
F28PL1 Programming
Languages

Lecture 14: Standard ML 4

Polymorphic list operations

• length of list

• base case: [] ==> 0

• recursion case: (h::t) => 1 more than length of t

- fun length [] = 0 |

 length (_::t) = 1+length t;

> val length = fn : ‘a list -> int

- length [“a”,”b”,”c”];

> 3 : int

length [“a”,”b”,”c”] ==> 1+length [“b”,”c”] ==>

1+1+length [“c”] ==> 1+1+1+length [] ==> 1+1+1+0 ==> 3

Polymorphic list operations

• append lists

• e.g. append [1,2,3] [4,5,6] ==> [1,2,3,4,5,6]

• NB not [1,2,3]::[4,5,6]

• :: wants ‘a and ‘a list not ‘a list and ‘a
list

• recurse on 1st list

• base case: [] ==> 2nd list

• recursion case: (h::t) ==> put h on front of
appending t to 2nd list

Polymorphic list operations

- fun append [] l2 = l2 |

 append (h1::t1) l2 =

 h1::append t1 l2;

> val append =

 fn : ‘a list -> ‘a list -> ‘a list

- append [“a”,”b”,”c”] [“d”,”e”,”f”];

> [“a”,”b”,”c”,”d”,”e”,”f”] : string list

Polymorphic list operations

- append [“a”,”b”,”c”] [“d”,”e”,”f”] ==>

“a”::append [”b”,”c”] [“d”,”e”,”f”] ==>

“a”::”b”::append [“c”] [“d”,”e”,”f”] ==>

“a”::”b”::”c”::append [] [“d”,”e”,”f”] ==>

“a”::”b”::”c”::[“d”,”e”,”f”] ==>

[“a”,”b”,”c”,”d”,”e”,”f”]

• @ - infix append operator

- [1,2,3]@[4,5,6];

> [1,2,3,4,5,6] : int list

Polymorphic list operations

• is value e1 in list?

• base case: [] ==> e1 not in list- false

• recursion case 1: (e2::t) ==> e1=e2 - true

• recursion case 2: (e2::t) ==> e1<>e2 - is e1 in t

- fun member _ [] = false |

 member e1 (e2::t) =

 e1=e2 orelse member e1 t;

> val member =

 fn : ‘’a -> ‘’a list -> bool

Polymorphic list operations

- member 7 [1,9,7,4];

> true : bool

member 7 [1,9,7,4] ==>

member 7 [9,7,4] ==>

member 7 [7,4] ==>

true

Polymorphic list operations

• add value e1 to list if not in list already

• base case: [] ==> make new list for e

• recursion case 1: (e2::t) ==> e1=e2

– return (e2::t)

• recursion case 2: (e2::t) ==> e1<>e2

– put e2 back after adding e1 to t

• will place new value at end of list

Polymorphic list operations

- fun add e [] = [e] |

 add e1 (e2::t) =

 if e1=e2

 then e2::t

 else e2::add e1 t;

> val add =

 fn : ‘’a -> ‘’a list -> ‘’a list

Polymorphic list operations
- add 1 [2,5,4];

> [2,5,4,1] : int list

add 1 [2,5,4] ==> 2::add 1 [5,4] ==>

2::5::add 1 [4] ==> 2::5::4::add 1[] ==>

2::5::4::[1] ==> [2,5,4,1]

- add 4 [2,5,4,1];

> [2,5,4,1] : int list

add 4 [2,5,4,1] ==> 2::add 4 [5,4,1] ==>

2::5::add 4 [4,1] ==> 2::5::[4,1] ==>

[2,5,4,1]

Polymorphic list operations

• delete value e1 from list

• base case: [] ==> can’t find e1 so return
empty list

• recursion case 1: (e2::t) ==> e1=e2

– return t

• recursion case 2: (e2::t) ==> e1<>e2

– put e2 back after deleting e1 from t

Polymorphic list operations

- fun delete _ [] = [] |

 delete e1 (e2::t) =

 if e1=e2

 then t

 else e2::delete e1 t;

> val delete =

 fn : ‘’a -> ‘’a list -> ‘’a list

Polymorphic list operations

-delete “c” [“a”,”b”,”c”,”d”];

> [“a”,”b”,”d”] : string list

delete “c” [“a”,”b”,”c”,”d”] ==>

“a”::delete “c” [“b”,”c”,”d”] ==>

“a”::”b”::delete “c” [“c”,”d”] ==>

“a”::”b”::[“d”] ==>

[“a”,”b”,”d”];

Higher order functions

• function which:

1. takes another function as parameter

or:

3. returns a function as result

• natural in functional languages

• high degrees of:

