
SCHOOL OF MATHEMATICAL AND COMPUTER SCIENCES

Computer Science

F28FS2

Formal Specification Mock exam

Semester 2 201415

Sometime before 14 May 2015

Duration: As long as you like (actual exam: 2 hours)

ANSWER THREE QUESTIONS

Q1-Q4 MJG 2 F28FS2

Some words on using this mock paper

Every concept in this paper appears in the lecture notes and exercises. The difficulty level of a
question is graduated from rather easy at the start, to rather hard towards the end.

The questions in this mock are harder, and often more open-ended, than what you will face in the
exam. However, things seem more difficult during exams because of the stress.

If you understand and can do these questions, then you are certain to get a decent grade in the exam.

• You must attempt this entire paper before looking at the answers. Have you attempted the paper
yet?

ANSWER:
If you see this text, you are looking at the version with model answers. Close this document and try to version
without model answers, first.

• Then look up answers.

• Then do the paper again.

• Repeat until perfect.

Good luck.

Q1-Q4 MJG 3 F28FS2

1. (a) Explain in English the meanings of the following sets:

1. {x : N • x}. (1)
ANSWER:
Natural numbers

2. {x : N | x ≥ 1}. (1)
ANSWER:
Nonzero natural numbers.

3. {x : N • 2 ∗ x}. (1)
ANSWER:
Even numbers

4. {X : PN •#X = 2}. (2)
ANSWER:
Set of unordered pairs of distinct natural numbers.

5. {x , y : N • {x , y}}. (2)
ANSWER:
Set of singletons or unordered pairs of natural numbers.

(b) Write the following sets in Z notation:

1. Numbers divisible by 3. (1)
ANSWER:
{x : N • 3 ∗ x}.

2. Numbers that are the sum of two distinct primes. Here and henceforth
you may assume a set prime : PN of prime numbers. (2)
ANSWER:
{x , y : prime | x 6= y • x + y}

3. Numbers that are equal to the sum of two distinct primes, and also to the
product of two distinct primes. (2)
ANSWER:
{x , y , x ′, y ′ : prime | x + y = x ′ ∗ y ′ ∧ x 6= y ∧ x ′ 6= y ′ • x + y}
Comment on an ambiguity in this question. (1)
ANSWER:
Is (x , y) = (x ′, y ′) insisted on, prohibited, or do we not care?

(c) 1. Explain in English the meaning of the Z type iseq N. (1)
ANSWER:
Injective sequences of natural numbers; that is: finite (possibly empty) lists of distinct natural numbers.

2. Give a precise description of the underlying sets implementation of iseq N
in Z. Your answer need not necessarily be in mathematical notation, but
you must demonstrate you understand how in full detail how this type is
implemented. (2)
ANSWER:
An element l : iseq N is a finite set of pairs of natural numbers having the form {(1, l1), (2, l2), . . . , (n, ln)}
and such that #{l1, . . . , ln} = n (that is, the {l1, . . . , ln} are all distinct). The empty set is allowed and
corresponds to the empty list.

(d) Explain in English the meanings of the following sets:

1. {(x ′, x), (y ′, y) : N× N1) | x ′ ∗ y = y ′ ∗ x • ((x ′, x), (y ′, y))}. (2)

Q1-Q4 MJG 4 F28FS2

ANSWER:
Set of pairs of pairs of numbers which represent the same fraction if we write them as x ′/x = y ′/y .
NOTE: You will get no marks if you just write something of the form “The set of ((x ′, x), (y ′, y)) such
that x ′ times y is equal to y ′ times x”. That answers the question ‘Translate into English’, not the
question ‘Explain in English’.
Also, because of the content of this subquestion and its position towards the end of the question, this is
clearly intended to be a ‘sting in the tail’ and would be marked accordingly.

2.
⋂
{X : PN | 0∈X ∧ ∀ x :X • x+2∈X }. (2)

ANSWER:
Even numbers!

Q1-Q4 MJG 5 F28FS2

2. Assume an abstract types of people [PERSON] and rooms [ROOM].

Henceforth you may assume standard Z operations on sets and functions, such
as sets union and intersection, sets subtraction, domain, range, domain and
range (anti)restriction, functional and relation application, image, and inverse,
and so forth.

(a) Write a schema State with precisely one schema variable inRoom : PERSON 7→
ROOM . The state predicate should reflect that every person is in at most
one room. (2)
ANSWER:

State
inRoom : PERSON 7→ ROOM

The condition that every person be in at most one room is built in to the type 7→.

