
POST PROCESSING FOR STOCHASTIC PARABOLIC PARTIAL
DIFFERENTIAL EQUATIONS

GABRIEL J LORD†§ AND TONY SHARDLOW‡¶

Abstract. We investigate the strong approximation of stochastic parabolic partial differential
equations with additive noise. We introduce post-processing in the context of a standard Galerkin
approximation, although other spatial discretizations are possible. In time, we follow [20] and use
an exponential integrator. We prove strong error estimates and discuss the best number of post-
processing terms to take. Numerically, we evaluate the efficiency of the methods and observe rates
of convergence. Some experiments with the implicit Euler–Maruyama method are described.
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1. Introduction. We consider the numerical approximation of the stochastic
evolution equation

du =
[
∆u + F (u)

]
dt + dW (t), given u(0) = u0, (1.1)

with periodic boundary conditions on [0, 2π), where W (t) is a Q Wiener process [3]
on L2(0, 2π) and F is nonlinear (precise assumptions are given in §3.1).

Suppose that φn are eigenvectors of the Laplacian ∆ with periodic boundary
conditions, so that ∆φn = −n2φn, n ∈ Z. We assume that Q has eigenfunctions φn

with corresponding eigenvalues λn ≥ 0, in which case

W (t) =
∑
n∈Z

λ1/2
n φnβn(t), (1.2)

for independent Brownian motions βn. We do not consider the existence of solutions
to (1.1) here, instead we call on [3]. We will investigate the effect on numerics of the
spatial regularity of the noise, determined from the decay of λn.

There is a growing literature on numerical methods for stochastic PDEs and
the majority of these analyse convergence in the strong or root mean squared sense.
Finite difference approximations have been examined by a number of authors, see
for example [25], [11], [12], [4] and finite element methods have also been considered,
e.g. [29]. Galerkin approximations and strong Taylor schemes were considered in [10]
with a scalar Wiener process. Strong convergence of the implicit Euler–Maruyama
method was investigated in [18]. A more general analysis is found in [14], which
considers different types of spatial discretizations (Galerkin as well as collocation,
finite differences, finite elements, and wavelet based schemes) for similar forms of
noise considered here. [24] analyses convergence and complexity through the number
of random samples of the Wiener process. Spatially smooth noise is considered in
[20] and [26] and these papers also consider Fourier based spatial discretizations. In
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[26], a Taylor based discretization is taken and efficient methods for approximating the
Wiener process are considered. In [20] strong convergence of an exponential integrator
(see also [23]) is examined and we consider this scheme further in this paper, see §3.

The purpose of this paper is to study Galerkin post processing methods for (1.1),
prove their convergence in the strong sense and evaluate their efficiency. We have
restricted attention to reaction diffusion equations with homogeneous diffusion and
additive noise, and plan to return to the general case in further work.

§2 is an introduction to post-processing methods for deterministic PDEs. §3 de-
scribes our Galerkin post processing scheme and §3.1 a theorem on the convergence of
the method. §4 investigates the numerical behaviour of the method for the stochastic
Allen-Cahn equation. We evaluate the efficiency of the methods, compare the rates
of convergence to those predicted by the theorem, and illustrate numerically that
post-processing is efficient for other time-stepping algorithms by experimenting with
implicit Euler–Maruyama. We summarise our results and conclude in §5. The proof
of the theorem is given in §6, with the proof of two lemmas left to the Appendix.

2. A review of deterministic post processing. Post-processing methods
originate from analytical results on inertial manifolds for PDEs, see for example [6],
where it can be shown that the dynamics of infinite dimensional PDEs converge to
a finite dimensional system in large time. Typically, a graph Φ is obtained that “en-
slaves” the high Fourier modes (fine scale dynamics) to a finite number of low Fourier
modes (large scale dynamics). For example, if P denotes the projection onto the first
N Fourier modes and u = p+ q = Pu+(I−P )u, we can write the deterministic PDE

ut = ∆u + F (u) as pt = ∆p + PF (p + q), qt = ∆q + (I − P )F (p + q).

The dynamics on the inertial manifold can be re-written as

pt = ∆p + PF (p + q), q(t) = Φ(p).

Numerically the nonlinear Galerkin methods, also called approximate inertial mani-
folds (AIM) methods, make an approximation to the graph. In these methods, the
evolution on a coarse mesh (i.e., low Fourier modes) uses information from the fine
scale (i.e., high modes) at each time step, where a simpler form of equation is solved.

To deal with deterministic PDEs with non-smooth initial data, long transients or
highly oscillatory time dependent forcing, He and Mattheij [28] introduced a dynamic
form of post-processing, where the following system is approximated

pt = ∆p + PF (p), qt = ∆q + (1− P )F (p).

It extends the approach of [7], where a fine mesh solution is found at the end of
the computations. For the dynamic post-processing approach, both the coarse and
fine mesh approximations are evolved in time and, unlike a traditional approximate
inertial manifold approach, there is no communication from fine to coarse mesh until
the end of the computation. Indeed, this communication was one of the main reasons
that the AIM approach was computationally less efficient than a standard Galerkin
method; see [7, 8].

He and Mattheij [28] discretized the PDEs in space by a Galerkin method and
in time by implicit Euler and examined stability and convergence of the scheme and
propose this as a computationally more efficient method. In [21] the post-processing
method is examined from a truncation analysis point of view. From a perturbation
expansion for the high modes and by keeping terms to different orders, they obtain
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systems that correspond to the post-processed Galerkin method and this yields con-
vergence theory. Furthermore, from numerics based on Burgers equation with highly
oscillatory forcing, they show that post-processing methods are more efficient and
have an improved rate of convergence. These results suggest that post-processing
may be advantageous for a stochastically forced PDE.

