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Informal description of SPDEs and numerical approximation.
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Informal : will cut some corners |



Some (other) reference books for SPDEs

» Semigroup approach to SPDEs
» Classic reference :
Da Prato, Giuseppe and Zabczyk, Jerzy
Stochastic Equations in Infinite Dimensions
Encyclopedia of Mathematics and its Applications
CUP, 1992. ISBN : 0-521-38529-6
» Chow, Pao-Liu
Stochastic Partial Differential Equations
Chapman & Hall/CRC, Boca Raton, FL
2007, ISBN 978-1-58488-443-9; 1-58488-443-6
» Variational approach
» Prévot, Claudia and Rockner, Michael
A concise course on stochastic partial differential equations
Springer,2007, ISBN = 978-3-540-70780-6; 3-540-70780-8.



» Numerical methods

» Jentzen, Arnulf and Kloeden, Peter E.

Taylor approximations for stochastic partial differential equations
CBMS-NSF Regional Conference Series in Applied Mathematics
SIAM, 2011, ISBN : 978-1-611972-00-9

» Physics approaches

» Garcia-Ojalvo, Jordi and Sancho, José M.

Noise in spatially extended systems

Springer, ISBN 0-387-98855-6

» C. Gardiner

Stochastic Methods: A handbook for the natural and social
sciences

Springer Series in Synergetics

2009, ISBN 978-3-540-70712-7

» SDEs : plenty of choice.

» Oksendal, Bernt,Stochastic Differential Equations,2003.
3-540-04758-1



Background

» PDEs
» ODEs

» SDEs



PDE
Many physical /biological models are described by parabolic PDEs

ur = [Au+ f(u)]  u(0) = uCgiven weD (1)
+ BCs on D bounded specified. f(u) given where u(t,x)

Two typical examples:
» Nagumo equation

up = [ +u(l —u)(u—a)] u(x,t)eR, xe[0,L], t>0
» Allen-Cahn equation
up = [UXX—FU— u3} u(x,t) eR, xe[0,2m), t >0

» We write semilinear PDEs of form

ur = Au + f(u)
as ODE on Hilbert space H (eg L%(D)).
d
d—;’ = —Au+ f(u)



uy = —Au+ f(u)

Note - we could write solution in three ways :
> Integrate :

u(t) = u(0) +/0 (—Au+ f(u))ds

Too restrictive on regularity of u(t).
»Weak solution (multiply by test fn. Integ. by parts).

<d2(ts)”>= —a(u(s),v) + ((u(s)),v),  WeV,

where a(u, v) := (AY2u, AY2v)
»Variation of constants

u(t) = e~*Au(0) + / L (A7 (y(5))ds
0

tA

need to understand semigroup e~ and its properties.



PDE as infinite system of ODEs

ur = —Au+ f(u), u(0)=1d°

» Look at weak solution

<dL;(ts)’ V>: —a(u(s),v) + (F(u(s)),v),  WveV,

» Write u as a infinte series
u(x,t) = udr(x)
keZ
with ¢ e.func. and Ay e.val of A (on D +BCs)
» Subst. into PDE, take inner-product with ¢,

W e + f(u), keZ, flu)=>_ fi(u)dx
p

dt
Get infinite system of ODEs.
(truncation leads to spectral Galerkin approximation).
» Let's look at adding noise to ODE



ODEs — SDEs & Brownian Motion

In each Fourier mode have ODE of the form :Let's add noise

du dp
au f it
” Au+ f(u) + g(u) o~

with Bk(t) Brownian motion.

ﬂ:(ﬁl(t)vﬁ2(t)7"' aﬁn(t))a t>0

Is a (standard) Brownian motion or a Wiener process if for each f3;
» 3(0) =0 as.
> Increments 3(t) — (s) are normal N(0,t —s), for 0 <s < t.
Equivalently 8(t) — 8(s) ~ v/t —sN(0,1).
» Increments 3(t) — 5(s) and B(7) — B(o) are independent
0<s<t<o<T.

Note : A(t) = A(t) — 0 = A(t) — B(0) ~ (0. £).
So E[3(t)] = 0 and variance var(5(t)) = E[3(t)?] = t.



Actually want a W(t) on a filtered probability space and consider
F-Brownian motion.

>

probability space (2, F, P) consists of a sample space €, a
set of events F and a probability measure P.

filtered probability space consists of (2, F, F:, P) where F;
is a filtration of F.

The filtration F; is a way of denoting the events that are
observable by time t and so as t increases J; contains more
and more events.

If X(t), t €0, T] is F; adapted then X(t) is F; measurable
for all t € [0, T] (roughly X(t) does not see into the future).
Finally X(t) is predictable if it is F; adapted and can be
approximated by a sequence X(s;) — X(s) if s; — s for all
se€[0,T] s <s.



» Letting B, = [(tn), ABn ~ VALN(0,1)
Bni1 = Bn + ABn, n=12...,N

()

(a) Two discretised Brownian motions W;(t), Wa(t) constructed
over [0, 5] with N = 5000 so At = 0.001.

(b) Brownian motion W (t) plotted against Wa(t). The paths
start at (0,0) and final point at t = 5 is marked with a *.

(c) Numerical derivatives of W4 (t) and Wa(t) from (a).

» Path §(t) is continuous but not differentiable.



Since §(t) is continuous but not differentiable. Understand

du dp
a4 f ar
” Au+ f(u) + g(u) 0

as integral

u(t) = u(0) + /Ot(/\u(s) + f(u(s)))ds + /(;tg(u)dff(s).

Write as
du = [/\u—i—f( )] dt+g( YdW.
Ito stochastic integral /(t fo
I(t) "=" I|m Zg th—1)ABnn
The " =" is convergence in mean sqaure

E[I|X; — X|[*)] =0, as j— oo



» Look at It6 integrals only.
The Ito integral satisfies a number of nice properties.
» Martingale property that

E] /0 g(s)dp(s)] =

»Ito isometry, given in one-dimension by

el( [ tg(S)dﬁ(S)>2

» But CaIcqus is different. Chain rule :
Suppose % = \. Let ¢(u) = Ju?. Then

d(u) _do du _ du _
gt~ dudr g )
»If u(t) satisfies du = A dt + o dp(t).

= 1,2

The 1t6 formula says that for ¢(u) = 5

o2
do(u) = udu+ > dt

and we pick up an unexpected extra term o2 /2dt.

| = /ot E[g(s)?] ds.



