
SCHOOL OF MATHEMATICAL AND COMPUTER SCIENCES

Computer Science

F29LP2

Language Processors (Mock)

Semester 2 201314

Sometime before 5 May 2014

Duration: As long as you like

ANSWER BOTH QUESTIONS (ACTUAL EXAM WILL BE THREE)

Answer each question in a separate script book.

Q1-Q2 MJG 2 F29LP2

Some words on using this mock paper

There is no concept in this paper that you have not seen already in the lecture notes and exercises.
However, I have tried to pitch the difficulty level of this paper slightly above what you will face in
the exam. Exam conditions are always harder, because of the stress.

I believe that if you can understand and do these questions, then you are certain to get a decent
grade in the exam.

You must attempt this entire paper before looking at the answers. Have you attempted the paper
yet?
ANSWER:
If you see this text, you are looking at the version with model answers. Close this document and try to version
without model answers, first.

Good luck.

Q1-Q2 MJG 3 F29LP2

1. (a) Explain in clear and precise English the precise meaning of the term formal
language, in the context of this course. (2)

ANSWER:

A set of tokens called an alphabet, and a set of strings over those tokens which are considered to be

in the formal language.

(b) Consider the following regular expressions:

1. .?
2. .+
3. .∗
4. .!
5. .$
6. .
7. .$$
8. .̂

In English or otherwise, explain what languages (over ASCII characters)
these regular expressions specify. (8)
ANSWER:

1. The set of ASCII strings of length at most one.
2. The set of ASCII strings of length at least one.
3. The set of all ASCII strings.
4. The set of all ASCII strings of length 2 whose second character is !.
5. The set of all ASCII strings of length precisely one.
6. The set of all ASCII strings of length precisely one. The lack of $ here is a red herring; the

wording of the question makes clear that we are matching the whole string, not a substring of
it, so that all these regexps are in effect terminated by an invisible $ anyway.

7. Yup. The set of all ASCII strings of length precisely one.
8. The empty set. This is because^matches the start of the string, and . matches an initial character

before ,̂ so this particular regular expression is in effect a paradox which no string can satisfy.

(c) 1. Explain in English what a non-deterministic finite automaton (NFA) with
ε-moves is.

2. Explain intuitively how an NFA with ε moves can be considered to spec-
ify a language.

3. Explain the connection with regular expressions.

(3)
ANSWER:

Q1-Q2 MJG 4 F29LP2

1. An NFA with ε-moves is a rooted graph (the root is the ‘initial state’) with edges either labelled
by elements of a set of tokens Σ (called an ‘alphabet’), or without a label (this is sometimes
indicated by annotating them with ε. Some of the nodes are designated as ‘final states’.

2. If we trace possible paths from the initial state to some final state (possibly passing through
other final states without stopping) and record the tokens labelling edges, then we get a set of
strings. These strings are a language over Σ.

3. NFA with ε moves determine precisely the same class of languages as do regular expressions.

(d) Express as a regular expression the language accepted by the following au-
tomaton:

start
A B B A

ε (2)

ANSWER:

(ABBA)+

(intuitively: “ABBA forever”)

(e) Explain precisely, in English or otherwise, what the difference is between
the previous regular expression and the one determined by this automaton:

start
A B B A

ε (1)

ANSWER:

(ABBA)∗
Though we could listen to ABBA all day should the opportunity arise, we do not necessarily need to

listen to ABBA.

(f) Draw a PDA that recognises the language {a ibj a i+j | i≥1, j≥0}. Your
answer must clearly state the acceptance mode used. (4)

ANSWER:

Acceptance by empty stack or by final state; either works here:

Astart B C F

a,Z;aZ

a,a;aa

a,Z;aZ

a,a;aa

b,a;ba

b,b;bb

ε,a;a

ε,b;b

a,a;ε

a,b;ε

ε,Z;ε

Q1-Q2 MJG 5 F29LP2

2. (a) Give one example each of

• a left-recursive grammar, (1)
• a right-recursive grammar, (1)
• a grammar that is both left- and right-recursive. (1)

ANSWER:

Left-recursive grammar: S ::= S0 (start symbol is S). Right-recursive grammar: S ::= 0S .

Grammar that is both: S ::= S0S or S ::= SS or even just S ::= S .

