Introductory Notes on Specification with Z

Michael Butler
Dept. of Electronics and Computer Science
University of Southampton

March 12, 2001

1 Introduction

Z is a formal specification language for computer systems which is based on set theory and predicate logic.
There are several textbooks on Z in the library, in particular:

e The Mathematics of Software Constructiédn Norcliffe & G. Slater. Ellis Horwood, 1991.
e Z User Manual M.A. McMorran & J.E. Nicholls. IBM Technical Report, 1989.
e The Z Notation - A Reference ManudlM. Spivey. Prentice—Hall, 1989.

¢ An Introduction to Formal Specification and B. Potter, J. Sinclair & D. Till. Prentice—Hall, 1996.

The basic until of specification in Z issthemaA Z schema consists of a name, a declaration of variables,
and a predicate:

__SchemaName
X: X

Predicate

Here, variablex is declared to be of typX (see section 2.2). Note that the declaration part may declare
more than one variable. The predicate part is a predicate (see section 2.3) whose free variables are those of
the declaration plus any constants.

A system specification in Z consists of some state variables, an initialisation, and a set of operations on

the state variables. The state variables will also have some invariants associated with them representing
“healthiness conditions” which must always be satisfied. Usually all of these are specified using schemas.

For example, the state variables of a counter system may be specified using the following schema:

__ Counter.
ctr: N

0 < ctr < max

Here, ctr is declared to be a natural number and the predicate part describes an invariant that must be
satisfied byctr, the state variable of the system.

An initialisation may be specified as follows:

___InitCounter
Counter

ctr=20

An operation is specified in Z with a predicate relating the state before and after the invocation of that
operation. For example, an operation to increment the counter may be specified as follows:

Increment
TACounter

Ctr < max

ctr’ =ctr+1

The declaratiom\Countermeans that the stat@ounteris changed by the operation. In the predicate, the
new value of a variable is primedt(’), while the old value is unprimed. So the above predicate states
that the new value of the countety’, is the old value plus one. Note that there is an implicit conjunction
(logical-and) between successive lines of the predicate part of a schema.

As well as changing the state variables, an operation may also have input and output parameters. Input
parameter names are usually suffixed with ‘?’, while output parameter names are suffixed with ‘1. For
example, the following operation for decrementing the counter has as an input parameter, the amount by
which the counter should be decremented:

Decrement
ACounter
d?: N

ctr > d?

ctr’ =ctr — d?

The following operation has an output parameter which is the value of the counter:

__Display.
=Counter
c:N

cl =ctr

Here, the declaratioECountermeans that the operation cannot change the staewifiter soctr’ = ctr.

2 Sets and Logic

2.1 Sets

Sets are the most basic types in Z. Examples of sets include:

{3,6, 7}
{ windows unix, mac}
{ false true}

N (the set of natural numbers)
Z (the set of integers)
R (the set of real numbers)

{} (the empty set)

Set Membership:

mace { windows unix, mac}
linux ¢ { windows unix, mac}
10eN

105 ¢ N

10.5 € R

Set Equality:
{3,6, 7} ={7,6,3,6}

The following operators may be applied to sets:
Union: SUT

Intersection: SNT

Difference: S\ T

Subset: SCT
E.g., {c,b} C {ab,c}.

Power Set: P S(set of subsets).

E.g.,
]P){a’ bv C} = {{}7 {a}v {b}v {C}7
{a,b}, {b,c}, {ac},
{a,b,c} }
2.2 Types

Types are used to differentiate the various forms of data present in a specification. Advantages of using
types are that they

e help to structure specifications by differentiating objects;
¢ help to prevent errors by not allowing us to write meaningless things;

e they can be checked by computer.

