
Programming Languages F28PL2, Lecture 2

Jamie Gabbay

February 2, 2014

1 / 1

Languages and formal grammars

Recall that a language is a set of symbols/tokens and a set of
(possibly empty) strings of tokens.

We will let α, β, γ range over strings.

This is a computing course, so we need to think not only about
what a language is, but also about how a language may be
generated.

We generate languages using formal grammar. Using a formal
grammar we can:

I Verify whether a sentence is in our language.

I Synthesise legal programs.

2 / 1

Terminology

I Write V for the set of symbols (V for ‘vocabulary’).

I We may partition (split) the set V into two subsets: of
terminal and nonterminal symbols. (Why we do this will
become clear later.)

I Write V ∗ for the set of all strings of elements of V (including
the empty string). Call this the closure of V .

I Write V+ for the set of non-empty strings of elements of V .

I Write ε for the empty string — often written informally as ‘
”” ’.

If V = {a, b, r , c , d , r} (the set containing a, b, r , c, d , and r),
then is abracadabra ∈ V ∗?

Is ε always in V ∗? How about V+?

3 / 1

Example

Suppose a vocabulary V = {0, 1,+,−, ∗, (,), 〈exp〉}.

Suppose 〈exp〉 is nonterminal and all the other symbols are
terminal.

Example sentences in V are (just elements of V ∗):

I ε, the empty string.
I 1 + 1.
I (1 + 1) and (1 + (1)).
I ((((and (()) ∗ −−.
I Is (1 + 2 + 〈exp〉) in V ∗?

4 / 1

Terminology

Recall that α, β, γ range over strings.

A production rule is a pair α ::= β.

Suppose a vocabulary V = {0, 1,+,−, ∗, (,), 〈exp〉}.

Example production rules are:

〈exp〉 ::= 0
〈exp〉 ::= 1
〈exp〉 ::= −〈exp〉
〈exp〉 ::= (〈exp〉)
〈exp〉 ::= 〈exp〉+〈exp〉
〈exp〉 ::= 〈exp〉∗〈exp〉

5 / 1

Production rules

We write a sequence

α ::= β1, . . . , α ::= βn as just
α ::= β1 | . . . | βn.

For example:

〈exp〉 ::= 0
〈exp〉 ::= 1
〈exp〉 ::= −〈exp〉
〈exp〉 ::= (〈exp〉)
〈exp〉 ::= 〈exp〉+〈exp〉
〈exp〉 ::= 〈exp〉∗〈exp〉

becomes
〈exp〉 ::= 0 | 1 | 〈exp〉+〈exp〉 |

−〈exp〉 | 〈exp〉∗〈exp〉 | (〈exp〉)

6 / 1

Production rules

We can use production rules to produce sentences. For example:

〈exp〉 ⇒ −〈exp〉
⇒ −(〈exp〉)
⇒ −(〈exp〉+〈exp〉)
⇒ −(1+〈exp〉)
⇒ −(1+1)

〈exp〉 ⇒ 〈exp〉+ 〈exp〉
⇒ 1 + 〈exp〉
⇒ 1 + 〈exp〉 ∗ 〈exp〉
⇒ 1 + 0 ∗ 〈exp〉
⇒ 1 + 0 ∗ 1

So, starting from the nonterminal 〈exp〉, we can generate many
different sentences.

7 / 1

Grammars

Formally, a grammar is a 4-tuple of:

I N a set of nonterminal symbols.

I T a set of terminal symbols, disjoint from N.

I A start symbol, in N.

I A set of productions α ::= β.

8 / 1

Notational conventions

Some important notational conventions which you are required to
just know:

A,B,C , S ,T , 〈exp〉, . . . range over nonterminals (N).

a, b, c, . . . range over terminals (T).

We call N ∪ T a vocabulary. X ,Y ,Z range over N ∪ T.

Strings of terminals: x , y , z

Strings of terminals and/or nonterminals: α, β, γ, . . .

9 / 1

Terminology

The object-language is a language, defined as the set of strings of
terminals that we can produce using the production rules, starting
from the start symbol.

The meta-language is the language, defined as the set of all strings
of terminals or nonterminals that we can produce using the
production rules, starting from the start symbol.

The meta-language contains sentences of the object-language, but
it may also contain extra sentences.

10 / 1

Production rules

What were the terminals and non-terminals implicit in the example
production rules considered previously?

What was the start symbol?

11 / 1

Example grammars

〈exp〉 ::= 0 | 1 | 〈exp〉+ 〈exp〉 |
− 〈exp〉 | 〈exp〉 ∗ 〈exp〉 | (〈exp〉) Start symbol: 〈exp〉

S ::= ab | aSb Start symbol: S

S ::= aS | aT Start symbol: S

T ::= b | bT Start symbol: T

This is generative grammar. Let’s generate a sentence using the
second example:

S ⇒ aSb

⇒ aaSbb

⇒ aaabbb

12 / 1

Chomsky classification of grammars

Type 0 grammars contain productions of the form

α ::= β.

α is a non-empty string of terminal and/or nonterminal symbols.

Type 0 grammars include pretty much anything.

Type 1 or context-sensitive grammars contain productions of the
form

αAγ ::= αβγ.

Here A denotes a single nonterminal and β denotes an arbitrary
string of terminal and/or nonterminal symbols. You can ‘expand’
A — subject to it occurring in the context described by α and γ.

13 / 1

Production rules

Things get more restrictive:

Type 2 or context-free grammars contain productions of the form

A ::= γ.

A denotes a single nonterminal. BNF is a language for describing
Type 2 languages.