–. abstraction

–. reuse

• polymorphic

Higher order function: filter

• often want to select those elements of a list for which
some property holds

• filter list with predicate

- fun filter _ [] = [] |

 filter p (h::t) =

 if p h

 then h::filter p t

 else filter p t;

> val filter =

 fn : (‘a -> bool) -> ‘a list -> ‘a list

• if p holds for h then keep it

Higher order function: filter

- fun filter _ [] = [] |

 filter p (h::t) =

 if p h

 then h::filter p t

 else filter p t;

> val filter =

 fn : (‘a -> bool) -> ‘a list -> ‘a list

• p may be any ‘a -> bool function

• (h::t) must be ‘a list

• result must be ‘a list

Higher order function: filter

• e.g. find all in a list of integer > 0

- fun isPos x = x>0;

> val isPos = fn : int -> bool

- filter isPos [~2,1,0,2];

> [1,2] : int list

filter isPos [~2,1,0,2] ==>

filter isPos [1,0,2] ==>

1::filter isPos [0,2] ==>

1::filter isPos [2] ==>

1::2::filter isPos [] ==>

1::2::[] ==> [1,2]

Higher order function: map

• often want to create a new list by doing the same
thing to each element of an old list

• map function over list

- fun map _ [] = [] |

 map f (h::t) = f h::map f t;

> val map = fn : (‘a -> ‘b) ->

 ‘a list -> ‘b list

• f may be any ‘a -> ‘b function

• (h::t) must be a ‘a list

• result must be a ‘b list

Higher order function: map

• e.g. find list of sizes for string list

- map size [“a”,”bc”,”def”];

> [1,2,3] : int list

• size: string -> int

• f : ‘a -> ‘b

• so: ‘a == string; ‘b == int

Higher order function: map

map size [“a”,”bc”,”def”] ==>

size “a”::map size [“bc”,”def”] ==>

size “a”::size “bc”::map size [“def”] ==>

size “a”::size ”bc”::size “def”::map size
[] ==>

size “a”::size ”bc”::size “def”::[] ==>

[1,2,3]

Higher order function: map

• e.g. find list of squares and cubes from integer list

- fun powers (x:int) = (x,x*x,x*x*x);

> val powers = fn : int -> int * int * int

- map powers [1,2,3];

> [(1,1,1),(2,4,8),(3,9,27) :

 (int * int * int) list

• powers: int -> int * int * int

• f: ‘a -> ‘b

• so: ‘a == int; ‘b == int * int * int

Higher order function: map

map powers [1,2,3] ==>

powers 1::map powers [2,3] ==>

powers 1::powers 2::map powers [3] ==>

powers 1::powers 2::powers 3::

 map powers [] ==>

powers 1::powers 2::powers 3::[] ==>

[(1,1,1),(2,4,8),(3,9,27)]

Insert

• to insert an integer i1 into an ordered
integer sequence in ascending order of
first element

• base case: [] ==> [i1]

• recursion case 1: (i2::t) ==> i1<i2

– put i1 on front of (i2::t)

• recursion case 2: (i2::t) ==> i1>=i2

– put i2 on front of inserting i1 into t

Insert

- fun insert(i:int) [] = [i] |

 insert i1 (i2::t) =

 if i1<i2

 then i1::(i2,e2)::t

 else i2::insert i1 t;

> fn : int -> int list -> int list

- insert 7 [5,9];

> [5,7,9] :int list

insert 7 [5,9] ==>

5::insert 7 [9] ==>

5::7::[9] ==> [5,7,9]

Sort

• to sort a list of integers

– insert head into sorted tail

• base case: [] ==> []

• recursion case: (h::t) ==> insert h into sorted t

- fun sort [] = [] |

 sort (h::t) = insert h (sort t);

> fn : int list -> int list

sort [7,9,5];

> [5,7,9] : int list

Sort

sort [7,9,5] ==>

insert 7 (sort [9,5]) ==>

insert 7 (insert 9 (sort [5])) ==> i

insert 7 (insert 9 (insert 5 (sort []))) ==>

insert 7 (insert 9 (insert 5 [])) ==>

insert 7 (insert 9 [5])) ==>

insert 7 [5,9] ==>

[5,7,9]

Higher order function: foldr

• consider adding all elements of a list together:

- fun sum [] = 0 |

 sum (h::t) = h+sum t;

> val sum = fn: int list -> int

- sum [1,2,3];

> 6 : int

sum [1,2,3] ==> 1+sum [2,3] ==> 1+(2+sum [3]) ==>
1+(2+(3+sum [])) ==> 1+(2+(3+0)) ==> 1+2+3+0

