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Abstract

Moment closure approximations are used to provide analytic approximations to non-linear
stochastic population models. They often provide insights into model behaviour and help validate
simulation results. However, existing closure schemes typically fail in situations where the population
distribution is highly skewed or extinctions occur. In this study we address these problems by
introducing novel second- and third-order moment closure approximations which we apply to the
stochasticSI and SIS epidemic models. In the case of ti§e model, which has a highly skewed
distribution of infection, we develop a second-order approximation based ohethébinomial
distribution. In addition, a closure approximation based on mixture distribution is developed in
order to capture the bakiour of the sochasticS Smodel around the threshold between persistence
ard extinction. This mixture approximation comprises a probability distribution designed to capture
the quasi-equilibrium probabilities of the system and a probability mass at 0 which represents the
probability of extinction. Two third-order versions of this mixture approximation are considered in
which thelog-normal and thebeta-binomial are used to model the quasi-equilibrium distribution.
Comparison with simulation results shows: (1) the beta-binomial approximation is flexible in shape
and matches the skewness predicted by simulation as shown by the sto&hamtidel and (2)
mixture approximations are able to predict transient and extinction behaviour as shown by the
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stochasticSS model, in marked contrast with existing approaches. We also apply our mixture
approximation to approximate a likelihood function and carry out point and interval parameter
edimation.

© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Stodhastic models are useful in epidemiology and ecology, and are used wistedyr,
1991 Allen and Cormier, 1996Bolker and Pacala, 199Filipe and Gibson, 1998 arion
et al., 1998 Matis and Kiffe, 1999Bauch and Rand, 200&eeling, 2000. Usually, the
transition probabilitis exhibit non-linear dependence @opulation size or number of
infectives which makes the resultant stochastic processes analytically intractable. Hence,
techniques of approximation are needed to capture the underlying behaviour of the
stochastic processes. Linearisationoise such approximation, where the behaviour of
small stochastic fluctuations can be examined around a fixed point of the deterministic
dynamics Bailey, 1963. An alternative approach is to analyse the quasi-equilibrium
probabilities which give a picture of the digtution independent of time and conditional on
extinction not haing occurred Renshaw, 199). Both linearisation and quasi-equilibrium
probabilities are limited in their application to regions close to the fixed points or at
equilibrium.

In contrast, closure methods are based on equations describing the temporal evolution of
moments or cumulants and in principle apf both transient and equilibrium dynamics.
One such widely used closure methodhe cunulant truncation proceduréatis and
Kiffe, 199 where the amulant functions of say ordds are approximated by setting
all cumulants of order higher thak to 0. Renshaw (1998has shown that there is a
natural dstribution associated with cumulant truncation. This saddlepoint approximation is
obtained by applying the method of steepest descents to the truncated cumulant generating
function and can be applied inuitivariate situations Renshaw, 2000 In our study, we
follow an alternative route using moment closure approximation based on distributional
assumptions, a technique introduced Whittle (1957) which has been widely used
in recent yearsigéham, 1991 Marion et al., 1998 Keeling, 2000 N&sdl, 2003. Most
commonly in these approximations, the population distribution is only described by the
first- and second-order moments and descnipdf@xtinction or bimodéity is problematic.

Thus, we explore the use of moment closure usimigtur e approximations to population
distributions. Many existing methods of sexl-order approximation also have difficulties
in descrbing highly skewed distribution; hence we consider the application of a novel
second-order approximation based on the beta-binomial distribution.

Two gereric epidemic models are studied: the stochaSt# (susceptible—infected—
susceptible), asan example which exhibits extinction, and the stochasHc
(susceptible—infected), a special case of #8 used as acase where the infected
population exhibits a highly skewed distriimn but totality of infection is guaranteed.
Depending on the disease transmission rate Si&model exhibits meta-stable persistence
of disease, rapid extinction or a critical region corresponding to the border between the two
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regions. BotlS andS Smodels have been used before in other studies in either stochastic
or determirstic form, for examplelacquez and Simon (1993llen and Cormier (1996)
andNasdl (2002) In Section 2we desribe theS Smodel, present some simulation results
and show how a system of moment equations is obtained from the stochastic model. The
second-order moment closure approximations are describ&kdation 3where various
methods of closure are shown. Here, we presentthmodel, as an ideal starting point

for illustration of problems \th existing second-order moment closure approximations.
In Section 4we introduce the mixture approximations and compare the results with the
simulation results from the stochas®S model. As an example of an application to
inference we apply our mixture approximation to estimate parameter likelihood f8t$he
model from sparsely sampled data and this is present8ddtion 5 Findly in Section 6

we presenbur conclusions based on the results discuss&eatbns 3-5.

