
Introductory Notes on Specification with Z

Michael Butler
Dept. of Electronics and Computer Science

University of Southampton

March 12, 2001

1 Introduction

Z is a formal specification language for computer systems which is based on set theory and predicate logic.

There are several textbooks on Z in the library, in particular:

• The Mathematics of Software Construction. A. Norcliffe & G. Slater. Ellis Horwood, 1991.

• Z User Manual. M.A. McMorran & J.E. Nicholls. IBM Technical Report, 1989.

• The Z Notation - A Reference Manual. J.M. Spivey. Prentice–Hall, 1989.

• An Introduction to Formal Specification and Z. B. Potter, J. Sinclair & D. Till. Prentice–Hall, 1996.

The basic until of specification in Z is aschema. A Z schema consists of a name, a declaration of variables,
and a predicate:

SchemaName
x : X

Predicate

Here, variablex is declared to be of typeX (see section 2.2). Note that the declaration part may declare
more than one variable. The predicate part is a predicate (see section 2.3) whose free variables are those of
the declaration plus any constants.

A system specification in Z consists of some state variables, an initialisation, and a set of operations on
the state variables. The state variables will also have some invariants associated with them representing
“healthiness conditions” which must always be satisfied. Usually all of these are specified using schemas.
For example, the state variables of a counter system may be specified using the following schema:

Counter
ctr : N

0 ≤ ctr ≤ max

Here, ctr is declared to be a natural number and the predicate part describes an invariant that must be
satisfied byctr, the state variable of the system.

An initialisation may be specified as follows:

1

InitCounter
Counter

ctr = 0

An operation is specified in Z with a predicate relating the state before and after the invocation of that
operation. For example, an operation to increment the counter may be specified as follows:

Increment
∆Counter

ctr < max
ctr′ = ctr + 1

The declaration∆Countermeans that the stateCounteris changed by the operation. In the predicate, the
new value of a variable is primed (ctr′), while the old value is unprimed. So the above predicate states
that the new value of the counter,ctr′, is the old value plus one. Note that there is an implicit conjunction
(logical-and) between successive lines of the predicate part of a schema.

As well as changing the state variables, an operation may also have input and output parameters. Input
parameter names are usually suffixed with ‘?’, while output parameter names are suffixed with ‘!’. For
example, the following operation for decrementing the counter has as an input parameter, the amount by
which the counter should be decremented:

Decrement
∆Counter
d? : N

ctr ≥ d?
ctr′ = ctr − d?

The following operation has an output parameter which is the value of the counter:

Display
ΞCounter
c! : N

c! = ctr

Here, the declarationΞCountermeans that the operation cannot change the state ofCounter, soctr′ = ctr.

2 Sets and Logic

2.1 Sets

Sets are the most basic types in Z. Examples of sets include:

{ 3, 6, 7 }
{ windows, unix, mac}
{ false, true}
N (the set of natural numbers)
Z (the set of integers)
R (the set of real numbers)
{} (the empty set)

2

Set Membership:

mac∈ { windows, unix, mac}
linux 6∈ { windows, unix, mac}
10 ∈ N
10.5 6∈ N
10.5 ∈ R

Set Equality:

{ 3, 6, 7 } = { 7, 6, 3, 6 }

The following operators may be applied to sets:

Union: S∪ T

Intersection: S∩ T

Difference: S\ T

Subset: S⊆ T
E.g., {c, b} ⊆ {a, b, c}.
Power Set: P S(set of subsets ofS).
E.g.,

P{a, b, c} = { {}, {a}, {b}, {c},
{a, b}, {b, c}, {a, c},
{a, b, c} }

2.2 Types

Types are used to differentiate the various forms of data present in a specification. Advantages of using
types are that they

• help to structure specifications by differentiating objects;

• help to prevent errors by not allowing us to write meaningless things;

• they can be checked by computer.

The declarationx : T says thatx is of typeT, whereT is a set. This is like sayingx ∈ T.

x : N
z : R
unix : { windows, unix, mac}
7 : N
(3 + 5) : N

What are the types of the following expressions?

mac
log y
sin (π/2)
(a + b)× (3!)