The declarationx : T says thak is of typeT, whereT is a set. This is like saying € T.
x:N
z:R
unix : { windows unix, mac}
7:N
(3+5):N

What are the types of the following expressions?

mac
logy

sin (m/2)
(a+b) x (3!
A newbasic type Tis introduced to a specification by putting its name in square brackets:

[T]

This allows us to hame the types of a specification without saying what kind of objects they contain. For
example, a specification of an address book might introduce the basicNygmesand Addresswithout
worrying about the structure of these types:

[Name Address

If we know the exact values of a type we useegmumerated typdeclaration:

Direction == north | south| east| west

Sets have types too. The type of the §&t4, 5} is “set of N”. More precisely, this is written:

{3,4,5} : PN

AssumeSandT have typeP M. What are the types of:

SUT

SNT
What about{} ? The type of } is given explicitly: {}m : PM
What is the type of {3,4}, {}n, {7} }?

Expressions which are incorrectly typed are meaningless:

{4, 6, unix}
{windows mac} U {bwm rover, ford}

2.3 Predicates

Predicates are used to state truth properties of values in a specification. Examples of simple predicates
include:

false true 1< (a/2)
x+1)=7 event TeR

Compound predicates are formed using the following logical operators:

And A A B (Conjunction
Or AV B (Disjunction
Implies A=B

Not - A

Logical-and is sometimes calletnjunctionand logical-or is sometimes callelisjunction
Examples of compound predicates include:

(x=y) A (y=>0)
(x>20) Vv (x=4)
(x>0) = x/x=1
(-

X & Sis short for— (x € S). x # yis short for— (x = y).
Universal Quantification is written as follows:

(Vx:TeA

This is true whenA holds for allvaluesx of type T. Herex is a said to be guantifiedor boundvariable.
Example: (Vx:Z e x—x=0).

Existential Quantification is written as follows:
(Ix:Te A

This is true whenA holds for somevaluex of typeT.
Example: (IX: Z e xx x = 16).

2.4 Set Comprehension

A set comprehension is written as follows:

{x:T| A}
This stands for the set of object®f typeT satisfying predicated.
Examples:
N = {n:Z|n>0}
ST:PM
SUT = {x:M|xeSV xeT}
SNT = 7
S\T = 7?
{Im = {x:M|false}
M = {x:M|true}

3 Example Specification: Check-In/Check-Out

We consider a specification of a system used to check staff members in and out of a building. Since we
will be dealing with elements of type staff, we introduce the t§eff as a basic type:

[Staff]

The state of the system is described by the following schema

__lLog
usersin, out : P Staff

innout = {} A
inUout = users

The state consists of three components modelling

¢ the set of users of the system,
e the set of staff members who are currently in and

e the set of staff members who are currently out.

The predicate part of the state schema describdsvamiant of the system. The invariant says that

¢ No staff member is simultaneously in and out.

e The set of users of the system is exactly the union of those who are in and those who are out.

An operation to check a staff member into the building is specified as follows:

___Checklin
Alog
name : Staff

name € out

in” =inuU {name}
out = out\ {name}
users$ = users

This has an input parameter representing the member of staff to be checked in. The predicate part says that:

¢ The staff member to be checked in must currently be out. Thipis-&onditionon the operation.
e The staff member is added to the get
e The staff member is removed from the set.

e The overall set of users remains unchanged.

Similarly, an operation to check a staff member out of the building may be specified as follows:

__CheckOut
AlLog
name : Staff

name < in

out = outU {name’}
in” =in\ {namé&}
users$ = users

A query operation to check whether a particular member of staff is in or out will give an output parameter
of the following type:

QueryReply==is_in | is_out
The operation is then specified as:

__ StaffQuery
=Log
name : Staff
reply! : QueryReply
name < users
name €in = replyl =is.in
name € out = reply! = is_out

Here we used the declarati@hogto say that the operation makes no change to the state of the system.

3.1 Initialisation

Typically the system would be initialised so that all sets are empty.

—_InitLog

Log

users= {}
in={)
out={}

Just to recap, the specification contains:

State Schema:Components/Objects of system.

Invariant: Static relationship between state components.

Operation Schemas:

— Condition on Input parameters.
— Relationship between before- and after-states.
— Output parameters.

