
SCHOOL OF MATHEMATICAL AND COMPUTER SCIENCES

Computer Science

F28PL

Programming Languages (mock exam)

Semester 1 201516

Duration: Two Hours



Q1-Q4 MJG 2 F28PL

This mock exam is aimed slightly harder than the real exam, because doing real
exams is harder in real exam conditions because of the stress.

If you ace this mock then you should pass the exam without difficulty. If you don’t
understand something in this mock, then make sure you understand it . . . soon!

This mock is available in two versions: one with answers and one without. For best
results, try to do the one without answers first (you’ll learn more from reading the
answers if you’ve made a serious effort to figure it out yourself).



Q1-Q4 MJG 3 F28PL

1. (a) Clearly write the ML types of the following expressions, or if the expression
has no ML type, explain why: (5)

1. [0,1,2,3]
2. [0.0,1.0,1]
3. 0 div 0

4. fn f => f f

5. fn (f,g,x) => g(f(x))

(b) State the type of the following ML program, and explain what function
is calculated by it, making specific reference to the ML execution model
(in other words: convince the examiner you understand not only what the
program computes, but how):
exception Break;
fn f => fn a => fn b =>

(f(raise Break)
handle Break => if (f a) then a else raise Break)

handle Break => if not(f a) then a else b;

(3)

(c) Write ML functions of the following types:

1. (’a -> ’b) -> (’a -> ’c) -> ’a -> (’b*’c) (2)
2. (’a * ’b) -> (’a -> ’c) -> (’b -> ’d) -> ’c*’d (2)
3. ’a -> ’b list (2)

(d) The logistic map is specified by

x0 = 0.5 and xn+1 = rxn(1− xn)

where x0, x1, x2, . . . is a sequence of reals and r is a real number. The
logistic map is (part of) the basis of chaos theory.

1. Write an ML program
logistic : real -> int -> real

that if given arguments r:real and n:int will compute xn (for the
given value of r). Answers that do not respect ML’s strict type system
may lose marks. (3)

2. Write an ML program
list_f : (int -> ’a) -> (int -> ’a list)

that if given f:int->’a and n:int computes [f(0), f(1), . . . , f(n)].
(2)



Q1-Q4 MJG 4 F28PL

3. Using your answers above, write a program
logistic_map : real -> int -> real list

that if given r:real and n:int computes [x0, x1, . . . , xn]. (1)



Q1-Q4 MJG 5 F28PL

2. (a) State the output of the following programs and explain why, or, if the program
terminates with an error state what that error is and why it arises:

1. "Hello dolly"[::-1] (2)
2.

"".join([x[0] for x in
"Young Men’s Christian Association".split(" ")])

(2)
3. ["Hello"].append(["world!"]) (2)
4.

x=[]
for i in range(4):

x=[x]*(len(x)+1)

x[3][2][1][0]

(2)

(b) Consider the following Python3 code:
1 fun mystery d:
2 L = []
3 for k in d:
4 if d[k] not in L:
5 L.append(d[k])
6 return(sorted(L))

1. The program is defective and contains four errors. State what they are
and how to correct them. (4)

2. Describe what function the program calculates. Clearly state any typing
assumptions that you make of the input d.
Note that we do not want a blow-by-blow account of execution: we want
to know mathematically what it calculates, or to put another way, how
you might document the program for a user. (2)

3. The function mystery can be expressed in one line of code, using
lambda. Propose how. (2)

(c) Consider the following Python code:
x=["Live, Die, "]
x.extend([x])
while True:

print(x[0],end="")
x=x[1]

Describe the data structure stored in x when execution is at line 3. (2)



Q1-Q4 MJG 6 F28PL

(d) Describe and explain the output of the program. (2)



Q1-Q4 MJG 7 F28PL

3. (a) Compare and constrast the following terms in detail. Where appropriate
illustrate your explanation with concrete code samples, being clear about
which language you intend to be writing in. Prove to the examiner that you
not only understand these terms, but understand their concrete relevance to
specific code of the languages in this course. Note the number of marks
for the questions: these give some indication of a minimum of how many
individual points you should make in each answer.

1. Functional, logic, and imperative programming. (3)
2. Global and local state. (2)
3. Mutable vs. immutable variable. (2)
4. Mutable vs. immutable type (in Python). Be specific giving at least one

example of each. (4)
5. Ad hoc polymorphism, and parametric polymorphism. Be specific and

give at least one example of each. (4)
6. Dynamic type error and static type error. (2)

(b) Imperative programming is doomed: in ten years we’ll all be using pure
functional programming. Discuss, giving at least two points for and two
points against. (4)

(I know this question has more than 20 points. With so many interesting
questions to set, I couldn’t decide what to cut.)



Q1-Q4 MJG 8 F28PL

4. (a) Explain the differences in Prolog between the static and the dynamic databases.
Your answer should make clear the usage and meaning of the assert and
retract keywords, and should be specific about where and when they can
be used. (3)

(b) Convert the following list of English sentences into a Prolog database:

1. If I have chocolate, then I want chocolate.
2. If I want chocolate, then I buy chocolate.
3. If I want chocolate and I have chocolate, then I eat chocolate.

(3)

(c) The French word sera means ‘will be’, and the French word que means
‘whatever’. Thus the French saying que sera, sera can be translated into
English as what will be, will be, and into Prolog as
sera(X) :- sera(X).

Explain the behaviour of Prolog when asked to predict whether there will be
world peace by asking the query sera(world_peace) in this database.
Your answer should demonstrate specific understanding of the Prolog execu-
tion model. (2)

(d) Now consider the following database:
sera(Y) :- sera(X).

Explain the behaviour of Prolog when asked to predict whether there will be
world peace by asking the query sera(world_peace) in this database.
Your answer should demonstrate specific understanding of the Prolog execu-
tion model. (3)

(e) Write a Prolog program sumsq to calculate the sum of squares of a list of in-
tegers (that is, the sum of the list divided by its length). Thus sumsq([3,4],25)
should return true and sumsq([0,-1,1],X) should return X=2. (4)

(f) Consider the following two databases:

• Database 1:
food(chicken).
food(fish).
eat(X) :- food(X),!.

• Database 2:



Q1-Q4 MJG 9 F28PL

food(chicken).
food(fish).
eat(X) :- !,food(X).

Describe and explain the behaviour of the query eat(X) in each database,
with specific reference to the Prolog execution model. (2)

(g) Note that writef(string) prints string to standard output and then
succeeds. With an empty database we type the following at the interactive
prompt:
assert((eat(chocolate) :- want(chocolate), have(chocolate),

writef("Chocolate face!"),
retract(have(chocolate)))).

assert((want(chocolate) :- buy(chocolate))).
assert((buy(chocolate) :- assert(have(chocolate)))).
eat(chocolate).

What will Prolog do, and why? (2)

(h) Suggest a simple modification to the code above that will cause it to print
Chocolate face! forever. (1)

EAT CHOCOLATE