• like doing + between elements of list

Higher order function: foldr

• consider doing f between elements of list

• fold

• base case: [] ==> return some base value b

• recursion case: (h::t) ==> apply f to h and
result of folding f over t

- fun foldr f b [] = b |

 foldr f b (h::t) = f h (foldr f b t);

> val foldr =

 fn: (‘a->’b->’b) -> ‘b -> ‘a list -> ’b

Higher order function: foldr

e.g use foldr to join all elements of string
list together

fun sJoin s1 s2 = s1^s2;

val sJoin = string -> string -> string;

foldr sJoin “” [“a”,”bc”,”def”];

“abcdef” : string

Higher order function: foldr

foldr sJoin “” [“a”,”bc”,”def”] ==>

sJoin “a” (foldr sJoin “” [“bc”,”def2]) ==>

sjoin “a”

 (sJoin “bc” (foldr sJoin “” [“def”])) ==>

sJoin “a”

 (sJoin “bc”

 (sJoin “def” (foldr sJoin “” []))) ==>

sJoin “a” (sJoin “bc” (sJoin “def” “”)) ==>

“abcdef”

Higher order function: foldr

• use foldr to make sum

- fun add (x:int) y = x+y;

> val add = fn: int -> int -> int

• do add between elements of list

• when list empty, return 0

- val sum = foldr add 0;

> val sum = fn : int list -> int

• sum is like foldr with f==add and b==0

Higher order function: foldr

- sum [1,2,3];

> 6 : int

sum [1,2,3] ==>

foldr add 0 [1,2,3] ==>

add 1 (foldr add 0 [2,3]) ==>

add 1 (add 2 (foldr add 0 [3])) ==>

add 1 (add 2 (add 3 (foldr add 0 []))) ==>

add 1 (add 2 (add 3 0)) ==>

6

Higher order function: foldr

• use foldr to make sort

• do insert in between elements of list

• when list empty, return []

- val sort = foldr insert [];

> val sort = fn : ‘a list -> ‘a list

- sort [3,2,1];

> [1,2,3] : int list

Higher order function: foldr

sort [3,2,1] ==>

foldr insert [] [3,2,1] ==>

insert 3 (foldr insert [] [2,1]) ==>

insert 3

 (insert 2 (foldr insert [] [1])) ==>

insert 3

 (insert 2

 (insert 1 (foldr insert [] []))) ==>

insert 3 (insert 2 (insert 1 [])) ==>

[1,2,3]

Higher order insert

• generalise insert to work with list of arbitrary type

- fun gInsert p v [] = [v] |

 gInsert p v (h::t) =

 if p v h

 then v::h::t

 else h::gInsert p v t

> val gInsert = fn : (‘a ->’a->bool)->

 ’a -> ’a list -> ‘a list

• if p holds between v and h then put v on front of list

• otherwise put h on front of inserting v into t with p

Higher order insert

- fun iLess (x:int) y = x<y;

> val iLess = fn : int -> int -> bool

- val insert = gInsert iLess;

> val insert =

 fn : int -> int list -> int list

• insert is like gInsert with p set to
iLess

Higher order sort

- fun gSort p [] = [] |

 gSort p (h::t) =

 gInsert p h (gSort p t);

> val gSort = fn : (‘a -> ‘a -> bool) ->

 ‘a list ->’a list

• to sort a list with p, insert h with p into sorting t
with p

- val sort = gSort iLess;

> val sort = fn : int list -> intlist

• sort is like gSort with p set to iLess

Higher order sort

- fun gSort p = foldr (gInsert p) [];

> val gSort = fn : (‘a -> ‘a -> bool) ->

 ‘a -> ‘a list -> ‘a list

• sorting with p is like folding with inserting
with p

	Slide 1
	Polymorphic list operations
	Polymorphic list operations
	Polymorphic list operations
	Polymorphic list operations
	Polymorphic list operations
	Polymorphic list operations
	Polymorphic list operations
	Polymorphic list operations
	Polymorphic list operations
	Polymorphic list operations
	Polymorphic list operations
	Polymorphic list operations
	Higher order functions
	Higher order function: filter
	Higher order function: filter
	Higher order function: filter
	Higher order function: map
	Higher order function: map
	Higher order function: map
	Higher order function: map
	Higher order function: map
	Insert
	Insert
	Sort
	Sort
	Higher order function: foldr
	Higher order function: foldr
	Higher order function: foldr
	Higher order function: foldr
	Higher order function: foldr
	Higher order function: foldr
	Higher order function: foldr
	Higher order function: foldr
	Higher order insert
	Higher order insert
	Higher order sort
	Higher order sort

