
Formal Specification F28FS2, Lecture 14
An example: noughts and crosses (tic-tac-toe)

Jamie Gabbay

March 19, 2014

1 / 10

Noughts and crosses

This game is played on a 3x3 board:

Each cell may be empty, or contain a nought O, or contain a cross
X.

How shall we model this in Z?

2 / 10

The board

There are plenty of methods, but the one I favour is this:

Declare a type STATE ::= N | O | X.

(N stands for ‘empty’ or ‘nothing’; E might be better but I like to
see the ‘NOX’ because it reminds me of nitrogen oxide.)

Then we can model the type of possible states of a board as
follows:

CELL = 1..3× 1..3

BOARDSTATE = CELL→ STATE

3 / 10

The BoardState schema

BoardState
boardState : BOARDSTATE

The schema predicate here is ‘True’; let’s make it visible:

BoardState
boardState : BOARDSTATE

>

This tells us that any value of boardState is an acceptable state of
the board.

(Do you agree? What about the board state consisting of a column
of Os on the left and a column of Xes on the right? Do we care?)

4 / 10

Initialising the board
Usually the board is started with all cells set to empty. This
suggests the following initialisation schema:

InitBoard
boardState ′ : BOARDSTATE

∀ c : CELL • boardState ′(c) = N

Warning: all of the following are incorrect!

InitBoard
boardState : BOARDSTATE

∀ c : CELL • boardState(c) = N

InitBoard
∆BoardState

∀ c : CELL • boardState ′(c) = N

InitBoard
boardState ′ : BOARDSTATE

boardState ′(c) = N

InitBored

∃ x : LECTURE • ¬understood(x)

5 / 10

Initialisation
We could spice things up and ask the user to provide the initial
state (e.g. resuming a previous played game):

InitBoard
boardState ′, initState? : BOARDSTATE

boardState ′ = initState?

We could initialise to a random initial state (e.g. if this was some
kind of weather simulation):

InitBoard
boardState ′ : BOARDSTATE

Exercise: write an initialisation schema that inputs c : CELL and
s : STATE that is not N, and initialises the board with all cells
empty except for c which has state s.

6 / 10

Moves

Players can play moves. If nought plays, they place a nought in a
cell that was previously empty.

Here is how I would do it:

NoughtPlays
∆BoardState

∃ c : CELL•
boardState(c) = N ∧ boardState ′(c) = O ∧
∀ c ′ : CELL | c ′ 6= c • boardState(c) = boardState ′(c)

This stuff is easy, if you have the right mindset.

Exercise: close this window and write a schema CrossPlays.

7 / 10

Recognise a winning state

Let’s write a predicate to recognise if boardState : BOARDSTATE
represents a winning state for player O. So we need to recognise a
column, row, or diagonal line of Os in boardState.

This is not difficult. There are only eight possibilities and we could
run through them; literally checking each possible line by hand.

That would be boring. Can we think of something more elegant?
Have a go.

My attempt on the next slide . . .

8 / 10

Recognise a winning state

∃ i , j , i ′, j ′, i ′′, j ′′ : 1..3•
#{(i , j), (i ′, j ′), (i ′′, j ′′)} = 3 ∧ 3 cells
i ′′−i ′ = i ′−i ∧ j ′′−j ′ = j ′−j ∧ in a line
boardState({(i , j), (i ′, j ′), (i ′′, j ′′)}) = {O} creative use of

relational application

9 / 10

How far along are we?

We still can’t represent an actual game.

For that we need e.g. some notion of alternating moves.

We could stick with schemas and enrich BoardState with an extra
variable nextToMove : O | X (initialised to O, I believe).

We could model a game as a partial function from N to
BOARDSTATE , along with a bunch of consistency conditions.

We could model a game as an element of BOARDSTATE seq,
likewise with consistency conditions.

Any of these would be fine.

10 / 10

