[n]=fibg(n-1)+fibg(n-2)
return fibg.memo[n]

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 83 / 123

More on recursion

The iterative fibi works fine.
The recursive fibr works fine but slowwww because: it calls itself
recursively twice and recalculates values many times (the call to n-1
will recursively call n-2, again). You are expected to understand this.
Uncomment print(n) in the fibr code and try fibr(20).
The memoised fibm is much faster. You are expected to be able to
explain why.
The memoised fibg is faster and uses some (non-examinable) fancy
programming to keep memo local.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 84 / 123

More on recursion

The catch: Python has a global limit of 999 on recursive calls.

>>> fibm(10) # works
89
>>> fibm(1010) # doesn’t work
RuntimeError: maximum recursion depth exceeded
>>> fibm(50) # works
20365011074
>>> fibm(1010) # why does it work the second time?
865006339909819071210620670619657034868718934389137
513622833165268126435150672494256927359622043147859
168553260193491811948511925990326293732834896311510
104323351851750307773495424667052816436687856101049
0499714

This is pants. Python doesn’t implement recursion; it pretends to.
This makes me angry.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 85 / 123

http://img14.deviantart.net/5d4e/i/2014/206/d/6/the_incredible_hulk_by_uncannyknack-d7s9zlt.jpg

More on recursion

A justification is that CPython doesn’t optimise tail recursion to re-use
the existing stack, so recursive calls in Python are quite
memory-hungry.
If we’re determined we can work around this, e.g.
http://code.activestate.com/recipes/474088/
But (IMO) Python should do this automatically.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 86 / 123

http://code.activestate.com/recipes/474088/

Modules

Every Python file is a module.
import myMod imports module myMod.
The system searches in the current directory and in the
PYTHONPATH environment variable.
Access to the module-identifier x is done with myMod.x (both read
and write access!).
The code in the module is evaluated, when the module is
imported the first time.
Import into the main name-space can be done by

Example
from myMod import myFun
from yourMod import yourValue as myValue

myFun(myValue) # qualification not necessary

NB: In general it is not advisable to do from myMod import *.
Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 87 / 123

Output formatting

str(v) generates a “machine-readable” string representation of v
repr(v) generates a representation that is readable to the
interpreter. Strings are escaped where necessary.
s.rjust(n) fills the string, from the left hand side, with space
characters to the total size of n.
s.ljust(n) and s.center(n), analogously.
s.zfill(n) inserts zeros to the number s in its string
representation.
’-3.14’.zfill(8) yields ’%08.2f’ % -3.14.
Dictionary-Formating:
>>> table = {’Sjoerd’: 4127, ’Jack’: 4098 }
>>> print (’Jack: %(Jack)d; Sjoerd: %(Sjoerd)d’ % table)
Jack: 4098; Sjoerd: 4127

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 88 / 123

Exceptions

Exceptions can be caught using a try...except... expression.

Example
while True:
try:
x = int(raw_input("Please enter a number: "))
break

except ValueError:
print ("Not a valid number. Try again...")

It is possible to catch several exceptions in one except block:
except (RuntimeError, TypeError, NameError):
pass

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 89 / 123

Exceptions

Several exception handling routines

Example
import sys

try:
f = open(’myfile.txt’)
s = f.readline()
i = int(s.strip())

except IOError, (errno, strerror):
print ("I/O error(%s): %s" % (errno, strerror))

except ValueError:
print ("Could not convert data to an integer.")

except:
print ("Unexpected error:", sys.exc_info()[0])
raise

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 90 / 123

Exceptions: else

If no exception was raised, the optional else block will be
executed.

Example
for arg in sys.argv[1:]:
try:
f = open(arg, ’r’)

except IOError:
print (’cannot open’, arg)

else:
print (arg, ’has’, len(f.readlines()), ’lines’)
f.close()

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 91 / 123

Raising Exceptions

raise Ex[, info] triggers an exception.
raise triggers the most recently caught exception again and
passes it up the dynamic call hierarchy.
>>> try:
... raise NameError, ’HiThere’
... except NameError:
... print (’An exception flew by!’)
... raise
...
An exception flew by!
Traceback (most recent call last):
File "<stdin>", line 2, in ?

