
Programming Paradigms Languages F28PL,
Lecture 4

Polymorphic and higher-order list operations

Jamie Gabbay

October 14, 2016

1 / 28

Polymorphic list length function

Let’s design length:’a list -> ’a list to calculate the
length of a list. Note the polymorphic type. Recall our slogan: A list
is either empty or a head and a tail.

I Base case: [] ==> 0.
I Recursion case: (h::t) ==> 1 + length of t.

This design is almost precisely the ML code itself:

- fun length [] = 0
| length (_::t) = 1+length t;

> val length = fn : ’a list -> int
- length ["a","b","c"];
> 3 : int
length ["a","b","c"] ==> 1+length ["b","c"] ==>
1+1+length ["c"] ==> 1+1+1+length [] ==> 1+1+1+0 ==> 3

2 / 28

Polymorphic list append
First, choose the type:
append:’a list -> ’a list -> ’a list.

Next, recursively design the function. Classic n00b error:
pattern-match on everything in sight. Don’t; it’s not necessary here.
Just pattern-match on the first argument.

I Appending [] to l gives l.
I Appending hd::tl to l gives hd appended to the result of

appending tl to l.

Obvious, isn’t it? Corresponding ML code:

- fun append [] l2 = l2
| append (h1::t1) l2 = h1::append t1 l2;

> val append =
fn : ’a list -> ’a list -> ’a list

- append ["a","b","c"] ["d","e","f"];
> ["a","b","c","d","e","f"] : string list

3 / 28

Polymorphic list append
append ["a","b","c"] ["d","e","f"]
==> "a"::append ["b","c"] ["d","e","f"]
==> "a"::"b"::append ["c"] ["d","e","f"]
==> "a"::"b"::"c"::append [] ["d","e","f"]
==> "a"::"b"::"c"::["d","e","f"]
==> ["a","b","c","d","e","f"]

In fact, append is primitive in ML.

> op @; (* infix operator so write "op" to fetch function *)
val it = fn : ’a list * ’a list -> ’a list
- [1,2,3]@[4,5,6];
> [1,2,3,4,5,6] : int list

Two differences from our function append: 1. op @ is probably
optimised to the underlying list representation of the specific ML
implementation; and 2. the types are different.

Make sure you understand how. Make sure you can write an append
function of type ’a list * ’a list -> ’a list.

4 / 28

List member

Let’s pick up the pace:

1. Intended type is ’a -> ’a list -> bool (but see below).
2. e1 is not in [], and
3. e1 is in e1::tl, and
4. otherwise e1 is in e1::tl if e1 is in tl.

Patterns in ML are affine—a variable may occur at most once. So we
can’t write clause 2 above in ML as member e1 (e1::tl) =

No matter:

- fun member _ [] = false
| member e1 (e2::t) = e1=e2 orelse member e1 t;

> val member =
fn : ’’a -> ’’a list -> bool

5 / 28

List member

Note the difference in types: we wanted ’a -> ’a list -> bool
but we got.

> val member =
fn : ’’a -> ’’a list -> bool

Thus member is polymorphic over equality types.

This is natural: in order to check member e1 l we need to be able
to check whether elements of l are equal to e1.

(Python would be more optimistic: it would check mathematical
equality where it can, and fall back to comparison of pointers where
it can’t. But that relies on having a von Neumann machine in the
background.)

6 / 28

Add (push to queue)

When you get into this, the ML becomes easier to read than the
English:

- fun add e [] = [e] |
add e1 (e2::t) = if e1=e2
then e2::t
else e2::add e1 t;

> val add =
fn : ’’a -> ’’a list -> ’’a list

> add 5 [1,2,3,4];
val it = [1, 2, 3, 4, 5] : int list
> add "forty-two" ["And","the","answer","is"];
val it = ["And", "the", "answer", "is", "forty-two"]

: string list

7 / 28

List remove/delete first occurrence

- fun delete _ [] = [] |
delete e1 (e2::t) = if e1=e2
then t
else e2::delete e1 t;

> val delete =
fn : ’’a -> ’’a list -> ’’a list

> delete 0 [1,0,~1,2,0,~2];
val it = [1, ~1, 2, 0, ~2] : int list

Exercise: Write yourself a ‘delete all occurrences’ function, please.

8 / 28

Higher-order functions

A higher-order function is a function that inputs a function. In other
languages, this may be called a functor.

In ML, no such distinction is made: functors are just a particular
special case of functions.