(b) Write the schemas ∆State and ΞState in full. (2)
ANSWER:

∆State
inRoom, inRoom ′ : PERSON 7→ ROOM

ΞState
∆State

inRoom ′ = inRoom

(c) Write a schema Move which inputs p? : PERSON and r? : ROOM and
moves p? to be in r?, provided that p? is not already in r?. (4)
ANSWER:
This is probably the slickest answer:

Move
∆State
p? : PERSON
r? : ROOM

inRoom ′ = ({p?} −C inRoom) ∪ {p 7→r?}
p? ∈ dom(inRoom)⇒ inRoom(p?) 6= r?

I’m being slightly pedantic checking that p? ∈ dom(inRoom) and if I were writing a maths paper then my
colleagues would probably expect this. You wouldn’t lose marks for just writing inRoom(p?) 6= r? directly.

(d) Assume a type MESSAGE := alreadyInRoom | success . Totalise the
schema Move with an appropriate error message. (4)

Q1-Q4 MJG 6 F28FS2

ANSWER:

Success
m! : MESSAGE

m! = success

AlreadyInRoom
ΞState
p? : PERSON
r? : ROOM
m! : MESSAGE

p? ∈ dom(inRoom)
inRoom(p?) = r?
m! = alreadyInRoom

totalMove
def
= (Move ∧ success) ∨ AlreadyInRoom

(e) Write a schema Outdoors with state variable including outdoors ! : PPERSON
that outputs the set of people who are not in any room; Outdoors should not
change the state. (2)
ANSWER:
Slick:

Outdoors
ΞState
outdoors! : PPERSON

outdoors! = PERSON \ dom(inRoom)

Less slick but very functional:

Outdoors
ΞState
outdoors! : PPERSON

outdoors! = {p : PERSON | ¬ ∃ r : ROOM • inRoom(p) = r}

(f) Write a schema FireAlert that empties all the rooms. (2)
ANSWER:

FireAlert
∆State

inRoom ′ = ∅

(g) Write a schema Mingle which shuffles people so that people who are in-
doors stay indoors, and people outdoors stay outdoors, but nobody is in the
same room after the schema as they were before. (2)

Q1-Q4 MJG 7 F28FS2

ANSWER:

Mingle
∆State

dom(inRoom) = dom(inRoom ′)
∀ p : dom(inRoom) • inRoom(p) 6= inRoom ′(p)

(h) Assume a global constant charlie : PERSON . charlie (family name Chap-
lin) is a fantastic conversationalist; people want to be around him.
Write a schema Charlie which assumes that charlie is in some room, and
after the schema, at least one person has moved from every other nonempty
room to be in the same room as charlie?. No other people move. (2)
ANSWER:
inRoom -1(r) is functional inverse image (often called preimage in the literature); it can also be written using
relational inverse and relational image as inRoom -1(|{r}|). Intuitively: this expresses “the people in room
r”.

Charlie
∆State

charlie ∈ dom(inRoom)
∀ r : ROOM • r 6= inRoom -1(charlie)⇒

(inRoom ′-1(r) ⊆ inRoom(r) ∧
(inRoom -1(r) 6= ∅⇒ inRoom ′-1(r) 6= inRoom -1(r)))

dom(inRoom) = dom(inRoom ′)

Q1-Q4 MJG 8 F28FS2

3. (a) Your boy or girlfriend wants you to be assertive, yet sensitive; spontaneous,
yet deep; popular, yet devoted only to him or her.
Translate this requirement into Z and comment on the possibilities of im-
plementing this specification. (2)

ANSWER:
⊥. Unsatisfiable.
Sorry dear.

(b) For each of the the following jobs, give a concrete example of where formal
or semi-formal specification is important in that job, and one aspect of the
job where formal specification is likely to be less useful:

1. Working the telephone in a Virgin Broadband call centre.
2. Teaching computer science at undergraduate level.
3. Parachute jumping instructor.
4. Chip designer. (8)
ANSWER:

1. They operate off a flowchart which specifies exactly what they should say in every situation. I encountered
this one day when I had to phone up and was asked “What version of Windows are you using Sir?”.
“I’m not; I’m using Linux”. “What version of Windows is that, Sir?”. The operator needed a response
that matched her flowchart. This is a formal specification; not in formal logic, but very very specific
nonetheless, as the operator’s response demonstrated.
Aspects that are harder to formally specify: When to bounce the customer up to a superviser. How to
calm down an irate customer. Etc.

2. I work off a module descriptor which is a reasonably formal document. Dealing with students however
is hard to formalise.

3. I expect the safety checklist for a parachute instructor is as detailed and carefully designed as anything
I might write in first-order logic.
Handling a customer at 12,500ft is unlikely to be formally specified.

4. Chips nowadays are often fully specified in languages very much like Z.
Chip designers must negotiate with one another for chip real estate on which to print their designs. This
used to be specified at top level but my understanding is that nowadays this is actually managed using a
bidding/auction system using a virtual currency, so that chip space gets allocated to the designers that
really need it and are willing to pay.

