A mountain pass solution in cylinder buckling

Jiří Horák, Universität zu Köln, Cologne, Germany
Gabriel J. Lord, Heriot-Watt University, Edinburgh, UK
Mark A. Peletier, Technische Universiteit Eindhoven, The Netherlands

From: Rhodes & Walker '80 Thin walled structures
A mountain pass solution in cylinder buckling

Jiří Horák, Universität zu Köln, Cologne, Germany
Gabriel J. Lord, Heriot-Watt University, Edinburgh, UK
Mark A. Peletier, Technische Universität Eindhoven, The Netherlands

Part 1 Experimental Evidence
 ▶ Axially localized solution
 ▶ Buckle/failure load

Part 2 Model

Part 3 Post-Buckle
 ▶ Homoclinic solution
 (with G. Hunt (Bath) and A. Champneys (Bristol))

Part 4 Failure load for cylinder
 ▶ Mountain pass
Part I: Experimental results

Typical end shortening vs load plot:

△ Post-buckle minimum load
△ Post-buckle plateau in load
- Localized buckled solution

- Translation invariant

- Well defined circumferential wave number s

- 2 forms of solution: **Symmetric** & **Cross Symmetric**.
Collection of experimental results:

- Donnell (steel): $Y = 1.0275X^{-0.17596}$
- Donnell (brass): $Y = 0.51114X^{-0.087858}$
- Bridget et al: $y = 0.37343x^{-0.0050409}$
- Ballerstedt & Wagner: $y = 4.2246x^{-0.3745}$

Linear prediction $\lambda_{fail}/\lambda_{cr} = 1$
Questions:

1. Can we compute post-buckle solution and loads?

2. Can we predict the load at which cylinder buckles?
Part II: A Model

von Kármán-Donnell equations:

\[
\begin{align*}
\kappa^2 \Delta^2 w + \lambda w_{xx} - \rho \phi_{xx} - 2G(w, \phi) &= 0 \\
\Delta^2 \phi + \rho w_{xx} + G(w, w) &= 0.
\end{align*}
\]

where

\[
G(u, v) = \frac{1}{2} u_{xx} v_{yy} + \frac{1}{2} u_{yy} v_{xx} - u_{xy} v_{xy}
\]

\[
\kappa^2 = \frac{t^2}{12(1 - \nu^2)}, \quad \lambda = \frac{P}{2\pi R E t}, \quad \rho = \frac{1}{R}
\]

\[(x, y) \in \Omega = [-L, L] \times [0, 2\pi R).\]

Assumptions:

▷ Thin, isotropic shell
▷ Elastic buckle and curvature not too large
▷ No pre-buckle
▷ Normals stay normal, plane stress
 and small angle approximation for strain tensor.
\[\kappa^2 \Delta^2 w + \lambda w_{xx} - \rho \phi_{xx} - 2G(w, \phi) = 0 \]
\[\Delta^2 \phi + \rho w_{xx} + G(w, w) = 0. \]

Stored energy:

\[E(w) = \frac{Et}{2} \int_\Omega \left[\kappa^2 \Delta w^2 + \Delta \phi^2 \right] dx dy, \]

Constraint is the average axial end-shortening associated with deflection \(w \)

\[S(w) = \frac{1}{4\pi R} \int_\Omega w_x^2 dx dy. \]

- Solutions of vKD equations are stationary points of Total Potential \(F_\lambda(w) = E(w) - \lambda S(w). \)
- Solutions also stationary points of \(E(w) \) under constant \(S(w) \).
Part III: Post-buckle paths:

○ Dynamic Analogy:
 ▶ Seek localized buckle solutions as homoclinic solution
 ▶ BCs ($L = \infty$): $w, \phi + \text{derivatives} \to 0$ as $x \to \pm \infty$.
 ▶ Seek solution in subspace of circumferential wave number.
 ▶ Discretize by Galerkin circumferentially have large system of ODEs in axial direction.

○ Use numerical continuation
Test Results for Yamaki Shell:

\[L = 160.9\, (mm) \quad R = 100\, (mm) \quad t = 0.247\, (mm) \]

\[E = 5.56\, (GPa) \quad \nu = 0.3 \]

For this shell: \(L/2\pi R \approx 0.25 \) … not very long

Number of circumferential waves \(s = 11 \).
Test Results for Yamaki Shell:

\[L = 160.9 \text{(mm)} \quad R = 100 \text{(mm)} \quad t = 0.247 \text{(mm)} \]
\[E = 5.56 \text{(GPa)} \quad \nu = 0.3 \]

For this shell: \(L/2\pi R \approx 0.25 \) ... not very long

Number of circumferential waves \(s = 11 \).