2. SISmode

A stochastic S epidemic model with fixed population siz&\, is considered here
where thenumber of infected individuals at timeis denoted byn(t) and the number
of susceptibles at timé is N — n(t). Infection and recovery during a small time interval
(t,t + At) are determined by the following probabilities:

Prosn(t + At) = 1] = an(N — n)At = ¢, (n) At (1)
Prolién(t + At) = —1] = BnAt = yg(n)At (2)

whereAt is sufficiently small that multiple events which occur with probabilyAt?)
may be ignored. The dependence on time is implicit, thraugh Here he parametear is
thecontact rate andg is the indvidualrecovery rate. The inter-event time is exponentially
distributad with rate R = gn + an(N — n) and the nature of the event will either be an
infection with probabilityan(N — n)/R or a recovery with probabilitysn/R (Rensiaw,
1991). Without loss of generality, we s@t= 1 throughout so that time units are equal to
the expected period between infection and recovery Félige and Gibson, 1998

Fig. 1 uses parameter values representative of three regions, namely the subcritical
(¢ = 0.06), which has a mode at = 0 showng rapid extinction; criticale = 0.10),
where it is seen that the distribution is bimodal with a probability mass &t 0 and a
non-symmetric unimodal contribution fan) atn > 0; and meta-stablex = 0.30) where
the histogram is clustered nearee= 20 meaning thatxdinction is rare in the finite time
considered. However, as— oo, ultimate extinction is assured. In all casés—= 20.

2.1. Moment evolution equations

For the nodel described by Egsl)and @), let p;(n) bethe conditional probability that
there aren infectives at timet given that there argg infectives at timeg = 0 (Cox and
Miller, 1965). Taking the limit as At — 0, the forward equation obtained is

dpt(n)
dt

=p(n =Dy (n—1) — pe(N)y(N)
+ pe(n+ Dyg(n+ 1) — pr (Mg (n). (3
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Fig. 1. Single realisations of the stochastic process (€3)and histograms representing the number of infectives
((d)—(f)) att = 50 from 10,000 simulations. Graphs (&) represent the subcritical regigm = 0.06) where the
epidemic quickly dies out (a) and there is a mode at O nimggtihat all realisations have gone extinct (d); graphs
(b), (e) represent the critical regigm = 0.10) where theepidemic persists for a short period of time before it dies
out (b) and some of the realisations persist longerdphs (c), (f) represent the meta-stable redgwr= 0.30)
where the epidemic has reached equilibrium (c) and extinction is rare (f).

where ¥, and yg are as in Egs.1) and @). The evoldion of the epidemic can be
described from the evolution of either the raw moments or the cumulants. For example,
the first moment or cumulant describes tikp@ected number of infectives or susceptibles.
Cumulants hae theoretically useful properties and the first four cumulants have clear
interpretations. Equivalently, we work with raw moments which are also useful and have
functional relations with cumulants.

As shown inAppendix A the ejuation describing the rate of change of ktle moment
(Goel and Richter-Dyn, 19%4s

k k—1
W = ZO ('r‘) (E[N" Yol + (=D* T E[n" yg)). (4)

If ¥, andyg are linear functions ofi, from (4) we obtain an equation describing the

rate of change of thkth mament depending only on the firktmoments. Hence, the set

of equations can be solved numerically for any given initial conditions and any knite
However, thisdoes not hold ifi, or yg are non-linear functions af. For exanple, for
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the SS model used in our study, we can see tligtis non-linear, and we have a set of
ordinary differential equations)—(7), which are open. The eqtian describing the rate
of change of thekth mament depends on thg& + 1)th moment, and an infinite set of
coupled differential equations is generated. This problem of requiring closure is common
to all non-linear stochastic processes.

