
SCHOOL OF MATHEMATICAL AND COMPUTER SCIENCES

Computer Science

F28FS2

Formal Specification Mock exam

Semester 2 201314

Sometime before 22 May 2014

Duration: As long as you like (actual exam: 2 hours)

ANSWER THREE QUESTIONS

Q1-Q4 MJG 2 F28FS2

Some words on using this mock paper

Every concept in this paper appears in the lecture notes and exercises.

I have pitched the difficulty level of this mock above what you will face in the exam; however, exam
conditions always make things seem more difficult, because of the stress.

If you understand and can do these questions, then you are certain to get a decent grade in the exam.

• You must attempt this entire paper before looking at the answers. Have you attempted the paper
yet?

ANSWER:
If you see this text, you are looking at the version with model answers. Close this document and try to version
without model answers, first.

• Then look up answers.

• Then do the paper again.

• Repeat until perfect.

Good luck.

Q1-Q4 MJG 3 F28FS2

1. Recall that N is the type of natural numbers, with elements {0, 1, 2, . . . }.

(a) Using precise English or correct Z notation, give examples of elements of
the types below. Your examples must not be empty—if your answer is {}
or ∅ then it will score zero marks. Examples that are not clear or precise
may also score zero marks.

• P(N× N).
ANSWER:
{0 7→ 0}

• (PN)× (PN).
ANSWER:
∅ 7→ ∅

• N→ N.
ANSWER:
The identity function, mapping x : N to itself.

• P((PN)× (PN)).
ANSWER:
{∅ 7→ ∅}

(8)

(b) f : N → N is bijective when every element in N is mapped to by some
unique element of N (so if y : N then there is some unique x : N such that
f (x) = y).
Describe using precise English or Z notation or otherwise, one example of
some bijective function in N→ N. (2)
ANSWER:
The identity function mapping x : N to itself. Other answers I would accept include λ x : N.x (λ-calculus
notation), {0 7→ 0, 1 7→ 1, 2 7→ 2, . . . } (semiformal English), and {x : N | x 7→ x} (full Z notation).
More obscure answers include e.g. {0 7→ 1, 1 7→ 0, 2 7→ 3, 3 7→ 2, . . . }. But why bother?

(c) Write a Z predicate bijective(f) which expresses that f is bijective. You
may assume all standard connectives and quantifiers without comment, and
you may assume function application, writing f (x) without explanation. (4)

ANSWER:
bijective(f)

def
= ∀ y : T • ∃1 x : S • f (x) = y . This just repeats in Z the English specification of bijectivity

above.
This would also be fine: bijective(f)

def
= ∀ y : T • (∃ x : S • f (x) = y ∧ (∀ x ′ : S • f (x ′) = y ⇒ x = x ′)).

(d) Suppose S ,T ⊆ N. We say that S and T have the same size when there
exists a bijective function f : S → T .

Specify in Z the set of all pairs of equally-sized sets of natural numbers:
your answer must have type P(PN× PN).
You may assume a predicate bijective (i.e. you may assume your answer to
part (c) above). (3)

Q1-Q4 MJG 4 F28FS2

ANSWER:
{X 7→Y : PN× PN | ∃ f : X → Y • bijective(f)} : P(PN× PN).

(e) Write R for the type of real numbers. If x , y : R then the distance between
x and y , written |x−y |, is the unique non-negative element of {x−y , y−x}.
A subset S ⊆ R is dense in R when for every x : R and ε : R there exists a
y ∈ S that is less than ε distant from x , so that |x−y | < ε (for instance, the
rational numbers Q are dense in R, and the integers Z are not dense in R).
Express in Z, giving full types, the set of dense subsets of R. You may
assume |x−y | without specifying it. (3)
ANSWER:
{S : PR | ∀ x , ε : R • ∃ y : S • |x−y | < ε} : PPR.
Notice the type: you get a point just for writing PPR (and lose a point for forgetting to do so). If I write
“giving full types”, then I mean it.

Q1-Q4 MJG 5 F28FS2

2. Define types STATE ::= Live | Dead and CELL = Z× Z.

Conway’s game of life is played on an infinite two-dimensional grid of cells
which can either be live or dead. Model this as a function boardState : CELL→
STATE .

(a) Write a schema BoardState with precisely one schema variable boardState.
The state predicate should reflect that every possible value of boardState is
a valid board state. (2)
ANSWER:

BoardState

boardState : CELL→ STATE

(b) Write the schemas ∆BoardState and ΞBoardState in full. (4)
ANSWER:

∆BoardState

boardState, boardState ′ : CELL→ STATE

ΞBoardState

∆BoardState

boardState ′ = boardState

(c) Write a schema InitBoard which inputs a variable seed? : CELL→ STATE ,
and sets the board up according to seed?. (2)
ANSWER:

InitBoard

∆BoardState

seed? : CELL→ STATE

boardState ′ = seed?

