Formal Specification F28FS2, Lecture 9
Relation operations; operation schema
composition

Jamie Gabbay

February 24, 2015

1/13



Remember

> A relation is a set of maplets.

» A (partial) function is (partial) functional relation.

2/13



Remember:

f:S-+ T =P(S5x T) maps each s: S to at most one thing on
the right.

f:S — T maps each s : S to precisely one thing on the right.

f(s) (function application to an element). R(U) (relational image
of a set of elements).

If S C Sand T' C T then we have

» S'<f and S’ 9 f (domain restriction and anti-restriction) and

» f> T and f & T’ (range restriction and anti-restriction).



Sequences

We have types seq T C N; - T (sequences; finite lists of
elements in T) and seq; L (nonempty sequences) and iseq L
(injective sequences).

Know the predicates which characterises seq T C N; + T and
similarly for seq; L and iseq L.

Suppose L, L’ : seq T. Then we have:
» head(L) : T (first element) and tail(L) : seq T (rest of the
list).
» rev L (reverse L).
» L@ L' (overwrite L with L).

» L™ L' (concatenate L and L').



Even more funky things to do with sequences

Suppose L:seq T.

last(L) : T returns the last element of L. If L is empty last(L) is
undefined.

Recall that [tom, dick, harry] = {1—tom, 2—dick,3—harry}.
For example last([tom, dick, harry]) = harry : T.

front(L) : seq T returns all but the last element of L. If L has
fewer than two elements, front(L) is undefined.

For example front([tom, dick, harry]) = [tom, dick] : seq T.



Filtering and squashing

Suppose L : seq T and suppose T/ C T (note: equivalently we can
suppose T': PT).

Then L | T’ is the sequence of elements in L that are also in T'.
Then [tom, dick, harry] | {tom, harry, jones} = [tom, harry].

If f:N; -+ T is defined on finitely many elements, then
squash(f) : seq T is the sequence which returns the list of those
elements. For example

squash({2—dick,3—tom, T+ harry }) = {1—dick, 2—stom, 3— harry}.



Generic constants

How to define things like seq, [, head, tail, and so on?

T cat

~

:seq T x seqT —seq T

Vs,t:seq Te
s t=sU{n e dom(t) e (n+ #s)—t(n)}

Try defining head, tail, last, front, rev, and so on.



Squashing, defined explicitly in Z, just for fun:

___T squash
squash: (N -+ T) —seq T

Vf:N-+ Te
#squash(f) = #f A
vV n: dom(f) e squash(f)(#(0..n < f)) = f(n)

Why is #squash(f) = #f in there; what does it do?

8/13



Disjointness
Suppose Ai,..., A, : PS.
disjoint(A1, ..., Ap) is true when
Vijjel..neAANA #0=i=j
or equivalently (taking the contrapositive)
Vi,jel...nei#j=ANA =02.
In words:

“The elements of (Aj,...,A,) are pairwise disjoint.”

(The contrapositive of P = Q is =Q = —P.
Exercise: using truth-tables verify that these are logically
equivalent.)

9/13



Partition

If U:PS then the predicate ‘(Ai,...,A,) partition U' holds when
disjoint(A1, ..., An)

and furthermore

U(A1,...,Ap) = U.

In words

“(A1,...,Ap) partition U is true when A; to A, really do partition
U

For example ({1,2},{5},{3,4}) partition {1,2,3,4,5} holds.

10/13



Labour-saving: let

Suppose we have some long expression — e.g. primes
{x:N|(x#A0AVy,z: Zeyxz=x=1€c{y,z})ex} : PN
— which we use many times in another expression BLAH.

We can write this as let primes = {...} in BLAH.

You can use this in your schemas, if you like.

11/13



Labour-saving: operation schema composition

_A
a,a,cl:7Z
a =a+42
cl=4

_B

a,a,b?:7Z

b? < 10
a=a+b?

12/13



Labour-saving: operation schema composition

Then A; B is this:

A B
a,cl:Z
a,b?:7

dd : Ze
d=a+42ANcl=dAbB?<10Nd =d+b

13/13