<table>
<thead>
<tr>
<th>s=11</th>
<th>(\frac{\lambda_{\text{min}}}{\lambda_{\text{cl}}})</th>
<th>(W_{\text{min}})</th>
<th>(W_{\text{max}})</th>
<th>Rel. Error: (\approx 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>0.24</td>
<td>-0.9</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Homoclinic</td>
<td>0.242</td>
<td>-0.866</td>
<td>1.966</td>
<td></td>
</tr>
</tbody>
</table>
Cellular buckling
Cellular buckling

\[n=13, \, r=0.08 \]
Cellular buckling

\[n=13, \rho=0.08 \]
Post-buckle & Homoclinics

- Given circumferential wave number s get good agreement with post-buckle regime ...

- Finite shell length in experiments: but infinite homoclinic approximation works well.

- Determination of circumferential wave number next project ??
Part IV : Mountain Pass Solution

Let \(w_1 \neq w_2 \) be two vectors in a space \(X \). Define

\[
\Gamma = \{ \gamma \in C([0, 1], X) \mid \gamma(0) = w_1, \gamma(1) = w_2 \},
\]

\[
c = \inf_{\gamma \in \Gamma} \max_{t \in [0, 1]} F(\gamma(t)).
\]

If \(c > \max\{ F(w_1), F(w_2) \} \) and \(F \) satisfies \((PS)_c\), then \(c \) is a critical value of \(F \).
Mountain Pass

MP1. We show that $w_1 = 0$ is a local minimizer: there are $\varrho, \alpha > 0$ such that $F_\lambda(w) \geq \alpha$ for all w with $\|w\|_X = \varrho$;

MP2. If domain is large enough, then there exists w_2 with $\|w_2\|_X > \varrho$ and $F_\lambda(w_2) \leq 0$. Based on Yoshimura diamond pattern.

MP3. Given a sequence of paths γ_n that approximates the infimum in defn, we extract a (Palais-Smale) sequence of points $w_n \in \gamma_n$, each close to the maximum along γ_n, and show that this sequence converges in an appropriate manner.
Phase 1 — Initial discrete path. Take P points:

$$z_j = w_1 + \frac{j}{P}(w_2 - w_1), \ j \in \{0, 1, \ldots, P\}$$

Phase 2 — Main loop:

(a) find m: $\forall j \ F(z_m) \geq F(z_j)$, interpolate,

(b) compute $\nabla F(z_m)$,

(c) deform the path: $\delta > 0$ (small) $z_m^{\text{new}} = z_m - \delta \nabla F(z_m)$,

(d) STOP when F increases.

Phase 3 — Infinite loop: re-distribute points on path
Numerical Solutions

\[\Omega = \left(-100, 100 \right) \times \left(-100, 100 \right), \ \Delta x = \Delta y = 0.5, \ \lambda = 1.1 \]

Found using different choices of \(w_2 \).

Min energy solution \(\equiv \) Single Dimple
Steepest Descent:

(a) $F_\lambda \approx 5$ (b) $F_\lambda \approx -15$ (c) $F_\lambda \approx -5 \times 10^4$

$\Omega = (-200, 200) \times (-115, 115)$, $\Delta x = \Delta y = 0.5$, $\lambda = 1.1$
Interpretation of MP?

Have found the mountain pass energy for the perfect cylinder – how does this give a handle on an imperfect “real” cylinder?

Consider the minimum mountain-pass energy: \(V = \inf \omega_2 F_\lambda \).

In order to leave the basin of attraction of \(\omega_1 \), the surplus energy should exceed \(V(\lambda) \).
Imperfections and MP

Suppose stored energy from being under load can be transferred to overcome the mountain pass. Rescale MP energy $V(\lambda)$ by elastic strain energy stored in cylinder of length L:

$$\alpha = \frac{1}{2\pi \sqrt{3(1 - \nu^2)}} \frac{t}{L} \frac{V(\lambda)}{\lambda^2}.$$
Imperfections and MP

1. The general trend of the constant-α curves is very similar to the trend of the experimental data;

2. The $\alpha = 1$ curve, which indicates the load at which the mountain-pass energy equals the stored energy in the prebuckled cylinder, appears to be a lower bound to the data.
Nasa knockdown

- Donnell (steel) fit
- Donnell (brass)
- Bridget et al
- Ballerstedt & Wagner
- Vmp fit $a=1$
- Vmp fit $a=0.1$
- Nasa Rec $L=2\pi R$
Other single dimples ...

- Single dimples are seen in the high-speed camera images of Esslinger.
- Some “worst imperfections” by Deml and Wunderlich, Deml, Wunderlich and Albertin are single dimples.
- Single dimples are seen in finite element simuations (eg Schweizerhof)
Summary ...

- Axially localized solutions: found as homoclinic orbit
- Computations of post-buckle paths and cellular buckling
- Mountain pass solutions
 - Elements for proof
 - Numerical algorithm
 - Solutions
- From MP solutions seems can get a lower bound on the buckling load.
Summary ...

- Axially localized solutions: found as homoclinic orbit
- Computations of post-buckle paths and cellular buckling
- Mountain pass solutions
 - Elements for proof
 - Numerical algorithm
 - Solutions
- From MP solutions seems can get a lower bound on the buckling load.