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Abstract

Moment closure approximations are used to provide analytic approximations to non-linear
stochastic population models. They often provide insights into model behaviour and help validate
simulation results. However, existing closure schemes typically fail in situations where the population
distribution is highly skewed or extinctions occur. In this study we address these problems by
introducing novel second- and third-order moment closure approximations which we apply to the
stochasticSI and SIS epidemic models. In the case of theSI model, which has a highly skewed
distribution of infection, we develop a second-order approximation based on thebeta-binomial
distribution. In addition, a closure approximation based on mixture distribution is developed in
order to capture the behaviour of the stochasticSIS model around the threshold between persistence
and extinction. This mixture approximation comprises a probability distribution designed to capture
the quasi-equilibrium probabilities of the system and a probability mass at 0 which represents the
probability of extinction. Two third-order versions of this mixture approximation are considered in
which thelog-normal and thebeta-binomial are used to model the quasi-equilibrium distribution.
Comparison with simulation results shows: (1) the beta-binomial approximation is flexible in shape
and matches the skewness predicted by simulation as shown by the stochasticSI model and (2)
mixture approximations are able to predict transient and extinction behaviour as shown by the
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stochasticSIS model, in marked contrast with existing approaches. We also apply our mixture
approximation to approximate a likelihood function and carry out point and interval parameter
estimation.

© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic models are useful in epidemiology and ecology, and are used widely (Isham,
1991; Allen and Cormier, 1996; Bolker and Pacala, 1997; Filipe and Gibson, 1998; Marion
et al., 1998; Matis and Kiffe, 1999; Bauch and Rand, 2000; Keeling, 2000). Usually, the
transition probabilities exhibit non-linear dependence onpopulation size or number of
infectives which makes the resultant stochastic processes analytically intractable. Hence,
techniques of approximation are needed to capture the underlying behaviour of the
stochastic processes. Linearisation isone such approximation, where the behaviour of
small stochastic fluctuations can be examined around a fixed point of the deterministic
dynamics (Bailey, 1963). An alternative approach is to analyse the quasi-equilibrium
probabilities which give a picture of the distribution independent of time and conditional on
extinction not having occurred (Renshaw, 1991). Both linearisation and quasi-equilibrium
probabilities are limited in their application to regions close to the fixed points or at
equilibrium.

In contrast, closure methods are based on equations describing the temporal evolution of
moments or cumulants and in principle apply to both transient and equilibrium dynamics.
One such widely used closure method isthe cumulant truncation procedure (Matis and
Ki ffe, 1996) where the cumulant functions of say orderk are approximated by setting
all cumulants of order higher thank to 0. Renshaw (1998)has shown that there is a
natural distribution associated with cumulant truncation. This saddlepoint approximation is
obtained by applying the method of steepest descents to the truncated cumulant generating
function and can be applied in multivariate situations (Renshaw, 2000). In our study, we
follow an alternative route using moment closure approximation based on distributional
assumptions, a technique introduced byWhittle (1957) which has been widely used
in recent years (Isham, 1991; Marion et al., 1998; Keeling, 2000; Nåsell, 2003). Most
commonly in these approximations, the population distribution is only described by the
first- and second-order moments and description of extinction or bimodality is problematic.
Thus, we explore the use of moment closure usingmixture approximations to population
distributions. Many existing methods of second-order approximation also have difficulties
in describing highly skewed distribution; hence we consider the application of a novel
second-order approximation based on the beta-binomial distribution.

Two generic epidemic models are studied: the stochasticSIS (susceptible–infected–
susceptible), asan example which exhibits extinction, and the stochasticSI
(susceptible–infected), a special case of theSIS, used as acase where the infected
population exhibits a highly skewed distribution but totality of infection is guaranteed.
Depending on the disease transmission rate, theSIS model exhibits meta-stable persistence
of disease, rapid extinction or a critical region corresponding to the border between the two
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regions. BothSI andSIS models have been used before in other studies in either stochastic
or deterministic form, for exampleJacquez and Simon (1993), Allen and Cormier (1996)
andNåsell (2002). In Section 2, we describe theSIS model, present some simulation results
and show how a system of moment equations is obtained from the stochastic model. The
second-order moment closure approximations are described inSection 3where various
methods of closure are shown. Here, we present theSI model, as an ideal starting point
for illustration of problems with existing second-order moment closure approximations.
In Section 4we introduce the mixture approximations and compare the results with the
simulation results from the stochasticSIS model. As an example of an application to
inference we apply our mixture approximation to estimate parameter likelihood for theSIS
model from sparsely sampled data and this is presented inSection 5. Finally in Section 6,
we presentour conclusions based on the results discussed inSections 3–5.

