Formal Specification F28FS2, Lecture 4
(Up to Chapter 4.7 of Currie's book)

Jamie Gabbay

January 27, 2014

Taking stock

We've done propositions and predicates.
We've done types. We've done sets. We've done powersets.

Now we do schema.

Our first spec: the badminton club

It's a toy example.

Structure of the specification

Specify a type: [STUDENT].

This is a free type declaration. You can now declare variables
x : STUDENTS.

Axiomatic definitions

‘ maxplayers : N

‘ maxplayers = 20

This is a judgement form. It asserts:

» maxplayers is a variable ranging over N.

» maxplayers = 20 does have truth-value T.

maxplayers = 20 is true because we asserted it to be true.

More judgement forms: Schema

_ ClubState
badminton : PSTUDENT
hall : PSTUDENT

hall € badminton
#hall < maxplayers

badminton : PSTUDENT and hall : PSTUDENT are the state
variables. They are the parameters of the model.

hall C badminton and #hall < maxplayers are constraints or
invariants. Values for badminton and hall are valid, if they satisfy
the constraints.

More judgement forms: Schema

We could equivalently write one constraint:

hall C badminton

Jthall < maxplayers or hall C badminton A #hall < maxplayers

Values for the state variables that satisfy the constraints are valid.

State change

Now we're interested in schema that express changes to the state.

By convention, we represent a state change by making two copies
of it;

» badminton and hall for before, and

» badminton’ and hall’ for after.

So now we have one state describing ‘before-after’.

We annotate any other variables with ? for input and ! for output.

AddMember

__ AddMember

badminton : PSTUDENT — bef
hall : PSTUDENT erore
badminton’ : PSTUDENT

, — after
hall" : PSTUDENT
newmember? : STUDENT } — input

hall C badminton #hall < maxplayers
hall" C badminton’ #hall" < maxplayers
newmember? ¢ badminton
badminton” = badminton U {newmember?}
hall’ = hall

Preconditions, postconditions

A precondition is a predicate describing the state before.
A postcondition is a predicate describing the state after.

What are the preconditions and postconditions of the example in
the last slide?

10/1

Precondition, postcondition

The precondition:
newmember? ¢ badminton.

How about the postcondition?

11/1

Precondition, postcondition

Note how we asserted a relationship
hall’ = hall.

As far as Z is concerned, hall’ and hall are just distinct variables.
Students often forget about this.

Z is a specification language, not a programming language. There
is no persistent state (unless we specify that there is).

12/1

Syntactic sugar

ClubState’ is ClubState with primed state variables:

__ ClubState’
badminton’ : PSTUDENT
hall’ : PSTUDENT

hall" C badminton’
#hall’ < maxplayers

13/1

A convention

AS is a copy of S, and a copy of S’, put together:

__ AClubState

badminton : PSTUDENT
hall : PSTUDENT
badminton’ : PSTUDENT
hall’ : PSTUDENT

hall C badminton
#hall < maxplayers
hall’ C badminton’
#hall’ < maxplayers

14/1

Schema inclusion

__AddMember
AClubState
newmember? : STUDENT

newmember? ¢ badminton
badminton’ = badminton U {newmember?}

hall’ = hall

That's a lot more readable.

15/1

Exercise 4.1

_ RemoveMember

AClubState
member? : STUDENT

member? € badminton

hall’ = hall \ {member?}

badminton” = badminton \ {member?}

Precondition: member? € badminton

Postconditions:

badminton” = badminton\ {member?}

hall’ = hall\ {member?}

16/1

Entering the hall

_ EnterHall
AClubState
enterer? : STUDENT

enterer? € badminton
enterer? ¢ hall

#hall < maxplayers

hall’ = hall U {enterer?}
badminton’ = badminton

17/1

Entering the hall

Preconditions:
enterer? € badminton enterer? & hall #hall < maxplayers
Postconditions:

hall’ = hall U {enterer?} badminton’ = badminton

Remember: AClubState is ClubState plus ClubState’.

18/1

Exercise 4.2: leaving the hall

__LeaveHall
AClubState
leaver? : STUDENT

leaver? € hall
hall' = hall \ {leaver?}
badminton’ = badminton

Precondition: leaver? € hall.

Postconditions: you work it out.

19/1

The = schema, and queries

_ =ClubState
AClubState

badminton’ = badminton
hall’ = hall

The =-schema is just the A-schema with no preconditions and
postconditions meaning ‘no change’ or ‘everything stays the same’.

20/1

The = schema, and queries

We can use that to ‘output’ information, like ‘who isn't in the hall":

_ NotinHall
=ClubState
outside! : PSTUDENT

outside! = badminton \ hall

21/1

Exercise 4.3

Suppose a type MESSAGE ::= inhall | notinhall | notmember.

Specify an operation which outputs x : MESSAGE stating whether
s: STUDENT is

1. In the hall.
2. Not in the hall.

3. Not a member.

22/1

Exercise 4.3

__Location
ZClubState
s?: STUDENT
report! : MESSAGE

s? € hall = report! = inhall
(s? & hall A s? € badminton) = report! = notinhall
(s? ¢ badminton) = report! = notmember

23/1