A newbasic type Tis introduced to a specification by putting its name in square brackets:

[T]

3

This allows us to name the types of a specification without saying what kind of objects they contain. For
example, a specification of an address book might introduce the basic typesNameandAddresswithout
worrying about the structure of these types:

[Name, Address]

If we know the exact values of a type we use anenumerated typedeclaration:

Direction == north | south| east| west

Sets have types too. The type of the set{3, 4, 5} is “set ofN”. More precisely, this is written:

{3, 4, 5} : P N

AssumeSandT have typeP M. What are the types of:

S∪ T
S∩ T

What about{} ? The type of{} is given explicitly: {}M : P M

What is the type of{ {3, 4}, {}N, {7} } ?

Expressions which are incorrectly typed are meaningless:

{4, 6, unix}
{windows, mac} ∪ {bwm, rover, ford}

2.3 Predicates

Predicates are used to state truth properties of values in a specification. Examples of simple predicates
include:

false true 1 < (a/2)
(x + 1) = 7 even6 π ∈ R

Compound predicates are formed using the following logical operators:

And A ∧ B (Conjunction)
Or A ∨ B (Disjunction)
Implies A ⇒ B
Not ¬ A

Logical-and is sometimes calledconjunctionand logical-or is sometimes calleddisjunction.

Examples of compound predicates include:

(x≥ y) ∧ (y≥ 0)
(x > 20) ∨ (x = 4)
(x > 0) ⇒ x/x = 1
(¬ (a ∈ S)) ∨ (a ∈ T)

x 6∈ S is short for¬ (x ∈ S). x 6= y is short for¬ (x = y).

Universal Quantification is written as follows:

(∀ x : T • A)

4

This is true whenA holds for allvaluesx of typeT. Herex is a said to be aquantifiedor boundvariable.
Example: (∀ x : Z • x− x = 0).

Existential Quantification is written as follows:

(∃ x : T • A)

This is true whenA holds for somevaluex of typeT.

Example: (∃ x : Z • x ∗ x = 16).

2.4 Set Comprehension

A set comprehension is written as follows:

{ x : T | A }

This stands for the set of objectsx of typeT satisfying predicateA.

Examples:

N = { n : Z | n≥ 0 }
S, T : P M

S∪ T = { x : M | x ∈ S ∨ x ∈ T }

S∩ T = ?

S\ T = ?

{}M = { x : M | false}
M = { x : M | true}

3 Example Specification: Check-In/Check-Out

We consider a specification of a system used to check staff members in and out of a building. Since we
will be dealing with elements of type staff, we introduce the typeStaff as a basic type:

[Staff]

The state of the system is described by the following schema

Log
users, in, out : P Staff

in ∩ out = {} ∧
in ∪ out = users

The state consists of three components modelling

• the set of users of the system,

• the set of staff members who are currently in and

• the set of staff members who are currently out.

5

The predicate part of the state schema describes anInvariantof the system. The invariant says that

• No staff member is simultaneously in and out.

• The set of users of the system is exactly the union of those who are in and those who are out.

An operation to check a staff member into the building is specified as follows:

CheckIn
∆Log
name? : Staff

name? ∈ out
in′ = in ∪ {name?}
out′ = out\ {name?}
users′ = users

This has an input parameter representing the member of staff to be checked in. The predicate part says that:

• The staff member to be checked in must currently be out. This is apre-conditionon the operation.

• The staff member is added to the setin.

• The staff member is removed from the setout.

• The overall set of users remains unchanged.

Similarly, an operation to check a staff member out of the building may be specified as follows:

CheckOut
∆Log
name? : Staff

name? ∈ in
out′ = out∪ {name?}
in′ = in \ {name?}
users′ = users

A query operation to check whether a particular member of staff is in or out will give an output parameter
of the following type:

QueryReply== is in | is out

The operation is then specified as:

StaffQuery
ΞLog
name? : Staff
reply! : QueryReply

name? ∈ users
name? ∈ in ⇒ reply! = is in
name? ∈ out ⇒ reply! = is out

Here we used the declarationΞLog to say that the operation makes no change to the state of the system.

6

3.1 Initialisation

Typically the system would be initialised so that all sets are empty.

InitLog
Log

users= {}
in = {}
out = {}

Just to recap, the specification contains:

• State Schema:Components/Objects of system.

• Invariant: Static relationship between state components.

• Operation Schemas:

– Condition on Input parameters.

– Relationship between before- and after-states.

– Output parameters.

• Initialisation

3.2 More Operations

Here is an outline of an operation to register a new staff member:

Register
∆Log
name? : Staff

Fill in the gaps.