Although inertial manifolds have been shown to exist for stochastic PDEs [2], we
do not attempt to approximate this directly here. Instead we base our method on the
post-processing approaches of [28] and [21].

3. Numerical Scheme. We will consider a Fourier based Galerkin discretiza-
tion, although other spatial discretizations are possible. The time discretization may
be thought of as a stochastic version of an exponential integrator proposed by [19];
for a review of these methods in the deterministic case see [22] and for an application
using a finite difference spatial discretization see [16]. In the stochastic context such
schemes are considered in [20, 23] and related schemes by [27, 17] which are of the
exponential time differencing type.

We describe our numerical scheme for (1.1). Represent u(t) as a Fourier series
u(t) =

∑
n un(t)φn and obtain the infinite system of coupled equations

un(t) = e−tn2
un(0) +

∫ t

0

e−(t−s)n2
Fn

(
u(s)

)
ds +

∫ t

0

e−(t−s)n2
λ1/2

n dβn(s), (3.1)

where Fn is the nth component of F , so that F (u) =
∑

n Fn(u)φn. Let ∆t > 0 denote
the time step and N the size of the Galerkin truncation. Consider the discretization
of (1.1) at times tk = k∆t given by

uN
n

(
tk+1

)
= e−∆tn2

(
uN

n (tk) + ∆tFn

(
uN (tk)

)
+ λ1/2

n ∆Bk,n

)
, (3.2)

where |n| ≤ N , the noise terms ∆Bk,n = βn(tk+1)− βn(tk), and initial data uN
n (0) =

un(0). The relationship between (3.2) and (3.1) is quite obvious when we iterate (3.2):
for t = k∆t,

uN
n (t) =e−tn2

uN
n (0) +

bt/∆tc−1∑
k=0

e−(t−tk)n2
(
∆tFn(uN (tk)) + λ1/2

n ∆Bk,n

)
(3.3)

(no terms in the sum for 0 ≤ t < ∆t). This approximation has been studied in detail
in [20] for Gevrey (exponentially smooth) noise.

We study a generalisation of this method, which incorporates post-processing
terms and flexibility in the approximation of W (t). The generalised method has the
following form: for |n| ≤ N ,

uN
n (tk+1) = e−n2∆t

(
uN

n (tk) + ∆tFn(uN (tk)) + 1{|n|≤Nw}λ
1/2
n ∆Bk,n

)
, (3.4)

with initial data uN
n (0) = un(0) = u0,n, where 1X equals 1 if X holds, 0 otherwise.

The constant Nw describes the number of modes used to approximate W (t); this is
the first generalisation and we will show the advantages in taking Nw < N in certain
applications. As in [20], the analysis depends on an interpolant of uN

n (tk) in time: let

uN
n (t) = e−n2tuN

n (0) +
bt/∆tc−1∑

k=0

e−(t−tk)n2
(
∆tFn(uN (tk)) + λ1/2

n 1{|n|≤Nw}∆Bk,n

)
,

(3.5)
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and note that the two definitions of uN
n (tk) agree.

Now we introduce post processing. Given knowledge of uN the following are
efficiently computed

qN
n (tk+1) = e−n2∆t

(
qN
n (tk) + ∆t1{|n|≤Np}Fn(uN (tk)) + λ1/2

n 1{|n|≤Nw}∆Bk,n

)
, (3.6)

with initial data qN
n (0) = un(0) for N < |n| ≤ Np, where Np describes the number of

nonlinear terms. Again in the analysis §6, we use an interpolant

qN
n (t) = e−n2tqN

n (0)

+
bt/∆tc−1∑

k=0

e−(t−tk)n2
(
∆t1{|n|≤Np}Fn(uN (tk)) + λ1/2

n 1{|n|≤Nw}∆Bk,n

)
.

(3.7)

We seek to estimate the error in approximating u(t) by uN (t) + qN (t), where uN =∑
|n|≤N φnuN

n and qN =
∑

N<|n|≤max{Np,Nw} φnqN
n , and in particular to understand

the best choice of Nw and Np.

3.1. Statement of Main Theorem. Let ‖ · ‖ denote the standard L2(0, 2π)
norm. Denote the Hm(0, 2π) Sobolev norm for u =

∑
n unφn by

‖u‖m = ‖(I −∆)m/2u‖ =
( ∑

n∈Z
(1 + n2)mu2

n

)1/2

.

We make the following assumption of f and Q:
Assumption 3.1. For u1, u2, u ∈ L2(0, 2π), for some constant K0 and some

m, r ≥ 0,

‖F (u1)− F (u2)‖r ≤K0‖u1 − u2‖r, (3.8)
‖F (u)‖r ≤K0(1 + ‖u‖r) (3.9)

and

‖F (u1)− F (u2)‖m ≤K0‖u1 − u2‖m, (3.10)
‖F (u)‖m ≤K0(1 + ‖u‖m). (3.11)

There exists a constant K1 such that for u ∈ L2(0, 2π) and δ, δ1, δ2 ∈ Hm(0, 2π),

‖dF (u)δ‖m ≤K1‖δ‖m, (3.12)

‖d2F (u)(δ1, δ2)‖m ≤K1‖δ1‖m‖δ2‖m. (3.13)

The covariance Q of W (t) satisfies Tr(I −∆)γQ < ∞; i.e.,∑
n∈Z

(1 + n2)γλn < ∞. (3.14)

We have introduced three regularity parameters: γ describes regularity of the noise;
r gives the regularity of the solution u(t); m indicates the norm for our error analysis.