[td Formula

[t6 SDE : du = [Au+ f(u)] dt + g(u)dp
»t6 formula. ¢(t, u) smooth

or written in full

o(t, u(t)) = (0, uo)

+ /0 t ‘2;';(5, u(s)) + ‘2‘5(5, u(s))f(u(s)) + ;guq;(s, u(s))g(u(s))? ds

_|_/0 g—f(s, u(s))g(u(s)) dp(s).

» Two standard applications : linear equations
» Ornstein Uhlenbeck (OU) process and
» Geometric Brownian Motion (GBM)



Example: OU process

du = \p — u)dt + odp(t), u(0) = wp,

for \, u,0 € R.
[t6 formula with ®(t, u) = e* u.

do(t, u) = AeMudt + eMdu+0
and using the SDE
do(t,u) = AeMudt + e (\u — u)dt + odB(t)).

As an integral equation

o(t, u(t))—(0, up) = e Mu(t)—ug = A\ /Ot e ds+o /Ot e* dp(s).

After evaluating the deterministic integral, we find

t
u(t) = e Mug + p(1— e_’\t) + a/ 5= d3(s)
0

and this is known as the variation of constants solution.



u(t) = e Mug + p(l — e ™) + o [ E7Ddp(s)
Using the mean zero property of the It6 integral
u(t) = E[u(t)] = e u(0) + (1 — e )

so that u(t) — w as t — oo and the process is “mean reverting”.
For the covariance, first note that

Cov u(t), u(s) =E[(u(s) — E[u(s)]) (u(t) — E[u(t)])]
—E| /0 A= d3(r) /O e)0dp(r)]

= 0%e MTOE| / ) eMdp(r) / t eMdp(r)].

0 0
Then, can show using the It6 isometry

o2 e—)\(s+t)(e2)\ min(s,t) _ 1)_

Cov u(t), u(s) =X

In particular, the variance
Var u(t) = 0%(1 — e~2*) /2.

Then, Var u(t) — 02/2X and u(t) — N(u,02/2)) in distribution
as t — o0.



Example: OU process

2 15 -1 -05 0 05 1 15
P

(a) (b)

(a) Two numerical solutions of the OU SDE and ODE

u(0) =1, A=0.5and o0 =0.5.

In (b) we examine the distribution at t = 100 showing a histogram
from 2000 different realisations.

» Will OU use later for stochastic heat equation.



Example: Geometric Brownian Motion

du=rudt+oudp(t),

Solution :

u(t) = exp ((r —0%/2)t + aﬁ(t)) up.
By the It6 formula with ®(t, u) = ¢(u) = log(u),

do(u) = rdt + o dj(t) — %02 dt.

Hence,

2

(@) = oty + [ (1= %) o5+ [ o ants

and log u(t) = log(uo) + (r — 302)t + o B(t).
Taking the exponential, get result.



Systems of SDEs : u € RY.

» Given drift f(u) : RY — R
» Diffusion G(u) : RY — RIxm
> B(t) = (B1(t), 2(2), - ., Bu(t)) T € R™.
We write SDE as
du = f(u)dt + G(u)dp(t)

for integral



Approximate the Ito Stochastic DE:
SDE is an integral equation:

/[Au+f ]ds+/ 2(u(s))dB(s).

» Let's get a numerical scheme : 1 step t = At
t

u(t) = u(0) + /Ot()\u + f(u(s)))ds +/O g(u(s))ds(s).

At

At
u(At) = u(0)+/0 [Au(s) + f(u(s))] ds+/ g(u(s))ds(s).

At At
u(At) ~ u(0) + [\u(0) + F(u ]/ ds + g/ (0))/ dB(s).
u(At) ~ u(0) + At [Au(0) + £(u(0))] + g(u(0))AB;.
u(At) = u(0) + At [\u(0) + f(u(0))] + VAtg(u(0))E.

where £ ~ N(0,1).

n_1 n A TN B .~/ NnN1 . A ./ N\ .



Stability: GBM du = rudt 4+ ou dp
From solution of GBM see that E[u(t)?] = e(2’+"2)tu§.
Thus:

E[u(t)?] — 0 provided r + 02/2 < 0.
EM method : upy1 = up + rup At + ou, AB,.

n—1

Up = H (1 + rAt + O'A,BJ') ug.
j=0

Second moment of u, is (using AS; iid)

n—1
E[u] =TT (1 +ra0? +o2a0)) o},
=0

Thus E[u?] — 0 as n — oo if and only if
|(1+rAt)® + 0?At| = 1+ 20t (r + 02 /2 + At r?/2) < 1.

ie get a restriction on step size : 0 < At < —2(r +02/2)/r?.



Convergence: Strong & Weak

» Strong convergence :

1/2
sup_u(ta) ~ il 2 mey = sup_ (Elu(en) — unll})” < A
0<t,<T 0<t,<T

Care about approximating the sample path u(-,w) Euler Maruyama

O(At*/?) multiplicative noise
O(At!) additive noise.
» Weak convergence : Estimate E[¢(u(T))]

E[6(u(T))] - = [E[o(u(T))] — E[s(un)] | + [E[6(un)] - juua]-

weak discretization error Monte Carlo error

Care about the distributions. EM weak error O(At).



Recap

» PDE - uy = [Au+ f(u)]
» Solutions : Weak solution & Variations of Constants
» PDE as infinte system of ODEs

» SDEs : du = [Au+ f(u)] dt + g(u)dW
» Brownian motion & lto integrals

» OU and GBM SDEs
» EM approximation

VI = v ARV (V) + VALg (VS €~ N(O,1).

v

Stability : may need (semi-)implcit method.
Convergence

v

SPDE u; = [Au+ f(u)] + g(u)W;

»Introduce noise and covariance @
»Introduce stochastic integral

» Solution

» Discretization



Some example SPDEs

» What is an SPDE 7
PDEs with forcing that is random in both space and time.
» They include random fluctuations that occur in nature and are

missing in deterministic PDE descriptions.

» Example :
Heat equation with a random term ((¢,x)

ur = Au+ ((t,x), t>0, xeD,

We will choose ¢ = W, where W (t,x,w) is a Wiener process.
Write SPDE as

du= Audt+dW, t>0, xcD,



PDE + Additive Noise
Want to examine effects of noise W(x, t)
du = [Au+ f(u)] dt + g(u)dW

» In time dWW is white (formally derivative of Brownian motion).
» In space either white or colored.