NameError: HiThere

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 92 / 123

Clean-up

The code in the finally block will be executed at the end of the
current try block, no matter whether execution has finished
successfully or raised an exception.
>>> try:
... raise KeyboardInterrupt
... finally:
... print (’Goodbye, world!’)
...
Goodbye, world!
Traceback (most recent call last):
File "<stdin>", line 2, in ?

KeyboardInterrupt

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 93 / 123

Exceptions: All Elements

Here is an example of an try constructs with all features:

Example
def divide(x, y):

try:
result = x / y

except ZeroDivisionError:
print ("division by zero!")

else:
print ("result is", result)

finally:
print ("executing finally clause")

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 94 / 123

Pre-defined clean-up

with triggers automatic clean-up if an exception is raised
In the example below, the file is automatically closed.

Example
with open("myfile.txt") as f:

for line in f:
print (line)

Using with is good style, because it guarantees that there are no
unnecessary, open file handles around.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 95 / 123

Iterators in detail

it = iter(obj) returns an iterator for the object obj.
it.next() returns the next element
or raises a StopIteration exception.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 96 / 123

Generators

A method, containing a yield expression, is a generator.
def reverse(data):

for index in range(len(data)-1, -1, -1):
yield data[index]

Generators can be iterated like this.
>>> for char in reverse(’golf’): print (char)
...
f l o g

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 97 / 123

Generator Expressions

Similar to list-comprehensions:
>>> sum(i*i for i in range(10))
285
>>> xvec = [10, 20, 30]
>>> yvec = [7, 5, 3]
>>> sum(x*y for x,y in zip(xvec, yvec))
260
>>> unique_words = set(word

for line in page
for word in line.split())

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 98 / 123

Exercises

Go to the Python Online Tutor web page, www.pythontutor.com,
and do the object-oriented programming exercises (OOP1, OOP2,
OOP3).
Implement the data structure of binary search trees, using
classes, with operations for inserting and finding an element.
Python practice book.
The python course.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 99 / 123

www.pythontutor.com
http://anandology.com/python-practice-book/index.html
http://www.python-course.eu/

Church-Rosser

Python is not Church-Rosser. Very much not so. Order of evaluation
matters.
Python seems to have poor support for parallel execution. There are
libraries, but the mathematician in me says they’re patching over
something that’s fundamentally broken.
The whole design philosophy of Python is optimised (it seems to me)
for the single threaded execution model. Simple, but (obviously) this
does not scale to multiple processors or cores.
Python doesn’t really manage threading at all; it delegates this to the
OS.
This is partly why it is so amusingly easy for Python to crash my
machine: if a Python program hogs processor or memory resources, I
have to send it an OS interrupt.
Python itself won’t step in to throttle or manage its own processes.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 100 / 123

https://wiki.python.org/moin/ParallelProcessing

The vision

Please, don’t just learn Python in this course.
My goal with these notes is twofold:

To put Python in some kind of perspective with respect to other
languages.
To explore the edge cases of Python’s design, such as:

I Limits on recursion.
I Implications of shallow copying, etc.
I (Im)precision of int and float.
I Equality and identity and why you can’t trust them!
I Mutable vs immutable types.
I Anonymous functions, memoisation, poor parallelisation, and so on.

There’s tons more cool stuff out there, but . . .

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 101 / 123

Everything is non-examinable
beyond this point

.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 102 / 123

Non-useful links:

http://uselessfacts.net/

http://www.freemaninstitute.com/uselessFacts.htm

http://www.straightdope.com/ (recommended)
http://www.howstuffworks.com/ (founded by a person called
‘Marshall Brain’; couldn’t make it up).

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 103 / 123

http://uselessfacts.net/
http://www.freemaninstitute.com/uselessFacts.htm
http://www.straightdope.com/
http://www.howstuffworks.com/

Overloading

Operators such as +, <= and functions such as abs, str and repr
can be defined for your own types and classes.