Theorem 3.2. Let u0 ∈ H2(0, 2π), m < min{r, 2}, 0 ≤ r ≤ γ + 1 and γ > −1.
For some ν > 0, consider ∆t → 0 and N → ∞ with ∆tN2 ≤ ν. For each T > 0,
there exists K > 0 such that(

E
[

sup
0<tk≤T

‖u(tk)− uN (tk)− qN (tk)‖2
m

])1/2

≤K
(
∆t + N−2 + 1N≤NwN−1−γ + N−2−r+m

p + ∆tN1−γ+m
w + N−1−γ+m

w

)
,
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where uN =
∑

|n|≤N φnuN
n and qN =

∑
N<|n|≤max{Np,Nw} φnqN

n with components
defined by (3.5)–(3.7).

Proof. This is given in §6.
Note that we take limits in ∆t, N with ∆tN2 ≤ ν but employ no restriction on

ν. If an explicit Euler time integrator was used, we would require ν ≤ 1
2 [11], and the

absence of this restriction is a clear advantage to the exponential time integrator.
The theorem is stated under the global Lipschitz assumption on the nonlinearity.

This is the simplest setting in which to work and allows us to focus attention on
post processing. The global Lipschitz assumption excludes many important cases,
including the Allen-Cahn equation we discuss in §4. The first approach to this problem
is to change the nonlinearity without affecting the underlying model: for example, in
the Allen-Cahn equation, the variable u describes the phase of some material and is
only physically meaningful inside a bounded set. If we smooth out the nonlinear term
at infinity, the essential features of the model remain. In §4, we discover our results
are demonstrated without such a modification. The second approach is to develop
the mathematics to include ever wider classes of nonlinearities. Approaches of this
type include [15] for finite dimensional SDEs, who use moment conditions to control
the behaviour of u at infinity and gain rates of convergence, and [11] who shows
convergence in probability, without rates, for very general classes of f . The inclusion
of these approaches in the present paper would obscure the main idea, which is post
processing.

To understand post processing, we state two corollaries (using that ∆tN2 =
ν). The first describes convergence for the method (3.2) for non-smooth problems
(extending work done in [20]). The second gives the values Nw, Np that yield the best
convergence rates.

Corollary 3.3 (no postprocessing). Under the assumptions of Theorem 3.2
with N = Nw = Np,(

E
[

sup
0<tk≤T

‖u(tk)− uN (tk)− qN (tk)‖2
m

])1/2

≤ K
(
N−2 + N−2−r+m + N−1−γ+m

)
.

For example, with γ = −1/2 (space-time white noise), the L2(0, 2π) error (case
m = 0) converges like N−1/2. This is consistent with related results in the literature
(e.g., [13],[18]). For Gevrey noise and a smooth nonlinearity, the parameters r and γ
may be chosen arbitrarily large and we recover the result of [20]: for any z > 0, there
exists a constant K such that

E
[

sup
0<tk≤T

‖u(tk)− uN (tk)‖1

]
≤ K(N−z + ∆t). (3.15)

This is faster convergence than any polynomial, although not the exponential rate
found [5] for the deterministic case.

Now we turn to post-processing.
Corollary 3.4 (post processing). Let the assumptions of Theorem 3.2 hold.
1. If γ ≥ 1 and m < γ − 1, then(

E
[

sup
0<tk≤T

‖u(tk)− uN (tk)− qN (tk)‖2
m

])1/2

≤ KN−2

with Np = N and Nw = dN2/(1+γ−m)e.
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2. If γ ≥ 1 and m ≥ γ − 1, then(
E

[
sup

0<tk≤T
‖u(tk)− uN (tk)− qN (tk)‖2

m

])1/2

≤ KN−1−γ+m

with Np = N and Nw = N .
3. If −1 < γ < 1, then(

E
[

sup
0<tk≤T

‖u(tk)− uN (tk)− qN (tk)‖2
m

])1/2

≤ KN−1−γ

with Np = N and Nw = dN (1+γ)/(1+γ−m)e.
These choices of Np and Nw provide the best convergence rate (up to scalar multipli-
cation).

Proof. We wish to choose Np and Nw in terms of N to achieve the best convergence
rate with N by balancing terms in the estimate provided in Theorem 3.2. We ignore
multiplying constants which do not affect the rate.

1. We can achieve an N−2 convergence rate by balancing N−2−r+m
p , ∆tN1−γ−m

w ,
and N−1−γ+m

w with N−2. The condition N−2−r+m
p = N−2 yields Np =

N2/(2+r−m) and as N2/(2+r−m) ≤ N for m ≤ r, we choose Np = N . Under
assumption m < γ − 1, ∆tN1−γ−m

w < N−2 and so the value Nw is found by
solving N−2 = N−1−γ+m

w .
2. In the case m > γ − 1, the accuracy is limited by the term ∆tN1−γ+m

w .
The condition ∆tN1−γ+m

w = N−1−γ+m
w implies Nw = N . The condition

N−2−r+m
p = N−1−γ+m

w implies Np = N (2+r−m)/(1+γ−m). Because we have
N (2+r−m)/(1+γ−m) > N for r > γ − 1, the choice Np = N terms is optimal.

3. We achieve an N−1−γ rate by choosing ∆tN1−γ−m
w and N−1−γ+m

w less than
N−1−γ . This is achieved by taking

Nw ≥ max{N (1−γ)/(1−γ+m), N (1+γ)/(1+γ−m)}.