» Additive (or external) noise : g(u) = v constant
eg Allen—Cahn & random external fluctuations :

du = [ug + u— u*] dt + vdW

titlea,

titleh

ylahel

a 0.5
=lahbel

label



PDE + Multiplicative Noise
» Multiplicative (or intrinsic) noise g(u)
eg Nagumo & noise on parmeter o

ur = [uxx + (1l — u)(u — )]

ur = [uxx + u(l — u)(u — a + o W;)]

du = [uxx + u(l — v)(u — )] dt + ou(u — 1)dW

l T T T
— — —0=0
08} o=0.
06|
3
04}
02}
O 1 1 1
0 5 30 35




Vorticity

» model for large scale flows, e.g. related to climate modelling or
the evolution of the red spot on Jupiter.
In two dimensions, the vorticity u := V X v satisfies the PDE

up=¢ecAu—(v-V)u (3)

where Ay = —u, ¢(t,x) is the scalar stream function, and

vV = (w}M —¢x)

» Additive noise captures small scale perturbations.

du = [eAu— (v-V)u dt + o dW(t). (4)



05

X1 X1

Deterministic Stochastic



filtering and sampling

» Suppose we have a signal Y(x), x >0,
dY = F(Y(x)) dx + Vo dfr(x),  Y(0) =0,

f: R — R is a given forcing term,

B1(x) is a Brownian motion,

o controls the strength of the noise.

» Noisy observations Z(x) of the signal Y(x).

dZ = Y(x)dx + /7 dBa(x),  Z(0) =0,

P2(x) is also a Brownian motion (independent of f3;)

~ determines the strength of the noise in the observation.

If v =0, we observe the signal exactly.
» Goal :

Estimate the signal Y(x) given observations Z(x) for x € [0, b].



Can get estimate of signal from long time simulation of

du = [i (Uxx — f(u)f'(u) — gfﬂ(“)) d”’,ly CC]T:_“ dt+v/2 dW(t)
(7)

for (t,x) € (0,00) x [0, b] and where W(t) is a space-time Wiener
process.

Since Y(x) is only Holder continuous with exponent less than 1/2,
the derivative ¥ and the SPDE (7) require careful interpretation.






» We now introduce for SPDEs
» the noise W(t,x,w) = W(t,x) = W(t)

» stochastic It6 integral



Wiener process

» Want to introduce space dependence into Brownian motion.
Instead of working in L?(D) we develop theory on separable Hilbert
space U (so has orthonormal basis).

Denote norm ||-||; and inner product <"'>U

» We start by defining W(t,x) where W has some spatial

correlation.
We define the space L2(Q, H) :

IX[1Z2(,11y = E[(1XI1)?] < oc.



Q-Wiener process

» Q-Wiener process {W(t): t > 0} is a U-valued process.

Each W(t) is a U-valued Gaussian random variable and each has a
well-defined covariance operator.

The covariance operator at t = 1 is denoted Q.

Assumption
QeL(U)is
> non-negative ({u, Qu) >0)
symmetric ({(u, Qu) = (Qu,u))
Q has orthonormal basis { xj}jen of eigenfunctions.
Corresponding eigenvalues q; > 0. Qx; = qjX;-

o0
Z gj < o0.
j=1

v

v

v

Q is trace class i.e.



Let (Q, F, Ft,P) be a filtered probability space.

» The filtration F; is a way of denoting the events that are
observable by time t and so as t increases J; contains more and
more events.

» If X(t), t € [0, T] is F; adapted then X(t) is F; measurable
for all t € [0, T] (roughly X(t) does not see into the future).

Definition (@Q-Wiener process)
Let @ satisfy the Assumption. A U-valued stochastic process
{W(t): t > 0} is a Q-Wiener process if
1. W(0)=0as.,
2. W(t) is a continuous function R™ — U, for each w € Q.
(

3. W(t) is Fi-adapted and W(t) — W(s) is independent of Fs,
s<t,

4. W(t) — W(s) ~ N(0,(t —s)Q) forall 0 <s < t.



@-Wiener expansion

We now characterise a Q-Wiener process in a useful way.

Theorem
Let Q satisfy the Assumption on noise.
Then W(t) is a Q-Wiener process if and only if

W(t) = Z\/(TJXJ'ﬁJ(t)’ a.s., (8)

where (;(t) are iid F¢-Brownian motions.
The series converges in L2(Q, U).

Proof : 1) Let W(t) be a Q-Wiener process.
Since { x;}jen is an orthonormal basis for U,

W(t) = (W(t), X))y X
j=1

Let 5;(t) == ﬁ<W(t),XJ’>U, so that (8) holds.



Sketch of proof

2) Let's show W(t) =32, \/q; x; Bj(t), converges in L2(Q, U).
Consider the finite sum approximation

J
)i= DV G(1) (9)
j=1
» By orthonormality of eigenfunctions x; & Parseval's identity
) J
[wi-whe = > gaer o
ji=M+1
» Each 3;(t) is a Brownian motion. Taking the expectation gives
) J
lwie-wef)] - 5 aelpor] e 3
j=M+1 j=M+1

As @ is trace class, Z ~1Gj <00, and RHS — 0 as M, J — oo.



Example W(t, x)

W(t) :Z@Xjﬁj(t)a a.s.,
j=1
Let's take U = L?(D) for some domain D. Eg D = (0, 1).
We have

oo
W(t,x) = Vg x(x) B(t),

j=1
We can specify eigenfunctions x;(x) and eigenvalues g; with
appropriate decay rate.
» Let's construct W(t) € H§(0,1).
Take x;(x) = V2sin(jrx) and q; = |j|~?*+1%9) for some ¢ > 0.
So get

W(t,x) =Y |j|~C 92 2sin(jmx)B;(t).



W(t,x) =Y |j|~C 92 2sin(jmx)B;(t).

W(t) € H5(0,1).
Check: For r =0 : W(t) € L%(Q,L%(D))

‘WH/_ZD) Z’J‘ 1+6

E[IW[32(p)) = tlil =+,

Check: For r =1: W(t) € L3(Q, H}(D))

= L7 2jn /2 cos(jmx) By (1).

| Wi ||L2(D) CZ ne (2t+1+e) 25( )

E] WXH%2(D)] =C Z elj =+,



Approximation of W(t, x)

Assume eigenfunctions x; and eigenvalues g; of @ are known.
Use finite sum to approximate W(t):

J-1

W(t) = W) = \/ai x; B(1).

]j=

Can compute increments of W by
J-1
WJil(tn_s_l) - WJil(tn) =V Atyef Z \/CTij gjﬁ'
j=1

¢7 ~ N(0,1).
To compute same sample path with larger time step At = KAt ef

k—1

W(t+ At) - W(t) =" (WJ(t+ tnr1) — W (t + tn)).
n=0



Example W(t) € H{(0, a)

W(t)~ W/ (t): Zmﬁsm(m)@(t).

For effiecency use Discrete Sine Transform.
Sample W(t,x) at xx = ka/J, k=1,2,...,J — 1.

