Formal Specification F28FS2, Lecture 6 The rest of Chapter 4, and Chapter 5

Jamie Gabby

January 27, 2014

Remember

- Propositions: are assigned truth-values.
- Variables: have a type.
- Sets: have elements.
- Schemas: a judgement-form. Pre- and post-conditions. ΔS and ΞS. Input and output variables. Combining schemas. Totalising schemas.

Remember

If S is a schema then S^{\prime} is the schema written out with primed (dashed) variables. By convention, S represents the universe before (before whatever action we are specifying) and S^{\prime} the universe after.
ΔS is the pair of S and S^{\prime} side-by-side with no commitment to any connection between them.
ΞS is a no-op; it puts S and S^{\prime} side-by-side and asserts that the state is unchanged.

Preconditions

Suppose a schema is of the form

```
Op
    \DeltaState
    morevariables
    someconditions
```

Then pre $O p$ is the conditions on State and input, and post $O p$ is the conditions on State ${ }^{\prime}$ and output.

If we assign pre $O p$ truth-value T then $O p$ is total — any state, any output.

Preconditions

pre $(S \vee T)$ is always equal to (pre $S) \vee($ pre $T)$ (not a definition; a fact).
$S \backslash x$ is S is x hidden. x is existentially quantified. That means that $S \backslash x$ will give its private copy of x whatever value is necessary to make the spec true.
$\backslash x$ is an abstract form of search. No algorithm - just a search for a suitable x.

Recall: AddMember

AddMember

badminton $: \mathbb{P S T U D E N T , ~}$	hall $: \mathbb{P S T U D E N T}$
badminton	$: \mathbb{P S T U D E N T , ~}$
newmember? $: ~ S T U D E N T ~$	

hall \subseteq badminton \quad \#hall \leq maxplayers
hall $^{\prime} \subseteq$ badminton $^{\prime} \quad$ \#hall \leq maxplayers $^{\prime}$
newmember? \notin badminton
badminton' $=$ badminton \cup \{newmember? $\}$
hall $^{\prime}=$ hall

Recall: AddMember

Or more succinctly:

> AddMember
> Δ ClubState
> newmember? : STUDENT
> newmember? \notin badminton
> badminton' $=$ badminton $\cup\{$ newmember? $\}$
> hall $=$ hall

Recall: AddMember

We calculated pre AddMember by existentially quantifying (hiding) badminton' and hall'. So AddMember $\backslash\left\{\right.$ badminton $^{\prime}$, hall'\} seeks some outputs to make the inputs true.

That's what a precondition does: it returns the condition that guarantees that some output and 'after' state exists. We simplified and found that we can find some outputs to make the inputs true, providing that newmember? \notin badminton.

Recall: AddMember

So the operation described by AddMember is not defined if newmember? \in badminton.

TotalAddMember $\widehat{=}$
(AddMember \wedge SuccessMessage) \vee IsMember.
IsMember outputs an error message if newmember? \in badminton. pre TotalAddMember is T.

Totalise RemoveMember

RemoveMember
Δ ClubState member? : STUDENT
member? \in badminton
badminton $^{\prime}=$ badminton $\backslash\{$ member? $\}$
hall $^{\prime}=$ hall $\backslash\{$ member? $\}$

Precondition: member? \in badminton
Postconditions:
badminton $^{\prime}=$ badminton $\backslash\{$ member? $\} \quad$ hall ${ }^{\prime}=$ hall $\backslash\{$ member? $\}$

Totalising RemoveMember

Let MESSAGE $::=$ success \mid notMember.
\(\left[\begin{array}{l}NotMember

EClubstate

member? : STUDENT

outcome! : MESSAGE\end{array}\right]\)| member? \notin badminton |
| :--- |
| outcome! $=$ notMember |

_ SuccessMessage outcome! : MESSAGE
outcome! = success

TotalRemoveMember $\widehat{=}$
(RemoveMember \wedge SuccessMessage) \vee NotMember

Totalising LeaveHall

LeaveHall
Δ ClubState
leaver? : STUDENT
leaver? \in hall
hall $=$ hall $\backslash\{$ leaver $\}$
badminton ${ }^{\prime}=$ badminton

Precondition: leaver? \in hall.