As m ≥ 0, we take Nw = N (1+γ)/(1+γ−m). Balancing the terms N−2−r+m
p

and N−1−γ provides Np = N (1+γ)/(2+r−m). As m < r and γ < 1, we have
N (1+γ)/(2+r−m) < N and choose Np = N .

There are a number of issues to consider: the rate of convergence, the constant
for this rate, and the efficiency of the scheme. We can improve the rate of convergence
by choice of Nw and there are two cases to consider. For smooth noise γ ≥ 1 + m,
the optimal value is Nw < N , which saves computing random numbers for many of
the components uN

n . This has been used with good effect in [26] for a Gevrey smooth
noise. Note that Nw → 1 as γ → ∞. In practise, it is important for Nw → ∞ as we
ask for more accuracy and to take to enough modes to resolve the noise.

For non-smooth noise (γ < 1), the optimal Nw > N , which implies that the
post-processing corrections qN

n are Gaussian processes

qN
n (tk+1) = e−n2∆t

(
qN
n (tk) + λ1/2

n 1{|n|≤Nw}∆Bk,n

)
. (3.16)

Thus, computing the post-processing update is straightforward and cheap. To com-
pare solutions for a single realisation of W (t), qN

n must be found by time stepping.
For weak approximation, it will be more efficient to compute and sample from the
Gaussian distribution at the final time.
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Our analysis predicts no improvement in the rate of convergence from post-
processing the nonlinear term. This contrasts with results on post-processing in the
deterministic case, where there is a gain in the rate of convergence [7, 8] (though this
gain is often out weighed by extra computational cost).

4. Numerics. Consider the one–dimensional Allen-Cahn equation with noise:

du =
[
αuxx + u− u3

]
dt + dW (t), u(0) = u0, (4.1)

with periodic boundary conditions on [0, 2π). For numerical calculations, we take the
diffusion coefficient α = 1/36. We always take noise white in time and vary the spatial
regularity γ, see (3.14).

To test the numerics, “true” solutions were computed by a standard Galerkin
approximation with N = 211 modes and a time step ∆t = 5×10−6. To avoid aliasing
errors, the nonlinear term was computed with 2N terms (more than the optimal
number of terms suggested by the 2/3 rule [1]). For a discussion of the role of aliasing
in post-processing (in the deterministic case) see [9].

0 1 2 3 4 5 6
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0
0.5

1 white noise

0 1 2 3 4 5 6
−0.5

0
0.5

1 L2 noise

0 1 2 3 4 5 6
−0.5
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1 H1/2 noise
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0
0.5

1

x
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100
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100

N

white noise: H 0.533

L2 noise: H 1.02

H1/2 noise: H 1.47

H1 noise: H 1.99

Fig. 4.1. Plot (left) of “true” solutions at time t = 1 for γ = −0.5, 0, 0.5, 1.0 for one realization
of the noise. Plot (right) is the corresponding log log plot of the Fourier coefficients at time t = 1
which shows that for γ > 0 the solutions are in a Sobolev space Hr with r = 0.5, 1, 1.5, 2.

Sample “true” solutions are plotted in Fig 4.1, this shows (left) the effect of
different spatial regularity in real space and (right) the corresponding loglog plot
in Fourier space. In real space, the solutions are smoother as the regularity of the
noise increases. This is confirmed by the decay of the Fourier modes and we see
numerically that r = γ + 1, consistent with the results of Lemma A.1. Essentially we
gain a derivative on the regularity of the solution over the noise.

Let N̂ denote a parameter for post-processing (either 2N , 4N , 8N , or N2 in
experiments). The “true” solutions were used to compute errors for the following
approximations:
Galerkin: A standard Galerkin approximation, from solving (3.4) with Nw = N .
PP Full: A full post-processed solution, from solving (3.4) and (3.6) with Nw =

Np = N̂ .
PP Noise: A post-processed solution on noise only, from solving (3.4) and (3.16)

with Np = N , Nw = N̂ .
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We examine the rate of convergence and efficiency by a mean cputime time. From
a practical point of view, plots of cputime versus error can be interpreted in two ways:
either fix a desired accuracy and see how long it would take to achieve, or fix a time
and see how accurate a solution can be computed in that time. The expectation is
computed from 10 samples and we examine the root mean square of the error at time
t = 1 in an appropriate norm. Normally we take the L2 norm (m = 0) or H1 norm
(m = 1).

On the plots below we draw a line with slope equal to the predicted rate of
convergence for Galerkin. We also report in the legend the observed slope from the
data for the rate of convergence.

(a) (b)
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Fig. 4.2. Space-time white noise (a) with N̂ = 2N and (b) with N̂ = 8N . Plots show the L2

error (top) rate of convergence and (below) plot of efficiency (cputime).

We examine the rates of convergence and computational efficiency for W (t) de-
fined by (1.2) with λn = (1 + n2)−γ |n|−1, n 6= 0 and λ0 = 0. We consider γ = −1/2
(space time white noise) , γ = 0 (L2 noise), and γ = 1/2, 1, 2 (Hγ noise). Our pre-
dictions for the numerics are based on Theorem 3.2 where, motivated by Lemma A.1,
we assume that r = γ + 1.

4.1. Space-time white noise: γ = − 1
2 . We observe in Fig 4.2(top) the theo-

retically predicted rates of convergence for Galerkin: the L2 error decays like N−1/2.
There is no convergence for H1 error.