2. SIS model

A stochastic SIS epidemic model with fixed population size,N , is considered here
where thenumber of infected individuals at timet is denoted byn(t) and the number
of susceptibles at timet is N − n(t). Infection and recovery during a small time interval
(t, t +�t) are determined by the following probabilities:

Prob[δn(t +�t) = 1] = αn(N − n)�t ≡ ψα(n)�t (1)

Prob[δn(t +�t) = −1] = βn�t ≡ ψβ(n)�t (2)

where�t is sufficiently small that multiple events which occur with probabilityO(�t2)

may be ignored. The dependence on time is implicit, throughn(t). Here the parameterα is
thecontact rate andβ is the individualrecovery rate. The inter-event time is exponentially
distributed with rate R = βn + αn(N − n) and the nature of the event will either be an
infection with probabilityαn(N − n)/R or a recovery with probabilityβn/R (Renshaw,
1991). Without loss of generality, we setβ = 1 throughout so that time units are equal to
the expected period between infection and recovery (e.g.Filipe and Gibson, 1998).

Fig. 1 uses parameter values representative of three regions, namely the subcritical
(α = 0.06), which has a mode atn = 0 showing rapid extinction; critical(α = 0.10),
where it is seen that the distribution is bimodal with a probability mass atn = 0 and a
non-symmetric unimodal contribution top(n) atn > 0; and meta-stable(α = 0.30)where
the histogram is clustered nearern = 20 meaning that extinction is rare in the finite time
considered. However, ast → ∞, ultimate extinction is assured. In all cases,N = 20.

2.1. Moment evolution equations

For the model described by Eqs. (1) and (2), let pt (n) bethe conditional probability that
there aren infectives at timet given that there aren0 infectives at timet = 0 (Cox and
Miller, 1965). Taking the limit as�t → 0, the forward equation obtained is

dpt(n)

dt
= pt(n − 1)ψα(n − 1)− pt(n)ψα(n)

+ pt(n + 1)ψβ(n + 1)− pt(n)ψβ(n). (3)
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Fig. 1. Single realisations of the stochastic process ((a)–(c)) and histograms representing the number of infectives
((d)–(f)) att = 50 from 10,000 simulations. Graphs (a),(d) represent the subcritical region(α = 0.06) where the
epidemic quickly dies out (a) and there is a mode at 0 meaning that all realisations have gone extinct (d); graphs
(b), (e) represent the critical region(α = 0.10) where theepidemic persists for a short period of time before it dies
out (b) and some of the realisations persist longer (e); graphs (c), (f) represent the meta-stable region(α = 0.30)
where the epidemic has reached equilibrium (c) and extinction is rare (f).

whereψα and ψβ are as in Eqs. (1) and (2). The evolution of the epidemic can be
described from the evolution of either the raw moments or the cumulants. For example,
the first moment or cumulant describes the expected number of infectives or susceptibles.
Cumulants have theoretically useful properties and the first four cumulants have clear
interpretations. Equivalently, we work with raw moments which are also useful and have
functional relations with cumulants.

As shown inAppendix A, the equation describing the rate of change of thekth moment
(Goel and Richter-Dyn, 1974) is

dE[nk(t)]
dt

=
k−1∑
r=0

(
k
r

)
(E[nrψα] + (−1)k−r E[nrψβ ]). (4)

If ψα andψβ are linear functions ofn, from (4) we obtain an equation describing the
rate of change of thekth moment depending only on the firstk moments. Hence, the set
of equations can be solved numerically for any given initial conditions and any finitek.
However, thisdoes not hold ifψα or ψβ are non-linear functions ofn. For example, for
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the SIS model used in our study, we can see thatψα is non-linear, and we have a set of
ordinary differential equations (5)–(7), which are open. The equation describing the rate
of change of thekth moment depends on the(k + 1)th moment, and an infinite set of
coupled differential equations is generated. This problem of requiring closure is common
to all non-linear stochastic processes.