(c) Consider the following specification for hacking any account: “Open login
screen. Type in the right password.”
Using this example, explain the difference between specification and imple-
mentation. (2)

ANSWER:
Though written in English, it would not be hard to translate this to Z. Specification is saying what you want;
implementation is saying how to do it. In the example above we have a clear specification of what we want,
but no idea how to do it.

Q1-Q4 MJG 9 F28FS2

(d) Consider the following refined specification for hacking any account: “Open
login screen. Type in every possible password until you find the right one.”
Using this example, elaborate further on the difference between specifica-
tion and implementation. (2)

ANSWER:
This specification is so precise as to be almost an implementation; you should easily be able to script a
program to do just this and so save you the trouble of typing. However, it is computationally intractable;
you’ll be there forever, or nearly so.

(e) Microsoft used to be famous for shipping buggy code (less so now). Explain
why this made economic sense in the 90s and early 2000s, and discuss why
it is less acceptable now. (4)
ANSWER:
Back when the technology was evolving very rapidly and during Microsoft’s golden years when it had virtu-
ally no competition, it was better to release software with bugs sooner. Nowadays many things have changed:

1. Technological change has slowed, at least in the PC segment that is Microsoft’s heartland.
2. Competition has hotted up: not only OS X but also Linux are realistic alternatives to the Microsoft OS.

Bugs are more expensive because they might lose you customers.
3. The user base has broadened; a seasoned programmer might shrug and carry on if their computer

crashes and they lose a day’s data, because that’s their job. If your grandma loses the form she’s filling
out online, she’ll likely be furious and stay that way for days.

Where technology is changing rapidly—mobile phones, cloud and online services—the same pattern of ‘re-
lease early, release buggy’ is repeating itself. The modern version is more serious though; a bug nowadays
can mean hackers emptying your bank account or stealing your identity. So the consequences are more severe
and I think companies often try much harder to trap bugs. But not always. . .

(f) Give one example of a proper, full-fat, fully-formal specification that you
encountered on your way in to the University today. (2)
ANSWER:
Bus timetable.

Q1-Q4 MJG 10 F28FS2

4. (a) 1. Write the ML type of mysucc.
fun mysucc (x:int) = x+1; (2)
ANSWER:
int -> int

2. State the value and type computed by
mysucc ˜1; (2)
ANSWER:
0 : int

(b) Consider the following Z specification:

Factorial
fact : N→ N

fact 0 = 1
∀ n : N1 • fact n = n ∗ (fact(n−1))

1. Implement fact in ML. (2)
ANSWER:
fun fact 0 = 1 | fact n = n*(fact(n-1))
Don’t worry about whether there are brackets; fact(n) and fact n are equivalent.

2. State the type of fact and explain why it is different from the type
specified in Z. (2)
ANSWER:
int -> int
It is not nat -> nat because ML does not have a primitive type of natural numbers (for the purposes
of this course; there may exist an ML library somewhere that you could load!).

(c) 1. Consider the ML function real and recall that real (1:int) eval-
uates to 1.0:real. State the type of real and explain what it does.

(2)
ANSWER:
real:int->real. It casts an integer to a real.

2. Explain why real is necessary. (1)
ANSWER:
ML is strictly typed.

3. The binomial is specified in Z as follows, where R is the type of real
numbers:

Binomial
bin : N→ N→ R

∀ n, k :N • k≤n ⇒ bin n k = (fact n)/((fact k)) ∗ (fact (n−k))

a) State the type of an implementation of bin in ML. (2)
ANSWER:
int -> int -> real

b) Implement bin in ML. You do not need to include error-handling
code for out-of-bound inputs. (4)

Q1-Q4 MJG 11 F28FS2

ANSWER:
Not the prettiest, but it’ll do:
fun bin n k =
(real (fact n))/((real (fact k))*(real (fact (n-k))));

4. Write an ML function B which inputs a number n and outputs the list
[
(
n
0

)
, . . . ,

(
n
n

)
]. You do not need to include error-handling code. You are

free to define any helper functions you find useful. (3)
State the ML type of B. (1)
ANSWER:
fun binhelper n 0 = [bin n 0]
| binhelper n k = (bin n k)::(binhelper n (k-1));
fun B n = binhelper n n;
val B = fn : int -> real list;

5. Using B and a function L : real list -> real, which would
normally be called listsum but we give it here a one-character name,
write a function using only 3 non-whitespace characters that given n : N
will calculate Σ0≤k≤n

(
n
k

)
=
(
n
0

)
+ · · ·+

(
n
n

)
. (1)

ANSWER:
Just for completeness: fun L [] = 0.0 | L (hd::tl) = hd+(L tl);
B o L;

END OF PAPER

