
Formal Specification F28FS2, Lecture 4
(Up to Chapter 4.7 of Currie’s book)

Jamie Gabbay

January 27, 2014

1 / 1

Taking stock

We’ve done propositions and predicates.

We’ve done types. We’ve done sets. We’ve done powersets.

Now we do schema.

2 / 1

Our first spec: the badminton club

It’s a toy example.

3 / 1

Structure of the specification

Specify a type: [STUDENT].

This is a free type declaration. You can now declare variables
x : STUDENTS.

4 / 1

Axiomatic definitions

maxplayers : N

maxplayers = 20

This is a judgement form. It asserts:

I maxplayers is a variable ranging over N.

I maxplayers = 20 does have truth-value T .

maxplayers = 20 is true because we asserted it to be true.

5 / 1

More judgement forms: Schema

ClubState
badminton : PSTUDENT
hall : PSTUDENT

hall ⊆ badminton
#hall ≤ maxplayers

badminton : PSTUDENT and hall : PSTUDENT are the state
variables. They are the parameters of the model.

hall ⊆ badminton and #hall ≤ maxplayers are constraints or
invariants. Values for badminton and hall are valid, if they satisfy
the constraints.

6 / 1

More judgement forms: Schema

We could equivalently write one constraint:

hall ⊆ badminton
#hall ≤ maxplayers

or hall ⊆ badminton ∧ #hall ≤ maxplayers

Values for the state variables that satisfy the constraints are valid.

7 / 1

State change

Now we’re interested in schema that express changes to the state.

By convention, we represent a state change by making two copies
of it;

I badminton and hall for before, and

I badminton′ and hall′ for after.

So now we have one state describing ‘before-after’.

We annotate any other variables with ? for input and ! for output.

8 / 1

AddMember

AddMember
badminton : PSTUDENT
hall : PSTUDENT

}
— before

badminton′ : PSTUDENT
hall′ : PSTUDENT

}
— after

newmember? : STUDENT } — input

hall ⊆ badminton #hall ≤ maxplayers
hall′ ⊆ badminton′ #hall′ ≤ maxplayers

newmember? 6∈ badminton
badminton′ = badminton ∪ {newmember?}
hall′ = hall

9 / 1

Preconditions, postconditions

A precondition is a predicate describing the state before.

A postcondition is a predicate describing the state after.

What are the preconditions and postconditions of the example in
the last slide?

10 / 1

Precondition, postcondition

The precondition:

newmember? 6∈ badminton.

How about the postcondition?

11 / 1

Precondition, postcondition

Note how we asserted a relationship

hall′ = hall.

As far as Z is concerned, hall′ and hall are just distinct variables.

Students often forget about this.

Z is a specification language, not a programming language. There
is no persistent state (unless we specify that there is).

12 / 1

Syntactic sugar

ClubState ′ is ClubState with primed state variables:

ClubState ′

badminton′ : PSTUDENT
hall′ : PSTUDENT

hall′ ⊆ badminton′

#hall′ ≤ maxplayers

13 / 1

∆ convention

∆S is a copy of S , and a copy of S ′, put together:

∆ClubState
badminton : PSTUDENT
hall : PSTUDENT
badminton′ : PSTUDENT
hall′ : PSTUDENT

hall ⊆ badminton
#hall ≤ maxplayers
hall′ ⊆ badminton′

#hall′ ≤ maxplayers

14 / 1

Schema inclusion

AddMember
∆ClubState
newmember? : STUDENT

newmember? 6∈ badminton
badminton′ = badminton ∪ {newmember?}
hall′ = hall

That’s a lot more readable.

15 / 1

Exercise 4.1

RemoveMember
∆ClubState
member? : STUDENT

member? ∈ badminton
badminton′ = badminton \ {member?}
hall′ = hall \ {member?}

Precondition: member? ∈ badminton

Postconditions:

badminton′ = badminton\{member?} hall′ = hall\{member?}

16 / 1

Entering the hall

EnterHall
∆ClubState
enterer? : STUDENT

enterer? ∈ badminton
enterer? 6∈ hall
#hall < maxplayers
hall′ = hall ∪ {enterer?}
badminton′ = badminton

17 / 1

Entering the hall

Preconditions:

enterer? ∈ badminton enterer? 6∈ hall #hall < maxplayers

Postconditions:

hall′ = hall ∪ {enterer?} badminton′ = badminton

Remember: ∆ClubState is ClubState plus ClubState ′.

18 / 1

Exercise 4.2: leaving the hall

LeaveHall
∆ClubState
leaver? : STUDENT

leaver? ∈ hall
hall′ = hall \ {leaver?}
badminton′ = badminton

Precondition: leaver? ∈ hall.

Postconditions: you work it out.

19 / 1

The Ξ schema, and queries

ΞClubState
∆ClubState

badminton′ = badminton
hall′ = hall

The Ξ-schema is just the ∆-schema with no preconditions and
postconditions meaning ‘no change’ or ‘everything stays the same’.

20 / 1

The Ξ schema, and queries

We can use that to ‘output’ information, like ‘who isn’t in the hall’:

NotInHall
ΞClubState
outside! : PSTUDENT

outside! = badminton \ hall

21 / 1

Exercise 4.3

Suppose a type MESSAGE ::= inhall | notinhall | notmember.

Specify an operation which outputs x : MESSAGE stating whether
s : STUDENT is

1. In the hall.

2. Not in the hall.

3. Not a member.

22 / 1

Exercise 4.3

Location
ΞClubState
s? : STUDENT
report! : MESSAGE

s? ∈ hall⇒ report! = inhall
(s? 6∈ hall ∧ s? ∈ badminton)⇒ report! = notinhall
(s? 6∈ badminton)⇒ report! = notmember

23 / 1

