Formal Specification F28FS2, Lecture 13
Totalising schema in ML

Jamie Gabbay

March 12, 2014



Recall: Pop

Recall this schema to pop from /:

__pop
II':seqT
hd!: T
4] >0
hd! = I(1)
/= {i:dom(/) |i>1ei—1s I(i)}

Recall its implementation in ML:

fun pop (hd::tl) = (hd,tl);



Pop

The specification is partial.

The function satisfies the specification. However, the specification
does not say what should happen when [/ is empty.

We could return a default value. However, T is an abstract type;
which default value to put in hd!?

Better to return an error.

Declare a type MESSAGE ::= success | popEmptyError.



Pop

__pop

I,I":seq T
hd!: T
message! : MESSAGE

150 A I'={i : dom(/) | i>1 e i—1—I(i)} A hd!=I(1)
message! = success

___popEmpty

I,I':seq T
message! : MESSAGE

#I=0 N I'=]
message! = popEmptyError

totalPop = pop A popEmpty



Modelling pop in ML

We could model totalPop literally; it returns hd! and message! and
I", thus returns a 3-tuple.

datatype MESSAGE = success | popEmptyError;

fun pop (hd::tl) (hd,t1,success)
| pop [] = (0, [1,popEmptyError) ;
val pop = fn : int list -> int * int list * MESSAGE

| don't like this: the 3-tuples are unattractive; but worse, we have
lost polymorphism because ML insists we return something in hd!
in the popEmpty case. | chose 0, thus effectively forcing us to
choose T=int.

Note that totalPop does not specify hd! in the empty case (see
popEmpty; hd! is not even in the schema variables). But ML
cannot do that; something has to go into hd! ...or does it?



Modelling pop in ML, version 2.0: exceptions

Different model. Declare an ML exception.
exception popExn
fun pop (hd::tl) = (hd,tl)

| pop [] = raise popExn;
val pop = fn : ’a list -> ’a * ’a list
Exceptions can be handled. To recreate our previous

implementation:

fun pop’ 1 = ((fn (x,y) => (x,y,success)) (pop 1))
handle popExn => (0,1,popEmptyError) ;
val pop’ = fn : int list -> int * int list * MESSAGE



