Programming Languages F28PL2, Lecture 2

Jamie Gabby

February 2, 2014

Languages and formal grammars

Recall that a language is a set of symbols/tokens and a set of (possibly empty) strings of tokens.

We will let α, β, γ range over strings.
This is a computing course, so we need to think not only about what a language is, but also about how a language may be generated.

We generate languages using formal grammar. Using a formal grammar we can:

- Verify whether a sentence is in our language.
- Synthesise legal programs.

Terminology

- Write V for the set of symbols (V for 'vocabulary').
- We may partition (split) the set V into two subsets: of terminal and nonterminal symbols. (Why we do this will become clear later.)
- Write V^{*} for the set of all strings of elements of V (including the empty string). Call this the closure of V.
- Write V^{+}for the set of nonempty strings of elements of V.
- Write ε for the empty string - often written informally as ' "" '.

If $V=\{a, b, r, c, d, r\}$ (the set containing a, b, r, c, d, and r), then is abracadabra $\in V^{*}$?

Is ε always in V^{*} ? How about V^{+}?

Example

Suppose a vocabulary $V=\{0,1,+,-, *,(),,\langle\exp \rangle\}$.
Suppose $\langle\exp \rangle$ is nonterminal and all the other symbols are terminal.

Example sentences in V are (just elements of V^{*}):

- ε, the empty string.
- $1+1$.
- $(1+1)$ and $(1+(1))$.
- $(((($ and ()$)) *--$.
- Is $(1+2+\langle\exp \rangle)$ in V^{*} ?

Terminology

Recall that α, β, γ range over strings.
A production rule is a pair $\alpha::=\beta$.
Suppose a vocabulary $V=\{0,1,+,-, *,(),,\langle\exp \rangle\}$.
Example production rules are:

$$
\begin{array}{ll}
\langle\exp \rangle & ::=0 \\
\langle\exp \rangle & ::=1 \\
\langle\exp \rangle & ::=-\langle\exp \rangle \\
\langle\exp \rangle & ::=(\langle\exp \rangle) \\
\langle\exp \rangle & ::=\langle\exp \rangle+\langle\exp \rangle \\
\langle\exp \rangle & ::=\langle\exp \rangle *\langle\exp \rangle
\end{array}
$$

Production rules

We write a sequence

$$
\begin{aligned}
& \alpha::=\beta_{1}, \ldots, \alpha::=\beta_{n} \quad \text { as just } \\
& \alpha::=\beta_{1}|\ldots| \beta_{n} .
\end{aligned}
$$

For example:

$$
\begin{array}{rlr}
\langle\exp \rangle & ::=0 \\
\langle\exp \rangle & :=1 \\
\langle\exp \rangle & ::=-\langle\exp \rangle \quad \text { becomes } \quad\langle\exp \rangle::=0|1|\langle\exp \rangle+\langle\exp \rangle \mid \\
\langle\exp \rangle & ::=(\langle\exp \rangle) \\
\langle\exp \rangle & :=\langle\exp \rangle+\langle\exp \rangle|\langle\exp \rangle *\langle\exp \rangle|(\langle\exp \rangle) \\
\langle\exp \rangle & ::=\langle\exp \rangle *\langle\exp \rangle &
\end{array}
$$

Production rules

We can use production rules to produce sentences. For example:

$$
\begin{aligned}
\langle\exp \rangle & \Rightarrow-\langle\exp \rangle \\
& \Rightarrow-(\langle\exp \rangle) \\
& \Rightarrow-(\langle\exp \rangle+\langle\exp \rangle) \\
& \Rightarrow-(1+\langle\exp \rangle) \\
& \Rightarrow-(1+1)
\end{aligned}
$$

$$
\begin{aligned}
\langle\exp \rangle & \Rightarrow\langle\exp \rangle+\langle\exp \rangle \\
& \Rightarrow 1+\langle\exp \rangle \\
& \Rightarrow 1+\langle\exp \rangle *\langle\exp \rangle \\
& \Rightarrow 1+0 *\langle\exp \rangle \\
& \Rightarrow 1+0 * 1
\end{aligned}
$$

So, starting from the nonterminal $\langle\exp \rangle$, we can generate many different sentences.

Grammars

Formally, a grammar is a 4-tuple of:

- \mathbb{N} a set of nonterminal symbols.
- \mathbb{T} a set of terminal symbols, disjoint from \mathbb{N}.
- A start symbol, in \mathbb{N}.
- A set of productions $\alpha::=\beta$.