Do the same for an operation to check which staff are currently checked-in:

QueryIn
ΞLog
names! : P Staff

7

4 Combining Schemas

Schemas may be combined using conjunction and disjunction to form new schemas. Suppose we have the
following two schemas:

Schema1
x : X; y : Y

A(x, y)

Schema2
z : Z; x : X

B(z, x)

We can now defineSchema3 to be the conjunction ofSchema1 andSchema2 and we can defineSchema4
to be the disjunction of these:

Schema3 == Schema1 ∧ Schema2
Schema4 == Schema1 ∨ Schema2

Schema3 really stands for the following schema were the declaration parts ofSchema1 andSchema2 are
merged, and the predicate parts of both schemas are conjoined:

Schema3
x : X; y : Y; z : Z

A(x, y) ∧ B(z, x)

It is important when combining schemas that the types of any common variables are the same.

Schema4 may be expanded in a similar way except that this time the predicates ofSchema1 andSchema2
are disjoined:

Schema4
x : X; y : Y; z : Z

A(x, y) ∨ B(z, x)

4.1 Robust Operations

Schema composition is very useful for making a specification of an operation more robust, that is, able to
deal with potential error cases. Consider theStaffQueryoperation again:

StaffQuery
ΞLog
name? : Staff
reply! : QueryReply

name? ∈ users
name? ∈ in ⇒ reply! = is in
name? ∈ out ⇒ reply! = is out

8

The predicate requires thatname? ∈ usersmust hold in order for the output to be valid. Ifname? ∈ users
does not hold when we try to execute the program, the specification says nothing about what the output
should be. To deal with this error case, we define the following schema which gives the replynot registered
whenname? 6∈ users:

BadStaffQuery
ΞLog
name? : Staff
reply! : QueryReply

name? 6∈ users
reply! = not registered

Here, we assume that the typeQueryReplyhas three possible values:

QueryReply== is in | is out | not registered

A robust version of the query operation is then defined as follows:

RobustStaffQuery == StaffQuery

∨ BadStaffQuery

RobustStaffQuerywill always produce a valid outcome whatever the value ofname?. The ability to com-
bine schemas in this way means that we can deal with the normal behaviour of an operation first and then
separately deal with the error cases.

TheCheckInoperation was specified as:

CheckIn
∆Log
name? : Staff

name? ∈ out
in′ = in ∪ {name?}
out′ = out\ {name?}
users′ = users

We can extend this so that it gives a success message using schema conjunction:

Success
reply! : CheckInReply

reply! = ok

GoodCheckIn== CheckIn∧ Success

The negation of the precondition ofCheckInis name? 6∈ out, that is,name? is not in the setout. Now this
could be becausename? is already in (name? ∈ in) or becausename? is not a recognised user (name? 6∈
users). We introduce two separate schemas to deal with these cases, giving appropriate error messages in
each case:

BadCheckIn1
ΞLog
name? : Staff
reply! : CheckInReply

name? ∈ in
reply! = already in

9

BadCheckIn2
ΞLog
name? : Staff
reply! : CheckInReply

name? 6∈ users
reply! = not registered

We have assumed thatCheckInReplyhas three values:

CheckInReply== ok | already in | not registered

Now the robust check-in operation is simply the disjunction of three schemas:

RobustCheckIn == GoodCheckIn

∨ BadCheckIn1
∨ BadCheckIn2

5 Relations

An ordered pair of values is written:

(x, y)

Cartesian Productis the type for ordered pairs, written:

T1 × T2

Given x : T1, y : T2, we have

(x, y) : T1 × T2

What are the types of the following expressions?

(4, 7) : ?

({5, 6, 3}, 4) : ?

{ (4, 8), (3, 0), (2, 9) } : ?

A Relationis simply a set of order pairs. For example, a database relating names to telephone numbers can
be modelled as a set of ordered pairs:

directory = { (mary, 287573),
(mary, 398620),
(john, 829483),
(jim, 493028),
(jane, 493028) }

The setdirectoryhas type,

directory : P(Person× Number)

10

Note that it is possible for a name to be related to more than one number (marymay have a home number
and a mobile number) and it is possible for two people to be related to the same number (jim andjanemay
live together).

