
SCHOOL OF MATHEMATICAL AND COMPUTER SCIENCES

Computer Science

F28PL

Programming Languages (mock exam)

Semester 1 201516

Duration: Two Hours



Q1-Q4 MJG 2 F28PL

This mock exam is aimed slightly harder than the real exam, because doing real
exams is harder in real exam conditions because of the stress.

If you ace this mock then you should pass the exam without difficulty. If you don’t
understand something in this mock, then make sure you understand it . . . soon!

This mock is available in two versions: one with answers and one without. For best
results, try to do the one without answers first (you’ll learn more from reading the
answers if you’ve made a serious effort to figure it out yourself).

ANSWER:
If you can read this, then you’re looking at the version with the answers. By the way, I wrote a Python script to
automatically compile the version without the answers.



Q1-Q4 MJG 3 F28PL

1. (a) Clearly write the ML types of the following expressions, or if the expression
has no ML type, explain why: (5)

1. [0,1,2,3]
ANSWER:
int list

2. [0.0,1.0,1]
ANSWER:
Type error (elements should all have same type but 0.0:real and 1:int)

3. 0 div 0
ANSWER:
int (It has a type: it just raises a runtime error.)

4. fn f => f f
ANSWER:
Type error. If f has type ’a then since it is applied to itself, it must also have ’a -> ’a. Thus the type
system is being asked to solve ’a=’a->’a, which is impossible (in ML!).

5. fn (f,g,x) => g(f(x))
ANSWER:
(’a -> ’b)*(’b -> ’c)*’a -> ’c

(b) State the type of the following ML program, and explain what function
is calculated by it, making specific reference to the ML execution model
(in other words: convince the examiner you understand not only what the
program computes, but how):
exception Break;
fn f => fn a => fn b =>

(f(raise Break)
handle Break => if (f a) then a else raise Break)

handle Break => if not(f a) then a else b;

(3)
ANSWER:
The type is (bool -> bool) -> bool -> bool -> bool.

The program inputs f, a, and b and returns a. Thus calculates it calculates the same function as

fn f => fn a => fn b => a.

This is because when f(raise Break) is calculated, flow of control passes to the first handler; then if
(f a) is true then it returns a, otherwise flow of control passes to the second handler which now must return
a.

(c) Write ML functions of the following types:

1. (’a -> ’b) -> (’a -> ’c) -> ’a -> (’b*’c) (2)
2. (’a * ’b) -> (’a -> ’c) -> (’b -> ’d) -> ’c*’d (2)
3. ’a -> ’b list (2)
ANSWER:



Q1-Q4 MJG 4 F28PL

fn f => fn g => fn a => (f a,g a);
fn (a,b) => fn f => fn g => (f a,g b);
fn a => [];

(d) The logistic map is specified by

x0 = 0.5 and xn+1 = rxn(1− xn)

where x0, x1, x2, . . . is a sequence of reals and r is a real number. The
logistic map is (part of) the basis of chaos theory.

1. Write an ML program
logistic : real -> int -> real

that if given arguments r:real and n:int will compute xn (for the
given value of r). Answers that do not respect ML’s strict type system
may lose marks. (3)
ANSWER:

fun logistic r 0 = 0.5
| logistic r n = let val xnminusone = logistic r (n-1) in

r * xnminusone * (1.0-xnminusone) end;

Lose one mark for writing 1-xnminusone instead of 1.0-xnminusone above.

2. Write an ML program
list_f : (int -> ’a) -> (int -> ’a list)

that if given f:int->’a and n:int computes [f(0), f(1), . . . , f(n)].
(2)

ANSWER:

fun listf f 0 = [f 0]
| listf f n = (listf f (n-1))@[f n];

3. Using your answers above, write a program
logistic_map : real -> int -> real list

that if given r:real and n:int computes [x0, x1, . . . , xn]. (1)
ANSWER:

fun logistic_map r = listf (logistic r);
(* or *)
fun logistic_map r n = listf (logistic r) n;
(* or *)
val logistic_map = fn r => listf (logistic r);



Q1-Q4 MJG 5 F28PL

2. (a) State the output of the following programs and explain why, or, if the program
terminates with an error state what that error is and why it arises:
1. "Hello dolly"[::-1] (2)

ANSWER:
"yllod olleH" We’re stepping back through the string.

