
F28PL1 Programming 
Languages

Lecture 14: Standard ML 4



Polymorphic list operations

• length of list

• base case: [] ==> 0

• recursion case: (h::t) => 1 more than length of t

- fun length [] = 0 |

      length (_::t) = 1+length t;

> val length = fn : ‘a list -> int

- length [“a”,”b”,”c”];

> 3 : int

length [“a”,”b”,”c”] ==> 1+length [“b”,”c”] ==> 

1+1+length [“c”] ==> 1+1+1+length [] ==> 1+1+1+0 ==> 3



Polymorphic list operations

• append lists 

• e.g. append [1,2,3] [4,5,6] ==> [1,2,3,4,5,6]

• NB not [1,2,3]::[4,5,6]

• :: wants ‘a and ‘a list not ‘a list and ‘a 
list

• recurse on 1st list

• base case: [] ==> 2nd list

• recursion case: (h::t) ==> put h on front of 
appending t to 2nd list



Polymorphic list operations

- fun append [] l2 = l2 |

      append (h1::t1) l2 = 

       h1::append t1 l2;

> val append = 

   fn : ‘a list -> ‘a list -> ‘a list

- append [“a”,”b”,”c”] [“d”,”e”,”f”];

> [“a”,”b”,”c”,”d”,”e”,”f”] : string list



Polymorphic list operations

- append [“a”,”b”,”c”] [“d”,”e”,”f”] ==>

“a”::append [”b”,”c”] [“d”,”e”,”f”] ==>

“a”::”b”::append [“c”] [“d”,”e”,”f”] ==>

“a”::”b”::”c”::append [] [“d”,”e”,”f”] ==>

“a”::”b”::”c”::[“d”,”e”,”f”] ==>

[“a”,”b”,”c”,”d”,”e”,”f”]

• @ - infix append operator

- [1,2,3]@[4,5,6];

> [1,2,3,4,5,6] : int list



Polymorphic list operations

• is value e1 in list?

• base case: [] ==> e1 not in list- false

• recursion case 1: (e2::t) ==> e1=e2 - true

• recursion case 2: (e2::t) ==> e1<>e2 - is e1 in t

- fun member _ [] = false |

      member e1 (e2::t) = 

       e1=e2 orelse member e1 t;

> val member = 

   fn : ‘’a -> ‘’a list -> bool



Polymorphic list operations

- member 7 [1,9,7,4];

> true : bool

 

member 7 [1,9,7,4] ==> 

member 7 [9,7,4] ==> 

member 7 [7,4] ==> 

true



Polymorphic list operations

• add value e1 to list if not in list already

• base case: [] ==> make new list for e 

• recursion case 1: (e2::t) ==> e1=e2 

– return (e2::t)

• recursion case 2: (e2::t) ==> e1<>e2 

– put e2 back after adding e1 to t

• will place new value at end of list



Polymorphic list operations

- fun add e [] = [e] |

      add e1 (e2::t) = 

       if e1=e2

       then e2::t

       else e2::add e1 t;

> val add = 

   fn : ‘’a -> ‘’a list -> ‘’a list



Polymorphic list operations
- add 1 [2,5,4];

> [2,5,4,1] : int list 

add 1 [2,5,4] ==> 2::add 1 [5,4] ==>

2::5::add 1 [4] ==> 2::5::4::add 1[] ==>

2::5::4::[1] ==> [2,5,4,1]

- add 4 [2,5,4,1];

> [2,5,4,1] : int list

add 4 [2,5,4,1] ==> 2::add 4 [5,4,1] ==>

2::5::add 4 [4,1] ==> 2::5::[4,1] ==>

[2,5,4,1]



Polymorphic list operations

• delete value e1 from list

• base case: [] ==> can’t find e1 so return 
empty list 

• recursion case 1: (e2::t) ==> e1=e2 

– return t

• recursion case 2: (e2::t) ==> e1<>e2 

– put e2 back after deleting e1 from t



Polymorphic list operations

- fun delete _ [] = [] |

      delete e1 (e2::t) =

       if e1=e2

       then t

       else e2::delete e1 t;

> val delete = 

   fn : ‘’a -> ‘’a list -> ‘’a list



Polymorphic list operations

-delete “c” [“a”,”b”,”c”,”d”];