Initialisation

3.2 More Operations
Here is an outline of an operation to register a new staff member:

__Register

ALog
name : Staff

Fill in the gaps.
Do the same for an operation to check which staff are currently checked-in:

—_Queryln

=ZLog
names: P Staff

4 Combining Schemas

Schemas may be combined using conjunction and disjunction to form new schemas. Suppose we have the
following two schemas:

__Schema
X:X; y:Y

A(XY)

__Schema
z:Z; x:X

B(z x)

We can now defin&chema to be the conjunction cbchema andSchema and we can defin8chema
to be the disjunction of these:

Schema8 == Schema A Schema
Schemd == SchemaV Schema

Schema really stands for the following schema were the declaration par&béma andSchema are
merged, and the predicate parts of both schemas are conjoined:

—_Schema
X: X, y:Y; z:Z

AXY) A B(z,x)

It is important when combining schemas that the types of any common variables are the same.
Schema may be expanded in a similar way except that this time the predicatsheima andSchema
are disjoined:
__Schema
X:X; y:Y; z:Z
A(xy) Vv B(zX)

4.1 Robust Operations

Schema composition is very useful for making a specification of an operation more robust, that is, able to
deal with potential error cases. Consider StaffQueryoperation again:

__StaffQuery
ZLog
name : Staff
reply! : QueryReply
name € users
name < in = replyl =is.in
name < out = reply! = is_out

The predicate requires thabme € usersmust hold in order for the output to be valid.Hdme < users

does not hold when we try to execute the program, the specification says nothing about what the output
should be. To deal with this error case, we define the following schema which gives thaoepbgistered
whenname ¢ users

__BadStaffQuery
ZLog
name : Staff
reply! : QueryReply
name ¢ users
reply! = not_registered

Here, we assume that the tyQeieryReplyhas three possible values:

QueryReply== is_in | is_out | not_registered

A robust version of the query operation is then defined as follows:

RobustStaffQuery == StaffQuery
Vv BadStaffQuery
RobustStaffQuerwill always produce a valid outcome whatever the valueaihe€. The ability to com-

bine schemas in this way means that we can deal with the normal behaviour of an operation first and then
separately deal with the error cases.

The Checklnoperation was specified as:

__Checkln
Alog
name : Staff

name € out

in” =inuU {name}
out = out\ {namée}
users$ = users

We can extend this so that it gives a success message using schema conjunction:

—Success
reply! : CheckinReply

reply! = ok

GoodCheckln== CheckInA Success

The negation of the precondition @heckinis namée ¢ out, that is,namé is not in the sebut. Now this

could be becauseamée is already in famé € in) or becaus@amé is not a recognised usemgme ¢

user3. We introduce two separate schemas to deal with these cases, giving appropriate error messages in
each case:

—_BadCheckln
ZLog
name : Staff
reply! : CheckinReply

name <€ in
reply! = already.in

__BadCheckia
=ZLog
name : Staff
reply! : CheckinReply

name ¢ users
reply! = not.registered

We have assumed th@heckinReplyas three values:
CheckinReply== ok | already.in | not registered
Now the robust check-in operation is simply the disjunction of three schemas:

RobustCheckln == GoodCheckin
Vv BadCheckli
Vv BadChecklga

5 Relations

An ordered pair of values is written:
(%,Y)
Cartesian Products the type for ordered pairs, written:

T1 XT2

Given x: Ty, y: Ty, we have

(X,y) 1Ty x To

What are the types of the following expressions?

(4,7): 7
({5,6,3}, 4): 7

{(4,8), (3,0), (2,9) }: 7

A Relationis simply a set of order pairs. For example, a database relating names to telephone numbers can
be modelled as a set of ordered pairs:

directory = { (mary,287573),
(mary, 398620),
(john, 829483),
(jim, 493028),
(jane 493028) }

The setdirectoryhas type,

directory : P(Personx Numbe)

10

Note that it is possible for a name to be related to more than one numbeyihay have a home number
and a mobile number) and it is possible for two people to be related to the same njimlzgrdjane may
live together).