2.
"".join([x[0] for x in

"Young Men’s Christian Association".split(" ")])

(2)
ANSWER:
YMCA. What else.

3. ["Hello"].append(["world!"]) (2)
ANSWER:
No output. An instance of ["Hello"] is created, and the result of calling the append method is returned,
which is not the list itself. Try type(["Hello"].append(["world!"])).

4.
x=[]
for i in range(4):

x=[x]*(len(x)+1)

x[3][2][1][0]

(2)
ANSWER:
[] We create 4 copies of 3 copies of 2 copies of 1 copy of [], then take the first element of the second
element of the third element of the fourth element of the result. Back where we started.

(b) Consider the following Python3 code:
1 fun mystery d:
2 L = []
3 for k in d:
4 if d[k] not in L:
5 L.append(d[k])
6 return(sorted(L))

1. The program is defective and contains four errors. State what they are
and how to correct them. (4)
ANSWER:
Line 1 fun should be def.
Line 1 d should be in brackets.
Line 6 sorted(L) should not be in brackets.
Line 6 return should be indented by three spaces.
Final program reads thus:

1 def mystery(d):
2 L = []
3 for k in d:
4 if d[k] not in L:
5 L.append(d[k])
6 return sorted(L)



Q1-Q4 MJG 6 F28PL

2. Describe what function the program calculates. Clearly state any typing
assumptions that you make of the input d.
Note that we do not want a blow-by-blow account of execution: we want
to know mathematically what it calculates, or to put another way, how
you might document the program for a user. (2)
ANSWER:
d must be a dictionary and the program returns a sorted list of the entries in d without repetitions (not the
keys). Thus for instance mystery({ 0:2, 1:2, 2:0, 3:0 }) returns [0,2].

3. The function mystery can be expressed in one line of code, using
lambda. Propose how. (2)
ANSWER:

1 mystery = lambda d: sorted(list(set(d.values())))

(c) Consider the following Python code:
x=["Live, Die, "]
x.extend([x])
while True:

print(x[0],end="")
x=x[1]

Describe the data structure stored in x when execution is at line 3. (2)
ANSWER:
x satisfies the equation x = [“Live, Die, ”, x]; that is, the first/left-hand element of x is the string “Live, Die, ”
and the second/right-hand element of x is x itself. This can be seen as a tree structure that is infinite on its
right-hand branch, or as a finite graph structure where the right-hand branch loops back to the root of the
graph (diagram omitted in this model answer).

(d) Describe and explain the output of the program. (2)
ANSWER:
Live, Die, . . . repeat. (See the great film with Tom Cruise and Emily Blunt.)



Q1-Q4 MJG 7 F28PL

3. (a) Compare and constrast the following terms in detail. Where appropriate
illustrate your explanation with concrete code samples, being clear about
which language you intend to be writing in. Prove to the examiner that you
not only understand these terms, but understand their concrete relevance to
specific code of the languages in this course. Note the number of marks
for the questions: these give some indication of a minimum of how many
individual points you should make in each answer.
1. Functional, logic, and imperative programming. (3)

ANSWER:
I will not necessarily write out code samples in these model answers: in exam conditions you should, to
make sure.
In functional programming everything is a function. Programs are built up using function application.
In logic programming everything is a predicate. Programs are built up by accumulating clauses in a
database and then querying that database.
In imperative programming everything is an instruction to an abstract machine. Programs are built up by
listing instructions in sequence, and hoping for the best.