> [“a”,”b”,”d”] : string list

 

delete “c” [“a”,”b”,”c”,”d”] ==> 

“a”::delete “c” [“b”,”c”,”d”] ==>

“a”::”b”::delete “c” [“c”,”d”] ==>

“a”::”b”::[“d”] ==> 

[“a”,”b”,”d”];



Higher order functions

• function which:

1. takes another function as parameter

or:

3. returns a function as result

• natural in functional languages

• high degrees of:

–. abstraction

–. reuse

• polymorphic



Higher order function: filter

• often want to select those elements of a list for which 
some property holds

• filter list with predicate

- fun filter _ [] = [] |

     filter p (h::t) = 

      if p h

      then h::filter p t

      else filter p t;

> val filter =

   fn : (‘a -> bool) -> ‘a list -> ‘a list

• if p holds for h then keep it



Higher order function: filter

- fun filter _ [] = [] |

     filter p (h::t) = 

      if p h

      then h::filter p t

      else filter p t;

> val filter =

   fn : (‘a -> bool) -> ‘a list -> ‘a list

• p may be any ‘a -> bool function

• (h::t) must be ‘a list

• result must be ‘a list



Higher order function: filter

• e.g. find all in a list of integer > 0

- fun isPos x = x>0;

> val isPos = fn : int -> bool

- filter isPos [~2,1,0,2];

> [1,2] : int list

filter isPos [~2,1,0,2] ==>

filter isPos [1,0,2] ==>

1::filter isPos [0,2] ==>

1::filter isPos [2] ==>

1::2::filter isPos [] ==>

1::2::[] ==> [1,2]



Higher order function: map

• often want to create a new list by doing the same 
thing to each element of an old list

• map function over list

- fun map _ [] = [] |

      map f (h::t) = f h::map f t;

> val map = fn : (‘a -> ‘b) -> 

                  ‘a list -> ‘b list

• f may be any ‘a -> ‘b function

• (h::t) must be a ‘a list

• result must be a ‘b list



Higher order function: map

• e.g. find list of sizes for string list

- map size [“a”,”bc”,”def”];

> [1,2,3] : int list

• size: string -> int

• f : ‘a -> ‘b

• so: ‘a == string; ‘b == int



Higher order function: map

map size [“a”,”bc”,”def”] ==>

size “a”::map size [“bc”,”def”] ==>

size “a”::size “bc”::map size [“def”] ==>

size “a”::size ”bc”::size “def”::map size 
[] ==>

size “a”::size ”bc”::size “def”::[] ==> 

[1,2,3]



Higher order function: map

• e.g. find list of squares and cubes from integer list 

- fun powers (x:int) = (x,x*x,x*x*x);

> val powers = fn : int -> int * int * int

- map powers [1,2,3];

> [(1,1,1),(2,4,8),(3,9,27) : 

   (int * int * int) list

• powers: int -> int * int * int

• f: ‘a -> ‘b

• so: ‘a == int; ‘b == int * int * int



Higher order function: map

map powers [1,2,3] ==>

powers 1::map powers [2,3] ==>

powers 1::powers 2::map powers [3] ==>

powers 1::powers 2::powers 3::

 map powers [] ==>

powers 1::powers 2::powers 3::[] ==>

[(1,1,1),(2,4,8),(3,9,27)]



Insert

• to insert an integer i1 into an ordered 
integer sequence in ascending order of 
first element

• base case: [] ==> [i1]

• recursion case 1: (i2::t) ==> i1<i2

– put i1 on front of (i2::t)

• recursion case 2: (i2::t) ==> i1>=i2

– put i2 on front of inserting i1 into t



Insert

- fun insert(i:int) [] = [i] |

      insert i1 (i2::t) =

       if i1<i2

       then i1::(i2,e2)::t

       else i2::insert i1 t;

> fn : int  ->  int  list -> int  list

- insert 7 [5,9];

> [5,7,9] :int list

insert 7 [5,9] ==> 

5::insert 7 [9] ==>

5::7::[9] ==> [5,7,9]



Sort

• to sort a list of integers

– insert head into sorted tail

• base case: [] ==> []

• recursion case: (h::t) ==> insert h into sorted t

- fun sort [] = [] |

      sort (h::t) = insert h (sort t);

> fn : int list -> int list

sort [7,9,5];

> [5,7,9] : int list



Sort

sort [7,9,5] ==> 

insert 7 (sort [9,5]) ==> 

insert 7 (insert 9 (sort [5])) ==> i

insert 7 (insert 9 (insert 5 (sort []))) ==>

insert 7 (insert 9 (insert 5 []) ) ==>

insert 7 (insert 9 [5])) ==>

insert 7 [5,9] ==> 

[5,7,9]