(d) The cell (x , y) is adjacent or a neighbour to the cell (x ′, y ′) when they
share an edge or a corner. For instance, the grey squares below are adjacent
to the black square:

Q1-Q4 MJG 6 F28FS2

Write a predicate adjacent on CELL×CELL such that adjacent((x , y), (x ′, y ′))
is true precisely when (x , y) and (x ′, y ′) are adjacent. (3)
ANSWER:
Here’s how I’d do it:

adjacent((x , y), (x ′, y ′))
def
= (x−x ′)2 + (y−y ′)2 ∈ {1, 2}

or
adjacent((x , y), (x ′, y ′))

def
= 1 ≤ (x−x ′)2 + (y−y ′)2 ≤ 2

(e) Specify liveNeighbours : CELL→ (CELL→ STATE)→ N which given
any c and boardState will return the number of neighbours of c for which
boardState(c) is Live. Take care to put in correct quantifiers as appropriate.

(4)
ANSWER:
∀ c : CELL • liveNeighbours(c) = #{c′ : CELL | adjacent(c, c′) ∧ boardState(c′) = Live}.

(f) The state of the board evolves as a clock ticks. At each evolution, the state
after a clock ticks is related to the state before, by the following transitions:

• A live cell with fewer than 2 live neighbours dies.
• A live cell with 2 or 3 live neighbours lives to the next generation.
• A live cell with more than 3 live neighbours dies.
• A dead cell with exactly 3 live neighbours becomes a live cell.

Write a schema BoardTransition specifying one step in the evolution of the
board. (5)
ANSWER:

BoardTransition

∆BoardState

∀ c : CELL• (boardState(c) = Live ∧ liveNeighbours(c, boardState) < 2)⇒ boardState ′(c) = Dead
(boardState(c) = Live ∧ liveNeighbours(c, boardState) ∈ {2, 3})⇒ boardState ′(c) = Live
(boardState(c) = Live ∧ liveNeighbours(c, boardState) > 3)⇒ boardState ′(c) = Dead
(boardState(c) = Dead ∧ liveNeighbours(c, boardState) = 3)⇒ boardState ′(c) = Live
(boardState(c) = Dead ∧ liveNeighbours(c, boardState) 6= 3)⇒ boardState ′(c) = Dead

The interested student can find a Life simulator online; search for Golly.

Q1-Q4 MJG 7 F28FS2

3. (a) You are asked to produce one example each of programs that satisfy the
specifications > and ⊥ (‘true’ and ‘false’). What do you answer? (2)
ANSWER:
The noop program (which does nothing) is an example of a program that makes > be ‘true’. No program
makes ⊥ be ‘true’, so no example exists; ⊥ is unsatisfiable.

(b) Give one concrete example of informal specification and one concrete ex-
ample of formal specification, taken from programming practice. (2)

ANSWER:
Examples of informal specification: a comment in the code or suggestive variable names or file names.
Example of formal specification: types in C, program headers, the Z language, or indeed the code of computer
programming languages.

(c) Explain Goedel’s incompleteness theorem and its relevance to Z specifica-
tion. (4)

ANSWER:
Goedel’s incompleteness theorem is a mathematical proof that it is impossible, in the general case, to write a
program that will input a pair (code of program,Z specification) and say whether the code satisfies the spec.
So fully automated machine checking of code correctness is mathematically impossible in the general case.
Nevertheless, useful special cases exist where full automation is possible, e.g. type checking.

A code audit is when code is checked line by line by people who did not
write that code, asking: “Why is this line here. What does it do? Is it
correct?”.

(d) Explain to what extent formal specification in Z and a code audit are com-
peting, or complementary, methods of reducing errors in code. (4)

ANSWER:
I’m looking for evidence that the student appreciates what Z is and what its limitations are. So for instance:
A code audit might benefit from a Z specification of what the code is supposed to do. In practice such speci-
fications are more likely to be written in English. However, if what the program does is highly mathematical
(rocket guidance, floating point arithmetic, logic reasoning e.g. on package dependencies, database opera-
tions) then a more formal mathematical specification might well form part of that English.
Code audits are expensive and require qualified staff, but they may still be less expensive than full Z specifi-
cation.
Code audits are not good for automatically verifying large tracts of code. You could not, for instance, fully
audit a microchip design or an entire OS. On the other hand you can use formal specification to specify
common bugs and scan large portions of code looking for them. (In a sense, this is what tools such as grep
do.)
Code audits will not necesssarily help discover non-obvious interactions of widely separated systems that
humans might miss for the sheer size of the interactions. That is, a code audit might verify that program A
increments a counter and program B decrements a counter, but that is no guarantee that A and B might not
then interact to loop indefinitely.