>> dtref=0.01; kappa=100; r=1/2; J=128; a=1;
>> bj=get_onedD_bj(dtref,J,a,r);
>> dW=get_onedD_dW(bj,kappa,0,1);



AW N

function bj = get_onedD_bj(dtref,J,a,r)

jj = [1:J-11’; myeps=0.001;

root_qj=jj. -((2*r+1+myeps)/2); ) set decay for H'r
bj=root_qj*sqrt (2*xdtref/a);

Code to form the coefficients b;.

»Inputs are dtref= At,.s, J= J, the domain size a, and
regularity parameter r=r.

»Output is a vector bj of coefficients b;, j=1,...,J — 1.

Here we fix e = 0.01 in the definition of g; using myeps.




O ~NO O WN -

= e
N = O ©

function dW=get_onedD_dW(bj,kappa, iFspace ,M)
if (kappa==1)
nn=randn (length(bj) ,M);
else
nn=squeeze (sum(randn (length(bj) ,M, kappa) ,3));
end
X=bsxfun(@times ,bj,nn);
if (iFspace==1)
dw=X;
else
dW=dst1(X);
end

Code to sample WY=1(t + kA tyer, xi) — WITL(t, x4)

»Inputs are : coefficients bj, kappa = «, a flag iFspace, and the
number M of independent realisations to compute.

»If iFspace=0, the output dW is a matrix of M columns with kth
entry WY(t + kAter, xx) — W/(t,x) for k=1,...,J — 1.

»If iFspace=1 then the columns of dW are the inverse DST of
those for iFspace=0.




titlea

ylabel

xlabel

Approximate sample paths of the Q-Wiener process
W(t) € H(0,1).

(@) r=0and (b) r=2.

Generated with J = 128 and At,es = 0.01.

In each case W(t,0) = W(t,1) = 0.



@-Wiener process in two dimensions
Let D = (0,a1) x (0,a2) and U = L?(D).
Consider Q € L(U) with eigenfunctions
Xjijo (X) = \/%e%ijlxl/al e?m2x2/22 and, for a parameter a > 0
and Aj j, :jl2 +j22, eigenvalues

Gp =€ .

For even integers Ji, b, let

Ji/2 h/2

Wj(tv x) = Z Z V j1j2 Xjio2 (x) leJQ(t)7

A==J1/241 jo=—Jr/2+1

We generate two independent copies of WJ(t,x, «,) using a single
FFT.

>> J=[512,512]; dtref=0.01; kappa=100; a=[2+*pi,2*pi];
>> alpha=0.05; bj = get_twod_bj(dtref,J,a,alpha);
>> [W1,W2]=get_twod_dW(bj,kappa,1);



SO N

function bj=get_twod_bj(dtref,J,a,alpha)
lambdax= 2*pi*[0:J(1)/2 -J(1)/2+1:-1]"/a(1);
lambday= 2*pi*[0:J(2)/2 -J(2)/2+1:-1]1"/a(2);
[lambdaxx lambdayyl=meshgrid(lambday,lambdax);
root_qj=exp(-alpha*(lambdaxx . 2+lambdayy."2)/2); % smooth
bj=root_qgj*sqrt(dtref)*J(1)*J(2)/sqrt(a(1)*a(2));

O OO ~NOOTHS WN

[y

function [dW1l,dW2]=get_twod_dW(bj,h kappa,M)
J=size(bj);
if (kappa==1)
nnr=randn(J(1),J(2),M); nnc=randn(J(1),J(2),M);
else
nnr=squeeze (sum(randn(J(1),J(2) ,M,kappa) ,4));
nnc=squeeze (sum(randn(J(1),J(2) ,M,kappa) ,4));
end
nn2=nnr + sqrt(-1)*nnc; TMPHAT=bsxfun(Q@times,bj,nn2);
tmp=ifft2 (TMPHAT); dWl=real(tmp); dW2=imag(tmp);
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X1 X1 (a)
a =0.05and (b) «=0.5
Computed with J; = Jb =512 and at t = 1.
Both processes take values in H"((0,27) x (0,27)) for any r > 0.



Cylindrical Wiener process

When Q =/, g; = 1 for all j then
[oe)
W(t)=> x;8(t)
j=1

This is white noise in space.

» Analogy with white light : homogeneous mix (g; = 1) of all
eigenfunctions.

» For a Q-Wiener process is coloured noise and the heterogeneity
of the eigenvalues g; causes correlations in space.

Problem:

However Q is not trace class on U so series does not converge.

» Trick :

Introduce U; such that U C U; and Q = I is a trace class operator
when extended to U;.



Definition (cylindrical Wiener process)

Let U be a separable Hilbert space.
The cylindrical Wiener process (also called space-time white noise)
is the process W/(t) defined by

W(t) = xjBi(t), (11)
j=1

where {x;}?2; is any orthonormal basis of U and j;(t) are iid
F#-Brownian motions.

If U C Uj for a second Hilbert space Uj, the series converges in
L2(Q, Uy) if the inclusion ¢: U — Us is Hilbert=Schmidt.



It6 integral
We now define for W(t) Q-Wiener process

() = /O " B(s) dW/(s)

W (t) takes values in the space U.

Will consider SPDEs in a Hilbert space H so want / to take values
in H.

Thus want B that are £(Up, H)-valued processes, for Uy C U.
Definition (L3 space for integrands)

Let Uy = {Ql/zu: u € U} for Q2.

L% is the set of linear operators B: Uy — H such that

) 1/2
1Bl -= (Z HBQI/2XJH2> = |1BQY?lhs(u.1y < oo,

j=1

where x; is an orthonormal basis for U.
L3 is a Banach space with norm |- 2.
0 12



The truncated form WY(t) of the Q-Wiener process is
finite-dimensional and the integral

/OtB AW (s Z/ IWavdss)  (12)

is well-defined.
» We can show the limit as J — oo of (12) exists in L2(£, H).
Define the stochastic integral by

/ot Z/ SIVa xjdpi(s)-  (13)



Semilinear SPDEs

du = [—Au + f(u)] dt + G(u)dW(t),  u(0) = up € H,

Global Lipschitz f : H—+ H, G: H — L%.

Assumption

Suppose H is a Hilbert space with inner product <~7 > and
—A:D(A) C H— H.

Suppose that A has a complete orthonormal set of eigenfunctions
{¢j: j € N} and eigenvalues \j > 0, ordered so that \j 1 > \;.

Example: Stochastic Heat Equation with homogeneous Dirichlet
BCs. Here H = U = L?(0,7),
du = Audt + o dW(t), u(0)= up € L%(0,)
A = —A with domain D(A) = H?(0,7) N H3(0, 7).
Eigenvalues of A are \; = j2. A satisfies the Assumption.