(b) Write a context-free grammar for the English language with nonterminals
〈sentence〉, 〈noun〉, 〈verb〉, 〈definite-article〉 (words like ‘the’ or ‘that’),
and 〈adverb〉 (‘quickly’, ‘happily’). Your grammar should be sufficiently
developed to produce the following sentences:

• The cat scratched the mat.
• Linux rocks.
• Jamie happily writes questions.

We do not care if your grammar also produces a incorrect sentences, such
as “The the cat scratched the mat”. You may ignore case. (6)
ANSWER:

• 〈sentence〉 ::= 〈noun〉〈verb〉〈noun〉 | 〈noun〉〈verb〉
• 〈noun〉 ::= cat | mat | Linux | Jamie | questions | 〈definite-article〉〈noun〉
• 〈definite-article〉 ::= the

• 〈verb〉 ::= scratched | is | writes | rocks | 〈adverb〉〈verb〉
• 〈adverb〉 ::= happily

I would not set this question in an exam because it is too ambiguous; a student might ignore the

spirit of the question and simply write the grammar

〈sentence〉 ::= The cat scratched the mat | Linux rocks |
However, for a mock this is OK.

By the way, in practice we need to distinguish between nouns and noun phrases, and verbs and verb

phrases. These are used to exclude the pathalogical (i.e. grammatically incorrect) sentences which

the simple-minded grammar above can produce.

(c) Consider the following grammars:

T ::= T0 | T1 | ε
S ::= 0S | 1S | ε
U ::= UU | 0 | 1 | ε

Q1-Q2 MJG 6 F29LP2

• All three grammars generate the same language. What is it? (1)
ANSWER:

Possibly empty binary strings (strings of 0s or 1s).

• Rank the grammars in order from best to worst from an implementational
point of view, and explain your ranking. (2)
ANSWER:

S , T , then U . S is right-recursive and well-suited to implementation since it ‘eats’ characters

from the left, so a naive implementation that applies the first available rule to the input stream

will just work recognise the relevant language. T is left-recursive, and though there is nothing

wrong with this mathematically, if we are foolish enough to give a naive left-to-right implemen-

tation, then it will immediately loop. U is clearly deprecated, since not only is it likely to loop,

but it may loop exponentially (due to the rewrite U ::= UU).

(d) Take a natural number to be an element of the language determined by
the regex 0 | [1-9][0-9]∗, and a decimal number to be an element of the
language determined by the regex (0 | [1-9][0-9]∗)\.[0-9]+ (so 00 is not a
number but 10 is, and 1. is not a decimal number but 0.00 and 0.01 are
decimal numbers).

Write a grammar (which need not be context-free) that will generate sen-
tences over tokens {0, . . . , 9, .,≈} of the form “D ≈ N ”, where D is a
decimal number and N is a natural number and N is equal to D rounded
down to the nearest whole number.

So for instance, your grammar should recognise 10.9 ≈ 10 and 0.49 ≈ 0.

You may use dots notation to indicate evident repetition of a succession of
rules, as in “S ::= 0 | · · · | 9”. Answers that are not evidently correct may
score zero marks; if in doubt, provide a clear English explanation of how
your answer works. Clearly state the start symbol. (4)
ANSWER:

N ::= S | 1S ′ | · · · | 9S ′

S ::= 0 | 1 | · · · | 9
S ′ ::= ε | 0S ′ | · · · | 9S ′

E ::= N .SS ′ ≈ N

The start symbol is E .

(e) Write a grammar to recognise sentences over {1, 2} such that the sum of the
1s is equal to the sum of the 2s (in other words: there are twice as many 1s
as 2s). Clearly state the start symbol. (2)
ANSWER:

S ::= ε | 1S1S2S | 1S2S1S | 2S1S1S

Q1-Q2 MJG 7 F29LP2

Start symbol is S .

(f) Can your grammar be left-factored and so made deterministic to eliminate
potential backtracking? Explain. (2)

ANSWER:

I don’t think so. Certainly we can branch on whether the first input symbol (by convention the

leftmost symbol) is 1 or 2, but there is no way by reading a fixed number of symbols from the start

of the stream, that we can decide whether the corresponding 1 occurs before or after the single

matching 2—there could be a million 1s and only then five hundred thousand 2s.

END OF PAPER

