
Formal Specification F28FS2, Lecture 5

Jamie Gabbay

January 27, 2014

1 / 1



Taking stock

Propositions have truth-values.

Variables have types.

Sets have elements.

Schema assert truths.

If S is a schema then ∆S is a pair of before and after states, with
no assertions connecting them, and ΞS is a pair of before and after
states, with assertions that they take equal values (think:
measurement).

2 / 1



Combining schema

Suppose schema A, B, B ′:

A
a : Z

a = 42

B
a, b : Z

a = b + 2
b < 10

B ′

B : PZ

42 ∈ B

Write AandB =̂ A ∧ B for the schema which asserts the content of
A and B.

AandB
a, b : Z

a = 42 ∧ (a = (b + 2) ∧ b < 10)

3 / 1



Combining schema

A and B establish some state variables and predicates on them.
AandB combines these.

4 / 1



Combining schema

Why stop at ∧? We have ∨, ⇒, and ⇔.

The pattern is always the same: combine the state variables and
the predicates.

Write AimpliesB ′ =̂ A⇒ B ′ for

AimpliesB ′

a : Z, B : PZ

a = 42⇒ (42 ∈ B)

We can form AorB =̂ A ∨ B.

. . . and so on.

5 / 1



Recall: ClubState

ClubState
badminton : PSTUDENT
hall : PSTUDENT

hall ⊆ badminton
#hall ≤ maxplayers

This says:

6 / 1



ClubState

I badminton is a set of students (I suppose: the students that
play badminton).

I hall is a set of students (the students in the badminton hall,
which has a capacity of 20?).

I Students in the hall must play badminton (so they’ve
obviously got a man on the door checking?).

I . . . and you can’t have more people in the hall than its
capacity.

7 / 1



Recall: AddMember

AddMember
badminton : PSTUDENT, hall : PSTUDENT
badminton′ : PSTUDENT, hall′ : PSTUDENT
newmember? : STUDENT

hall ⊆ badminton #hall ≤ maxplayers
hall′ ⊆ badminton′ #hall′ ≤ maxplayers′

newmember? 6∈ badminton
badminton′ = badminton ∪ {newmember?}
hall′ = hall

8 / 1



Recall: AddMember

Or more succinctly:

AddMember
∆ClubState
newmember? : STUDENT

newmember? 6∈ badminton
badminton′ = badminton ∪ {newmember?}
hall′ = hall

9 / 1



Parenthetic note: Renaming

What if you want to rename variables in a schema?

S [x/a, y/b, z/c] represents S with a renamed to x , b renamed to
y , and c renamed to z .

ClubState

badminton : PSTUDENT

hall : PSTUDENT

hall ⊆ badminton

#hall ≤ maxplayers

FootyClub

football : PSTUDENT

pitch : PSTUDENT

pitch ⊆ football

#pitch ≤ maxplayers

FootyClub = ClubState[football/badminton, pitch/hall ]

10 / 1



Recall: AddMember

So we can write

∆ClubState

as

ClubState ∧ ClubState[hall′/hall, badminton′/badminton].

11 / 1



Refining AddMember

hall ⊆ badminton suggests that hall is just the students in the
badminton club in the hall.

There may be other people in the hall.

There are the rowers in the corner on their machines, the hockey
players, the rock-climbers, maybe even a bit of ping-pong.

If one of these non-badminton-players sees the empty futility of
their non-badminton-player ways, they may join the badminton
club.

This epiphany might come at any time; while they’re in the hall, or
even just while they’re outside the hall, perhaps studying Formal
Spec.

12 / 1



Refining AddMember

Introduce an enumerated type LOCATION ::= inside | outside

AddMemberInHall

∆ClubState

newmember? : STUDENT

where? : LOCATION

where? = inside

newmember? 6∈ badminton

#hall < maxPlayers
badminton′ =badminton∪

{newmember?}
hall′ = hall ∪ newMember?

AddMemberOutHall

∆ClubState

newmember? : STUDENT

where? : LOCATION

where? = outside

newmember? 6∈ badminton
badminton′ =badminton∪

{newmember?}
hall′ = hall

13 / 1



Refining AddMember

AddMemberAnywhere =̂

AddMemberInHall ∨ AddMemberOutHall

AddMemberAnywhere describes a program which checks where the
member is (inside, ouside) and does the right thing accordingly.

Isn’t that a bit magic?

This is a case-split. ∨ is a case-split. ∨ on schema is a case-split
for schema. ∧ is like a parallel execution.

But there is no notion of flow of control or execution here. Just
specifications.

Go on, tell me this isn’t pretty. I dare you.