Because relations are commonly used in specification, they have their own special symbol:
T—S==P(TxY9
So we can write:

directory : Person<— Number

Maplets An ordered pairx,y) can also be written
X—=Y

This is perhaps more suggestive of relating one value (e.g., a name) to another (e.g., a number). So
directory: Person— Numbercan be written

directory = { mary— 287573,
mary+— 398620,
john — 829483,
jim — 493028,
jane— 493028 }

Note: < combines 2 types to form a type: combines 2 values to form an ordered pair.

Domain and RangeFor any relation, the set of all the first components of its maplets is callddiibgin
For example the domain dlfirectoryis:

{mary, john, jim, jane}

This is written donfdirectory). Even if mikeis of type name, it is not in dofdirectory) since there is no
maplet indirectorywhose first component imike

The set of all the second components of a relation’s maplets is callethge(ran). We have:

ran(directory) = {287573, 398620, 829483, 493028}

5.1 Phone Directory Spec

Using relations, we specify a phone directory which relates people to their phone numbers. We assume the
following basic types:

[PersonPhone

The state of the directory is given by the following schema:

Directory
dir : Person~ Phone

Initially the directory is empty:

__InitDirectory
Directory

dir = {}

11

We add an entry to the directory with the following operation:

__AddEntry
ADirectory

name : Person
number : Phone

dir’ = dir U {namé& — numbef’}

An operation to get all the numbers associated with a name is specified as:

__GetNumbers
=Directory

name : Person
numbers: P Phone

numbers = { n: Phone| (namé& — n) < dir}

Should this operation be made robust?
Equally we could specify an operation to get the names associated with a number:

__GetNames
=Directory

number : Phone
names$: P Person

name$ = { p: Person| (p — number) € dir}

The RemoveEntrpperation removes an entry from the directory:

— RemoveEntry
ADirectory

name : Person
number : Phone

dir’ = dir \ { namé& — number }

5.2 Domain Subtraction

Suppose we wish to remove all the entries associated with a name. This may be achieved ulsingthe
subtractionoperation &).
S < Rrepresents the relatidRwith all mappings for domain elements in the Seemoved. For example,
if
directory = { mary— 287573,

mary — 398620,

john— 829483,

jim — 493028,

jane— 493028 }

12

Then

{mary} g directory = {john— 829483,
jim — 493028,
jane— 493028 }

NotethatS<R = {x—y|(X—Yy) E RAXEZS}.

What is{john} < directory?

What is{emmg < directory?

An operation to remove all entries associated with a name is now specified as:

__RemoveName
ADirectory

name : Person
dir’ = {name&} < dir

An operation to remove all entries associated with a set of names is specified as:

—_RemoveNames
ADirectory

names : P Person

dir’ = name8 < dir

6 Partial Functions

A patrtial functionis a special kind of relation in which each domain element has at most one range element
associated with it. To declafeas a partial function we write:

f: X+Y
This stands for:
f: XY
Va: X; bl,bgiY'
(a—b)efAa(a—b)ef = b=h

As with more general relations, we an write ddmnand rauf).

6.1 Function Application
If a € dom(f), then we write
f(a)

for the unique range element associated with f.
If a ¢ dom(f), thenf(a) is undefined.

13

For example, supposi#r1 is defined as follows:

dirt = {mary— 398620,
john+— 829483,
jim — 493028,
jane— 493028 }

Clearlydir1 is of typePerson—+ Phone We have that:

dirl(jim) = 493028
dirl(john) = 829483
dir1(sarah) is undefined

Now supposdlir2 is defined as:

dir2 = {mary— 287573,
mary — 398620,
john — 829483,
jane— 493028 }

This timedir2 is not a partial function sincmary is related to more than one number ai2(mary) is
undefined.

