Formal Specification F28FS2, Lecture 5

Jamie Gabby

January 27, 2014

Taking stock

Propositions have truth-values.
Variables have types.
Sets have elements.
Schema assert truths.
If S is a schema then ΔS is a pair of before and after states, with no assertions connecting them, and ΞS is a pair of before and after states, with assertions that they take equal values (think: measurement).

Combining schema

Suppose schema A, B, B^{\prime} :

Write A and $B \widehat{=} A \wedge B$ for the schema which asserts the content of A and B.

AandB
$a, b: \mathbb{Z}$
$a=42 \wedge(a=(b+2) \wedge b<10)$

Combining schema

A and B establish some state variables and predicates on them. A and B combines these.

Combining schema

Why stop at \wedge ? We have \vee, \Rightarrow, and \Leftrightarrow.
The pattern is always the same: combine the state variables and the predicates.

Write Aimplies $B^{\prime} \widehat{=} A \Rightarrow B^{\prime}$ for

$$
\begin{aligned}
& \text { Aimplies } B^{\prime} \\
& a: \mathbb{Z}, B: \mathbb{P} \mathbb{Z} \\
& a=42 \Rightarrow(42 \in B)
\end{aligned}
$$

We can form Cor $B \widehat{=} A \vee B$.
... and so on.

Recall: ClubState

ClubState badminton : PSTUDENT hall : $\mathbb{P S T U D E N T}$

hall \subseteq badminton
\#hall \leq maxplayers

This says:

ClubState

- badminton is a set of students (I suppose: the students that play badminton).
- hall is a set of students (the students in the badminton hall, which has a capacity of 20?).
- Students in the hall must play badminton (so they've obviously got a man on the door checking?).
-and you can't have more people in the hall than its capacity.

Recall: AddMember

AddMember

badminton $: \mathbb{P S T U D E N T , ~}$	hall $: \mathbb{P S T U D E N T}$
badminton	$: \mathbb{P S T U D E N T , ~}$
newmember? $: ~ S T U D E N T ~$	

hall \subseteq badminton \quad \#hall \leq maxplayers
hall $^{\prime} \subseteq$ badminton $^{\prime} \quad$ \#hall \leq maxplayers $^{\prime}$
newmember? \notin badminton
badminton' $=$ badminton \cup \{newmember? $\}$
hall $^{\prime}=$ hall

Recall: AddMember

Or more succinctly:

> AddMember
> Δ ClubState
> newmember? : STUDENT
> newmember? \notin badminton
> badminton' $=$ badminton $\cup\{$ newmember? $\}$
> hall $=$ hall

Parenthetic note: Renaming

What if you want to rename variables in a schema?
$S[x / a, y / b, z / c]$ represents S with a renamed to x, b renamed to y, and c renamed to z.

```
ClubState
    badminton: PSTUDENT
    hall : PSTUDENT
    hall \subseteq badminton
    #hall \leq maxplayers
```

FootyClub $=$ ClubState[football/badminton, pitch/hall]

Recall: AddMember

So we can write
Δ ClubState
as
ClubState \wedge ClubState[hall'/hall, badminton'/badminton].

Refining AddMember

hall \subseteq badminton suggests that hall is just the students in the badminton club in the hall.

There may be other people in the hall.
There are the rowers in the corner on their machines, the hockey players, the rock-climbers, maybe even a bit of ping-pong.

If one of these non-badminton-players sees the empty futility of their non-badminton-player ways, they may join the badminton club.

This epiphany might come at any time; while they're in the hall, or even just while they're outside the hall, perhaps studying Formal Spec.

Refining AddMember

Introduce an enumerated type LOCATION ::= inside | outside
\(\left[\begin{array}{l}AddMemberInHall

\Delta ClubState

newmember? : STUDENT

where? : LOCATION\end{array}\right]\)| where $?$ = inside |
| :--- |
| newmember? \notin badminton |
| $\#$ hall < maxPlayers |
| badminton $=$ badminton \cup |
| \{newmember? $\}$ |
| hall' $=$ hall \cup newMember? |

$\left[\begin{array}{l}\text { AddMemberOutHall } \\ \begin{array}{l}\Delta \text { ClubState } \\ \text { newmember? : STUDENT } \\ \text { where? : LOCATION }\end{array} \\ \hline \begin{array}{l}\text { where? }=\text { outside } \\ \text { newmember? } \notin \text { badminton } \\ \text { badminton }^{\prime}=\text { badminton } \cup \\ \text { hall } \quad=\text { hall } \quad \text { newmember? }\}\end{array}\end{array}\right.$

Refining AddMember

AddMemberAnywhere $\widehat{=}$

AddMemberInHall \vee AddMemberOutHall

AddMemberAnywhere describes a program which checks where the member is (inside, ouside) and does the right thing accordingly. Isn't that a bit magic?

This is a case-split. V is a case-split. V on schema is a case-split for schema. \wedge is like a parallel execution.

But there is no notion of flow of control or execution here. Just specifications.

Go on, tell me this isn't pretty. I dare you.

