Formal Specification F28FS2, Lecture 6 The rest of Chapter 4, and Chapter 5

Jamie Gabbay

January 27, 2014

Remember

- Propositions: are assigned truth-values.
- Variables: have a type.
- Sets: have elements.
- Schemas: a judgement-form. Pre- and post-conditions. ΔS and ΞS. Input and output variables. Combining schemas. Totalising schemas.

Remember

If S is a schema then S' is the schema written out with primed (dashed) variables. By convention, S represents the universe before (before whatever action we are specifying) and S' the universe after.

 ΔS is the pair of S and S' side-by-side with no commitment to any connection between them.

 ΞS is a no-op; it puts S and S' side-by-side and asserts that the state is unchanged.

Preconditions

Suppose a schema is of the form

Then *pre Op* is the conditions on *State* and input, and *post Op* is the conditions on *State'* and output.

If we assign *pre* Op truth-value T then Op is total — any state, any output.

Preconditions

pre $(S \lor T)$ is always equal to $(pre S) \lor (pre T)$ (not a definition; a fact).

 $S \setminus x$ is S is x hidden. x is existentially quantified. That means that $S \setminus x$ will give its private copy of x whatever value is necessary to make the spec true.

x is an abstract form of search. No algorithm — just a search for a suitable x.

Recall: AddMember

_AddMember _

```
\begin{array}{ll} \mathsf{badminton}: \mathbb{P}\mathsf{STUDENT}, & \mathsf{hall}: \mathbb{P}\mathsf{STUDENT} \\ \mathsf{badminton'}: \mathbb{P}\mathsf{STUDENT}, & \mathsf{hall'}: \mathbb{P}\mathsf{STUDENT} \\ \mathsf{newmember}?: \mathsf{STUDENT} \end{array}
```

```
\begin{array}{ll} \mathsf{hall} \subseteq \mathsf{badminton} & \#\mathsf{hall} \leq \mathsf{maxplayers} \\ \mathsf{hall'} \subseteq \mathsf{badminton'} & \#\mathsf{hall'} \leq \mathsf{maxplayers'} \\ \mathsf{newmember}? \not\in \mathsf{badminton} \\ \mathsf{badminton'} = \mathsf{badminton} \cup \{\mathsf{newmember?}\} \\ \mathsf{hall'} = \mathsf{hall} \end{array}
```

Recall: AddMember

Or more succinctly:

```
__AddMember ____
```

 $\Delta ClubState$ newmember? : STUDENT

```
\begin{array}{l} \mathsf{newmember}? \not\in \mathsf{badminton} \\ \mathsf{badminton'} = \mathsf{badminton} \cup \{\mathsf{newmember?}\} \\ \mathsf{hall'} = \mathsf{hall} \end{array}
```

We calculated *pre AddMember* by existentially quantifying (hiding) badminton' and hall'. So *AddMember* $\$ {badminton', hall'} seeks some outputs to make the inputs true.

That's what a precondition does: it returns the condition that guarantees that some output and 'after' state exists. We simplified and found that we can find some outputs to make the inputs true, providing that newmember? \notin badminton.

So the operation described by AddMember is not defined if newmember? \in badminton.

```
TotalAddMember \cong
```

 $(AddMember \land SuccessMessage) \lor IsMember.$

IsMember outputs an error message if newmember? \in badminton. pre TotalAddMember is T.

Totalise RemoveMember

Precondition: member? \in badminton

Postconditions:

 $badminton' = badminton \setminus \{member?\}$ $hall' = hall \setminus \{member?\}$

Totalising RemoveMember

Let MESSAGE ::= success | notMember.

_*NotMember* _____ *ΞClubstate* member? : STUDENT outcome! : MESSAGE member? ∉ badminton

outcome! = notMember

_*SuccessMessage*____ outcome! : MESSAGE

outcome! = success

 $TotalRemoveMember \cong$

 $(RemoveMember \land SuccessMessage) \lor NotMember$

Totalising LeaveHall

 $\begin{array}{l} _ LeaveHall _ \\ \Delta ClubState \\ leaver?: STUDENT \\ \hline \\ leaver? \in hall \\ hall' = hall \setminus \{leaver\} \\ badminton' = badminton \end{array}$

Precondition: leaver? \in hall.