Post processing is not expected to improve the rate of convergence in the L2 norm,
as Nw = N in Corollary 3.4. With N̂ = 2N , this is supported by computations: see
Fig 4.2 (a) (top) where the post-processing has no beneficial effect and the observed
rate is the same as Galerkin. However, there is an improvement in the error constant
and for N > 32 modes post-processing is more efficient; see Fig 4.2 (a) (bottom).
Taking this further and using more modes for the post-processing, Fig 4.2 (b) shows
PP Full and PP Noise with N̂ = 8N . The numerics suggest a rate of convergence
faster than the theoretical one. This is encouraging, although the resolution is coarse
and the theoretical rate may reappear for larger N .

We clearly see the computational advantage of PP Noise compared to PP Full
and Galerkin in Fig 4.2 (a) and (b) bottom. Post-processing on the noise terms only
is far more efficient.
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Fig. 4.3. For L2 noise, we plot (a) the L2 error with N̂ = 2N and (b) the L2 error with

N̂ = 8N . Top shows error against N and below error against average cputime.

4.2. L2 noise. This is similar to white noise: for Galerkin, the L2 error decays
like N−1, which is observed in Fig 4.3 (a) and (b), and the H1 error does not converge.
In theory, post-processing offers no improvement. In practise, there is an improvement
in the error constant and an improvement in efficiency for N̂ = 2N and further
improvement for N̂ = 8N . See Fig 4.3(a) and (b).

4.3. H1/2 noise. Corollary 3.3 predicts convergence of the L2 error like N−3/2

and the H1 error like N−1/2 for Galerkin and these rates are observed in Fig 4.4 (a)
and (b). With post-processing, the optimal rate for the L2 error is not changed and
the H1 error is like N−3/2 if Nw = N3. It is impractical to calculate with N3 post
processing terms for large N , and instead we look at N̂ = 2N, 4N, 8N . Fig 4.4 shows
the effect of increasing N̂ for L2 error (left) and H1 error (right) with N̂ increasing
top to bottom. For L2 and H1 errors, increasing N̂ improves the error and seems to
improve the rate of convergence – although this is not expected from the analysis for
L2 and we are a long way from taking the predicted N3 modes for H1. We clearly
see that PP Noise is the most efficient method.

4.4. H1 noise. Corollary 3.3 predicts that the Galerkin L2 error decays like
N−2 and H1 error decays like N−1 as observed in Fig 4.5. This is the limiting case
in Corollary 3.4, where we find N−2 convergence by taking Nw = N for L2 error and
Nw = N2 for H1 error; the solution is smooth in space and accuracy is now limited
by time stepping. It is impractical to calculate with N2 post processing terms for
large N , and instead we look at N̂ = 8N : Fig 4.5 shows (a) the L2 error and (b) the
H1 error. The post-processing methods give smaller errors and are more efficient, in
particular PP Noise.

4.5. H2 noise. The optimal number of modes is Nw = N2/3 for the L2 error,
giving N−2 convergence. We see in Fig 4.6 (a) that the L2 error is converging faster
than the theoretical rate, close to N−3. Here we see a limitation of the analysis:
the theoretical convergence rate is limited to an N−2 rate because of time stepping
and regularity of the initial data. In this case, the error is dominated by the spatial
approximation of a smooth problems, which may decrease like N−3, similar to rates
described in (3.15).
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Fig. 4.4. For H1/2 noise, we examine the number of post-processing terms N̂ . In (a) (b) we

take N̂ = 2N , (c) (d) N̂ = 4N , (e) (f) N̂ = 8N with L2 error (left) and H1 error (right). For each
case, we show plots of error against N (above) and error against cputime (below).
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Fig. 4.5. For H1 noise with N̂ = 8N , we plot (a) L2 error and (b) H1 error. Top shows error
against N and bottom shows error against cputime.
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Fig. 4.6. For H2 noise, we see (a) faster than the predicted rate of convergence for the L2

error with the optimal value N̂ = N2/3 and (b) the N−2 convergence rate is achieved for the H1

error, with N̂ = N2/3 rather than the theoretical rate of Nw = N .

The H1 error in (b) shows N−2 convergence – although only N̂ = N2/3 modes
are used rather than the theoretical optimum value N . In this case, the accuracy is
determined by approximation of the deterministic terms and we are unable to increase
the number of modes to see the theoretical optimal number for Nw bite.

4.6. Post-processing implicit Euler-Maruyama. Post-processing is effec-
tive for other time stepping algorithms. In Fig 4.7, we plot results of experiments
with the implicit Euler-Maruyama scheme. We take N̂ = 8N and plot (a) the L2

error for white noise, (b) the L2 error with L2 noise, (c) L2 error with H1 noise, and
(d) H1 error with H1 noise. Again PP Noise is the most efficient of the methods
and there appears to be an improvement in the rate of convergence in addition to
the constant. These trends are identical to those found in Theorem 3.2 and shown in
Fig 4.2–Fig 4.6.

5. Conclusions. Theorem 3.2 shows that post-processing can improve the rate
of convergence over a standard Galerkin method for stochastic PDEs. For non-smooth
forcing, the best number of modes is greater than the standard Galerkin method. For
smooth noise, as observed in [26], the optimal number of modes is smaller. With the
smooth nonlinearity in (4.1), it is flexibility in the number of modes that approximate
W (t) that is key. This was confirmed in numerics. We found post-processing on the
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Fig. 4.7. Post-processing for the implicit Euler–Maruyama method. In (a) white noise and L2

error, (b) L2 noise and L2 error, (c) H1 noise and L2 error, (d) again H1 noise but with H1 error.

noise improves on the convergence and efficiency of the standard Galerkin approxima-
tion and that the contribution from the (smooth) nonlinearity in the post-processing
is negligible. This improvement in efficiency over the standard Galerkin method holds
true for all spatial regularities of the noise that we tested.