Initial State

What's the initial state of the badminton club?
How about this:

$$
\begin{aligned}
& \text {-InitClubState___ } \begin{array}{l}
\text { ClubState }^{\prime} \\
\hline \text { badminton }^{\prime}=\{ \} \\
\text { hall' }^{\prime}=\{ \}
\end{array}
\end{aligned}
$$

It's a convention to use 'after' (with prime; with dash) state variables in initial states.

This is because the initial state takes place after initialisation.

Initial State

The initial state had better satisfy the conditions for ClubState.
That is, hall ${ }^{\prime} \subseteq$ badminton $^{\prime}$ and $\#$ hall ${ }^{\prime} \leq$ maxplayers.
So let's check $\} \subseteq\}$ and $0 \leq$ maxplayers.

Totalising operations

```
AddMember
    \DeltaClubState
    newmember?: STUDENT
    newmember? & badminton
    badminton' = badminton }\cup{\mathrm{ newmember?}
    hall' = hall
```

Note the precondition newmember $? \notin$ badminton.
What if not newmember? \notin badminton. (So newmember? \in badminton holds.)

Not Addmember's problem: AddMember specifies the behaviour of a PARTIAL function.

Totalising operations

What do we do about this in Z? How do we make this specification of a partial function, into a specification of a total function?

We need to totalise the schema.

Totalising operations

Recall the no-op:

$$
\begin{aligned}
& \text { EClubState } \\
& \Delta \text { ClubState }^{\prime} \\
& \text { badminton }^{\prime}=\text { badminton } \\
& \text { hall }^{\prime}=\text { hall }
\end{aligned}
$$

Totalising operations

MESSAGE ::= success | isMember

IsMember
\qquad
EClubState
newMember? : STUDENT outcome! : MESSAGE
newMember? \in badminton outcome! = isMember

```
SuccessMessage
    outcome! : MESSAGE
outcome! = SUCCESS
```

TotalAddMember $\widehat{=}$
(AddMember \wedge SuccessMessage) \vee IsMember.

Totalising operations

Programs in C and Java are automatically total; they take an input, give an output.

A schema is total when the outcome is specified for all possible inputs. Schema can be partial.

Go through the previous specs: RemoveMember, EnterHall, LeaveHall, NotInHall. Which of these are total? Totalise the ones that are not.

Hiding

$S \backslash b$ is the schema obtained by existentially quantifying b in S. Best explained by example:

Similarly for $S \backslash a, b$ and so on.

Hiding

Note that $\exists b: \mathbb{Z} \bullet(a=b+2 \wedge b<10)$ means the same thing as $a<12$.

So we can equivalently write HideB as:

$$
\begin{aligned}
& \text { HideB } \\
& a: \mathbb{Z} \\
& \frac{a<12}{}
\end{aligned}
$$

Another example of hiding

Define AddWho $\widehat{=}$ AddMember \backslash newMember?:
AddMember

Δ ClubState
newmember? : STUDENT

newmember? \notin badminton
badminton

\{newmember? $\}$
hall' $=$ hall
AddWho
Δ ClubState
\exists newmember? : STUDENT•
(newmember? \notin badminton \wedge
badminton $=$ badminton \cup
$\{$ newmember? $\} \wedge$
hall $=$ hall $)$

Calculating preconditions

Define SuccessAddMember $\widehat{=}$ AddMember \wedge SuccessMessage.

AddMember
Δ ClubState newmember? : STUDENT
newmember? \notin badminton badminton $\quad\{$ newmember? $\}$ hall $=$ hall

I bet you don't understand that. It's got a bit complicated, hasn't it?

Partially expand the definition

SuccessAddMember
Δ ClubState
newmember? : STUDENT
outcome! : MESSAGE
newmember $? \notin$ badminton
badminton' $=$ badminton $\cup\{$ newmember? $\}$
hall' $=$ hall
outcome! = success

That's a bit better - but not good enough. We want to expand more!

Expand further

SuccessAddMember \qquad
ClubState
badminton', hall' : PSTUDENT
newmember? : STUDENT
outcome! : MESSAGE
hall' \subseteq badminton $^{\prime}$
\#hall' \leq maxPlayers
newmember? \notin badminton
badminton' $=$ badminton \cup \{newmember? $\}$
hall ${ }^{\prime}=$ hall
outcome! = success

Calculating preconditions

Recall:
badminton $^{\prime}$, hall' $: ~ \mathbb{P S T U D E N T ~ a r e ~ t h e ~ s t a t e ~ a f t e r . ~}$
badminton, hall : $\mathbb{P S T U D E N T}$ are the state before.
newMember? is the input.
output! is the output.
It is Z convention to so name variables: ' for after, ? for input, ! for output.

AddMemberSuccess is an (abstract) program, just like in a real programming language.
But is it defined for all input states and all inputs?