Totalising LeaveHall

```
MESSAGE ::= success | notInHall
```

_ NotInHall _____ Ξ Clubstate leaver? : STUDENT outcome! : MESSAGE leaver? ∉ hall outcome! = notInHall _*SuccessMessage* _____ outcome! : MESSAGE

outcome! = success

 $TotalLeaveHall \cong (LeaveHall \land SuccessMessage) \lor NotInHall$

Totalising operations with more than one predicate

Our examples so far have only had one precondition, for example:

- ► leaver? \in hall
- ▶ member? ∈ badminton
- ▶ newmember? ∉ badminton (from lecture 5)

Totalising operations with more than one predicate

EnterHall has three preconditions.

EnterHall (expanded)

EnterHall

badminton, hall, badminton', hall' : $\mathbb{P}STUDENT$, enterer? : STUDENT

enterer? \in badminton

```
enterer? \notin hall
```

```
\# \mathsf{hall} < \mathsf{maxplayers}
```

```
\mathsf{hall}' = \mathsf{hall} \cup \{\mathsf{enterer}?\}
```

 $\mathsf{badminton}' = \mathsf{badminton}$

```
EnterHall (hidden)
```

```
_ pre EnterHall ______
badminton, hall : \mathbb{P}STUDENT,
enterer? : STUDENT
∃ badminton', hall' : \mathbb{P}STUDENT•
enterer? \in badminton
\land enterer? \notin hall
\land #hall < maxplayers
\land hall' = hall \cup {enterer?}
\land badminton' = badminton
```

EnterHall (hidden, simplified)

```
__ pre EnterHall _____
badminton, hall : \mathbb{P}STUDENT,
enterer? : STUDENT
enterer? ∈ badminton
enterer? ∉ hall
#hall < maxplayers
```

Unexpectedly easy, really. Bit long, but not too painful.

What about the disappearing logical conjunction (\land)?

Totalising operations with more than one predicate

Three preconditions:

enterer? \in badminton enterer? \notin hall #hall < maxplayers

Don't panic! (What TV series is that from?)

Just write a schema describing what to do if the (several) preconditions are not satisfied, and use disjunction to put them side-by-side with the 'main program' ...

...or ...

... write several schema, one for each precondition.

MESSAGE ::= success | notMember | hallFull | inHall

Exercise 4.5: Totalise EnterHall

_AlreadyInHall _____ ΞClubState enterer? : STUDENT outome! : MESSAGE enterer? ∈ hall outcome! = inHall *DotMember ∃ClubState* enterer? : STUDENT outome! : MESSAGE enterer? ∉ badminton outcome! = notMember

HallFull ClubState outome! : MESSAGE #hall = maxPlayers outcome! = hallFull

Exercise 4.5: Totalise EnterHall

Checking whether an operation is total

 $\begin{aligned} \textit{TotalEnterHall} \ \widehat{=} \ (\textit{EnterHall} \land \textit{SuccessMessage}) \lor \textit{NotMember} \\ \lor \textit{AlreadyInHall} \lor \textit{HallFull} \end{aligned}$

Is TotalEnterHall really total?

To check, calculate pre TotalEnterHall.

If this has truth-value T then for all 'before' states and inputs, *TotalEnterHall* specifies some 'after' state and output — which is what in the language of functions 'being total' means. Checking whether an operation is total

pre distributes over disjunction:

pre TotalEnterHall $\hat{=}$ pre (EnterHall \land SuccessMessage)

 \lor pre NotMember \lor pre AlreadyInHall \lor pre HallFull

Checking that TotalEnterHall is total

You need to be able to check that:

- ▶ *pre NotMember* is enterer? ∉ badminton.
- pre AlreadyInHall is enterer? \in hall.
- pre HallFull is hallFull.

