next up previous contents
Next: Continuation of Central Saddle-Node Up: HomCont Demo : mtn. Previous: HomCont Demo : mtn.   Contents

A Predator-Prey Model with Immigration.

Consider the following system of two equations [#!Sc:95!#]

\begin{displaymath}\begin{array}{rcl} \dot{X} & = & RX\left(1-{\displaystyle \fr...
...- D_1Y - {\displaystyle \frac{A_2ZY^2}{B_2^2+Y^2}}. \end{array}\end{displaymath} (22.1)

Figure 22.1: Parametric portrait of the predator-prey system
\begin{figure}
\epsfysize 10.0cm
\centerline{\epsffile{include/mtn1.ps}}\end{figure}
The values of all parameters except $ (K,Z)$ are set as follows :

$\displaystyle R=0.5,\ A_1=0.4,\ B_1=0.6,\ D_0=0.01,\ E_1=0.6,\ A_2=1.0,\ B_2=0.5,\ D_1=0.15.
$

The parametric portrait of the system (22.1) on the $ (Z,K)$-plane is presented in Figure 22.1. It contains fold ($ t_{1,2}$) and Hopf ($ H$) bifurcation curves, as well as a homoclinic bifurcation curve $ P$. The fold curves meet at a cusp singular point $ C$, while the Hopf and the homoclinic curves originate at a Bogdanov-Takens point $ BT$. Only the homoclinic curve $ P$ will be considered here, the other bifurcation curves can be computed using AUTO or, for example, locbif [#!KhKuLeNi:93!#].



Gabriel Lord 2007-11-19