Type 3 or regular grammars contain productions of the form

A ::= aB
A ::= b
A ::= ε.

See also regular expressions.

14 / 1

Production rules

Type 3 grammars are good for identifying lexical units such as
words; for instance “alphanumeric strings” or “numbers, possibly
with underscores”.

Type 2 grammars are good for languages like “the language of
arithmetic” or “Mary loves John”.

Most of the computer languages you know are determined by type
2 grammars (if 〈bool〉 then 〈exp〉 else 〈exp〉); the keywords of those
languages are determined by type 3 grammars (if, then, and else).

15 / 1

Derivations

A little notation is useful:

α⇒ β means ‘β derived from α by some production’.

α
p⇒ β means ‘β derived from α by production p’.

α
∗⇒ β means ‘β derived from α by zero or more productions’.

α
+⇒ β means ‘β derived from α by one or more productions’.

16 / 1

A type 2 (context-free) language

The language is
L = {anbn | n≥1}.

A grammar for it is
S ::= ab | aSb,

the start symbol is S .

Let’s derive a sentence:

S ⇒ aSb

⇒ aaSbb

⇒ aaabbb

Note: supports balanced bracketing!

17 / 1

A type 3 (regular) grammar

The language is
L = {apbq | p≥1, q≥1}.

A grammar for it is

S ::= aS | aT T ::= b | bT .

The start symbol is S .

Let’s derive a sentence:

S ⇒ aS ⇒ aaT ⇒ aabT ⇒ aabbT ⇒ aabbb.

Note: does not support balanced bracketing.

18 / 1

Production rules

Suppose we want to know whether a sentence α in language L?

One algorithm to decide this is to try to generate it by applying all
possible production rules in all possible orders.

For example is −(id + id) in the language determined by this
grammar:

〈exp〉 ::= 〈exp〉+〈exp〉 | 〈exp〉∗〈exp〉 |
(〈exp〉) | −〈exp〉 | id

19 / 1

Production rules

Yes:

〈exp〉 ⇒ −〈exp〉
⇒ −(〈exp〉)
⇒ −(〈exp〉+〈exp〉)
⇒ −(id+〈exp〉)
⇒ −(id+id)

This is immensely inefficient! I am only claiming that this
algorithm works in principle.

More on efficiency later.

20 / 1

More terminology you need to know

Phrase: a string derived from a nonterminal other than the start
symbol.

Sentential form: a string derived from the start symbol.

Sentence: a sentential form without nonterminals.

How do we apply productions to form phrases, sentential forms, or
sentences?

Leftmost derivation: a derivation where always the leftmost
nonterminal is replaced. Gives rise to leftmost sentential form.

Rightmost derivation: a derivation where always the rightmost
nonterminal is replaced. Gives rise to rightmost sentential form.

21 / 1

Leftmost derivation of −(id + id)

〈exp〉 ⇒ −〈exp〉
⇒ −(〈exp〉)
⇒ −(〈exp〉+〈exp〉)
⇒ −(id+〈exp〉)
⇒ −(id+id)

−(id+id) is a sentential form, a sentence, and a leftmost sentential
form.

22 / 1

Rightmost derivation of −(id + id)

〈exp〉 ⇒ −〈exp〉
⇒ −(〈exp〉)
⇒ −(〈exp〉+〈exp〉)
⇒ −(〈exp〉+id)

⇒ −(id+id)

As it happens, −(id+id) is also a rightmost sentential form.

23 / 1

Parse trees and derivations. . .

Parse trees remember how a sentence was produced.

〈exp〉 =⇒
- 〈exp〉
%
%
C
C

〈exp〉

=⇒
-

(〈exp〉)

�� @@

〈exp〉

���
C
C

〈exp〉

=⇒
-

(

〈exp〉 + 〈exp〉

,
,
l
l

〈exp〉)

!!!!
aaaa

〈exp〉

!!!!
C
C

〈exp〉

24 / 1

. . . just a bit more

The parse tree on the far right represents both leftmost and
rightmost derivations given previously.

=⇒
-

(

id

〈exp〉+ 〈exp〉

"""
�
�
l
l

〈exp〉)

!!!!
aaaa

〈exp〉

!!!! CC

〈exp〉

=⇒
-

(

id

〈exp〉+

id

〈exp〉

,
,
l
l

〈exp〉)

"""
bbb

〈exp〉

����
C
C

〈exp〉

25 / 1

Different grammars

Two different grammars can define the same language L.

Call two grammars equivalent when they describe the same
language.

However, equivalent grammars can define different parse trees.

26 / 1

Two grammars

Grammar 1:

〈exp〉 ::= 〈digit〉 | 〈exp〉+〈digit〉 | 〈exp〉∗〈digit〉
〈digit〉 ::= 1 | 2 | 3

Grammar 2:

〈exp〉 ::= 〈digit〉 | 〈digit〉+〈exp〉 | 〈digit〉∗〈exp〉
〈digit〉 ::= 1 | 2 | 3

27 / 1

Different parse trees

1

〈digit〉

〈exp〉 +

2

〈digit〉

���
QQQ

〈exp〉 *

3

〈digit〉

,
,
QQQ
aaaaa

〈exp〉

1

〈digit〉 +

2

〈digit〉 *

3

〈digit〉

〈exp〉

���
ZZZ

〈exp〉

!!!!!
���
l
l

〈exp〉

28 / 1

Different parse trees

This is important, because different parse trees may induce
different intuitive meanings.

Programs are not just syntax: we write a program because we give
it meaning.

That meaning can be influenced by how we parse the string.

I The tree on the left intuitively means 9.
I The tree on the right intuitively means 7.

29 / 1