Higher order function: foldr

• consider adding all elements of a list together:

- fun sum [] = 0 |

      sum (h::t) = h+sum t;

> val sum = fn: int list -> int

- sum [1,2,3]; 

> 6 : int

sum [1,2,3] ==> 1+sum [2,3] ==> 1+(2+sum [3]) ==> 
1+(2+(3+sum [])) ==> 1+(2+(3+0)) ==> 1+2+3+0

• like doing + between elements of list



Higher order function: foldr

• consider doing f between elements of list

• fold

• base case: [] ==> return some base value b

• recursion case: (h::t) ==> apply f to h and 
result of folding f over t

- fun foldr f b [] = b |

      foldr f b (h::t) = f h (foldr f b t);

> val foldr = 

   fn: (‘a->’b->’b) -> ‘b -> ‘a list -> ’b



Higher order function: foldr

e.g use foldr to join all elements of string 
list together

fun sJoin s1 s2 = s1^s2;

val sJoin = string -> string -> string;

foldr sJoin “” [“a”,”bc”,”def”];

“abcdef” : string



Higher order function: foldr

foldr sJoin “” [“a”,”bc”,”def”] ==>

sJoin “a” (foldr sJoin “” [“bc”,”def2]) ==>

sjoin “a” 

 (sJoin “bc” (foldr sJoin “” [“def”])) ==>

sJoin “a” 

 (sJoin “bc” 

   (sJoin “def” (foldr sJoin “” []))) ==>

sJoin “a” (sJoin “bc” (sJoin “def” “”)) ==>

“abcdef”



Higher order function: foldr

• use foldr to make sum

- fun add (x:int) y = x+y;

> val add = fn: int -> int -> int

• do add between elements of list

• when list empty, return 0

- val sum = foldr add 0;

> val sum = fn : int list -> int

• sum is like foldr with f==add and b==0 



Higher order function: foldr

- sum [1,2,3];

> 6 : int

sum [1,2,3] ==>

foldr add 0 [1,2,3] ==>

add 1 (foldr add 0 [2,3]) ==>

add 1 (add 2 (foldr add 0 [3])) ==>

add 1 (add 2 (add 3 (foldr add 0 []))) ==>

add 1 (add 2 (add 3 0)) ==>

6



Higher order function: foldr

• use foldr to make sort

• do insert in between elements of list

• when list empty, return []

- val sort = foldr insert [];

> val sort = fn : ‘a list -> ‘a list

- sort [3,2,1];

> [1,2,3] : int list



Higher order function: foldr

sort [3,2,1] ==> 

foldr insert [] [3,2,1] ==>

insert 3 (foldr insert [] [2,1]) ==> 

insert 3 

 (insert 2 (foldr insert [] [1])) ==> 

insert 3 

 (insert 2 

  (insert 1 (foldr insert [] []))) ==> 

insert 3 (insert 2 (insert 1 [])) ==>

[1,2,3]



Higher order insert

• generalise insert to work with list of arbitrary type

- fun gInsert p v [] = [v] |

      gInsert p v (h::t) =

       if p v h

       then v::h::t

       else h::gInsert p v t

> val gInsert = fn : (‘a ->’a->bool)-> 

                     ’a -> ’a list -> ‘a list

• if p holds between  v and h then put v on front of list

• otherwise put h on front of inserting v into t with p



Higher order insert

- fun iLess (x:int) y = x<y;

> val iLess = fn : int -> int -> bool

- val insert = gInsert iLess;

> val insert = 

   fn : int -> int list -> int list

• insert is like gInsert with p set to 
iLess



Higher order sort

- fun gSort p [] = [] |

      gSort p (h::t) = 

         gInsert p h (gSort p t);

> val gSort = fn : (‘a -> ‘a -> bool) -> 

                   ‘a list ->’a list

• to sort a list with p, insert h with p into sorting t 
with p

- val sort = gSort iLess;

> val sort = fn : int list -> intlist

• sort is like gSort with p set to iLess



Higher order sort

- fun gSort p = foldr (gInsert p) [];

> val gSort = fn : (‘a -> ‘a -> bool) ->

                   ‘a -> ‘a list -> ‘a list

• sorting  with p is like folding with inserting 
with p
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