14 / 1



Initial State

What’s the initial state of the badminton club?

How about this:

InitClubState
ClubState ′

badminton′ = {}
hall′ = {}

It’s a convention to use ‘after’ (with prime; with dash) state
variables in initial states.

This is because the initial state takes place after initialisation.

15 / 1



Initial State

The initial state had better satisfy the conditions for ClubState.

That is, hall′ ⊆ badminton′ and #hall′ ≤ maxplayers.

So let’s check {} ⊆ {} and 0 ≤ maxplayers.

16 / 1



Totalising operations

AddMember
∆ClubState
newmember? : STUDENT

newmember? 6∈ badminton
badminton′ = badminton ∪ {newmember?}
hall′ = hall

Note the precondition newmember? 6∈ badminton.

What if not newmember? 6∈ badminton. (So
newmember? ∈ badminton holds.)

Not Addmember ’s problem: AddMember specifies the behaviour
of a PARTIAL function.

17 / 1



Totalising operations

What do we do about this in Z? How do we make this specification
of a partial function, into a specification of a total function?

We need to totalise the schema.

18 / 1



Totalising operations

Recall the no-op:

ΞClubState
∆ClubState

badminton′ = badminton
hall′ = hall

ΞClubState
badminton, hall : PSTUDENT
badminton′, hall′ : PSTUDENT

hall ⊆ badminton, #hall ≤ maxplayers
hall′ ⊆ badminton′, #hall′ ≤ maxplayers′

hall′ = hall, badminton′ = badminton

19 / 1



Totalising operations

MESSAGE ::= success | isMember

IsMember

ΞClubState

newMember? : STUDENT

outcome! : MESSAGE

newMember? ∈ badminton

outcome! = isMember

SuccessMessage

outcome! : MESSAGE

outcome! = SUCCESS

TotalAddMember =̂

(AddMember ∧ SuccessMessage) ∨ IsMember .

20 / 1



Totalising operations

Programs in C and Java are automatically total; they take an
input, give an output.

A schema is total when the outcome is specified for all possible
inputs. Schema can be partial.

Go through the previous specs: RemoveMember , EnterHall ,
LeaveHall , NotInHall . Which of these are total? Totalise the ones
that are not.

21 / 1



Hiding

S \ b is the schema obtained by existentially quantifying b in S .
Best explained by example:

A

a : Z

a = 42

HideA

∃ a : Z•
a = 42

B

a, b : Z

a = b + 2

b < 10

HideB

a : Z

∃ b : Z•
(a = b + 2 ∧
b < 10)

Similarly for S \ a, b and so on.

22 / 1



Hiding

Note that ∃ b : Z • (a = b + 2 ∧ b < 10) means the same thing as
a < 12.

So we can equivalently write HideB as:

HideB
a : Z

a < 12

23 / 1



Another example of hiding

Define AddWho =̂ AddMember \ newMember?:

AddMember
∆ClubState
newmember? : STUDENT

newmember? 6∈ badminton
badminton′ = badminton∪

{newmember?}
hall′ = hall

AddWho
∆ClubState

∃newmember? : STUDENT•
(newmember? 6∈ badminton ∧
badminton′ = badminton∪
{newmember?} ∧

hall′ = hall)

24 / 1



Calculating preconditions

Define SuccessAddMember =̂ AddMember ∧ SuccessMessage.

AddMember
∆ClubState
newmember? : STUDENT

newmember? 6∈ badminton
badminton′ = badminton∪
{newmember?}

hall′ = hall

SuccessMessage
outcome! : MESSAGE

outcome! = SUCCESS

I bet you don’t understand that. It’s got a bit complicated, hasn’t
it?

25 / 1



Partially expand the definition

SuccessAddMember
∆ClubState
newmember? : STUDENT
outcome! : MESSAGE

newmember? 6∈ badminton
badminton′ = badminton ∪ {newmember?}
hall′ = hall
outcome! = success

That’s a bit better — but not good enough. We want to expand
more!

26 / 1



Expand further

SuccessAddMember
ClubState
badminton′, hall′ : PSTUDENT
newmember? : STUDENT
outcome! : MESSAGE

hall′ ⊆ badminton′

#hall′ ≤ maxPlayers
newmember? 6∈ badminton
badminton′ = badminton ∪ {newmember?}
hall′ = hall
outcome! = success

27 / 1



Calculating preconditions

Recall:

badminton′, hall′ : PSTUDENT are the state after.

badminton, hall : PSTUDENT are the state before.

newMember? is the input.

output! is the output.

It is Z convention to so name variables: ′ for after, ? for input, ! for
output.

AddMemberSuccess is an (abstract) program, just like in a real
programming language.