It is often computationally prohibitive to use the the number of modes suggested
by the theorem. From a practical point of view, improvements were noted with
Nw = 2N even when the theoretical optimum number of nodes is Nw = N2. For non–
smooth noise, we found numerically that taking Nw = 8N gave a good compromise
between the extra effort involved and accuracy. Indeed it seems we get a rate of
convergence not predicted by the theory.

For smooth noise, our numerics suggest a convergence rate faster than that pre-
dicted by the theorem. From [20], it is known that for exponentially smooth noise a
faster than polynomial convergence is available for smooth problems. Such techniques
have not been used in the present paper and the results we give are optimal for the
H2 initial data and time stepping method studied.

Finally, although our analysis is for the scheme (3.2), this approach works equally
well for other time-stepping methods, such as the implicit Euler–Maruyama time
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stepping scheme. Our presentation is for a Galerkin based approximation, however
post-processing can easily be extended to other spatial discretizations using, for ex-
ample, two grids.

Acknowledgements. We are grateful to Yubin Yan for helpful discussions on
this work. We would also like to thank Edriss Titi and Jacques Rougemont for their
comments early on in this work.

6. Proof of main Theorem. We prove Theorem 3.2 by estimating

E
[

sup
0≤tj≤t′

‖u(tj)− uN (tj)− qN (tj)‖2
m

]
for 0 ≤ t′ ≤ T and applying Gronwall’s Lemma. To estimate terms, we use a generic
constant K which varies between instances but is independent of ∆t and N (it may
depend on (1.1) and the length of time integration T and constant ν). Consider
the difference of the variation of constants formulae (3.1),(3.5), and (3.7). Split into
Fourier modes with |n| ≤ Np and |n| > Np and by nonlinear and noise terms.

Nonlinear Terms: modes |n| ≤ Np.

E sup
0≤tj≤t′

∑
|n|≤Np

(1 + n2)m
∣∣∣ j−1∑

k=0

×
∫ tk+1

tk

e−(tj−tk)n2
(e(s−tk)n2

Fn(u(s))− Fn(uN (tk))) ds
∣∣∣2

=
∑

|n|≤Np

E
[

sup
0≤tj≤t′

j−1∑
k=0

∫ tk+1

tk

e−(tj−tk)n2
(1 + n2)m/2

(
×

(
Fn(u(s))− Fn(u(tk))

)
+

(
Fn(u(tk))− Fn(uN (tk) + qN (tk))

)
+

(
Fn(uN (tk) + qN (tk))− Fn(uN (tk))

)
+

(
(e(s−tk)n2

− 1)Fn(u(s))
))

ds
]2

≤K(NL1 + · · ·+ NL4),

where the four terms NLi are analysed below.
The first term Fix tj and consider k ≤ j − 1. Define

Lk,n =
∫ tk+1

tk

e−(tj−tk)n2
(1 + n2)m/2

(
Fn(u(s))− Fn(u(tk))

)
ds,

and let

NL′
1 =

∑
|n|≤Np

E
[ j−1∑

k=0

Lk,n

]2

. (6.1)

Write Uk = u(tk) and u(s) = u(tk) + δs for tk ≤ s < tk+1, then

Fn(u(s))− Fn(u(tk)) = dFn(Uk)δs +
∫ 1

0

∫ η

0

d2Fn(Uk + ξδs)(δs, δs) dξ dη.
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In the following argument we neglect the remainder term, which can be dealt with
easily under (3.13). Denote by Ft the filtration for the Wiener process W (t). For
k > i, under (3.12), the cross terms in (6.1)∑

|n|≤Np

ELk,nLi,n =
∑

|n|≤Np

(1 + n2)mE
[ ∫ tk+1

tk

e−(tj−tk)n2
E

[
dFn(Uk)δs|Ftk

]
ds

×
∫ ti+1

ti

e−(tj−ti)n
2
dFn(Ui)δs ds

]
+ higher order terms

≤K∆t4,

because dFn(Ui)δs is Ftk
measurable and

∥∥∥E[
dF (Uk)δs|Ftk

]∥∥∥
m
≤ K∆t. As

[ ∫ tk+1

tk

φ(s) ds
]2

≤ (tk+1 − tk)
∫ tk+1

tk

φ(s)2 ds, for φ ∈ L2(0, T ),

∑
|n|≤Np

EL2
k,n ≤∆t

∑
|n|≤Np

∫ tk+1

tk

E
[
e−(tj−tk)n2

(1 + n2)m/2dFn(Uk)δs

]2

ds + h.o.t.

Here ∑
|n|≤Np

∫ tk+1

tk

E
[
e−(tj−tk)n2

(1 + n2)m/2dFn(Uk)δs

]2

ds

≤
∫ tk+1

tk

E
[
‖dFn(Uk)‖2

m · ‖δs‖2
m

]
ds.

Because E‖uN (t)− uN (s)‖2
m ≤ K|t− s|‖u0‖2

m and (3.12) holds, we conclude that∑
|n|≤Np

∫ tk+1

tk

E
[
e−(tj−tk)n2

(1 + n2)m/2dFn(Uk)δs

]2

ds ≤K∆t2.

Thus, we may estimate

NL′
1 ≤ sup

0≤tj≤t′

∑
|n|≤Np

{ j−1∑
k=0

E
[
Lk,n

]2

+
j−1∑

k,i=0, k 6=i

ELk,nLi,n

}
≤ K∆t2.