(e) “Better to ship buggy code today, than perfect code tomorrow—we can fix
the bugs in updates.”

Discuss, giving one concrete example where this might be appropriate, and
one concrete example where this is might be inadvisable, with justification
for each. (4)

Q1-Q4 MJG 8 F28FS2

ANSWER:
This is right if you are e.g. building something like Facebook and it is critical to build a user base early and
benefit from networking effects before your competitors do. Time is critical, and safety is not.
This is wrong if you are e.g. Jaguar designing the embedded software for a new model of car for the Indian
market. A buggy product here could be deadly, and also it would sully Jaguar’s reputation for quality in India
and so could damage the brand there for a generation. Time is less important, safety is more important, and
maintaining reputation is key to success.

(f) “The Heartbleed Bug happened because of a stupid programmer.”
Discuss, giving four distinct and clear reasons, at least one of which must
be for the position above, and one must be against it. (4)
ANSWER:
It would be unfair to label the programmer as ‘stupid’, though they certainly made a significant and elemen-
tary programming mistake.
However, humans do make such mistakes, and the rigorous proofing, auditing, and validation which such
important code should have been subjected to, did not trap this error. To finger one programmer for this
mistake would be unfair and would not address the real problems.
And anyway: why is such code being written in a language (C) that is so notoriously vulnerable to memory
overflow errors? And why is the code not run sandboxed by design? And so on. The whole programming
industry has to take responsibility for that one.
Heartbleed is a symptom of design, culture, and systems problems, not the fault of a lone programmer.

Q1-Q4 MJG 9 F28FS2

4. Recall that an integer matrix is an m by n table of integers. For instance,(
1 2 3
0 −1 2

)
is a 2× 3 matrix (m = 2 rows and n = 3 columns).

Model matrixes using an ML type matrix = (int list) list. So the
matrix above would be represented as val M = [[1,2,3], [0,-1,2]
].

You may assume a function length : ’a list -> int which returns
the length of its argument, and hd : ’a list -> ’a returns the head of
a list.1

(a) 1. To what integer does length [[1,2,3], [0,-1,2]] evalu-
ate? (1)

ANSWER:
2

2. To what integer does length (hd ([[1,2,3], [0,-1,2]]))
evaluate? (1)
ANSWER:
3

3. Does there exist some type S and l:S list such that length l will
evaluate to -1? (1)
ANSWER:
No. Come on. Don’t let me mess with your mind.

4. Write an example of a type S and an l:S list such that length l
evaluates to 0. (1)
ANSWER:
int and [] (the empty list).

(b) Write an ML program shape : matrix -> int*int such that if M
is an m × n matrix, then shape M will return (m,n).
We do not care about behaviour if M is not a matrix. (2)
ANSWER:
fun shape M = (length M,length(hd M));

(c) Write a program makeList : int -> matrix that inputs n and
outputs a list of n zeroes. (3)
ANSWER:
fun makeList 0 = [] | makeList n = 0::(makeList (n-1));

(d) Write a program makeMatrix : int -> int -> matrix that in-
puts m and n and outputs an m × n matrix of zeroes. (3)

1Make sure you can implement basic list operations such as these, yourself.

Q1-Q4 MJG 10 F28FS2

ANSWER:
fun makeMatrix 0 n = [] | makeMatrix m n = (makeList n)::(makeMatrix (m-1)
n);

(e) Write a program returnIndex : int -> int -> matrix ->
int that inputs m and n and M and outputs the integer entry at the mth row
and nth column.
We do not care about behaviour if no such entry exists or if M is not a matrix.
You are free to define helper functions if this is convenient. (4)
ANSWER:
fun listItem 1 (h::t) = h | listItem n (h::t) = listItem (n-1) t;
fun returnIndex 1 n M = listItem n (hd M)
| returnIndex m n M = returnIndex (m-1) n (tl M);

(f) Not every list of list of integers represents a matrix. Write an ML pro-
gram isMatrix : int -> int -> matrix -> bool such that
isMatrix m n M returns true if M is an m×n matrix, and false oth-
erwise.
We do not care if your answer is more polymorphic than necessary (so
works for ’a list list instead of int list list). We do not care
about behaviour if m or n are negative. (4)
ANSWER:
fun isMatrix 0 n l = (l=[])
| isMatrix m n [] = (m=0)
| isMatrix m n (h::t) = ((length h) = n) andalso isMatrix (m-1) n t;
Some might just write isMatrix m n M = (shape M)=(m,n). That is not a fully correct answer,
since shape only gives correct results if it is given a matrix. Be careful: 4 marks towards the end of a
question are unlikely to be attained so easily.

END OF PAPER