The ordinary differential equations describing how the first, second and third moments
of the stochastic process evolve over time are obtained from (4) by making the substitutions
ψα = αnN − αn2 andψβ = βn for k = 1,2 and3:

dE[n(t)]
dt

= (αN − β)E[n(t)] − αE[n2(t)] (5)

dE[n2(t)]
dt

= (αN + β)E[n(t)] + (2αN − α − 2β)E[n2(t)] − 2αE[n3(t)] (6)

dE[n3(t)]
dt

= (αN − β)E[n(t)] + (3αN − α + 3β)E[n2(t)]
+ (3αN − 3α − 3β)E[n3(t)] − 3αE[n4(t)]. (7)

In order to proceed, the system of differential equations for the firstk moments needs
to be closed. These differential equations can also be written as cumulant functions and
one way of closing the system of equations is to approximate the cumulant functions
of order k with cumulants of order higher thank set to zero, a technique known as
the cumulant truncation procedure (Matis and Kiffe, 1996). However, we employ an
alternative approach whereby we assume a particular distribution for the variable of
interest. This assumption imposes a functional relationship between the(k + 1)th moment
and the lower order moments. It is this functional relationship that enables us to close the
system of moment equations. In either case, the resulting closed system can then be solved
numerically. Because of the functional relationship there is no disadvantage in using the
raw moments. However, the reader should note that this typically takes higher numerical
valuesthan central moments or cumulants. Useof the latter is preferred when working
with truncation approaches to closure. In the following section, wediscuss problems
with existing closure approximations and introduce the beta-binomial approximation, and
Section 4introduces the mixture approximations.

3. Two-parameter approximating families of distributions

Consider second-order moment closure schemes whereE[n3(t)] can be approximated
as a function of E[n(t)] and E[n2(t)] by assuming thatn is governed by an
appropriate distribution function, the derivation of which is shown inAppendix B
for normal, log-normal and beta-binomial approximations. Both the normal and log-
normal approximations have been used previously (Whittle, 1957; Isham, 1991; Keeling,
2000). Since the normal distribution has zero skewness and its range has neither an
upper nor lower bound, using a normal distribution may not be entirely appropriate in
approximating the distribution of the number of infectives in a population of fixed size.
This inappropriateness is illustrated in the following subsection, in the case of theSI
model. The log-normal distribution, becauseit exhibits skewness and has a non-negative
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support, gives a more appropriate description of population variables. The fact that it too
does not have an upper bound is ignored, as the primary interest in this study is in the
subcritical and critical regions exhibited by theSIS model. However, we also consider a
novel second-order approximation based on the beta-binomial distribution which does have
an upper bound, and it is a counting distribution with fixed population size and support for
aggregation of ‘successes’, i.e. infections.

To illustrate the application of the second-order beta-binomial approximation to a set of
observed data (Kleczkowski et al., 1996; Gibson et al., 1999), we present theSI model in
the following subsection, with comparisons to the results from the existing second-order
normal and log-normal approximations. Subsequently inSection 3.2, the results obtained
by applying the beta-binomial approximation to theSIS model are discussed and compared
with results from the log-normal approximation and the simulations.

3.1. An illustration of second-order approximation: the SI model for a fungal plant
epidemic

Kleczkowski et al. (1996)carried out experiments on radish seedlings by inoculating
them with the pathogenRhizoctonia solani Kühn, a fungus that attacks root vegetables.
They monitored 10 microcosms, each containing 50 seedlings, and recorded the number
of infected seedlings daily. Five of the microcosms were also exposed to the antagonistic
fungusTrichoderma viride Pers ex Gray, which is thought to have a controlling effect on
R. solani.

Gibson et al. (1999)fitted a stochastic model to these data, which accounted for
infection by primary sources at rateαp—that is, the initial inoculum—as well as by the
secondary sources that we have considered so far in this paper, representing infection via
an already-infected plant, at rateα. As theplants do not recover from the infection, we set
β = 0. The model also includes time-varying susceptibility of the plants, this being e−vt .
Infection is then governed by

Prob[δn(t +�t) = 1] = (αp + αn(t))(N − n(t))e−vt�t . (8)

The time-varying susceptibility can be easily accommodated by rescaling time as
τ = (1 − e−vt )/v.