The ordinary differential equations describing how the first, second and third moments
of the gochastic process evolve over time are obtained fr@)rby making the substitutions
Yo = anN — an? andyg = pnfork = 1,2 and3:

dE[n(®)]

o (@N — B)E[n(t)] — « E[N?(1)] ®)
E 2
w — @N + BEMM] + (2aN — a — 28)E[2(t)] — 2«E[n31)]  (6)
3
W = @N — BEM®] + B«N — a + 38)E[NA(1)]

+ (3aN — 30 — 38)E[n3(t)] — 3 E[n*(1)]. (7)

In order to proceed, the system of differential equations for thelfirsbments needs
to be closed. These differential equations can also be written as cumulant functions and
one way of closing the system of equations is to approximate the cumulant functions
of orderk with cumulants of eder higher thark set tozero, a technique known as
the cumulant truncation procedure (Matis and Kiffe, 199%. However, we employ an
alternative approach whereby we assume &iqadar distribution for the variable of
interest. This assumption imposesiadctional relationship between tide+ 1)th mament
and the lower order moments. It is this functional relationship that enables us to close the
system of moment equations. In either case, the resulting closed system can then be solved
numerically. Because of the functional retatship there is no disadvantage in using the
raw moments. However, the reader should note that this typically takes higher numerical
valuesthan central moments or cumulants. Usfethe latter is preferred when working
with truncation approaches to closure. Iretfolowing section, wediscuss problems
with existing dosure approximations and introduce the beta-binomial approximation, and
Section 4introduces the mixture approximations.

3. Two-parameter approximating families of distributions

Consider second-order moment closure schemes wWBpT&(t)] can be approximated
as a function of E[n(t)] and E[n%(t)] by assuming thatn is governed by an
appropriate distribution function, the derivation of which is shownAippendix B
for normal, log-normal and beta-binorhiapproximations. Both the normal and log-
normal approximations have been used previoldljittle, 1957 Isham, 1991Keeling,
2000. Since the normal distribution has zero skewness and its range has neither an
upper nor lower bound, using a normal distribution may not be entirely appropriate in
approximating the distribution of the number of infectives in a population of fixed size.
This inappropriateness is illustrated in the following subsection, in the case @ the
model. The log-normal distribution, becausexhibits skewness and has a non-negative
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support, gives a more appropriate description of population variables. The fact that it too
does not have an upper bound is ignored, as the primary interest in this study is in the
subcritical and critical regions exhibited by i8S model. However, we also consider a
novel second-order approximation based on the beta-binomial distribution which does have
an upper bound, and it is a counting distribution with fixed population size and support for
aggregation of ‘successes’, i.e. infections.

Toillustrate the application of the secondder beta-binomial approximation to a set of
observed datakleczkowski et al., 1996Gibson et al., 1999 we present th& model in
the following subsection, with comparisons to the results from the existing second-order
normal and log-normal approximations. Subsequentigastion 3.2the results obained
by applying the beta-binomial approximation to ®#&model are discussed and compared
with results from thedg-normal approximation and the simulations.

3.1. An illustration of second-order approximation: the SI model for a fungal plant
epidemic

Kleczkowski et al. (1996¢arried out experiments on radish seedlings by inoculating
them with the pathogeRhizoctonia solani Kiihn, a fungus that attacks root vegetables.
They monitored 10 microcosms, each containb0 seedlings, and recorded the number
of infected seedlings daily. Five of the microcosms were also exposed to the antagonistic
fungusTrichoderma viride Pers ex Gray, which is thought to have a controlling effect on
R. solani.

Gibson et al. (1999¥itted a stochastic model to these data, which accounted for
infection by primary sources at ratg,—that is, the initial inoculum—as well as by the
secondary sources that we have considered so far in this paper, representing infection via
an already-infected plant, at rate As theplants do not recover from the infection, we set
B = 0. The model also includes time-varying susceptibility of the plants, this beitg e
Infection is then governed by

Proldén(t + At) = 1] = (ap + an(t))(N — n(t))e vt At. (8)

The time-varying susceptibility can be easily accommodated by rescaling time as
T=(1-e" .

