next up previous contents
Next: spb : A Singularly-Perturbed Up: AUTO Demos : BVP. Previous: non : A Non-Autonomous   Contents


kar : The Von Karman Swirling Flows.

The steady axi-symmetric flow of a viscous incompressible fluid above an infinite rotating disk is modeled by the following ODE boundary value problem (Equation (11) in LeKe:80 LeKe:80 :

\begin{displaymath}\begin{array}{cl} u_1' &= T u_2, \\ u_2' &= T u_3, \\ u_3' &=...
...gl[ 2 \gamma u_2 + 2 u_2 u_4 - 2 u_1 u_5 \bigr], \\ \end{array}\end{displaymath} (15.7)

with left boundary conditions

$\displaystyle u_1(0)=0, \qquad u_2(0)=0, \qquad u_4(0)=1-\gamma, $

and (asymptotic) right boundary conditions

\begin{displaymath}\begin{array}{cl} & \bigl[ f_\infty + a(f_\infty,\gamma) \big...
...bigr] ~u_4(1) + u_5(1) = 0, \\ & u_1(1) = f_\infty, \end{array}\end{displaymath} (15.8)

where

\begin{displaymath}\begin{array}{cl} & a(f_\infty,\gamma) = \frac{1 }{ \sqrt{2} ...
...4 + 4 \gamma^2)^{1/2} - f_\infty^2 \bigr]^{1/2}. \\ \end{array}\end{displaymath} (15.9)

Note that there are five differential equations and six boundary conditions. Correspondingly, there are two free parameters in the computation of a solution family, namely $ \gamma$ and $ f_\infty$. The ``period'' $ T$ is fixed; $ T=500$. The starting solution is $ u_i=0$, $ i=1,\cdots,5$, at $ \gamma=1$, $ f_\infty=0$.


Table 15.6: Commands for running demo kar.
AUTO -COMMAND ACTION
! mkdir kar create an empty work directory
cd kar change directory
demo('kar') copy the demo files to the work directory
run(c='kar.1') computation of the solution family
sv('kar') save output-files as b.kar, s.kar, d.kar



next up previous contents
Next: spb : A Singularly-Perturbed Up: AUTO Demos : BVP. Previous: non : A Non-Autonomous   Contents
Gabriel Lord 2007-11-19