Here are some examples of types that higher-order functions might
have:

(’a -> ’b) -> (’b -> ’c) -> (’a -> ’c)
(’a -> bool) -> ’a list -> ’a list
(’a -> ’b) -> ’a list -> ’b list
((’a -> ’b) -> ’b) -> ’a

It is often possible to deduce what a function must do, just from its
type. For instance, the only thing that could populate
(’a -> ’b) -> (’b -> ’c) -> (’a -> ’c) is
fn f => fn g => g o f.

9 / 28

Higher-order functions

Great for abstraction and code-reuse. Consider
(’a -> bool) -> ’a list -> ’a list. The only reasonable
function that populates this type is filter:

- fun filter _ [] = [] |
filter p (h::t) = if p h then h::filter p t

else filter p t;
> val filter =

fn : (’a -> bool) -> ’a list -> ’a list

In words filter p l traverses l throwing out elements that don’t
satisfy p.

Very common operation, that.

10 / 28

Lists

- fun isPos x = x>0; (* Our p: ‘is positive’ *)
> val isPos = fn : int -> bool
- filter isPos [~2,1,0,2];
> [1,2] : int list
(* Execution:
filter isPos [~2,1,0,2]
==> filter isPos [1,0,2]
==> 1::filter isPos [0,2]
==> 1::filter isPos [2]
==> 1::2::filter isPos []
==> 1::2::[] ==> [1,2] *)

We note that filter is tail-recursive, so an optimising compiler will
optimise this to the same low-level code as might be written by a
programmer-optimised interative program. But the ML code is, I
believe, cleaner (even for this simple example).

11 / 28

Map

The other big list operation is ‘apply a function f to every element
of a list’.

- fun map _ [] = []
| map f (h::t) = f h::map f t;

> val map = fn : (’a -> ’b) -> ’a list -> ’b list

E.g. to find the list of sizes of a list of strings:

> size;
val it = fn : string -> int
> map size; (* Nice bit of partial application, here *)
val it = fn : string list -> int list
> map size ["a","bc","def"];
val it = [1,2,3] : int list

12 / 28

Examples

I studied maths as an undergrad so for me, the obvious example of
map is for Taylor series like these:

ex = 1+ x + x2

2! +
x3

3! +
x4

4! + . . .

The components of this sum are an instance of map applied to a
function f such that n 7→ xn/n!.

If you are into gaming and understand GPU architecture, then you
might recognise that stream processors are nothing more than a
hardware optimised for applying map in parallel to a list or an array
of data.

Other examples abound. ML is very good at expressing this kind of
thing.

13 / 28

Examples

Another example:

- fun powers (x:int) = (x,x*x,x*x*x);
> val powers = fn : int -> int * int * int
- map powers [1,2,3];
> [(1,1,1),(2,4,8),(3,9,27) : (int * int * int) list

Evaluation is:

map powers [1,2,3]
==> powers 1::map powers [2,3]
==> powers 1::powers 2::map powers [3]
==> powers 1::powers 2::powers 3::map powers []
==> powers 1::powers 2::powers 3::[]
==> [(1,1,1),(2,4,8),(3,9,27)]

14 / 28

List insert

Can we write a program insert that if given an integer i1 and a
list of integers ordered in ascending order, will insert i1 into the list
so the result is also a list of integers ordered in ascending order?

This is pretty much what you do when you put a library book in a
shelf: you’re given a list in order and an element and you want to
put the element in ‘the right place’.

Why not have a go at this yourself before reading the answer?

First, write an inductive specification; then convert it to ML code.

15 / 28

List insert

Bet you just skipped to this slide without trying it yourself.

No really; you’ll learn more if you have a go first.

16 / 28

List insert

- fun insert(i:int) [] = [i]
| insert i1 (i2::t) =

if i1<i2 then i1::(i2,e2)::t
else i2::insert i1 t;

> fn : int -> int list -> int list
- insert 7 [5,9];
> [5,7,9] :int list
(* insert 7 [5,9]
==> 5::insert 7 [9]
==> 5::7::[9]
==> [5,7,9] *)

17 / 28

Sorting

We can now write an easy sorting algorithm:

- fun sort [] = []
| sort (h::t) = insert h (sort t);

> fn : int list -> int list
- sort [7,9,5];
> [5,7,9] : int list

Isn’t that beautiful, compact, and elegant code?

18 / 28

foldr

Consider summing a list of integers:

- fun sum [] = 0
| sum (h::t) = h+sum t;

> val sum = fn: int list -> int
- sum [1,2,3];
> 6 : int
sum [1,2,3]
==> 1+sum [2,3]
==> 1+(2+sum [3])
==> 1+(2+(3+sum []))
==> 1+(2+(3+0))
==> 1+2+3+0

Intuitively, sum inserts + between the list elements (and calculates
the result).