A is the generator of an infinitesimal semigroup S(t) = e~
f =0, and G(u) = o/, so that G(u)v = ov for v € U and we have

ot

tA



Solution: Strong

du = [_Au + f(u)] dt + G(u) dW(t)
Definition (strong solution)

A predictable H-valued process {u(t): t € [0, T]} is called a
strong solution if

u(t) = uo—i-/ot[ Au(s)+f(u ds+/ G(u(s))dW(s), Vtelo,T].

» Too restrictive in practice as need u(t) € D(A).



Weak Solution: du = {—Au + f(u)} dt + G(u) dW(t)

Definition (weak solution)

A predictable H-valued process {u(t): t € [0, T]} is a weak
solution if

(u(t),v) =(uo, v) + /0 {—<u(s),Av> + (f(u(s)), v>} ds
+A%G@@»dngv% Ve e [0, T], v e D(A),

where

A%G( E:/ u(S))V/G X v ) dBi(s).

» ‘weak’ refers to the PDE, not to the probabilistic notion of weak

solution.
» (No condition on du/dt, the test space is D(A), and u(t) € H)



stochastic heat equation (SHE) in one dimension

du = Audt + o dW(t), u(0)= up € L%(0,n)
du = —Audt + o dW(t), u(0)= up € L?(0,7)

—A has e.funcs ¢;(x) = \/2/msin(jx) and e.vals \; = j2 for j € N.
» Suppose for W(t) the eigenfunctions x; of Q are same as the
eigenfunctions ¢; of A.

Weak solution satisfies, v € D(A),

t
(u(t), V>L2(0,7r) =(uo, V>L2(0,7r) +/0 <_u(s)"L\V>L2(0ﬂr) ds
00 t
+Z/O TG (52 V) 1207y 9B (5)-
j=1

Write u(t) = > 72, Bj(t)¢; for j(t) := (u(t), 4j)12(0,m)-
Take v = ¢;, to get

() = 55(0) + /0 (=) (5) ds + /0 o/ dBj(s).



) = 50+ | (A 5(s) ds + / CoyadB(s).j € N

» Hence, Uj(t) satisfies the SDE
dij = =\ dt + o./q; d,Bj(t).

Each coefficient @j(t) is an Ornstein—Uhlenbeck (OU) process
which is a Gaussian process with variance

) o%qj oy
Var((t)) = Kj(l — e 2N,
Jj

By the Parseval identity we obtain for up =0

Ju(e)I? S fap] = 30T (1 e
L2(Q,L2(0,7)) — lj = 2)\J .

j=1 j=1



[o.9]

H“(t)”iZ(Q,B(om)) =E [Z |0(t) ] Z Tq < e_2>\jt) _

Jj=1

> The series converges if the sum 32, g;/); is finite.
» For a Q-Wiener process, the sum is finite because Q is trace
class. Hence solution u(t) SHE is in L2(0, ) a.s.
» For a cylindrical Wiener process, g; = 1 and the sum is only
finite if \; — oo sufficiently quickly.
We have , \; = j? and Zj’il )\fl < o0o. Thus,
”U(t)||%2(Q,L2(o,7r)) < 00. Hence solution u(t) € L?(0,7) as.



SHE in two dimensions

Repeat the calculations with D = (0, 7) x (0, ).
A has evals \j, j, = jZ +j2 and normalised e.funcs ¢, ,, ji,j2» € N.
Assume that @ also has e.funcs ¢;, ;, and e.vals qj, j,.

. o o~
Write u(t) = > 2 1 Uiy jo (t) D) o
Substituting v = ¢;, j, into the weak form, each coefficient i, j,(t)
is an Ornstein—Uhlenbeck process:

dity, j, = —Aj o Ujy jp dt + 0/Qjy jp dBjy (1)

and the variance

2. .
Var(j, () = 9 Gk (1 _ o=t

J1.J2 o2\ - .
J1:J2

F up = 0, E[2,5(t)] — 0 and

o0 o0 2
2 - 0 G, o,
lu()I 22,12y =E[ > |Uj1,j2(t)2] = o (1_e ZAJI,Jzt),
=1 T2

J1,2=1



2 - quleQ S VI
Hu(t)HLQ(Q,B(D)) = Z P — <1 — e 1,02 ) X

2\
Jrp=1 T2

» When Q@ is trace class, the right-hand side is finite.
Solution u(t) € L?(D) a.s.

» For a cylindrical Wiener process (qj, j, = 1), we have
(e e] 1 oo

Aj

1.2

1
5 5 — 0
R+

Ji=1 Ji2=1

and the solution u(t) is not in L2(, L?(D)).

Do not expect weak solutions of SHE to exist in L2(D) in two
dimensions.

» Need to take great care with cylindrical Wiener process !



Mild solution of du = (—Au + f(u))dt + G(u)dW

A predictable H-valued process {u(t): t € [0, T]} is called a mild
solution if for t € [0, T]

u(t) = e Ay te_(t_s)A u(s)) ds te_(t_s)A u(s s
(t) o+/0 f(())d+/0 G(u(s)) dW(s),

where e A

is the semigroup generated by —A.
» Expect that all strong solutions are weak solutions.
» Expect all weak solutions are mild solutions.

» Reverse implications hold for solutions with sufficient regularity.

» Existence and uniqueness theory of mild solutions is easiest to
develop.



In addition to the global Lipschitz condition on G, the following
condition is used.

Assumption (Lipschitz condition on G)

For constants ¢ € (0,2] and L > 0, we have that G: H — L3
satisties

HA(<—1)/2G(U)HL2 <L(1+ |lu]),
° (15)

HA(C—I)/Z(G(U) ~G(W)| ., <Llu—v|, VYuveH.

L3

For ¢ > 1, the operator A¢~1)/2 is unbounded

For ( < 1, it is smoothing

(because AlC—1/2: H — D(AY) C H for a = (1 - ¢)/2 > 0).
Think ¢ =1 - this is OK for @ Wiener process.



Existence and uniqueness

du = [_Au + f(u)] dt + G(u)dW(t),  u(0) = uo € H,

Suppose that A satisfies Assumption on linear operator.
f: H — H satisfies the global Lipschitz condition

G: H — L3 satisfies Assumption on noise.

Suppose that the initial data up € L2(Q, Fo, L2(D)).
Then, there exists a unique mild solution u(t)

u(t) = e Ay, te_(t_s)A u(s)) ds te_(t_s)A u(s S
(1) o+/0 F(u(s)) d +/0 G(u(s)) dW(s),

Furthermore, there exists a constant K7 > 0 such that

< .
tes[l:),pT] [u() 2,1y < KT<1 + ||U0||L2(Q,H)>

Proof: Standard fixed point argument.