Notational conventions

Some important notational conventions which you are required to just know:
$A, B, C, S, T,\langle\exp \rangle, \ldots$ range over nonterminals (\mathbb{N}).
a, b, c, \ldots range over terminals (\mathbb{T}).
We call $\mathbb{N} \cup \mathbb{T}$ a vocabulary. X, Y, Z range over $\mathbb{N} \cup \mathbb{T}$.
Strings of terminals: x, y, z
Strings of terminals and/or nonterminals: $\alpha, \beta, \gamma, \ldots$

Terminology

The object-language is a language, defined as the set of strings of terminals that we can produce using the production rules, starting from the start symbol.

The meta-language is the language, defined as the set of all strings of terminals or nonterminals that we can produce using the production rules, starting from the start symbol.

The meta-language contains sentences of the object-language, but it may also contain extra sentences.

Production rules

What were the terminals and non-terminals implicit in the example production rules considered previously?

What was the start symbol?

Example grammars

$$
\begin{aligned}
\langle\exp \rangle: & := & 0|1|\langle\exp \rangle+\langle\exp \rangle \mid & \\
& -\langle\exp \rangle|\langle\exp \rangle *\langle\exp \rangle|(\langle\exp \rangle) & & \text { Start symbol: }\langle\exp \rangle \\
S: & :=a b \mid a S b & & \text { Start symbol: } S \\
S: & :=a S \mid a T & & \text { Start symbol: } S \\
T: & :=b \mid b T & & \text { Start symbol: } T
\end{aligned}
$$

This is generative grammar. Let's generate a sentence using the second example:

$$
\begin{aligned}
S & \Rightarrow a S b \\
& \Rightarrow a a S b b \\
& \Rightarrow a a a b b b
\end{aligned}
$$

Chomsky classification of grammars

Type 0 grammars contain productions of the form

$$
\alpha::=\beta .
$$

α is a non-empty string of terminal and/or nonterminal symbols.
Type 0 grammars include pretty much anything.
Type 1 or context-sensitive grammars contain productions of the form

$$
\alpha A \gamma::=\alpha \beta \gamma .
$$

Here A denotes a single nonterminal and β denotes an arbitrary string of terminal and/or nonterminal symbols. You can 'expand' A - subject to it occurring in the context described by α and γ.

Production rules

Things get more restrictive:
Type 2 or context-free grammars contain productions of the form

$$
A::=\gamma .
$$

A denotes a single nonterminal. BNF is a language for describing Type 2 languages.

Type 3 or regular grammars contain productions of the form

$$
\begin{aligned}
& A::=a B \\
& A::=b \\
& A::=\epsilon .
\end{aligned}
$$

See also regular expressions.

Production rules

Type 3 grammars are good for identifying lexical units such as words; for instance "alphanumeric strings" or "numbers, possibly with underscores".

Type 2 grammars are good for languages like "the language of arithmetic" or "Mary loves John".

Most of the computer languages you know are determined by type 2 grammars (if \langle bool \rangle then $\langle\exp \rangle$ else $\langle\exp \rangle$); the keywords of those languages are determined by type 3 grammars (if, then, and else).

Derivations

A little notation is useful:
$\alpha \Rightarrow \beta$ means ' β derived from α by some production'.
$\alpha \stackrel{p}{\Rightarrow} \beta$ means ' β derived from α by production p^{\prime}.
$\alpha \stackrel{*}{\Rightarrow} \beta$ means ' β derived from α by zero or more productions'.
$\alpha \stackrel{+}{\Rightarrow} \beta$ means ' β derived from α by one or more productions'.

A type 2 (context-free) language

The language is

$$
\mathbb{L}=\left\{a^{n} b^{n} \mid n \geq 1\right\}
$$

A grammar for it is

$$
S::=a b \mid a S b,
$$

the start symbol is S.
Let's derive a sentence:

$$
\begin{aligned}
S & \Rightarrow a S b \\
& \Rightarrow a a S b b \\
& \Rightarrow a a a b b b
\end{aligned}
$$

Note: supports balanced bracketing!