Apply the Doob martingale inequality, to get

E
[

sup
0≤tj≤t′

NL′
1

]
≤ 4K∆t2.

The second term

NL2 =
∑

|n|≤Np

(1 + n2)mE
[

sup
0≤tj≤t′

j−1∑
k=0

∫ tk+1

tk

e−(tj−tk)n2

×
(
|Fn(u(tk))− Fn(uN (tk) + qN (tk))|

)
ds

]2

≤
∫ t′

0

∑
|n|≤Np

E
[

sup
0≤tk≤t

(1 + n2)m|Fn(u(tk))− Fn(uN (tk) + qN (tk))|2
]
dt.
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Using (3.10),

NL2 ≤ K

∫ t′

0

E
[

sup
0≤tk≤t

‖u(tk)− uN (tk)− qN (tk)‖2
m

]
dt.

The third nonlinear term

NL3 =
∑

|n|≤Np

(1 + n2)mE
[

sup
0≤tj≤t′

j−1∑
k=0

∫ tk+1

tk

e−(tj−tk)n2

×
(
|Fn(uN (tk) + qN (tk))− Fn(uN (tk))|

)
ds

]2

≤
∑

|n|≤Np

(1 + n2)mE
[

sup
0≤tj≤t′

|Fn(uN (tj) + qN (tj))− Fn(uN (tj))|

×
j−1∑
k=0

∫ tk+1

tk

e−(tj−tk)n2
ds

]2

≤
∑

0<|n|≤Np

(1 + n2)mE
[

sup
0≤tk≤t′

|Fn(uN (tk) + qN (tk))− Fn(uN (tk))| 1
n2

]2

+ E
[

sup
0≤tk≤t′

|F0(uN (tk) + qN (tk))− F0(uN (tk))|
]
.

Choose m ≤ 2, then using (3.8),

NL3 ≤
∑

|n|≤Np

E
[

sup
0≤tk≤t′

(1 + n2)m|Fn(uN (tk) + qN (tk))− Fn(uN (tk))|2
]

≤K

∫ t′

0

E
[

sup
0<tk≤t

‖qN (tk)‖2
]
dt.

Finally, from Lemma A.2,

NL3 ≤ K(N2(−2) + 1N≤NwN2(−1−γ) + N2(−2−r)).

The fourth nonlinear term

NL4 =

=
∑

|n|≤Np

(1 + n2)mE
[

sup
0≤tj≤t′

j−1∑
k=0

∫ tk+1

tk

e−(tj−tk)n2
(
|(e(s−tk)n2

− 1)Fn(u(s))|
)

ds
]2

≤
∑

|n|≤Np

(1 + n2)mE
[

sup
0≤tj≤t′

|Fn(u(tj))|2
bt/∆tc−1∑

k=0

e−(tj−tk)n2
K∆t2n2

]2

.

Note that for 0 ≤ ∆tn2 ≤ ν∫ tk+1

tk

|e(s−tk)n2
− 1| ds ≤

(e∆tn2 − 1
n2

−∆t
)
≤ n−2(K∆t2n4en2∆t) ≤ K∆t2n2eν

and
∞∑

k=1

e−kn2∆t ≤ 1
1− e−n2∆t

≤ K

n2∆t
.



16 G. Lord and T. Shardlow

Thus, using (3.11),

NL4 ≤K
∑

|n|≤Np

(1 + n2)mE
[

sup
0≤s≤t′

|Fn(u(s))|2∆t
]2

≤K∆t2
(
1 + E

[
sup

0≤s≤t′
‖u(s)‖m

]2)
.

By (3.10) and Lemma A.1,

NL4 ≤ K ∆t2.

Nonlinear terms: modes |n| > Np. Consider now the tail of the expansion of
u(t); i.e., the modes not included in either uN or qN . If r > m,

TAIL =E
[

sup
0≤tj≤t′

∑
|n|>Np

(1 + n2)m
∣∣∣ ∫ tj

0

e−(tj−s)n2
Fn(u(s)) ds

∣∣∣2]

≤K
( ∫ t′

0

(1 + N2
p )−(r−m)/2e−(tj−s)N2

p ds
)2

E
[

sup
0≤s≤t′

‖F (u(s))‖2
r

]
.

By (3.9) and Lemma A.1,

TAIL ≤ K N2(m−2−r)
p .

Noise with modes |n| ≤ Nw.

NOISE1 =

=E
[

sup
0<tj≤t′

∑
|n|≤Nw

(1 + n2)m

×
∣∣∣ j−1∑

k=0

( ∫ tk+1

tk

e−(tj−s)n2
λ1/2

n dβn(s)− e−(t−tk)n2
λ1/2

n ∆Bk,n

)∣∣∣2]
≤

∑
|n|≤Nw

(1 + n2)m|λn|E
[

sup
0<tj≤t′

∫ tj

0

(e−(tj−s)n2
− e−(tj−bs/∆tc∆t)n2

)dβn(s)
]2

.

By Doob’s martingale inequality

NOISE1 ≤4
∑

|n|≤Nw

(1 + n2)m|λn|
∫ t′

0

(e−(tj−s)n2
− e−(tj−bs/∆tc∆t)n2

)2 ds

=4
∑

|n|≤Nw

(1 + n2)m|λn|
∫ t′

0

e−2(tj−s)n2
(1− e−(s−bs/∆tc∆t)n2

)2 ds.