Regularity additive noise

u(t)=e " u0+/0 (= SAf(u(s))ds—i—/O e (5 dw(s),

Theorem (regularity in space for additive noise)

Let G(u) =0l and o € R.
If uy € L2(Q, Fo, D(A)), then u(t) € L2(Q, D(AY/?)) for t € [0, T].

So
E[H ()”4/2 =E HAC/z )H] < 00

¢ =1: Q-Wiener noise
Proof Split the mild solution into three terms, so that
u(t) =1+ II+ III, for

t t
I:=e My, 1T ::/ e (E=)AF(u(s)) ds, TII ::/ e (= A5 dW(s).
0 0

» For the first term, since uy € L2(2, Fo, D(A)),
E[He_tAUOHg/Q} < E[||uo||ﬂ < oo and I € L2(Q, D(AS?)).
» The second term also belongs to L2(Q, D(AS/2)).



t
Efjzr) ] = E[H [0 awes

For term III, It0's isometry gives

2 2 " 2 All?
E{”IHHC/J =0 /0 HAC/ o (t=s) B
0

2 ]
¢/2

ds.

Now,

/ ‘ H A2~ (t-5)A ds
0

2 t 2
ds :/ HA(Cfl)/2A1/2ef(tfs)A
L3 0

2
LO

t
<A [Care AR, d

The integral is finite by standard semigroup results.
By Assumptions on G |]A(<*1)/2HLS <00 .

Hence, IIT belongs to L?(Q, D(AS/?)).



Reaction-diffusion equation, additive noise
Consider the SPDE

du = [Au + f(u)] dt +odW(t),  u(0) = up € D(A)

with A = —uy, and D(A) = H?(0,7) N H(0, 7).

The operator A has eigenvalues \; = 2.

» For Q-Wiener process, can take ( = 1 in Assumption 3 on G.
By our additive noise Theorem 7, u(t) € L2(Q, H(0, )).

Our existence uniqueness only gave L2(0, 7) spatial regularity.

» For space-time white noise (i.e., the cylindrical Wiener process),
¢ €(0,1/2), because

IAC=D2G ()| 5 = (Tr ACTD)1/2

and )\(C 2 O;A¢).
> For the SHE in one dimension forced by space-time white noise
takes values in L?(2, HS(0,7)) and has up to a half (generalised)
derivatives almost surely.



Regularity in time

The exponents 1, > below determine rates of convergence for the
numerical methods.

For simplicity assume ug € D(A).
Eg ¢ =1 for Lipschitz G.
Lemma (regularity in time)

For T >0, € € (0,(), and 61 := min{(¢ — €)/2,1/2}, there exists
KgrT > 0 such that

lu(t2) = u(t)ll2,my < Krr(t2 = 1),  0<t << T.
(16)
Further, for 03 := (¢ — €)/2, there exits Krra > 0 such that

Jute) —utl)—/ Guls) aw(s)||,

( )



Proof. (Start)
Write u(t2) — u(t1) = I+ II + III, where

I ::(e_tQA — e_tlA) up, IT := /Ot2 e_(tz_s)Af(u(s)) ds —/Ot1 e_(tl_s)Af(u(s)) ds,
11 = ( / ? e~ G u(s)) dW(s) — / " e G u(s)) dW(s)).

The estimation of I and II like in a deterministic case, except the
H norm replaced by the L2(, H) norm.
For III we write III = III{ + II1,, for

ty
III, ::/ (e_(tQ—S)A _ e_(tl—S)A) G(U(S)) dW(S),
0
[%)
1T, = / e~ (B=9AG (4(s)) dW/(s).
t1

Then use It isometry, assumption on G and standard estimates
from semigroup theory ...
... for three pages.



Numerical methods

» We discretise in space : for example
» Finite differences
» Spectral Galerkin
» Galerkin Finite element
» Discretise in time : for example
» Euler-Maruyama
» Milstein

» Strong convergence
Look at

max_|u(tn) = Gnll 20,1y =  max_E|[u(tn) —

0<t,<T 0<t,<T

Gin||



Finite difference method
Examine reaction-diffusion equation with additive noise

du = [e U + f(u)} dt +odW(t),  u(0,x) = uo(x), (18)

homogeneous Dirichlet boundary conditions on (0, a).

W(t) a @-Wiener process on L2(0, a).

» Introduce the grid points x; = jh for h=a/J and j =0,...,J.
Use centred difference approximation AP ~ A

2 -1
i -1 2 -1
D._ -1 2 -1
AP = ,
-1
-1 2
uy(t) ~ [u(t,x1),...,u(t,xy_1)]" solves

duy = [—EADUJ+f(UJ) dt + o dW,,(t).

W (t) = [W(t,x1), ..., W(t,x;_1)]T.



Discretise in time :

Methods : Euler—Maruyama, Milstein etc

We examine semi-implicit Euler—Maruyama method wtih time step
At >0

» This has good stability properties

Get approximation uy , to uy(t,) at t, = nAt
~1
Ujps1 = (/ + AtsAD) [uJ,n +f(uy,) At + 0 AW,

with uyo = uy(0) and AW, := W (tny1) — Wy(tn).

W (t) = [W(t,x1), ..., W(t,x;_1)]T.



Space-time white noise

The covariance Q =/
» Derive an approximation to the increment W(t,y1) — W/(t,).
» Truncate the expansion of W(t) to J terms.

Take as basis {+/2/asin(jrx/a)} of L%(0, a)

J .
W(t,x) = \/2/aZsin<J7;X) Bj(t),
j=1

for iid Brownian motions §;(t).
» Cov(W(t,x;), W’(t,x)) = E[W(t, ;) W(t, xi)]

2t A . <ij,-> . (jm)
= — sSiIn|{ —— sinf ——|.
a a a

Jj=1

Using x; = ih and h = a/J with a trigonometric identity gives

(1) (2) ) o (29)



Now,

J . Ja m = 0)
Zcos (ﬂrjm) =10, m even and m # 0,
J=1 -1, m odd.
Therefore,
Cov(W(t, x;), W(t, I i (47
ov(W-(t, x;), Xk)) ZSI ( sin| —
becomes

Cov(W(t,x;), W/(t,x¢)) = (t/h) 6ix

forik=1,...,J.
We now use W”(t) when W(t) is space-time white noise.
Spatial Approx. Reaction-Diffusion equation by

duy = |~ APuj + f(uJ)] dt + o dW(t)

for W(t) == [W(t,x1),..., W/(t,x;_1)]T.
And have WY(t) ~ N(0, (t/h) I).