We derive the following equations for the rate of change of the first- and second-order
moments ofn(τ ) with respect toτ , which are analogous to (5) and (6):

∂E(n(τ ))

∂τ
= αp N + (αN − αp)E(n(τ ))− αE(n2(τ )) (9)

∂E(n2(τ ))

∂τ
= αp N + (αN + (2N − 1)αp)E(n(τ ))

+ ((2N − 1)α − 2αp)E(n
2(τ ))− 2αE(n3(τ )). (10)

By making the assumption thatn(τ ) comes from a distribution with two time-varying
parameters, wecan writeE(n3(τ )) in terms of the first two moments ofn(τ ), as described
in Appendix B, and substitute this expression in (10). This means that we can use some
numerical method to evaluate approximations to the first two moments over time, for a
given parameter set{αp, α, v} and the initial condition that no seedlings were infected
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Fig. 2. The distribution of the number of radishes infectedby damping-off in the absence ((a)–(c)) and presence
((d)–(f)) of the antagonistic fungusT. viride, at 1 ((a), (d)), 5 ((b), (e)) and 15 ((c), (f)) days after the first
emergence of seedlings. The initial condition is that the plants are all disease free (i.e.n(0) = 0). The histograms
represent the average frequencies from a series of 3×106 simulations, the curves our approximations. Continuity
correction has been used for the continuous distributions; however, we represent all three approximations as
continuous curves for clarity of comparison. Both simulations and moment closure approximations make use
of the maximum likelihood parameter estimates found byGibson et al. (1999), thesebeing (αp, α, v) =
(0.0265, 0.0118, 0.167) in the absence ofT. viride and(0.0074, 0.0102, 0.127) in its presence.

at the start of the epidemic (i.e.n(0) = 0). Using the parameter values estimated by
Gibson et al. (1999), we compare these closure approximations to simulated realisations
of the model. The simulations and approximations based on normal, log-normal and beta-
binomial forms are plotted inFig. 2.

As can be seen, the beta-binomial approximation captures the dynamics of the evolution
of the true probability mass function far better than either the normal or log-normal
approximations, its shape being far more flexible.

3.2. Second-order approximation results for the SIS model

Having seen some encouraging results in the case of theSI model, we now consider
approximating the more complex behaviours of theSIS model where we have the
subcritical, critical and meta-stable regions.
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Fig. 3. Second-order approximation and stochastic simulation: expected number of infectives, (a)–(c), and
variance, (d)–(f), from closure approximations and stochastic simulations. Subcritical region: (a), (d):α = 0.06;
critical region: (b), (e):α = 0.10; meta-stable region: (c), (f):α = 0.30.

As seen inFig. 3, the beta-binomial approximation gives reasonable estimates in the
subcritical but not the critical region and the log-normal one gives poor estimates in both
regions. Both approximations perform well in the meta-stable region but predict indefinite
persistence. The beta-binomial and log-normal approximations are broadly comparable in
the critical and meta-stable regions. Overall, second-order approximations do not give a
good description of extinction in the subcritical and critical regions for theSIS model.
Thus, in the next section a third-order closure approximation is developed in the hope of
providing an improved description of these regions.

4. Three-parameter approximating families of distributions: SIS model

In order to obtain an improved description of the transient aspects of the stochastic
process, a novel closure approximation is developed in which the number of infectives
is assumed to be described by a distribution which is a mixture of mass atn = 0 and a
probability distribution representing extant realisations. This form of mixture distribution
is also termed a zero-modified distribution (Johnson et al., 1992) or zero-inflated and
used to model count data (Ridout et al., 1998). A major advantage of this mixture
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Fig. 4. Mixture approximations and stochastic simulations: expected number of infectives, (a), (b), and variance,
(c), (d), from mixture approximations and stochastic simulations. Subcritical region: (a), (c):α = 0.06 and critical
region: (b), (d):α = 0.10.

approximation is that it estimates the probability of extinction in the critical and meta-
stable regions which the second-order approximations shown inFig. 3fail to do. Therefore,
it allows prediction of the extinction probability, the transient distribution and the quasi-
equilibrium distribution. For this study, we use both log-normal and beta-binomial mixture
approximations.

In general, the probability function of this mixture distribution is represented by

f (n) = pπ1(n)+ (1 − p)π2(n)

whereπ1(n) = δn,0 (Kronecker delta) andπ2(n) is any probability mass function on
0 ≤ n < ∞. Thus,E[nk] = (1 − p)Eπ2[nk]. If π2 is from a two-parameter, say(µ, ν),
family of distributions, then the mixture defines a third-order approximation since in the
generic casep, µ andν are determined by solving equations for three values ofk. Thus,
the mixture distribution may be determined by the first-, second- and third-order moments,
E[n], E[n2] andE[n3]. Therefore, E[n4(t)] in (7) is approximated by a function ofE[n],
E[n2] and E[n3]. The form of this approximation is shown inAppendix Cfor both the
log-normal and beta-binomial mixtures.