2. Global and local state. (2)
ANSWER:
Global state is a resource (memory, or a DLL, I/O device, etc) that is accessible from every point in the
program. Local state is a resource that is accessible from some strictly-defined part of the program code.

3. Mutable vs. immutable variable. (2)
ANSWER:
A mutable variable is one that can be reassigned to a new value, as in x += 1. An immuatable
variable is assigned when it is created, but cannot them be reassigned, as in (fn x => x+1) or
DEF ASCII_a = 97 (constants can be viewed as immutable variables!).

4. Mutable vs. immutable type (in Python). Be specific giving at least one
example of each. (4)
ANSWER:
Python distinguishes between types that carry methods to update values of that type, and types that don’t.
For instance, lists have a listname.append(x) method; tuples don’t. Only immutable types can be
keys in dictionary structures, so that we can be sure to find them (i.e. a method can’t be called on a key
to turn it into another key, losing the data stored at that key). this is why { [0]:[0] } is not Python
syntax whereas { (0,):[0] } and { 0:[0] } are.

5. Ad hoc polymorphism, and parametric polymorphism. Be specific and
give at least one example of each. (4)
ANSWER:
Ad hoc polymorphism is when a single symbol is used to denote different (but probably related) operations
on different types. The classic example is +, which denotes an exact addition on integers and an
approximate addition on floating point numbers (with very different implementations). See also the
equality method == in Python which examines two arguments for whatever the programmer considered
to be ‘equality’.
Parametric polymorphism is when a single operation is represented uniformly over a range of types.
Examples include fn x => x : ’a->’a in ML, or the identity is in Python which examines two
arguments for literal identity in the abstract machine.

6. Dynamic type error and static type error. (2)
ANSWER:
A dynamic type error occurs at runtime. A static type error occurs at compile time. A program that fails
due to a dynamic type error has a run-time bug; a ‘program’ that fails due to a static type error is not
really a program and does not compile to code.

(b) Imperative programming is doomed: in ten years we’ll all be using pure
functional programming. Discuss, giving at least two points for and two
points against. (4)



Q1-Q4 MJG 8 F28PL

ANSWER:
Imperative programming relies on a specific abstract machine. Usually this is a von Neumann machine.
Modern computers are no longer von Neumann machines, for (at least) three reasons:

1. CPUs routinely have multiple cores; single digit multiples are common, and double or even triple digit
multiples are increasingly so.

2. We are trying to program systems that are often extravagantly distributed and asynchronous, such as
satellite networks or distributed architectures.

3. Virtualisation (either of whole machines, or using bytecode) very commonly abstracts away from the
hardware.

So imperative programming is a poor paradigm for current hardware, and getting worse. In that sense,
imperative programming as it was traditionally understood when C, C++, and Java were designed, is indeed
doomed, or at least, is and will increasingly become not the best way to do things.

On the other hand, it is far from clear that functional programming is the answer, though it is certainly an
answer to part of the problem. Pure functional programming is far too restrictive to be a solution to all ills,
however, it seems likely that a pure functional programming core will be as taken for granted by my students
in the not-too-distant future, as a for-next loop is today.

I have noted this in my teaching: five years ago functional programming was for scientists and highly-paid
specialist programmers. Now it’s in a scripting language that runs on a computer that costs less than a pair of
jeans and is aimed at (amongst other people) small children.

(I know this question has more than 20 points. With so many interesting
questions to set, I couldn’t decide what to cut.)



Q1-Q4 MJG 9 F28PL

4. (a) Explain the differences in Prolog between the static and the dynamic databases.
Your answer should make clear the usage and meaning of the assert and
retract keywords, and should be specific about where and when they can
be used. (3)
ANSWER:
The static database is loaded using [filename] and is immutable as a query is calculated. The dynamic
database is created and destroyed by assert and retract while a query is calculated. Predicate symbols
mentioned in the static database may not be added to the dynamic database, so the dynamic database behaves
like a mutable local state.

