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Taking stock

We've done propositions and predicates.
We've done types. We've done sets. We've done powersets.

Now we do schema.



Our first spec: the badminton club

It's a toy example.



Structure of the specification

Specify a type: [STUDENT].

This is a free type declaration. You can now declare variables
x : STUDENTS.



Axiomatic definitions

‘ maxplayers : N

‘ maxplayers = 20

This is a judgement form. It asserts:

» maxplayers is a variable ranging over N.

» maxplayers = 20 does have truth-value T.

maxplayers = 20 is true because we asserted it to be true.



More judgement forms: Schema

_ ClubState
badminton : PSTUDENT
hall : PSTUDENT

hall € badminton
#hall < maxplayers

badminton : PSTUDENT and hall : PSTUDENT are the state
variables. They are the parameters of the model.

hall C badminton and #hall < maxplayers are constraints or
invariants. Values for badminton and hall are valid, if they satisfy
the constraints.



More judgement forms: Schema

We could equivalently write one constraint:

hall C badminton

Jthall < maxplayers or hall C badminton A #hall < maxplayers

Values for the state variables that satisfy the constraints are valid.



State change

Now we're interested in schema that express changes to the state.

By convention, we represent a state change by making two copies
of it;

» badminton and hall for before, and

» badminton’ and hall’ for after.

So now we have one state describing ‘before-after’.

We annotate any other variables with ? for input and ! for output.



AddMember

__ AddMember

badminton : PSTUDENT — bef
hall : PSTUDENT erore
badminton’ : PSTUDENT

, — after
hall" : PSTUDENT
newmember? : STUDENT } — input

hall C badminton #hall < maxplayers
hall" C badminton’ #hall" < maxplayers
newmember? ¢ badminton
badminton” = badminton U {newmember?}
hall’ = hall




Preconditions, postconditions

A precondition is a predicate describing the state before.
A postcondition is a predicate describing the state after.

What are the preconditions and postconditions of the example in
the last slide?
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Precondition, postcondition

The precondition:
newmember? ¢ badminton.

How about the postcondition?
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Precondition, postcondition

Note how we asserted a relationship
hall’ = hall.

As far as Z is concerned, hall’ and hall are just distinct variables.
Students often forget about this.

Z is a specification language, not a programming language. There
is no persistent state (unless we specify that there is).
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Syntactic sugar

ClubState’ is ClubState with primed state variables:

__ ClubState’
badminton’ : PSTUDENT
hall’ : PSTUDENT

hall" C badminton’
#hall’ < maxplayers
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A convention

AS is a copy of S, and a copy of S’, put together:

__ AClubState

badminton : PSTUDENT
hall : PSTUDENT
badminton’ : PSTUDENT
hall’ : PSTUDENT

hall C badminton
#hall < maxplayers
hall’ C badminton’
#hall’ < maxplayers
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Schema inclusion

__AddMember
AClubState
newmember? : STUDENT

newmember? ¢ badminton
badminton’ = badminton U {newmember?}

hall’ = hall

That's a lot more readable.
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Exercise 4.1

_ RemoveMember

AClubState
member? : STUDENT

member? € badminton

hall’ = hall \ {member?}

badminton” = badminton \ {member?}

Precondition: member? € badminton

Postconditions:

badminton” = badminton\ {member?}

hall’ = hall\ {member?}
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Entering the hall

_ EnterHall
AClubState
enterer? : STUDENT

enterer? € badminton
enterer? ¢ hall

#hall < maxplayers

hall’ = hall U {enterer?}
badminton’ = badminton
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Entering the hall

Preconditions:
enterer? € badminton enterer? & hall #hall < maxplayers
Postconditions:

hall’ = hall U {enterer?} badminton’ = badminton

Remember: AClubState is ClubState plus ClubState’.
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Exercise 4.2: leaving the hall

__LeaveHall
AClubState
leaver? : STUDENT

leaver? € hall
hall' = hall \ {leaver?}
badminton’ = badminton

Precondition: leaver? € hall.

Postconditions: you work it out.
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The = schema, and queries

_ =ClubState
AClubState

badminton’ = badminton
hall’ = hall

The =-schema is just the A-schema with no preconditions and
postconditions meaning ‘no change’ or ‘everything stays the same’.
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The = schema, and queries

We can use that to ‘output’ information, like ‘who isn't in the hall":

_ NotinHall
=ClubState
outside! : PSTUDENT

outside! = badminton \ hall
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Exercise 4.3

Suppose a type MESSAGE ::= inhall | notinhall | notmember.

Specify an operation which outputs x : MESSAGE stating whether
s: STUDENT is

1. In the hall.
2. Not in the hall.

3. Not a member.

22/1



Exercise 4.3

__Location
ZClubState
s?: STUDENT
report! : MESSAGE

s? € hall = report! = inhall
(s? & hall A s? € badminton) = report! = notinhall
(s? ¢ badminton) = report! = notmember
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