The results of both third-order approximations for theSIS model are compared with
stochastic simulation results inFigs. 4and5. There isimprovement for both mixturesover
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Fig. 5. Mixture approximations and stochastic simulations: expected number of infectives, (a), (b), and variance,
(c), (d), from mixture approximations and stochastic simulations in the meta-stable region:α = 0.30. Graphs
(a), (c) show meta-stable persistence obtained by log-normal mixture and beta-binomial mixture approximations
as compared to simulations on a shorter timescale and (b), (d) show long term behaviour predicted by
approximations as compared to simulations.

the second-order approximations in the subcritical region where the log-normal mixture
is able to predict extinction and the beta-binomial mixture predicts extinction on a more
accurate timescale than the corresponding second-order approximation. Furthermore, in
this region, the estimated variances also agree with stochastic simulation. In the critical
region, there is again a large improvement for both mixtures as they are able to capture
the behaviour shown by stochastic simulation, which can be interpreted as short term
outbreaks. Unfortunately, both mixtures estimate extinction of the outbreaks on a slightly
shorter timescale than that observed in stochastic simulations. In the meta-stable region,
the behaviour shown by the mixtures is qualitatively correct but it is unable to mimic
the observed meta-stability of the epidemic on a longer timescale as shown in graphs
(b), (d) of Fig. 5. Both log-normal and beta-binomial mixtures tend to overestimate the
probability of extinction and therefore underestimate the time to extinction. In fact both
mixture approximations capture well the qualitative behaviour of the stochastic model but
tend to underestimate the time to extinction.

To illustrate this more clearlyFig. 6 shows thephase plot of expected number of
infectives versus extinction probability. In both subcritical and critical regions, it can
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Fig. 6. Diagrams of extinction probability: (a)–(c) show the expected number of infectives versus extinction
probability and (d)–(f) show the second moment versus extinction probability, obtained from mixture
approximations and stochastic simulations for (a) the subcritical region(α = 0.06), (b) the critical region
(α = 0.10), (c) the meta-stable region(α = 0.30).

be seen that once again the beta-binomial mixture is the better approximation. In the
meta-stable region, both mixtures are able to match the simulation results for extinction
probability >0.05. In graph (c) ofFig. 6, the resultfrom stochastic simulation shows that
the expected number of infectives is a linear function of the probability of extinction.
This is due to the large rate of infection whenα = 0.30 which speeds the disease to
reach endemic levels that persist over a long time(t ≈ 6 × 107). For theSIS model
considered in our study, the quasi-equilibrium distribution is attained relatively quickly
in the meta-stable region. Thus the mean conditioned on non-extinction is simply the mean
of the quasi-equilibrium distribution,I0. Thereforefor a given probability of extinction p,
E[n] = I0(1 − p). Although the expected time to extinction is poorly estimated by our
mixture approximations in the meta-stable region, graph (c) shows that they are able to
predict the relationship between probability of extinction and expected epidemic size seen
in stochastic simulations. Graphs (d)–(e) ofFig. 6show that the second moment predicted
by beta-binomial mixture approximation is able to track the simulation results for the
subcritical and critical regions. Both mixtures are able to match the simulation results in the
meta-stable region as seen in graph (f). These results show that the mixture approximations
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Fig. 7. Comparison of theoretical, beta-binomial mixtureand log-normal mixture quasi-equilibrium probabilities:
subcritical region: (a):α = 0.06; critical region: (b):α = 0.10; meta-stable region: (c):α = 0.30.

are able to match the main features of the quasi-equilibrium distribution of the stochastic
process, at least in terms of the lower order moments. A comparison of the beta-binomial
mixture andthe log-normal mixture probability functions with the theoretical probabilities
from the stochasticSIS model is shown inFig. 7. Theprobabilities shown are the quasi-
equilibrium probabilities meaning that they are conditional on extinction not having
occurred (Renshaw, 1991). The beta-binomial mixture distribution is able to capture
the dynamics of the theoretical probability mass function of the stochastic model better
than the log-normal mixture distribution inboth the critical and meta-stable regions. In
summary, the mixture distributions are able to match the quasi-equilibrium distribution of
the stochastic process.

5. Application to inference

Here we further demonstrate the utility of our mixture approximation by showing how
it can be used to construct a reliable approximation to a likelihood function.