A type 3 (regular) grammar

The language is

$$
\mathbb{L}=\left\{a^{p} b^{q} \mid p \geq 1, q \geq 1\right\} .
$$

A grammar for it is

$$
S::=a S|a T \quad T::=b| b T .
$$

The start symbol is S.
Let's derive a sentence:

$$
S \Rightarrow a S \Rightarrow a a T \Rightarrow a a b T \Rightarrow a a b b T \Rightarrow a a b b b .
$$

Note: does not support balanced bracketing.

Production rules

Suppose we want to know whether a sentence α in language \mathbb{L} ?
One algorithm to decide this is to try to generate it by applying all possible production rules in all possible orders.

For example is $-(\mathrm{id}+\mathrm{id})$ in the language determined by this grammar:

$$
\begin{aligned}
\langle\exp \rangle::= & \langle\exp \rangle+\langle\exp \rangle|\langle\exp \rangle *\langle\exp \rangle| \\
& (\langle\exp \rangle)|-\langle\exp \rangle| \text { id }
\end{aligned}
$$

Production rules

Yes:

$$
\begin{aligned}
\langle\exp \rangle & \Rightarrow-\langle\exp \rangle \\
& \Rightarrow-(\langle\exp \rangle) \\
& \Rightarrow-(\langle\exp \rangle+\langle\exp \rangle) \\
& \Rightarrow-(i d+\langle\exp \rangle) \\
& \Rightarrow-(i d+i d)
\end{aligned}
$$

This is immensely inefficient! I am only claiming that this algorithm works in principle.

More on efficiency later.

More terminology you need to know

Phrase: a string derived from a nonterminal other than the start symbol.

Sentential form: a string derived from the start symbol.
Sentence: a sentential form without nonterminals.
How do we apply productions to form phrases, sentential forms, or sentences?

Leftmost derivation: a derivation where always the leftmost nonterminal is replaced. Gives rise to leftmost sentential form.

Rightmost derivation: a derivation where always the rightmost nonterminal is replaced. Gives rise to rightmost sentential form.

Leftmost derivation of $-(\mathrm{id}+\mathrm{id})$

$$
\begin{aligned}
\langle\exp \rangle & \Rightarrow-\langle\exp \rangle \\
& \Rightarrow-(\langle\exp \rangle) \\
& \Rightarrow-(\langle\exp \rangle+\langle\exp \rangle) \\
& \Rightarrow-(\mathrm{id}+\langle\exp \rangle) \\
& \Rightarrow-(\mathrm{id}+\mathrm{id})
\end{aligned}
$$

-(id+id) is a sentential form, a sentence, and a leftmost sentential form.

Rightmost derivation of $-(\mathrm{id}+\mathrm{id})$

$$
\begin{aligned}
\langle\exp \rangle & \Rightarrow-\langle\exp \rangle \\
& \Rightarrow-(\langle\exp \rangle) \\
& \Rightarrow-(\langle\exp \rangle+\langle\exp \rangle) \\
& \Rightarrow-(\langle\exp \rangle+i d) \\
& \Rightarrow-(\mathrm{id}+\mathrm{id})
\end{aligned}
$$

As it happens, -(id+id) is also a rightmost sentential form.

Parse trees and derivations...

Parse trees remember how a sentence was produced.

... just a bit more

The parse tree on the far right represents both leftmost and rightmost derivations given previously.

Different grammars

Two different grammars can define the same language \mathbb{L}.
Call two grammars equivalent when they describe the same language.

However, equivalent grammars can define different parse trees.

Two grammars

Grammar 1:

$$
\begin{aligned}
\langle\exp \rangle & ::=\langle\text { digit }\rangle \mid\langle\exp \rangle+\langle\text { digit }\rangle \mid\langle\exp \rangle *\langle\text { digit }\rangle \\
\langle\text { digit }\rangle & ::=1|2| 3
\end{aligned}
$$

Grammar 2:

$$
\begin{aligned}
\langle\exp \rangle & ::=\langle\text { digit }\rangle \mid\langle\text { digit }\rangle+\langle\exp \rangle \mid\langle\text { digit }\rangle *\langle\exp \rangle \\
\langle\text { digit }\rangle & ::=1|2| 3
\end{aligned}
$$

Different parse trees

Different parse trees

This is important, because different parse trees may induce different intuitive meanings.

Programs are not just syntax: we write a program because we give it meaning.

That meaning can be influenced by how we parse the string.

- The tree on the left intuitively means 9 .
- The tree on the right intuitively means 7 .

