
F28PL Coursework ML1 (ML questions). Deadline 26 Oct 2018

• Code must be valid PolyML (not SML).
• Your answer should be a plaintext file with extension .ml and be a literate

program in the sense discussed in lectures.
• You can't use library functions if they make the question trivial (e.g. ListPair).
• You can write your own helper functions, if convenient.
• A model answer is at the end of the question set.
• The essay question is worth 20 points. All other questions are worth 10.
• Code should be clearly-written and laid out, and should include a brief

explanation in English explaining the design of your code.
• Your answer must take the form of plaintext including the program and a

nontrivial collection of tests, which can be cut-and-pasted by your marker into the
command line, to test that it works.

• Consistent with the principle that code is written for humans to read in the first
instance, and for computers to execute only in the second instance, marks will be
awarded for style and clarity.

• You may use functions defined in answers to previous questions, in later
questions. If you do, duplicate the relevant code at the start of the answer and
state where it came from, so that each answer is self-contained.

• Use PolyML, not SMLNJ (rlwrap poly, not rlwrap sml).

F28PL Coursework ML1 (ML questions). Deadline 19 October 2018

1. Complex number arithmetic

The complex numbers are explained here (and elsewhere):
 http://www.mathsisfun.com/algebra/complex-number-multiply.html
Represent a complex integer as an element of the datatype
 datatype cint = CI of int * int.

(So CI(4,5) represents 4+5i.)

Implement functions cadd and cmult of type cint * cint -> cint representing complex

integer addition and multiplication.

For instance,
 cadd(CI(1,0),CI(0,1))

should compute
 CI(1,1).

Here’s a hint for Question 1. Consider:
Question. Given
 datatype myInt = MI of int
write a function
 myAdd : myInt * myInt -> myInt
which calculates addition. For example myAdd(MI 1,MI 1) should compute MI 2.
Answer.
We use pattern-matching as follows:
 fun myAdd (MI x,MI y) = MI (x+y);
Follow with three tests including code and statement of expected result.

F28PL Coursework ML1 (ML questions). Deadline 19 October 2018

http://www.mathsisfun.com/algebra/complex-number-multiply.html

2. Sequence arithmetic

An integer sequence is an element of
 type intseq = int list.

(So intseq is a type alias for a list of integers.)

Implement recursive functions seqadd and seqmult of type intseq * intseq -> intseq

that implement pointwise addition and multiplication of integer sequences.

For instance
 seqadd([1,2,3],[~1,2,2])

should compute
 [0,4,5]

Please note:

1. Don’t write error-handling code to handle the cases that sequences have different
lengths.

2. Don’t worry too much if your functions are reported to have type intseq * intseq ->

int list or int list * int list -> int list. Behaviour of type aliases can

be hard to control.
3. Do worry if your function has type intseq -> intseq -> intseq. That is an error.

F28PL Coursework ML1 (ML questions). Deadline 19 October 2018

3. Matrices

Matrix addition and multiplication are described here:
● addition: http://www.mathsisfun.com/algebra/matrix-introduction.html
● Multiplication (dot product): http://www.mathsisfun.com/algebra/matrix-multiplying.html

Represent integer matrices as the datatype intmatrix = IM of intseq list.

So a matrix is a column of rows of integers.

Write functions
1. ismatrix : intmatrix -> bool

This should test whether a list of lists of integers represents a matrix (so the length of
each row should be equal).

2. matrixshape : intmatrix -> (int * int)
This should return a pair that is the number of columns, and the number of rows, in that
order.

3. matrixadd : intmatrix * intmatrix -> intmatrix
Matrix addition, which is simply pointwise addition. You may find your previous answers
useful.

4. matrixmult : intmatrix * intmatrix -> intmatrix
Similarly for matrix multiplication.

Please note:
1. Don’t write error-handling code for malformed input, e.g. a column of rows of integers of

different lengths, or an attempt to sum matrices of different shapes.
2. The question is ambiguous whether the 0x0 empty matrix [] is a matrix (and how about

0xn or nx0?). Flag the ambiguity, make a design decision, and state and justify it.
Always consider the edge cases.

3. A “vector” [1,2,3] is not a matrix and should raise a type error if fed e.g. to ismatrix.

But [[1,2,3]] and [[1],[2],[3]] are matrices.

4. You aren’t allowed to use library functions like map or List.all. However, defining

these is rather easy, for example:
 fun mymap f [] = ...
 | mymap f (h::t) = ...

F28PL Coursework ML1 (ML questions). Deadline 19 October 2018

http://www.mathsisfun.com/algebra/matrix-multiplying.html
http://www.mathsisfun.com/algebra/matrix-introduction.html

4. Essay-style question

Write an essay on the ML type system. Be clear, to-the-point, and concise. Convince your
marker that you understand:

● Ad-hoc and parametric polymorphism.
● Function types.
● List types and tuple types (and their differences).
● Equality types.
● ML patterns and pattern-matching.

Include short code-fragments (as I do when lecturing) to illustrate your observations.

5. Bonus question (this question is marked)

● Write a pair of functions of types
 ((‘a * ‘b) -> ‘c) -> (‘a -> (‘b -> ‘c))

and
 (‘a -> ‘b -> ‘c) -> ((‘a * ‘b) -> ‘c)
and explain why this was a cool question.

6. Seriously cool bonus question (this question is marked)

● Write a pair of functions of types
 int -> (‘a -> ‘a) -> ‘a -> ‘a
and
 ((int -> int) -> int -> ‘a) -> ‘a
(Hint: search for “Church numerals”.)

7. Unmarked question

● Implement the Tower of Hanoi as a function of type
 unit -> (int list*int list*int list)

● Implement Bubblesort and Quicksort in ML.

F28PL Coursework ML1 (ML questions). Deadline 19 October 2018

Model question M:
Write a function
 sumf : ‘a list -> (‘a -> int) -> int

that inputs a list l and a function f : ‘a -> int and outputs

 the sum of f applied to all the elements of l

(so sumf [1,2,3] (fn x => x*x) calculates 1*1+2*2+3*3 = 21).

Model answer:

(*******************************)
(* Start of answer to Question M
Write a function
 sumf : ‘a list -> (‘a -> int) -> int
that inputs a list l and a function f : int -> int and outputs
 the sum of f applied to all the elements of l
(so sumf [1,2,3] (fn x => x*x) calculates 1*1+2*2+3*3 = 14).
*)

fun sumf [] f = 0
(* If the list is empty then the sum of the empty list is 0 *)
 | sumf (h::t) f = (f h)+(sumf t f);
(* Otherwise calculate (f h) and proceed recursively *)

(* Test 1 (should return 14): *)
sumf [1,2,3] (fn x => x*x);

(* Test 2 (should return 0): *)
sumf [1,2,-3] (fn x => x);

(* Test 3; sum squares of a list of lists (should return true) *)
sumf [[1,2,3],[4,5,6],[7,8,9]] (fn l => sumf l (fn x => x*x))
=
sumf [1,2,3,4,5,6,7,8,9] (fn x => x*x);

(* End of answer to Question M *)
(*******************************)

Assuming 10 points are awarded, this answer gets:
● 4 points for being a correct, well-structured program,
● 3 points for a clear explanation, and
● 3 points for exhaustive testing.

Your marker is particularly impressed that the third and final test demonstrates understanding of
polymorphism.

F28PL Coursework ML1 (ML questions). Deadline 19 October 2018