Consider a set of data,n = {n(ti ) : i = 0,1, . . . , k}, generated from the stochasticSIS
model with parameterα. The parameter likelihood,L(α; n), can be calculated using the
Markov property as the product of probabilities of transition between the observed states
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and can be written as follows:

L(α; n) = Prob(n | α) =
k∏

i=1

Prob(n(ti ) | n(ti−1), α). (11)

For convenience, consider the log-likelihood,


(α; n) =
k∑

i=1


(α; n(ti ) | n(ti−1)) =
k∑

i=1

log(Prob(n(ti ) | n(ti−1), α)).

The full log-likelihood could be calculated if we had the complete data set recording
every event. In this case the contribution to the log-likelihood for every event of the data
setn is calculated usingψα andψβ as follows:


(α; n) =
k∑

i=1

(−(ψα(i)+ ψβ(i))(ti − ti−1)+ logψ(i) (12)

whereψ(i) isψα(i) for an infection andψβ(i) for a recovery.
Since it is often the case that we have incomplete data set (e.g. observations recorded

at fixed intervals), approximations to the transition probabilities, Prob(n(ti ) | n(ti−1), α),
are needed. Thus, in the log-likelihood function, (11), these are approximated from our
log-normal mixture distribution and moment equations. Since the approximated function
requires fixed initial conditions(n(ti−1)), the beta-binomial mixture approximation is
not suitable here. The results obtained using the log-normal mixture approximation are
compared to full log-likelihood, (12).

For either case approximate confidence intervals forα can be derived on the basis of
first-order asymptotic theory (Barndorff-Nielsen and Cox, 1994). If α̂ is the value ofα that
maximisesl(α) andα0 is the true value ofα, then an approximate confidence interval for
α can be obtained using the pivotal quantity

2{l (̂α)− l(α0)} ∼ χ2
1 .

Hence, we obtain a 95% confidence interval forα by considering the corresponding
values of the likelihood that fall within the range of approximately 2 units from the
maximum likelihood value.

Maximum likelihood parameter estimates and associated confidence intervals obtained
are given inTable 1. The results shown are obtained by applying the mixture approximation
to a set ofdata generated from the stochasticSIS model with the three values ofα as
before. The data points were recorded at equal intervals for all three regions and for the
subcritical and critical regions observations ended only once extinction had occurred. In
order to calculate the full log-likelihood, every event was recorded.

A plot of the standardised log-likelihood estimates obtained by application of the mix-
ture approximation to the same data is given inFig. 8. The full log-likelihood is also
shown as a comparison to the log-likelihood obtained from the log-normal mixture ap-
proximation. It is seen that the log-normal mixture approximation gives a good param-
eter estimation in both the subcritical and meta-stable regions as seen in graphs (a) and
(c). When the frequency of sampling is increased, it shows what might be intuitively
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Table 1
Point andinterval estimates forα from the full log-likelihood function and mixture approximation

Subcritical Critical Meta-stable

Approximation MLE 0.058 0.100 0.293
95% C.I. (0.045, 0.070) (0.080, 0.122) (0.203, 0.423)

Approximation MLE 0.058 0.089 0.300
(increased data points) 95% C.I. (0.046, 0.070) (0.078, 0.100) (0.265, 0.339)

Full log-likelihood MLE 0.057 0.103 0.300
95% C.I. (0.045, 0.072) (0.095, 0.112) (0.286, 0.315)

Fig. 8. Plots of the standardised log-likelihood function: comparison ofthe log-normal mixture approximation
with full log-likelihood: (a) subcritical region(α = 0.06), (b) critical region (α = 0.1), (c) meta-stable region
(α = 0.3). The true parameter values are indicated in the graphs by triangles.

expected where the estimates from our mixture approximation converge towards the full
log-likelihood. From both the point and interval estimates and the log-likelihood function
plot, we see that the mixture approximation method agrees closely with the full log-
likelihood in these regions. In the criticalregion, the log-normal mixture gives good
estimates when the sample size is small. When the frequency of sampling is increased
(in this case when some of the samples taken come after the time when the infection starts
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going extinct), the peak, as shown in graph (b), shifts to the left, slightly underestimating
the contact rate. To investigate coverageproperties of confidence intervals constructed
using the full and approximated log-likelihood,we simulated 10,000 realisations for each
of the three parameter regions. The coverage properties for 95% confidence intervals
based on the full log-likelihood for the subcritical, critical and meta-stable regions are
0.9332± 0.0050, 0.9214± 0.0054 and 0.9457± 0.0045 and for 99% confidence intervals
they are 0.9841± 0.0025, 0.9785± 0.0029 and 0.9893± 0.0021. As before, for the
approximated log-likelihood, the data points were recorded at equal intervals. The coverage
properties for 95% confidence intervals based on the approximated log-likelihood for
the subcritical, critical and meta-stable regions are 0.6266± 0.0097, 0.6449± 0.0096
and 0.7307 ± 0.0089 and for 99% confidence intervals they are 0.7750 ± 0.0084,
0.7291±0.0089 and 0.8497±0.0072. The coverage properties based on the approximated
log-likelihood are narrower than the full log-likelihood. These results indicate that the
approximated intervals are optimistic (too narrow) but the asymptotic results may not be
very appropriate inthis situation. Nevertheless, the mixture approximation can be applied
to infer model parameters from observed data.