Discretise in time

duy = |~ APuj + f(uJ)] dt + o dW(t)
W(t) ~ N(O, (t/h) ]).

For a time step At > 0, the semi-implicit Euler—-Maruyama method
gives

ujni1 = (I +eAPA) Y uy, + Atf(uy,) + o AW,

and AW, ~ N(0, (At/h)I) iid.



1 | function [t,ut]=spde_fd_d_white(uO,T,a,N,J,epsilon,sigAa,fh
2 |Dt=T/N; t=[0:Dt:T]’; h=a/J;

3 |% set matrices

4 |e = ones(J+1,1); A = spdiags([e -2*%e e], -1:1, J+1, |J+1)
5 | Zcase {’dirichlet’,’d’}

6 |ind=2:7J; A=A(ind,ind);

7 |EE=speye(length(ind))-Dt*epsilon*A/h/h;

8 |ut=zeros(J+1,length(t)); 7/ inttialize wvectors

9 |ut(:,1)=u0; u_n=u0(ind); / set initial condition

10 | for k=1:N, % time loop

11 fu=fhandle(u_n); Wn=sqrt(Dt/h)*randn(J-1,1);

12 u_new=EE\ (u_n+Dt*fu+sigma*Wn) ;

13 ut (ind ,k+1)=u_new; u_n=u_new;

14 | end

Code to generate realisations of the finite difference approximation
homogeneous Dirichlet boundary conditions
space-time white noise.



Galerkin approximation
Based on weak solution

(u(),v) = (o, v>+/ot [~ (uls). Av)+(F(u(s)). V)] ds—i—/ot(G(u(s)) dW(s), v),

where
[ ctusnawtonv) =3 [ {cuehva.v) ass)

» Take finite-dimensional subspace

\7 :NSPan{l/Jl,w%---a!DJ} C D(Al/%) .
Let P be the orthogonal projection P: H — V
Seek u(t) ~ u(t) = ZJ 1 ”J( )Y

Initial data, we take g = P ug

Rewrite as

di = [—Z\a e f(a)} dt + P G(o)dW(t),  ©(0) = fo,
where <AW, v> = <A1/2W,A1/2V>.
» Discretise in time

fnp1 = (1 + AtZ\)*l(an + P f(n) At + P G () AW,,)



1 = (1 + Atl\)‘l(an + P () At + P G(@m) AW,,)

for AW, := ["** dW/(s).
» In practice, it is necessary to approximate G with some
G:RY x H— L2

tn+1

Uyt = (/+At2\)‘1<an+/5f(an)m+/5 G(s; iin) dW(s)),

tn
» Example : G(s; u) = G(u)

»G(s; u) acts on the infinite-dimensional U-valued process W(t).
Difficult to implement as a numerical method.

Usually consider G(s; u) = G(u)P,,, for the orthogonal projection
Py, U — span{x1,..., Xy, } given an orthonormal basis x; of U.



J : spatial discretisation parameter (e.g. 0 = h).

Assumption

For some ¢ € (0, 2], let Assumption on G hold and, for some
constants Kg,0,L >0, let G: Rt x H — L3 satisfy

HQ(S; u1) — G(s; u2)

L2§LHU1—UQH, Vs >0, u,up € H,
0

(19)
and for t, <s < tyi1

|P(6(uts)) - G(siu(t))

< — 0 4+6%).
Lz(Q,Lg)_Kg<|s tl +5> (20)

This assumption holds for G(s, u) = G(u) := G(u)P,, for a broad
class of Q-Wiener processes.



Under set of conditions on the Galerkin subspace V/, we prove
strong convergence.

Theorem (strong convergence)
Let the following assumptions hold:
1. the Assumptions for unique mild solution.
2. the initial data ug € L?(Q, Fo, D(A)).
3. Suppose that AL € L(H) satisfies AXA =1 on V and
A~Y(I — P) = 0 and is non-negative definite. Further, for
some C,0 >0

H (Z\—l - A—l)fH < CO||f|, VfeH

4. Assumption on G for some 6 > 0 and ¢ € (0, 2].
If At/82 is fixed, then for each € > 0, there exists K > 0 such that

_; (=2 4 AP
Jmax_[u(tn) ~ Gnl 20,y gK(At +At).



Proof: Assume without loss of generality that At/ = 1.

Using the notation Sa; := (I + AtA)~!,

Scheme after n steps :
n—1 n—1 g1

fin =38, Puo+ > S1KPF(m) A+ Y Eg;kﬁ/ G(s, iix) dW(s).
k=0 k=0 ty

Subtracting from the mild solution (14),

u(tp) — Up = I+ II + III for

I ::(eft"Auo — ggt:b UO),

II ::§<

=% / o (797 G(u(s)) ~ 33.* PG(s. 1w) ) dW(s).

tit1 . .
/ e (t=9AP £(y(s)) ds — 52X P f(iy) At |,

ty

To treat I and II : like deterministic case.
1T+ 11 2.y < Croar (At +6%) At

for a constant Cr 1.



We break III into four further parts by writing
e =DAG(u(s)) — SA kP G(s, k) = X1 + Xo + Xz + Xq
for
X = (e = e TN Glu(s)), Ko i=(e TN = SR G(u(s)),

X3 ;:Sg;kﬁ(c(u(s)) ~G(siu(t)),  Xa =55 "P(9(s: u(te) - G(s: f’k))-

» To estimate III in L2(Q, H), we estimate III; = Ot" Xi dW(s)
separately using the triangle inequality.

Use Itd's isometry and estimates from semigroup theory and
Gronwall.



Example (reaction-diffusion equation on (0, 1))

du = [—Au + f(u)} dt + G(u) dW(t),

where A = —A with D(A) = H2(0,1) N H}(0,1)

» W(t) a Q-Wiener process.

If G(u)W(t) is smooth ( =1,

Choose G(u) = G(u)Pj, with J,, sufficiently large .
For initial data up € H2(0,1) N H}(0, 1), have

_ - 1/2
oA, [u(tn) = Tnll 2,1y = O(ALY= 4 0).

» Additive noise : improved rate convergence

~ _ 1—e
omax, u(tn) = Tnll 20,41y = O(AL™" +9).

» For additive space-time white noise, W(t) cylindrical Wiener
process, ¢ € (0,1/2) and

o lu(tn) = Tnll 21y = O(AETV* + AL%), e>0.



Spectral Galerkin

du = [_Au + f(u)] dt + G(u) dW(t)

periodic boundary conditions on the domains D = (0, a)
Approximate using the Galerkin subspace

\N/ == V_j = Span{¢17 s 7¢J}
¢; eigenfunctions of A.