Note that 1− e−tn2 ≤ tn2 for 0 ≤ t ≤ ∆t and∫ t′

0

e−2(tj−s)n2
(1− e−(s−bs/∆tc∆t)n2

)2 ds ≤ (∆tn2)2
∫ t′

0

e−2(tj−s)n2
ds ≤ K∆t2n2.
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Hence

NOISE1 ≤4
∑

|n|≤Nw

(1 + n2)m|λn|∆t2n2

≤K∆t2(1 + N2
w)(1+m−γ)

∑
|n|≤Nw

(1 + n2)γ |λn|

≤K∆t2(1 + N2
w)(1+m−γ),

under (3.14).

Noise with modes |n| > Nw.

NOISE2 =E
[

sup
0≤tj≤t′

∑
|n|>Nw

(1 + n2)m
∣∣∣ ∫ tj

0

e−(tj−s)n2
λ1/2

n dβn(s)
∣∣∣2]

≤4(1 + N2
w)m−γ 1− e−t′N2

w

N2
w

∑
|n|≥Nw

λn(1 + n2)γ ≤ K N2(m−1−γ)
w ,

using (3.14).

Conclusion. We have achieved the following inequality

E
[

sup
0≤tj≤t′

‖u(tj)− uN (tj)− qN (tj)‖2
m

]
,

≤K
(
∆t2 + (N2(−2) + 1N≤NwN2(−1−γ) + N2(−2−r)) + N2(−2−r+m)

p + ∆t2N2(−γ+1+m)
w

+ N2(−1−γ+m)
w +

∫ T

0

E
[

sup
0<tk≤t

‖u(tk)− uN (tk)− qN (tk)‖2
]
dt

)
.

Note N2(−2−r) ≤ N2(−2) and then Gronwall’s Lemma provides

E
[

sup
0≤t≤t′

‖u(t)− uN (t)− qN (t)‖2
m

]
≤K

(
∆t2 + N2(−2) + 1N≤NwN2(−1−γ)+

N2(−2−r+m)
p + ∆t2N2(−γ+1+m)

w + N2(−γ−1+m)
w

)
.

This completes the proof of Theorem 3.2.

Appendix A. Lemmas. We collect two elementary lemmas used in the proof
of the main theorem.

Lemma A.1. For r ≤ γ + 1,

E sup
0≤t≤T

‖u(t)‖2
r ≤ K(1 + ‖u0‖2

r).

Proof. Examining the nonlinear term in (3.1) under (3.9):

E
[

sup
0≤t≤t′

∑
n

∣∣∣(1 + n2)r/2

∫ t

0

e−(t−s)n2
Fn

(
u(s)

)
ds

∣∣∣2]
≤K

∫ t′

0

(
1 + E

[
sup

0≤s≤t
‖u(s)‖2

r

])
dt
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and the noise term (modes with n 6= 0)

E
[

sup
0≤t≤t′

∑
n 6=0

(1 + n2)r/2
∣∣∣ ∫ t

0

e−(t−s)n2
λ1/2

n dβ(s)
∣∣∣2]

≤4E
[ ∑

n 6=0

(1 + n2)(r−γ)
∣∣∣ ∫ t′

0

e−2(t−s)n2
(1 + n2)γλnds

∣∣∣]
≤

∑
n 6=0

(1 + n2)(r−γ)

n2
(1 + n2)γλn

using (3.14). This is finite if r − γ ≤ 1, so that the Gronwall Lemma completes the
proof.

Lemma A.2. Under the assumptions of Lemma A.1,

E sup
0≤t≤T

‖qN (t)‖2 ≤ K(N2(−2) + 1N≤NwN2(−1−γ) + N2(−2−r)).

Proof. We seek upper estimates on

E
[

sup
0≤t≤T

‖qN (t)‖2
]
.

To do this, estimate the influence of the initial data

∑
N<|n|≤max Np,Nw

E
[

sup
0≤tk≤T

|e−tkn2
un(0)|2

]
=

∑
N<|n|≤max Np,Nw

u2
0,n

≤KN−4
∑

N<|n|≤max Np,Nw

(1 + n2)2u2
0,n.

If u0 ∈ H2(0, 2π), this term is bounded by KN2(−2).
Now the nonlinear terms,

E
[

sup
0≤tj≤T

∑
N<|n|≤Np

∣∣∣ j−1∑
k=0

∫ tk+1

tk

e−(tj−tk)n2
Fn(uN (tk)) ds

∣∣∣2]

≤E
[

sup
0≤tj≤T

∑
N<|n|≤Np

(1 + n2)r|Fn(uN (tk))|2
∣∣∣ j−1∑

k=0

∫ tk+1

tk

(1 + n2)−r/2e−(tj−tk)n2
ds

∣∣∣2]

≤E
[

sup
0≤t≤T

‖uN (t)‖2
r

]
.
∣∣∣ bt/∆tc−1∑

k=0

∫ tk+1

tk

(1 + n2)−r/2e−(tj−tk)n2
ds

∣∣∣2
≤E

[
sup

0≤t≤T
‖uN (t)‖2

r

] (1 + N2)−r

N4
.
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This term is bounded by K N2(−r−2) by applying Lemma A.1. The noise term:

E
[

sup
0≤tj≤T

∑
N<|n|≤Nw

∣∣∣ j−1∑
k=0

( ∫ tk+1

tk

e−(t−tk)n2
λ1/2

n ∆Bk,n

)∣∣∣2]
=4

∑
N<|n|≤Nw

(1 + n2)γλn

∫ T

0

(1 + n2)−γe−2(tj−tk)n2
ds

≤4 1N≤Nw
N2(−1−γ)

∑
N<|n|≤Nw

(1 + n2)γλn.

This completes the proof.
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