6. Conclusions

In this paper we have introduced a new second-order moment closure approximation
and applied this to theSI model. The approximation (which assumes that the number
of infectives follows a beta-binomial distribution) agrees well with the true frequencies
obtained by simulation, and offers a considerable improvement on existing second-
order approximations based on the normal or log-normal distributions. The beta-binomial
approximation may be similarly applicable in approximating other stochastic processes for
fixed-size populations.

In the case of theSIS model, which exhibits a richer range of dynamics including
extinction and meta-stability, the second-order beta-binomial approximation performs well
in the subcritical region (where extinction occurs rapidly), but is unable to predict the
extinction occurring in the critical region. In contrast, the log-normal approximation fails to
model the observed extinction in both critical and subcritical regions. This led us to propose
a family of three-parameter mixtures or zero-inflated distributions combining probability
mass at 0 with log-normal or beta-binomial distribution.

These new mixture approximations are able to predict the extinction exhibited by theSIS
model, although both predict that extinction occurs over a shorter timescale than observed
in simulations. The application of moment closure was further extended to estimate
parameter likelihoods. This was done by approximating the transition probabilities of
a likelihood function using the mixture distribution and moment equations. Parameter
estimation based on such approximated likelihoods using data generated from theSIS
model with known parameter values was seen to be reliable.

There are a number of areas where the work of this paper may be potentially extended.
One such example is toapply the mixture approximation to other one-dimensional models
suchas the Verhulst (Goel and Richter-Dyn, 1974, for example) and Levin metapopulation
models (Keeling, 2002, for example). Alternatively, the mixture approximation could be
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extended to higher dimensional models, for example, predator–prey systems (Renshaw,
1991), chemical kinetics (Marion et al., 2002) and theSIR model (Nåsell, 2002, for
example). Finally, it would be interesting to consider moment closure schemes based on
more general mixture distributions than those considered in this contribution.
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Appendices

Here we show in detail how the set of moment equations is derived (inAppendix A)
and the second-order and third-order approximations obtained, inAppendices Band C
respectively.

Appendix A. Moment evolution equation

The forward equation for the stochastic process is as given below:

dpt(n)

dt
= pt (n − 1)ψα(n − 1)− pt (n)ψα(n)

+ pt(n + 1)ψβ(n + 1)− pt (n)ψβ(n). (A.1)

whereψα(n) andψβ(n) are the transition probabilities.
By definition, E[nk] = ∑

n nk p(n) for k = 0,1,2, . . .. Therefore, when (A.1) is
multiplied by n and the sum taken overn, weobtain the moment equation, followingGoel
and Richter-Dyn (1974):

dE[n(t)]
dt

=
∞∑

n=1

npt(n − 1)ψα(n − 1)−
∞∑

n=1

npt(n)ψα(n)

+
∞∑

n=1

npt (n + 1)ψβ(n + 1)−
∞∑

n=1

npt(n)ψβ(n)

=
∞∑

n=0

(n + 1)pt(n)ψα(n)−
∞∑

n=0

npt (n)ψα(n)

+
∞∑

n=1

(n − 1)pt(n)ψβ(n)−
∞∑

n=1

npt(n)ψβ(n).
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Similarly, thekth-moment equation is

dE[nk(t)]
dt

= E[((n + 1)k − nk)ψα] + E[((n − 1)k − nk)ψβ ]. (A.2)

Using the fact that(x + y)n = ∑n
r=0

(
n
r

)
xn−r yr , (A.2) is equivalent to

dE[nk(t)]
dt

=
k−1∑
r=0

(
k
r

)
E[1k−r nrψα] +

k−1∑
r=0

(
k
r

)
E[(−1)k−r nrψβ ]

=
k−1∑
r=0

(
k
r

)
(E[nrψα] + (−1)k−r E[nrψβ ]).