J
Pyu=>" g, b = H;H2<u,¢j>, ueH.
j=t /
» Spatial discretisation. P, = P, .
duy = [~ Asus+ Py F(u)] de4-Py G(uy) dW(t),  us(0) = Pyug
» Time discretisation

Ujnil = (I+At A_/)_l(uLn—l—AtPJ f(U_j7n)+PJ G(u)Py, AW,,).



Allen Cahn : du = (uxx + u — u3)dt + dW.
b
@) ®)

0.3

0.2

0.1
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function [t,u,ut]l=spde_AC(u0,T,a,N,Jref,r,sigma)
Dt=T/N; t=[0:Dt:T]’;
/% set Lin Operators
kk = 2*pi*[0:Jref/2 -Jref/2+1:-1]1°/a;
Dx = (1ixkk); MM=-Dx."2;
EE=1./(1+Dt*MM);
% get form of notise
iFspace=1; bj = get_oned_bj(Dt,Jref,a,r);
J set 4mitial condition
ut (:,1)=u0; wu=u0(1l:Jref); uhO=fft(u); uh=uho;
u=real (ifft (uh));
for n=1:N 7 time loop
fhu=fft (u-u."3);
dW=get_oned_dW(bj,1,iFspace ,1);
gu=sigma; % function for notise term
gdWh=fft (gu.*real (ifft(dW))); %
uh_new=EE.*(uh+Dt*fhu+gdWh) ;
uh=uh_new;
u=real (ifft (uh));
ut (1:Jref ,n+1)=u(:,1);
end
ut (Jref+1,:)=ut(1,:); u=[u; u(l,:)]; % periodic




Convergence

Allen Cahn : du = (ux + u — u3)dt + dW.
» Additive noise : improved rate convergence

max_ llu(tn) — a"HLZ(Q,H) =0(At" ™" +9).

0<t,<
» For additive space-time white noise, W(t) cylindrical Wiener
process, ¢ € (0,1/2) and

max_u(tn) = Tnll 20,1y = O(ALTV* 4 A7), e>0.

0<t,<T
o
10
-1
10 3 >— — —— 1
-2
10 1

Error




Galerkin Finite Element

du = [s Au+ f(u)} dt + g(u) dW(t),  u(0) = up € L3(D)

Let V = Vh = space of continuous and piecewise linear functions.
Take uniform mesh of n. elements with vertices

0=xp < -+ < Xn, = a. mesh width h = a/n,.

Finite element approximation wp(t) € V"

J
(%) = 37 ui(£) ¢5(x).

Jj=1
» Space discretisation

dup = |~ & Apup + Py 12 Fun) | dt + Py 12 G(un) dW(2)

where Ay, is defined by (Apw,v) = a(w, v).
» Time discretisation

Uppt1 = (/—i—AtEAh)il <Uh,n+Ph,L2 f(uhm) At—i—Ph?Lz g(uhm) AW,,)



Equ. for coefficients

J

un(t.x) = 3 ui(8) ¢5(x)

j=1

Note that P, : U — span{x1,...,xy,} and P;: H — Vh .
Distinct operators.
> Let up(t) := [ur(t), ua(t),. .., uy(t)]". Then, we get

Mduy, = [—s Kup, + f(u,,)] dt + G(up) dW(t),

f(up) € R has elements f; = (F(un); D) 12(0,)-

M is the mass matrix with elements m;; = (i, $))12(0,2)
K is the diffusion matrix with elements kj; = a(¢;, ¢;).
Finally, G: RY — L(U,R/)

and G(up)x has jth coefficient

(G (un)x, ¢j>L2(0,a)

for x € U.



Time discrete

Mduy, = [— e Kuy, + f(uh)] dt + G(up) dW(t),

» Use semi—implicit Euler—Maruyama

(M + Ate K)uh,,,+1 = MUh,n + Atf(uh,,,) + Gh(uh,,,) AW,

» The term Gp(up ) € R/ has j, k entry <G(Uh,n)Xk,¢>j>L2(0 2)
» Term AW, is a vector in R% with entries

<W(tn+1) - W(tn)7 Xk>L2(O,a) for k = 17 SRR -/W-

» Practical computations:

Write the Q-Wiener process W(t) as series.

Then Gp(up,,) AW, is found by multiplying the matrix Gp, by the
vector of coefficients

[Var(Br(tar1) = Bitn)). - -, /G, (B, (tns1) = Bu, (ta)] T



Stochastic Navier Stokes:

(@)

05




Numerical Convergence

We approximate

1/2
HU( T) Up N”L2(Q L2(0,a) < Z ref - ufTN”é(O,a)) :
) (21)

<



Finite element and semi-implicit Euler approximation of the
stochastic Nagumo equation.
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log log plot of the ﬁpproximation of Ju(1) — Uh,NHB(%,tL?(o,a))
(a) the spatial mesh size h is varied and

(b) as the time step At is varied.

Multiplicative noise gives errors of order AtY/?

Additive noise gives errors of order At.



Exponential integrator for additive noise

The semi-implicit Euler—Maruyama method uses a basic increment
AW, to approximate W(t).

An alternative time stepping method :

use the mild solution/ variation of constants formula for SPDEs.

u _ tAu te(t—s)A u ! (t—s)A u )
(t)=e (0)+/0 f( (s))ds+/ e g(u(s))dW(s)

0

Consider discretization in space via : uy(t) = ZJ 1 0i(t) 9.
The variation of constants formula in each mode with t, = nAt

th+1 ~
B (tri) = € 2V (e) + [ e IV () ds
th

th1
—l—a/ ef(t”“*s)’\f\/ajdﬂj(s).
th



To obtain a numerical method, we approximate f;(u,(s)) by

A

fi(uy(ts)) for s € [tn, thy1) and evaluate the integral, to find
th+1 ~ 1 _ e*At)\J ~
—\tn417— Aj ~
[ et o) o5 = E S (i),
tn J
For the stochastic integral, we usually approximate
e (tn1-9)X ~ e~ 1114 and use a standard Brownian increment.

However,
t 2 —2t\
1—
Jlf o] -5
0

2
The stochastic integral fot e~5dB;(s) has distribution
N(0, (1 — e=2tA) /2]\).
Hence can generate approximations ij , to U(t,) using

Ath 1 _ e—At>\j R
oD fi(usn) +obiRin  (22)

LA/j,n-i—l =€ Jupj+ )
)\J

where by = \/q;(1 — e~22t%)/2); and R; , ~ N(0,1) iid.
» Advantage : samples the stochastic integral term exactly.
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