Because relations are commonly used in specification, they have their own special symbol:

T ↔ S == P(T × S)

So we can write:

directory : Person↔ Number

Maplets An ordered pair(x, y) can also be written

x 7→ y

This is perhaps more suggestive of relating one value (e.g., a name) to another (e.g., a number). So
directory : Person↔ Numbercan be written

directory = { mary 7→ 287573,

mary 7→ 398620,

john 7→ 829483,

jim 7→ 493028,

jane 7→ 493028 }

Note:↔ combines 2 types to form a type.7→ combines 2 values to form an ordered pair.

Domain and RangeFor any relation, the set of all the first components of its maplets is called itsdomain.
For example the domain ofdirectory is:

{mary, john, jim, jane}

This is written dom(directory). Even ifmikeis of type name, it is not in dom(directory) since there is no
maplet indirectorywhose first component ismike.

The set of all the second components of a relation’s maplets is called itsrange(ran). We have:

ran(directory) = {287573, 398620, 829483, 493028}

5.1 Phone Directory Spec

Using relations, we specify a phone directory which relates people to their phone numbers. We assume the
following basic types:

[Person, Phone]

The state of the directory is given by the following schema:

Directory
dir : Person↔ Phone

Initially the directory is empty:

InitDirectory
Directory

dir = {}

11

We add an entry to the directory with the following operation:

AddEntry
∆Directory

name? : Person

number? : Phone

dir ′ = dir ∪ {name? 7→ number?}

An operation to get all the numbers associated with a name is specified as:

GetNumbers
ΞDirectory

name? : Person

numbers! : P Phone

numbers! = { n : Phone| (name? 7→ n) ∈ dir}

Should this operation be made robust?

Equally we could specify an operation to get the names associated with a number:

GetNames
ΞDirectory

number? : Phone

names! : P Person

names! = { p : Person| (p 7→ number?) ∈ dir}

TheRemoveEntryoperation removes an entry from the directory:

RemoveEntry
∆Directory

name? : Person

number? : Phone

dir ′ = dir \ { name? 7→ number? }

5.2 Domain Subtraction

Suppose we wish to remove all the entries associated with a name. This may be achieved using thedomain
subtractionoperation (−C).

S−C R represents the relationR with all mappings for domain elements in the setSremoved. For example,
if

directory = { mary 7→ 287573,

mary 7→ 398620,

john 7→ 829483,

jim 7→ 493028,

jane 7→ 493028 }

12

Then

{mary} −C directory = { john 7→ 829483,

jim 7→ 493028,

jane 7→ 493028 }

Note thatS−C R = { x 7→ y | (x 7→ y) ∈ R∧ x 6∈ S}.
What is{john} −C directory?

What is{emma} −C directory?

An operation to remove all entries associated with a name is now specified as:

RemoveName
∆Directory

name? : Person

dir ′ = {name?} −C dir

An operation to remove all entries associated with a set of names is specified as:

RemoveNames
∆Directory

names? : P Person

dir ′ = names?−C dir

6 Partial Functions

A partial functionis a special kind of relation in which each domain element has at most one range element
associated with it. To declaref as a partial function we write:

f : X 7→ Y

This stands for:

f : X ↔ Y |
∀a : X; b1, b2 : Y·
(a 7→ b1) ∈ f ∧ (a 7→ b2) ∈ f ⇒ b1 = b2

As with more general relations, we an write dom(f) and ran(f).

6.1 Function Application

If a ∈ dom(f), then we write

f (a)

for the unique range element associated witha in f .

If a 6∈ dom(f), thenf (a) is undefined.

13

For example, supposedir1 is defined as follows:

dir1 = { mary 7→ 398620,

john 7→ 829483,

jim 7→ 493028,

jane 7→ 493028 }

Clearlydir1 is of typePerson 7→ Phone. We have that:

dir1(jim) = 493028
dir1(john) = 829483
dir1(sarah) is undefined

Now supposedir2 is defined as:

dir2 = { mary 7→ 287573,

mary 7→ 398620,

john 7→ 829483,

jane 7→ 493028 }

This timedir2 is not a partial function sincemary is related to more than one number anddir2(mary) is
undefined.

6.2 Function Operators

The normal set and relation operators may be applied to partial functions. For example, set union may be
used to extend a function:

dir1 ∪ {emma7→ 483928}

Note: f ∪ g is a partial function provided

∀ x · x ∈ dom(f) ∧ x ∈ dom(g) ⇒ f (x) = g(x)

Why?

