
Formal Specification F28FS2, Lecture 9
Relation operations; operation schema

composition

Jamie Gabbay

February 24, 2015

1 / 13



Remember

I A relation is a set of maplets.

I A (partial) function is (partial) functional relation.

2 / 13



Remember:

f : S 7→ T = P(S × T ) maps each s : S to at most one thing on
the right.

f : S → T maps each s : S to precisely one thing on the right.

f (s) (function application to an element). R(U) (relational image
of a set of elements).

If S ′ ⊆ S and T ′ ⊆ T then we have

I S ′ C f and S ′ −C f (domain restriction and anti-restriction) and

I f B T ′ and f −B T ′ (range restriction and anti-restriction).

3 / 13



Sequences

We have types seq T ⊆ N1 7→ T (sequences; finite lists of
elements in T ) and seq1 L (nonempty sequences) and iseq L
(injective sequences).

Know the predicates which characterises seq T ⊆ N1 7→ T and
similarly for seq1 L and iseq L.

Suppose L, L′ : seq T . Then we have:

I head(L) : T (first element) and tail(L) : seq T (rest of the
list).

I rev L (reverse L).

I L⊕ L′ (overwrite L with L′).

I La L′ (concatenate L and L′).

4 / 13



Even more funky things to do with sequences

Suppose L : seq T .

last(L) : T returns the last element of L. If L is empty last(L) is
undefined.

Recall that [tom, dick , harry ] = {1 7→tom, 27→dick , 37→harry}.

For example last([tom, dick , harry ]) = harry : T .

front(L) : seq T returns all but the last element of L. If L has
fewer than two elements, front(L) is undefined.

For example front([tom, dick, harry ]) = [tom, dick ] : seq T .

5 / 13



Filtering and squashing

Suppose L : seq T and suppose T ′ ⊆ T (note: equivalently we can
suppose T ′ : PT ).

Then L � T ′ is the sequence of elements in L that are also in T ′.

Then [tom, dick, harry ] � {tom, harry , jones} = [tom, harry ].

If f : N1 7→ T is defined on finitely many elements, then
squash(f ) : seq T is the sequence which returns the list of those
elements. For example

squash({2 7→dick , 3 7→tom, 77→harry}) = {1 7→dick, 2 7→tom, 37→harry}.

6 / 13



Generic constants

How to define things like seq, �, head , tail , and so on?

T cat
a : seq T × seqT → seq T

∀ s, t : seq T•
s a t = s ∪ {n ∈ dom(t) • (n +#s) 7→t(n)}

Try defining head , tail , last, front, rev , and so on.

7 / 13



Squashing, defined explicitly in Z, just for fun:

T squash
squash : (N 7→ T )→ seq T

∀ f : N 7→ T•
#squash(f ) = #f ∧
∀ n : dom(f ) • squash(f )(#(0..n C f )) = f (n)

Why is #squash(f ) = #f in there; what does it do?

8 / 13



Disjointness

Suppose A1, . . . ,An : PS .

disjoint(A1, . . . ,An) is true when

∀ i , j ∈ 1 . . . n • Ai ∩ Aj 6= ∅⇒ i = j

or equivalently (taking the contrapositive)

∀ i , j ∈ 1 . . . n • i 6= j ⇒ Ai ∩ Aj = ∅.

In words:

“The elements of (A1, . . . ,An) are pairwise disjoint.”

(The contrapositive of P ⇒ Q is ¬Q ⇒ ¬P.
Exercise: using truth-tables verify that these are logically
equivalent.)

9 / 13



Partition

If U : PS then the predicate ‘(A1, . . . ,An) partition U’ holds when

disjoint(A1, . . . ,An)

and furthermore⋃
(A1, . . . ,An) = U.

In words

“(A1, . . . ,An) partition U is true when A1 to An really do partition
U.”

For example ({1, 2}, {5}, {3, 4}) partition {1, 2, 3, 4, 5} holds.

10 / 13



Labour-saving: let

Suppose we have some long expression — e.g. primes

{x : N | (x 6= 0 ∧ ∀ y , z : Z • y ∗ z = x ⇒ 1 ∈ {y , z}) • x} : PN

— which we use many times in another expression BLAH.

We can write this as let primes = {...} in BLAH.

You can use this in your schemas, if you like.

11 / 13



Labour-saving: operation schema composition

A
a, a′, c! : Z

a′ = a+ 42
c ! = a′

B
a, a′, b? : Z

b? < 10
a′ = a+ b?

12 / 13



Labour-saving: operation schema composition

Then A; B is this:

A; B
a, c ! : Z
a′, b? : Z

∃ d : Z•
d = a+ 42 ∧ c! = d ∧ b? < 10 ∧ a′ = d + b

13 / 13