Appendix B. Second-order approximations

The log-normal is a continuous distribution in which the logarithm of the variable of
interest is assumed to have a normal distribution. If the number of infectives,n, is log-
normally distributed, theny = log(n) is normal with moment generating function

My(θ) = E[exp(θy)] = exp

(
k1θ + k2θ

2

2

)
wherek1 is the mean andk2 the variance ofy (Kendall, 1994). It is straightforward to obtain
the moments of the log-normally distributed variablen since E[nθ ] = E[exp(θy)] =
My(θ).

Thus, the first, second and third moments for the log-normal distribution can be obtained
by substitutingθ = 1,2,3. For example, the third moment is

My(3) = E[n3] = exp

(
3k1 + 9k2

2

)
.

If k1 andk2 are determined in terms ofE[n] andE[n2] by solving the equations for the
first two moments of the log-normal case simultaneously, thenE[n3] may be expressed as
a function ofE[n] andE[n2].

The beta-binomial distribution is a special case of the urn model ofEggenberger and
Pólya (1923), although it remained unnamed and under-used untilSkellam (1948)gave
it a thorough description. The beta-binomial distribution has more recently been used in
plant epidemiology byMadden and Hughes (1995)to represent quadrat counts of disease
incidence. It is a discrete distribution where the parameterp of a binomial distribution is
itself a beta variate (Evans et al., 2000). If the number of infectives,n, is from a beta-
binomial distribution, then the moment generating function (Skellam, 1948) is

Mn(θ) = 1

B(a, b)

∫ 1

0
pa−1(1 − p)b−1(1 − p + p exp(θ))N dp

wherea andb are the shape parameters andN is the population size. By taking the first,
second and third derivatives of the moment generating function and evaluating atθ = 0
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we obtain the moments

E[n] = Na

a + b
(B.1)

E[n2] = Na(Na + N + b)

(a + b)(a + b + 1)
(B.2)

E[n3] = Na

a + b

(
1 + 3(N − 1)(a + 1)

a + b + 1

+ (N − 1)(N − 2)(a + 1)(a + 2)

(a + b + 1)(a + b + 2)

)
. (B.3)

The parametersa and b may be determined in terms ofE[n] and E[n2] by solving
(B.1) and (B.2) simultaneously withN fixed by the population size. Then,E[n3] may be
approximated in terms ofE[n] andE[n2].

Finally if n ∼ N(µ, σ 2) then its first two moments areE[n] = µ andE[n2] = µ2 +σ 2

and its third moment, written in terms of its first two, isE[n3] = E[n]3 + 3E[n](E[n2] −
E[n]2). Thiscan then be substituted into the moment evolution Eq. (10).

Thus the log-normal, beta-binomial and normal distributions may be completely
determined by the first- and second-order moments. This is precisely what is required
for a second-order approximation. With these assumptions the third-order term,E[n3(t)]
in the equation describing the evolution of the second-order moment, (6), is replaced
by appropriate functions ofE[n] and E[n2] for the log-normal and beta-binomial
distributions. Similarly, E[n3(τ )] in Eq. (10) is written in terms of the first two moments
of n(τ ) for the log-normal, beta-binomial and normal distributions.

Appendix C. Mixture approximations

For a third-order approximation, the fourth moment of the log-normal mixture and beta-
binomial mixture are needed in order to close the system of differential equations (5)–(7).
Thus, whenπ2 is log-normal, the fourth moment of the log-normal mixture is

E[n4] = (1 − p) exp(4k1 + 8k2)

and ifπ2 is beta-binomial, the fourth moment of the beta-binomial mixture is

E[n4] = (1 − p)
Na

a + b

((
1 + 7(N − 1)(a + 1)

a + b + 1

)
+
(

6(N − 1)(N − 2)(a + 1)(a + 2)

(a + b + 1)(a + b + 2)

)
+
(
(N − 1)(N − 2)(N − 3)(a + 1)(a + 2)(a + 3)

(a + b + 1)(a + b + 2)(a + b + 3)

))
where p, k1, k2, a andb are determined in terms ofE[n], E[n2] and E[n3] by solving
the equations for the first three moments of the corresponding mixture distributions
simultaneously and withN fixed by the population size for the beta-binomial mixture.

Therefore,E[n4(t)] in (7) is approximated by a function ofE[n], E[n2] andE[n3] for
the log-normal mixture and beta-binomial mixture approximations respectively.
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