(b) Convert the following list of English sentences into a Prolog database:

1. If I have chocolate, then I want chocolate.
2. If I want chocolate, then I buy chocolate.
3. If I want chocolate and I have chocolate, then I eat chocolate.

(3)
ANSWER:

want(chocolate) :- have(chocolate).
buy(chocolate) :- want(chocolate).
eat(chocolate) :- want(chocolate), have(chocolate).

(c) The French word sera means ‘will be’, and the French word que means
‘whatever’. Thus the French saying que sera, sera can be translated into
English as what will be, will be, and into Prolog as
sera(X) :- sera(X).

Explain the behaviour of Prolog when asked to predict whether there will be
world peace by asking the query sera(world_peace) in this database.
Your answer should demonstrate specific understanding of the Prolog execu-
tion model. (2)
ANSWER:
Infinite loop. Prolog just resolves the head of the clause and generates a subgoal identical to the original goal,
and so forth.

(d) Now consider the following database:
sera(Y) :- sera(X).

Explain the behaviour of Prolog when asked to predict whether there will be
world peace by asking the query sera(world_peace) in this database.
Your answer should demonstrate specific understanding of the Prolog execu-
tion model. (3)
ANSWER:
Infinite loop as for the previous question, however this time the subgoal uses a fresh local variable. Eventually
we run out of local stack (similar to what Python does after 999 recursive calls) and execution terminates with
an overflow error.



Q1-Q4 MJG 10 F28PL

(e) Write a Prolog program sumsq to calculate the sum of squares of a list of in-
tegers (that is, the sum of the list divided by its length). Thus sumsq([3,4],25)
should return true and sumsq([0,-1,1],X) should return X=2. (4)
ANSWER:

sumsq([],0).
sumsq([H|T],X) :- sumsq(T,X1), X is X1+H*H.

(f) Consider the following two databases:

• Database 1:
food(chicken).
food(fish).
eat(X) :- food(X),!.

• Database 2:
food(chicken).
food(fish).
eat(X) :- !,food(X).

Describe and explain the behaviour of the query eat(X) in each database,
with specific reference to the Prolog execution model. (2)
ANSWER:
In Database 1 the query returns just one instantiation X=chicken. In Database 2 it also returns X=fish. In
Database 1, the cut ! prevents the first instantiation found from being undone.

(g) Note that writef(string) prints string to standard output and then
succeeds. With an empty database we type the following at the interactive
prompt:
assert((eat(chocolate) :- want(chocolate), have(chocolate),

writef("Chocolate face!"),
retract(have(chocolate)))).

assert((want(chocolate) :- buy(chocolate))).
assert((buy(chocolate) :- assert(have(chocolate)))).
eat(chocolate).

What will Prolog do, and why? (2)
ANSWER:
It will print Chocolate face! and succeed. This is best understood by reading the clauses as imperative
programs from left to right. eat(chocolate) calls

• want(chocolate) which calls buy(chocolate) and thus inserts have(chocolate) into the
database. Then

• have(chocolate) succeeds, because we just added this clause to the dynamic database.
• We print Chocolate face!.
• have(chocolate) is deleted from the dynamic database.
• All subgoals have succeeded, so the query eat(chocolate) terminates with success.



Q1-Q4 MJG 11 F28PL

(h) Suggest a simple modification to the code above that will cause it to print
Chocolate face! forever. (1)
ANSWER:
Just add a recursive looping call to eat(chocolate) at the end of the subclauses of eat(chocolate).

assert((eat(chocolate) :- want(chocolate), have(chocolate),
writef("Chocolate face!"),
retract(have(chocolate)),
eat(chocolate))).

assert((want(chocolate) :- buy(chocolate))).
assert((buy(chocolate) :- assert(have(chocolate)))).
eat(chocolate).

EAT CHOCOLATE