But is it defined for all input states and all inputs?

28 / 1



SuccessAddMember \ {badminton′, hall′, output!}

pre SuccessAddMember

ClubState

newmember? : STUDENT

∃ badminton′, hall′ : PSTUDENT; outcome! : MESSAGE•
hall′ ⊆ badminton′ ∧ #hall′ ≤ maxPlayers

∧ newmember? 6∈ badminton

∧ badminton′ = badminton ∪ {newmember?}
∧ hall′ = hall ∧ outcome! = success

Set hall′ = hall and drop outcome!.

∃ outcome! : MESSAGE • outcome! = success is true and we do not mention

outcome! elsewhere.

29 / 1



SuccessAddMember \ {badminton′, hall′, output!},
simplified

pre SuccessAddMember

ClubState

newmember? : STUDENT

∃ badminton′•
hall ⊆ badminton′ ∧ #hall ≤ maxPlayers

∧ newmember? 6∈ badminton

∧ badminton′ = badminton ∪ {newmember?}
∧ hall = hall

We drop hall = hall and note that #hall ≤ maxPlayers, which was
a condition on hall′, is now something that’s already in ClubState.

30 / 1



SuccessAddMember \ {badminton′, hall′, output!},
simplified more

pre SuccessAddMember

ClubState

newmember? : STUDENT

∃ badminton′•
hall ⊆ badminton′ ∧ newmember? 6∈ badminton

∧ badminton′ = badminton ∪ {newmember?}

hall ⊆ badminton by ClubState and
badminton′ = badminton ∪ {newmember?}, so hall ⊆ badminton′

is guaranteed.

31 / 1



SuccessAddMember \ {badminton′, hall′, output!},
simplified even more

pre SuccessAddMember

ClubState

newmember? : STUDENT

∃ badminton′•
newmember? 6∈ badminton

∧ badminton′ = badminton ∪ {newmember?}

∃ badminton′ • badminton′ = badminton ∪ {newmember?} is as
useful as a barber shop on the steps of the guillotine; cut it off.

32 / 1



SuccessAddMember \ {badminton′, hall′, output!},
simplified ridiculously

pre SuccessAddMember
ClubState
newmember? : STUDENT

newmember? 6∈ badminton

There’s your precondition: newmember? 6∈ badminton.

We found a but. The program fails if newmember? ∈ badminton.

33 / 1



pre SuccessAddMember

Another description is this:

The operation described by SuccessAddMember is not total; it is
not defined if newmember? ∈ badminton.

34 / 1



Fact

Fact. pre distributes over disjunction:

pre (S ∨ T ) = pre S ∨ pre T .

So to check if TotalAddMember really is total, it suffices to
calculate pre IsMember and see if it is newMember? ∈ badminton.

Let’s do it: let our slogan be expand, hide, simplify.

35 / 1



Expand, hide, simplify: IsMember

IsMember
ΞClubState
newMember? : STUDENT
outcome! : MESSAGE

newMember? ∈ badminton
outcome! = isMember

IsMember
ClubState
badminton′, hall′ : PSTUDENT
newMember? : STUDENT
outcome! : MESSAGE

hall′ ⊆ badminton′

#hall′ ≤ maxPlayers
newMember? ∈ badminton
outcome! = isMember
badminton′ = badminton
hall′ = hall

36 / 1



Expand, hide, simplify: IsMember

pre IsMember
ClubState
newMember? : STUDENT

∃ badminton′, hall′ : PSTUDENT; outcome! : MESSAGE•
hall′ ⊆ badminton′

∧ #hall′ ≤ maxPlayers
∧ newMember? ∈ badminton
∧ outcome! = isMember
∧ badminton′ = badminton
∧ hall′ = hall

37 / 1



Expand, hide, simplify: IsMember

pre IsMember
ClubState
newMember? : STUDENT

∃ outcome! : MESSAGE•
hall ⊆ badminton
∧ #hall ≤ maxPlayers
∧ newMember? ∈ badminton
∧ outcome! = isMember

(Don’t rush this. One step at a time.)

38 / 1



Expand, hide, simplify: IsMember

pre IsMember
ClubState
newMember? : STUDENT

hall ⊆ badminton
∧ #hall ≤ maxPlayers
∧ newMember? ∈ badminton

39 / 1



Expand, hide, simplify: IsMember

pre IsMember
ClubState
newMember? : STUDENT

newMember? ∈ badminton

That’s it, we’re done. TotalAddMember is total.

pre TotalAddMember = pre SuccessAddMember ∨ pre IsMember

= newMember? 6∈ badminton ∨ newMember? ∈ badminton

= T

40 / 1