Example
class Vector(object):
constructor
def __init__(self, coord):
self.coord = coord

turns the object into string
def __str__(self):

return str(self.coord)

v1 = Vector([1,2,3])
performs conversion to string as above
print (v1)

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 104 / 123

Overloading

Example
class Vector(object):

constructor
def __init__(self, coord):
self.coord = coord

turns the object into string: use <> as brackets, and ; as separator
def __str__(self):
s = "<"
if len(self.coord)==0:

return s+">"
else:

s = s+str(self.coord[0])
for x in self.coord[1:]:

s = s+";"+str(x);
return s+">"

v1 = Vector([1,2,3]); print (v1)

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 105 / 123

Overloading arithmetic operations

Example
import math # sqrt
import operator # operators as functions

class Vector(object):
...
def __abs__(self):

’’’Vector length (Euclidean norm).’’’
return math.sqrt(sum(x*x for x in self.coord))

def __add__(self, other):
’’’Vector addition.’’’
return map(operator.add, self.coord, other.coord)

print(abs(v1))
print(v1 + v1)

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 106 / 123

Overloading of non-symmetric operations

Scalar multiplication for vectors can be written either v1 * 5 or
5 * v1.

Example
class Vector(object):
...
def __mul__(self, scalar):

’Multiplication with a scalar from the right.’
return map(lambda x: x*scalar, self.coord)

def __rmul__(self, scalar):
’Multiplication with a scalar from the left.’
return map(lambda x: scalar*x, self.coord)

v1 * 5 calls v1.__mul(5).
5 * v1 calls v1.__rmul(5).

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 107 / 123

Overloading of indexing

Indexing and segment-notation can be overloaded as well:

Example
class Vector(object):

def __getitem__(self, index):
’’’Return the coordinate with number index.’’’
return self.coord[index]

def __getslice__(self, left, right):
’’’Return a subvector.’’’
return Vector(self.coord[left:right])

print v1[2]
print v1[0:2]

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 108 / 123

Exercise (optional)

Define a class Matrix and overload the operations + and * to
perform addition and multiplication on matrices.
Define further operations on matrices, such as m.transpose(),
str(m), repr(m).

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 109 / 123

Interpretation

Strings can be evaluated using the function eval, which evaluates
string arguments as Python expressions.
>>> x = 5
>>> eval (’x’)
5
>>> f = lambda x: eval(’x * x’)
>>> f(4)
16

The command exec executes its string argument:
>>> exec ’print x’
5

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 110 / 123

Compilation

The following command performs compilation of strings to
byte-code:
c = compile(’map(lambda x:x*2,range(10))’, # code

’pseudo-file.py’, # filename for error msg
’eval’) # or ’exec’ (module) or ’single’ (stm)

eval(c)

Beware of indentation in the string that you are composing!
>>> c2 = compile(’’’
... def bla(x):
... print x*x
... return x
... bla(5)
... ’’’, ’pseudo’, ’exec’)
>>> exec c2
25

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 111 / 123

Selected library functions

One of the main reasons why Python is successful is the rich set
of libraries
This includes standard libraries, that come with a Python
distribution, but also third-party libraries
Prominent third-party libraries are:

I JSON
I matplotlib
I tkinter
I numpy
I scipy
I sympy
I orange
I pandas

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 112 / 123

String libraries and regular expressions

Python, as many scripting languages, has powerful support for
regular expressions
Regular expression can be used to search for strings, replace text
etc
The syntax for regular expression is similar across languages
For working experience with regular expressions, see this section
of the Linux Introduction or these slides on regular expressions.
There are many good textbooks on regular expressions around.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 113 / 123

http://www.macs.hw.ac.uk/~hwloidl/Courses/LinuxIntro/x197.html#regex
http://www.macs.hw.ac.uk/~hwloidl/Courses/LinuxIntro/x197.html#regex
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Lecture13ScriptingIntro.pdf

Basic usage of string libraries and regular
expressions

To access the regular expression library use: import re

To search for a substr in str use: re.search(substr,str)
To replace a pattern by a repstr in string use:
re.sub(pattern, repstr, string)

To split a stringstring into sep-separated components use:
re.split(pattern,string)

Check the Python library documentation for details and more
functions.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 114 / 123

Examples of regular expressions in Python

Read from a file, print all lines with ’read’ event types:

Example
file=’/home/hwloidl/tmp/sample_10k_lines.json’
print ("Reading from ", file)
with open(file,"r") as f:

for line in f:
if (re.search(’"event_type":"read"’, line)):

print (line)

Pick-up the code from the sample sources section

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 115 / 123

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/test_regex.py

Examples of regular expressions in Python

Read from a file, split the line, and print one element per line

Example
file=’/home/hwloidl/tmp/sample_10k_lines.json’
print ("Reading from ", file)
with open(file,"r") as f:

for line in f:
if (re.search(’"event_type":"read"’, line)):

line0 = re.sub("[{}]", "", line) # remove {}
for x in re.split("[]*,[]*",line0):# split by ’,’

print (re.sub(’:’,’->’, x)) # replace ’:’ by ’->’