SuccessAddMember $\backslash\{$ badminton', hall', output!\}

pre SuccessAddMember \qquad
ClubState
newmember? : STUDENT
\exists badminton $^{\prime}$, hall ${ }^{\prime}: \mathbb{P S T U D E N T ; ~ o u t c o m e ! ~ : ~ M E S S A G E \bullet ~}$
hall \subseteq badminton ${ }^{\prime} \wedge$ \#hall ${ }^{\prime} \leq$ maxPlayers
\wedge newmember? \notin badminton
\wedge badminton $^{\prime}=$ badminton $\cup\{$ newmember? $\}$
\wedge hall $^{\prime}=$ hall \wedge outcome! $=$ success

Set hall ${ }^{\prime}=$ hall and drop outcome!.
\exists outcome! : MESSAGE • outcome! = success is true and we do not mention outcome! elsewhere.

SuccessAddMember $\backslash\{$ badminton', hall', output!\}, simplified

pre SuccessAddMember
ClubState
newmember? : STUDENT

```
\existsbadminton'\bullet
hall }\subseteq\mp@subsup{\mathrm{ badminton'}}{}{\prime}\wedge#\mathrm{ hall }\leq\mathrm{ maxPlayers
^ newmember? }\not\in\mathrm{ badminton
^ badminton' = badminton }\cup\mathrm{ {newmember?}
hall = hall
```

We drop hall $=$ hall and note that $\#$ hall \leq maxPlayers, which was a condition on hall', is now something that's already in ClubState.

SuccessAddMember $\backslash\{$ badminton', hall', output!\}, simplified more

pre SuccessAddMember
ClubState newmember? : STUDENT
\exists badminton'•
hall \subseteq badminton $^{\prime} \wedge$ newmember $? \notin$ badminton
\wedge badminton $^{\prime}=$ badminton $\cup\{$ newmember? $\}$
hall \subseteq badminton by ClubState and badminton' $=$ badminton \cup \{newmember?\}, so hall \subseteq badminton $^{\prime}$ is guaranteed.

SuccessAddMember $\backslash\{$ badminton', hall', output!\}, simplified even more

```
pre SuccessAddMember
ClubState
newmember?: STUDENT
\existsbadminton'\bullet
newmember? & badminton
^ badminton'}=\mathrm{ badminton }\cup{\mathrm{ newmember?}
```

\exists badminton $^{\prime} \bullet$ badminton $^{\prime}=$ badminton $\cup\{$ newmember?\} is as useful as a barber shop on the steps of the guillotine; cut it off.

SuccessAddMember $\backslash\{$ badminton', hall', output!\}, simplified ridiculously

pre SuccessAddMember
ClubState
newmember? : STUDENT
newmember? \notin badminton

There's your precondition: newmember? \notin badminton.
We found a but. The program fails if newmember? \in badminton.

pre SuccessAddMember

Another description is this:
The operation described by SuccessAddMember is not total; it is not defined if newmember? \in badminton.

Fact

Fact. pre distributes over disjunction:

$$
\text { pre }(S \vee T)=\text { pre } S \vee \text { pre } T .
$$

So to check if TotalAddMember really is total, it suffices to calculate pre IsMember and see if it is newMember? \in badminton.

Let's do it: let our slogan be expand, hide, simplify.

Expand, hide, simplify: IsMember

_ IsMember ___	IsMember
EClubState newMember? : STUDENT outcome! : MESSAGE newMember? \in badminton	ClubState badminton', hall' : PSTUDENT newMember? : STUDENT outcome! : MESSAGE
newMember? \in badminton outcome! $=$ isMember	hall $^{\prime} \subseteq$ badminton $^{\prime}$
	\#hall' \leq maxPlayers
	newMember? \in badminton
	outcome! $=$ isMember
	hall $=$ hall

Expand, hide, simplify: IsMember

pre IsMember
ClubState newMember? : STUDENT
\exists badminton' , hall' : $\mathbb{P S T U D E N T ; ~ o u t c o m e ! ~ : ~ M E S S A G E \cdot ~}$ hall' \subseteq badminton'
$\wedge \#$ hall' \leq maxPlayers
\wedge newMember? \in badminton
\wedge outcome! $=$ isMember
\wedge badminton $^{\prime}=$ badminton
\wedge hall $^{\prime}=$ hall

Expand, hide, simplify: IsMember

pre IsMember
ClubState newMember? : STUDENT

ヨoutcome! : MESSAGE•
hall \subseteq badminton
\wedge \#hall \leq maxPlayers
\wedge newMember? \in badminton
\wedge outcome! $=$ isMember
(Don't rush this. One step at a time.)

Expand, hide, simplify: IsMember

pre IsMember
ClubState
newMember? : STUDENT
hall \subseteq badminton
\wedge \#hall \leq maxPlayers
\wedge newMember? \in badminton

Expand, hide, simplify: IsMember

pre IsMember
ClubState newMember? : STUDENT newMember? \in badminton

That's it, we're done. TotalAddMember is total.

$$
\begin{aligned}
\text { pre TotalAddMember } & =\text { pre SuccessAddMember } \vee \text { pre IsMember } \\
& =\text { newMember } ? \notin \text { badminton } \vee \text { newMember } ? \in \text { badminton } \\
& =T
\end{aligned}
$$