Totalising LeaveHall

MESSAGE $::=$ success \mid notInHall
$\left[\begin{array}{l}\text { NotlnHall } \\ \text { EClubstate } \\ \text { leaver? : STUDENT } \\ \text { outcome! : MESSAGE } \\ \hline \begin{array}{l}\text { leaver? } \notin \text { hall } \\ \text { outcome! }=\text { notlnHall }\end{array} \\ \hline\end{array}\right.$

- SuccessMessage outcome! : MESSAGE
outcome! = success

TotalLeaveHall $\widehat{=}($ LeaveHall \wedge SuccessMessage $) \vee$ NotlnHall

Totalising operations with more than one predicate

Our examples so far have only had one precondition, for example:

- leaver? \in hall
- member? \in badminton
- newmember? \notin badminton (from lecture 5)

Totalising operations with more than one predicate

EnterHall has three preconditions.

```
EnterHall
\(\Delta\) ClubState
enterer? : STUDENT
enterer? \(\in\) badminton
enterer? \(\notin\) hall
\#hall < maxplayers
hall \({ }^{\prime}=\) hall \(\cup\{\) enterer? \(\}\)
badminton \({ }^{\prime}=\) badminton
```


EnterHall (expanded)

EnterHall
badminton, hall, badminton ${ }^{\prime}$, hall ${ }^{\prime}: \mathbb{P S T U D E N T , ~}$ enterer? : STUDENT
enterer? \in badminton
enterer? \notin hall
\#hall < maxplayers
hall ${ }^{\prime}=$ hall $\cup\{$ enterer? $\}$
badminton $^{\prime}=$ badminton

EnterHall (hidden)

pre EnterHall
badminton, hall : PSTUDENT, enterer? : STUDENT
\exists badminton', hall' : PSTUDENT•
enterer? \in badminton
\wedge enterer? \notin hall
\wedge \#hall < maxplayers
\wedge hall' $=$ hall $\cup\{$ enterer?\}
\wedge badminton $^{\prime}=$ badminton

EnterHall (hidden, simplified)

pre EnterHall
badminton, hall : PSTUDENT,
enterer? : STUDENT
enterer? \in badminton
enterer? \notin hall
\#hall < maxplayers

Unexpectedly easy, really. Bit long, but not too painful.
What about the disappearing logical conjunction (\wedge) ?

Totalising operations with more than one predicate

Three preconditions:
enterer $? \in$ badminton enterer $? \notin$ hall \#hall $<$ maxplayers
Don't panic! (What TV series is that from?)
Just write a schema describing what to do if the (several) preconditions are not satisfied, and use disjunction to put them side-by-side with the 'main program'...
... or ...
... write several schema, one for each precondition.
MESSAGE ::= success | notMember | hallFull | inHall

Exercise 4.5: Totalise EnterHall

NotMember \qquad
EClubState
enterer? : STUDENT
outome! : MESSAGE
enterer? \notin badminton
outcome! $=$ notMember

HallFull \qquad
EClubState
outome! : MESSAGE
\#hall $=$ maxPlayers
outcome! = hallFull

Exercise 4.5: Totalise EnterHall

TotalEnterHall $\widehat{=}($ EnterHall \wedge SuccessMessage $)$
\checkmark NotMember
\checkmark AlreadyInHall
\checkmark HallFull

Checking whether an operation is total

$$
\begin{aligned}
& \text { TotalEnterHall } \widehat{=}(\text { EnterHall } \wedge \text { SuccessMessage }) \vee \text { NotMember } \\
& \vee \text { AlreadyInHall } \vee \text { HallFull }
\end{aligned}
$$

Is TotalEnterHall really total?
To check, calculate pre TotalEnterHall.
If this has truth-value T then for all 'before' states and inputs, TotalEnterHall specifies some 'after' state and output - which is what in the language of functions 'being total' means.

Checking whether an operation is total

pre distributes over disjunction:
pre TotalEnterHall $\widehat{=}$
pre $($ EnterHall \wedge SuccessMessage)
\checkmark pre NotMember \vee pre AlreadyInHall \vee pre HallFull

Checking that TotalEnterHall is total

You need to be able to check that:

- pre NotMember is enterer? \notin badminton.
- pre AlreadyInHall is enterer? \in hall.
- pre HallFull is hallFull.