19 / 28

foldr

Consider joining a list of strings:

- fun join [] = ""
| join (h::t) = h^join t;

> val join = fn: string list -> string
- string ["1","2","3"];
> "123" : int
sum ["1","2","3"]
==> "1"^join ["2","3"]
==> "1"^("2"^join ["3"])
==> "1"^("2"^("3"^join []))
==> "1"^("2"^("3"^""))
==> "1"^"2"^"3"^""

Intuitively, join inserts ^ between the list elements (and calculates
the result).

20 / 28

foldr

Suppose we have a list of functions in ’a -> ’a that we want to
compose:

- fun bigo [] = (fn x => x)
| bigo (h::t) = h o (bigo t);

> val bigo = fn: (’a -> ’a) list -> (’a -> ’a)
bigo [h,g,f]
==> h o bigo [g,f]
==> h o (g o bigo [f])
==> h o (g o f o (bigo []))
==> h o (g o f o (fn x => x))
==> h o g o f

Intuitively, bigo inserts o between the list elements.

We have a schema here:

21 / 28

foldr

I Base case: [] ==> base value b.
I Recursion case:
(h::t) ==> apply f to h and result of folding f over t

- fun foldr f acc [] = acc
| foldr f acc (h::t) = f h (foldr f acc t);

> val foldr =
fn: (’a->’b->’b) -> ’b -> ’a list -> ’b

I find this easiest to understand as follows:

foldr f acc [x,y,z] = f(x,f(y,f(z,acc)))

This is a surprisingly general recipe, because it captures the essence
of iteration. This is a for-next loop. To be precise: foldr captures
the essence of tail-recursion.

22 / 28

foldr

sum = foldr (fn x => fn acc => x+acc) 0
join = foldr (fn x => fn acc => x^acc) ""
bigo = foldr (fn x => fn acc => x o acc) (fn x => x)
sort = foldr insert [] (* do "insert" between elements of list *)

Now sum and join are kind of trivial, and bigo isn’t trivial but it’s
easy to underestimate it; but you should know that sorting is a
canonical non-trivial program.

23 / 28

foldl

Much like foldr but starts from the head of the list:

- fun foldl f acc [] = acc
| foldl f acc (h::t) = foldl f (f h acc) t;

> val foldl =
fn: (’a->’b->’b) -> ’b -> ’a list -> ’b

I understand it like this:

foldl f acc [x,y,z] = f(z,f(y,f(x,acc)))
foldr f acc [x,y,z] = f(x,f(y,f(z,acc))) (* for comparison *)

foldl is natural because “we read the list from left-to-right and
start computing on the x first”.

Clearly, foldl is equal to
fn f => fn acc => fn l => foldr f acc (rev l).

24 / 28

fold

Oh yes, and rev can, of course, be implemented using foldl and
foldr:

foldr (fn x => fn acc => acc@[x]) []
foldl (fn x => fn acc => x::acc) []

25 / 28

Higher-order sort

Recall sorting using foldr:

sort [3,2,1]
==> foldr insert [] [3,2,1]
==> insert 3 (foldr insert [] [2,1])
==> insert 3 (insert 2 (foldr insert [] [1]))
==> insert 3 (insert 2 (insert 1 (foldr insert [] [])))
==> insert 3 (insert 2 (insert 1 []))
==> [1,2,3]

This invites generalisation.

26 / 28

Higher-order insert

Generalise insert to work with list of arbitrary type:

- fun gInsert p v [] = [v]
| gInsert p v (h::t) =

if p v h
then v::h::t
else h::gInsert p v t

> val gInsert = fn : (’a ->’a->bool)->
’a -> ’a list -> ’a list

I If p holds between v and h then put v on front of list.
I Otherwise put h on front of inserting v into t with p.

27 / 28

Higher-order sort

Our previous sort can be implemented as
val sort = gInsert (fn x => fn y => x<y).

A generalised sorting algorithm is just
val gSort = fn p => foldr (gInsert p).

Unpacking the fold explicitly:

- fun gSort p [] = []
| gSort p (h::t) = gInsert p h (gSort p t);

> val gSort = fn : (’a -> ’a -> bool) ->
’a list -> ’a list

In OO programming you’d probably recognise a generalised sorting
algorithm over objects with ‘compare’ and ‘insert’ methods. Where
do you think these ideas come from?

28 / 28