Domain subtraction may be used to remove entries from a partial function:

{mary, john} −C dir1 = { jim 7→ 493028,

jane 7→ 493028 }

Function Overridingis an operator only used on partial functions. It is used to replace an existing entry
with a new one.f ⊕{x 7→ y} represents the functionf with the entry forx replaced byx 7→ y. For example:

dir1⊕ {jim 7→ 567325} = { mary 7→ 398620,

john 7→ 829483,

jim 7→ 567325,

jane 7→ 493028 }

f ⊕ {x 7→ y} is the same as({x} −C f) ∪ {x 7→ y}, so if x is not already in the domain off , then the new
entry is simply added and there is no previous entry to override.

14

7 Birthday Book

We use partial functions to specify a database for recording people’s birthdays. We assume some basic
types:

[Person, Date]

Each person is associated with at most one birthday in the state schema:

BirthdayBook
bb : Person 7→ Date

The database is initially empty:

InitBB
BirthdayBook

bb = {}

We add an entry to the birthday book as follows:

Add
∆BirthdayBook

name? : Person

date? : Date

name? 6∈ dom(bb)
bb′ = bb∪ { name? 7→ date? }

Note that this is only valid ifname? doesn’t already have an entry associated with it in the database.

An operation to update an entry in the birthday book is specified as:

Update
∆BirthdayBook

name? : Person

date? : Date

bb′ = bb⊕ { name? 7→ date? }

An operation to remove an entry from the birthday book is specified as:

Remove
∆BirthdayBook

name? : Person

bb′ = { name? } −C bb

What happens ifname? 6∈ dom(bb), in the previous two operations?

To lookup a persons birthday in the book we use function application:

15

Lookup
ΞBirthdayBook

name? : Person

date! : Date

name? ∈ dom(bb)
date! = bb(name?)

Herebb(name?) gives the birthday associated withname? and is only valid becausebb is a partial function
and becausename? ∈ dom(bb).

If name? 6∈ dom(bb), then we have an error case:

BadLookup
ΞBirthdayBook

name? : Person

r! : LookupReply

name? 6∈ dom(bb)
r! = notknown

LookupReply== ok | notknown

To make a robust version of the lookup operation we extend theLookupoperation so that it gives a success
message and disjoin this withBadLookup:

Success
r! : LookupReply

r! = ok

RobustLookup == (Lookup∧ Success)
∨ BadLookup

An operation to lookup the set of names whose birthday is on a particular date is specified as:

Who
ΞBirthdayBook

date? : Date

names! : P Person

names! =
{ p : Person|

p ∈ dom(bb) ∧ bb(p) = date? }

8 Total Functions

A total function is a special case of a partial function that is defined for all possible values of its argument
type. The declaration

f : X → Y

16

stands for

f : X 7→ Y | dom(f) = X

This says thatf is a total function, i.e.,f (a) is well defined for eacha : X.

Thesquarefunction that returns the square of its argument is an example of a total function since it is well
defined for all integers. In Z, such a function is defined using a so-calledaxiomatic definitionas follows:

square: Z → Z

∀n : Z •
square(n) = n ∗ n

The function and its type is declared above the line and a predicate defining the function is declared below
the line.

Functions can also be defined recursively. For example, the factorial function is defined as follows:

factorial : N → N

∀ i : N •
factorial(0) = 1
factorial(i + 1) = (i + 1) ∗ factorial(i)

This form of definition can also be used to introduce a constant:

c : T

A

This says thatc is a constant of typeT satisfying predicateA.

For example:

min count, max count: N

max count = 100
10 ≤ min count< max count

17

9 Glossary of Symbols

Logic

∧ logical-and (conjunction)
∨ logical-or (disjunction)
¬ negation
⇒ logical implication
(∃ x • P) exists anx such thatP
(∀ x • P) forall x, P holds

Sets

{· · ·} set delimiters
{ x | P } set ofx satisfyingP
∈, 6∈ set membership, non-membership
∪,∩ set union, set intersection
\ set subtraction
P S powerset ofS
Z, N set of integers, set of natural numbers
S⊆ T Sis a subset ofT
S× T cartesian product ofSandT

Relations and Functions

S↔ T set of relations fromS to T
S 7→ T set of partial functions fromS to T
S→ T set of total functions fromS to T
x 7→ y mapping of elementx to elementy
f (x) application of functionf to elementx
domf , ranf domain off , range off
f ⊕ g functionf overridden by functiong
S−C R relation (or function)Rwith all elements inSremoved from its domain

18