But what about *EnterHall* \land *SuccessMessage*?

Expand! Hide! Simplify!

```
_ EnterHall ∧ SuccessMessage _____
badminton, hall, badminton', hall' : ℙSTUDENT,
enterer? : STUDENT
outcome! : MESSAGE
```

```
enterer? ∈ badminton
enterer? ∉ hall
#hall < maxplayers
hall' = hall ∪ {enterer?}
badminton' = badminton
outcome! : success</pre>
```

Expand! Hide! Simplify!

```
_ pre (EnterHall ∧ SuccessMessage)
badminton, hall : PSTUDENT,
enterer? : STUDENT
∃ badminton', hall' : PSTUDENT, output! : MESSAGE•
enterer? ∈ badminton
∧ enterer? ∉ hall
∧ #hall < maxplayers
∧ hall' = hall ∪ {enterer?}
∧ badminton' = badminton
∧ output! = success
```

Expand! Hide! Simplify!

```
_pre (EnterHall ∧ SuccessMessage)
badminton, hall : \mathbb{P}STUDENT,
enterer? : STUDENT
enterer? \in badminton
enterer? \notin hall
#hall < maxplayers
```

That's it; each of these three conditions is covered by the other parts of our disjunction.

Specs education: "Where do Z specifications come from?"

Gee, I'm glad you asked that son. Pop and Mom love specification very very much, and so one day they get together and they do the following:

Specs education time: "Pop . . . where do baby Z specifications come from?"

- Requirements analysis. Identify the sets and constants.
- Identify what variables you want, and what types they'll range over.
- Identify the state schema.
- Identify your initial state, and prove it exists (i.e. some values for the variables can satisfy it; a useful sanity check).
- Identify the operations you want to model.
- Identify the operations' preconditions. Develop error handling schema to handle the cases where those preconditions are not satisfied.
- Totalise the operations.

Basic type: [STUDENT].

Global variable:

maxplayers : \mathbb{N}

 $\mathsf{maxplayers} = 20$

State schema:

_ *ClubState* badminton : PSTUDENT hall : PSTUDENT

 $\begin{array}{l} \mathsf{hall} \subseteq \mathsf{badminton} \\ \#\mathsf{hall} \leq \mathsf{maxplayers} \end{array}$

Initial state:

(Recall convention to use 'after' state variables in initial state.)

Preconditions are hall' \subseteq badminton' and #hall' \leq maxplayers. {} \subseteq {} and 0 \leq maxplayers are indeed true.

Operations:

AddMember (precondition: newMember ∉ badminton) (error handler: IsMember)

 $\begin{array}{l} \textit{RemoveMember} \\ (precondition: member \in badminton) \quad (error handler: \\ NotMember) \end{array}$

EnterHall (precondition: enterer? ∈ badminton, enterer? ∉ hall, #hall < maxPlayers) (error handlers: NotMember[enterer?/member?], AlreadyInHall, HallFull)

LeaveHall (precondition: leaver? \in hall) (error handler: NotInHall)

OutsideHall (no preconditions; just a query)

Location (no preconditions; just a query)

Total operators

 $\begin{array}{l} \mathsf{TotalAddMember} \widehat{=}(\mathsf{AddMember} \land \mathsf{SuccessMessage}) \\ \lor \mathsf{IsMember} \\ \mathsf{TotalRemoveMember} \widehat{=}(\mathsf{RemoveMember} \land \mathsf{SuccessMessage}) \\ \lor \mathsf{NotMember} \\ \mathsf{TotalEnterHall} \widehat{=}(\mathsf{EnterHall} \land \mathsf{SuccessMessage}) \\ \lor \mathit{NotMember} \lor \mathit{AlreadyInHall} \lor \mathit{HallFull} \\ \mathsf{TotalLeaveHall} \widehat{=}(\mathsf{LeaveHall} \land \mathsf{SuccessMessage}) \\ \lor \mathsf{NotInHall} \end{array}$

OutsideHall and Location are already total.