But what about EnterHall \wedge SuccessMessage?

Expand! Hide! Simplify!

```
EnterHall \(\wedge\) SuccessMessage
badminton, hall, badminton' \({ }^{\prime}\) hall' : PSTUDENT,
enterer?: STUDENT
outcome! : MESSAGE
enterer? \in badminton
enterer? & hall
#hall < maxplayers
hall'}=\mathrm{ hall }\cup{\mathrm{ enterer?}
badminton' = badminton
outcome! : success
```


Expand! Hide! Simplify!

```
pre (EnterHall ^ SuccessMessage)
badminton, hall : PSTUDENT,
enterer?: STUDENT
\existsbadminton', hall' : PPSTUDENT, output! : MESSAGE\bullet
    enterer? }\in\mathrm{ badminton
    ^ enterer? }\not\in\mathrm{ hall
    #hall < maxplayers
    \ hall'}=\mathrm{ hall }\cup{\mathrm{ enterer?}
    ^ badminton' = badminton
    ^output! = success
```


Expand! Hide! Simplify!

```
pre (EnterHall ^ SuccessMessage)
badminton, hall : PSSTUDENT,
enterer?: STUDENT
    enterer? \in badminton
    enterer? & hall
    #hall < maxplayers
```

That's it; each of these three conditions is covered by the other parts of our disjunction.

Specs education:
 "Where do Z specifications come from?"

Gee, I'm glad you asked that son. Pop and Mom love specification very very much, and so one day they get together and they do the following:

Specs education time: "Pop ... where do baby Z specifications come from?"

- Requirements analysis. Identify the sets and constants.
- Identify what variables you want, and what types they'll range over.
- Identify the state schema.
- Identify your initial state, and prove it exists (i.e. some values for the variables can satisfy it; a useful sanity check).
- Identify the operations you want to model.
- Identify the operations' preconditions. Develop error handling schema to handle the cases where those preconditions are not satisfied.
- Totalise the operations.

The badminton club all over again

Basic type: [STUDENT].
Global variable:

maxplayers: \mathbb{N}
maxplayers $=20$

The badminton club all over again

State schema:

ClubState
badminton : PSTUDENT hall : $\mathbb{P S T U D E N T}$
hall \subseteq badminton
\#hall \leq maxplayers

The badminton club all over again

Initial state:

> | InitClubState |
| :--- |
| ClubState |
| badminton $^{\prime}=\{ \}$ |
| hall' $^{\prime}=\{ \}$ |

(Recall convention to use 'after' state variables in initial state.)

The badminton club all over again

Preconditions are hall ${ }^{\prime} \subseteq$ badminton ${ }^{\prime}$ and $\#$ hall ${ }^{\prime} \leq$ maxplayers.
$\} \subseteq\}$ and $0 \leq$ maxplayers are indeed true

Operations:

AddMember
(precondition: newMember \notin badminton) (error handler:
IsMember)
RemoveMember
(precondition: member \in badminton) (error handler:
NotMember)
EnterHall
(precondition: enterer? \in badminton, enterer $? \notin$ hall, \#hall < maxPlayers) (error handlers:
NotMember[enterer?/member?], AlreadyInHall, HallFull)
LeaveHall
(precondition: leaver? \in hall) (error handler: NotInHall)
OutsideHall (no preconditions; just a query)
Location (no preconditions; just a query)

Total operators

$$
\begin{aligned}
& \text { TotalAddMember } \widehat{=}(\text { AddMember } \wedge \text { SuccessMessage }) \\
& \vee \text { IsMember } \\
& \text { TotalRemoveMember } \widehat{=}(\text { RemoveMember } \wedge \text { SuccessMessage }) \\
& \vee \text { NotMember } \\
& \text { TotalEnterHall } \widehat{=}(\text { EnterHall } \wedge \text { SuccessMessage }) \\
& \vee \text { NotMember } \vee \text { AlreadyInHall } \vee \text { HallFull } \\
& \text { TotalLeaveHall } \widehat{=}(\text { LeaveHall } \wedge \text { SuccessMessage }) \\
& \vee \text { NotInHall }
\end{aligned}
$$

OutsideHall and Location are already total.