6.2 Function Operators

The normal set and relation operators may be applied to partial functions. For example, set union may be
used to extend a function:
dirl U {emma— 483928}

Note: f U g is a partial function provided
Vx- xedomf) Axedom(g) = f(x)=g(x
Why?
Domain subtraction may be used to remove entries from a partial function:

{mary,john} gdirl = {jim— 493028,
jane— 493028 }

Function Overridingis an operator only used on partial functions. It is used to replace an existing entry
with a new onef & {x — y} represents the functidrwith the entry forx replaced by — y. For example:

dirl ® {jim — 567325} = { mary— 398620,
john — 829483,
jim — 567325,
jane— 493028 }

f @ {x— y} is the same a§{x} < f) U {x — y}, so if xis not already in the domain &f then the new
entry is simply added and there is no previous entry to override.

14

7 Birthday Book

We use partial functions to specify a database for recording people’s birthdays. We assume some basic
types:

[PersonDate

Each person is associated with at most one birthday in the state schema:

BirthdayBook
bb : Person+ Date

The database is initially empty:

__InitBB
BirthdayBook

bb= {}

We add an entry to the birthday book as follows:

__Add
ABirthdayBook

name : Person

date? : Date

namé& ¢ dom(bb)

bt = bbU { namé& — date? }

Note that this is only valid ihame doesn't already have an entry associated with it in the database.
An operation to update an entry in the birthday book is specified as:

__Update
ABirthdayBook

name : Person
date? : Date

bt = bb@® { name — date? }

An operation to remove an entry from the birthday book is specified as:

—_Remove
ABirthdayBook

name : Person
bb' = { namé& } g bb

What happens iiamé& ¢ dom(bb), in the previous two operations?
To lookup a persons birthday in the book we use function application:

15

__Lookup
=BirthdayBook

name : Person
datd : Date

name& < dom(bb)
dated = bb(name)

Herebb(name) gives the birthday associated witame and is only valid becaudgbis a partial function
and becauseamé& < dom(bb).

If namé& ¢ dom(bb), then we have an error case:
__BadLookup
=BirthdayBook
name : Person
r! : LookupReply
name ¢ dom(bb)

r! = notknown

LookupReply== ok | notknown

To make a robust version of the lookup operation we extentidlo&upoperation so that it gives a success
message and disjoin this wiadLookup

—_Success
r! . LookupReply

r' = ok

RobustLookup == (LookupA Succesp
Vv BadLookup

An operation to lookup the set of names whose birthday is on a particular date is specified as:
__Who
=BirthdayBook

date? : Date
names: P Person

names$ =
{ p: Person|
p € dom(bb) A bb(p) = date? }

8 Total Functions

A total function is a special case of a partial function that is defined for all possible values of its argument
type. The declaration

f: X—=Y

16

stands for
f:X-+Y]|domf)=X

This says that is a total function, i.ef(a) is well defined for each : X.
Thesquarefunction that returns the square of its argument is an example of a total function since it is well
defined for all integers. In Z, such a function is defined using a so-caXunatic definitioras follows:

‘ square: Z — 7

VNn:Ze
squarén) = nx*n

The function and its type is declared above the line and a predicate defining the function is declared below
the line.

Functions can also be defined recursively. For example, the factorial function is defined as follows:

factorial : N — N

Vi:Ne
factorial(0) =
factorial(i 4+ 1)

1
= (i + 1) = factorial(i)
This form of definition can also be used to introduce a constant:
‘ c: T
A

This says that is a constant of typ& satisfying predicated.
For example:

‘ min_count max.count: N

max.count = 100
10 < min_count< maxcount

17

9 Glossary of Symbols

Logic
A logical-and (conjunction)
\% logical-or (disjunction)
= negation
= logical implication
(3x e P) exists arx such thaP
(Vx e P) forall x, Pholds
Sets
{} set delimiters
{x| P} setofxsatisfyingP
€, ¢ set membership, non-membership
U,n set union, set intersection
\ set subtraction
PS powerset ofS
Z,N set of integers, set of natural numbers

SCT Sis a subset of
SxT cartesian product ddandT

Relations and Functions

ST set of relations fronsto T

ST set of partial functions fronsto T

S—T set of total functions fronsto T

XY mapping of element to elemeny

f(x) application of functiorf to elemeni

domf,ranf domain off, range off

feg functionf overridden by functioy

S4R relation (or functionR with all elements irremoved from its domain

18