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 116 / 123

Saving structured data with JSON

JSON (JavaScript Object Notation) is a popular, light-weight data
exchange format.
Many languages support this format, thus it’s useful for data
exchange across systems.
It is much ligher weight than XML, and thus easier to use.
json.dump(x, f) turns x into a string in JSON format and writes
it to file f.
x = json.load(f) reads x from the file f, assuming JSON
format.
For detail on the JSON format see: http://json.org/

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 117 / 123

http://json.org/

JSON Example

Example
tel = dict([(’guido’, 4127), (’jack’, 4098)])
ppTelDict(tel)

write dictionary to a file in JSON format
json.dump(tel, fp=open(jfile,’w’), indent=2)
print("Data has been written to file ", jfile);

read file in JSON format and turn it into a dictionary
tel_new = json.loads(open(jfile,’r’).read())
ppTelDict(tel_new)

test a lookup
the_name = "Billy"
printNoOf(the_name,tel_new);

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 118 / 123

Visualisation using matplotlib

matplotlib is a widely used library for plotting data in various kinds of
formats. Advantages of the library are

It supports a huge range of graphs, such as plots, histograms,
power spectra, bar charts, errorcharts, scatterplots etc
It provides interfaces to external tools such as MATLAB
It is widely used and well-documented
For detailed documentation see: Matplotlib documentation

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 119 / 123

http://matplotlib.org/index.html

Examples of using matplotlib

The following code displays a histogram in horizontal format, with
hard-wired data:

Example
import matplotlib.pyplot as plt
...
horizontal bars: very simple, fixed input
plt.barh([1,2,3], [22,33,77], align=’center’, alpha=0.4)
indices values
plt.show()

Pick-up the code from Sample sources (simple_histo.py)

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 120 / 123

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/simple_histo.py

A basic GUI library for Python: tkinter

tkinter is a basic library for graphical input/output
It has been around for a long time, and is well supported
It uses the Tcl/TK library as backend
It features prominently in textbooks such as:

Mark Lutz, “Programming Python.” O’Reilly Media; 4 edition (10
Jan 2011). ISBN-10: 0596158106.
For details and more examples see: tkinter documentation

For examples see Sample Sources (feet2meter.py)

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 121 / 123

https://docs.python.org/3.4/library/tkinter.html
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/feet2meter.py

Some more libraries

Sage. Mathematics software system licensed under the GPL.
Supports GAP, Maxima, FLINT, R, MATLAB, NumPy, SciPy,
matplotlib, etc. Python is glueware; the (heavy) computation is
done in the external libraries.
Numpy. Library of mathematical/scientific operations with arrays,
linear algebra, Fourier transform, random numbers, and
integration with C(++) & Fortran.
Orange. Python library for data analytics, data visualisation
and data mining.
pandas. Python data analysis toolkit. Provides functions for
constructing frames that can be accessed and manipulated like
database tables. Similar in spirit to C#’s LINQ sub-language.
Focus is on data manipulation, not on statistics or scientific
computing.
SymPy. Python library for symbolic mathematics.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 122 / 123

http://www.sagemath.org/
http://www.numpy.org/
http://orange.biolab.si/
http://pandas.pydata.org
http://www.sympy.org/

Further reading

Mark Lutz, “Programming Python.”
O’Reilly Media; 4 edition (10 Jan 2011). ISBN-10: 0596158106.

Wes McKinney, “Python for data analysis”[eBook]
O’Reilly, 2013. ISBN: 1449323626
Focus on libraries for data-analytics.

Hans Petter Langtangen, “A Primer on Scientific Programming with
Python” 4th edition, 2014. ISBN-10: 3642549586
Focussed introduction for scientific programming and engineering
disciplines.

Drew A. McCormack “Scientific scripting with Python.”
ISBN: 9780557187225
Focussed introduction for scientific programming and engineering
disciplines.

Jamie Gabbay (adapted from slides by Hans-Wolfgang Loidl) Python 2015/16 123 / 123

	Python Overview
	Getting started with Python
	Control structures
	Functions
	Classes
	Exceptions
	Iterators and Generators
	Overloading
	Interpretation and Compilation
	Libraries