We derive the following equations for thetesof change of the first- and second-order
moments oh(r) with respect tar, which are analogous t&) and ©):

DB _ N + (@N — ap) E(r) ~ aE((r) ®)
2
w = apN + (@N + (2N — Dap)E(n(7))

+ (2N — Do — 2ap) E(n*(1)) — 2¢E(n3(1)). (10)

By making the asumption thah(z) comes from a distribution with two time-varying
parameterave can writeE (n3(t)) in terms of the first two moments oft), as desribed
in Appendix B and substitute this expression id@. This means that we can use some
numerical method to evaluate approximations to the first two moments over time, for a
given parameter sdixp, o, v} and the initial condition thata sedlings were infected
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Fig. 2. The distribution of the number of radishes infedigddamping-off in the abserd(a)—(c)) and presence
((d)—(f)) of the antagonistic fungus. viride, a 1 ((a), (d)), 5 ((b), (e)) and 15 ((c), (f)) days after the first
emergence of seedlings. The initial condition is that the plants are all disease fra€dfi.e.0). The histograms
represent the average frequencies from a seriescdf® simulaions, the curves our approximations. Continuity
correction has been used for the continuous distainsti however, we represent all three approximations as
continuous curves for clarity of comparison. Both siations and moment closure approximations make use
of the maximum likelihood parameter estimates found@ipson et al. (1999)thesebeing (ap, o, v) =
(0.0265 0.0118 0.167) in the absence df. viride and(0.0074 0.0102 0.127) in its presence.

at the start of the epidemic (i.@(0) = 0). Using the parameter values estimated by
Gibson et al. (1999)we conpare these closure approxinmatis to similated realisations
of the model. The simulations and approxinat based on normal, log-normal and beta-
binomial forms are plotted iRig. 2

As can be seen, the beta-binomial approximation captures the dynamics of the evolution
of the true probability mass function far better than either the normal or log-normal
approximations, its shape being far more flexible.

3.2. Second-order approximation results for the SISmodel

Having seen some encouraging results in the case dfitmeodel, we now consider
approximating the more complex behaviours of tB& model where we have the
subcritical, critical and meta-stable regions.
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Fig. 3. Second-order approximation and stochastic kitimm: expected number of infectives, (a)—(c), and
variance, (d)—(f), from closure approximations andcsiastic simulations. Subcritical region: (a), (d)= 0.06;
critical regbn: (b), (e):« = 0.10; meta-stable region: (c), (f: = 0.30.

As seen inFig. 3, the beta-binomial approximation gives reasonable estimates in the
subcritical but not the critical region and the log-normal one gives poor estimates in both
regions. Both approximations perform well in the meta-stable region but predict indefinite
persistence. The beta-binomial and log-normal approximations are broadly comparable in
the aitical and meta-stable regions. Overall, second-order approximations do not give a
good description of extinction in theulscritical and critical regions for th&1S model.

Thus, in the next section a third-order closure approximation is developed in the hope of
providing an improved description of these regions.

4. Three-parameter approximating families of distributions: SIS model

In order to obtain an improved description of the transient aspects of the stochastic
process, a novel closure approximation is developed in which the number of infectives
is assumed to be described by a distribution which is a mixture of mass=a0 and a
probability distribution representing extant realisations. This form of mixture distribution
is also termed a zero-modified distributiodolinson et al., 1992or zero-inflated and
used to model count datdRidout et al., 1998 A major advantage of this mixture
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Fig. 4. Mixture approximations and stochastic simulatiangected number of infectives, (a), (b), and variance,
(c), (d), from mixture approximations and stochastic simulations. Subcritical region: (a@),%cP.06 and critical
region: (b), (d)« = 0.10.

approximation is that it estimates the probability of extinction in the critical and meta-
stable regions which the second-order approximations shoWwigirBfail to do. Therefore,
it allows prediction of the extinction probability, the transient distribution and the quasi-
equilibrium distribution. For this study, we use both log-normal and beta-binomial mixture
approximations.

In general, the probability function of this mixture distribution is represented by

f(n) = pr1(n) 4+ (1 — p)m2(n)

wherer1(n) = é&no (Kronecker delta) andr2(n) is any probability mass function on
0 < n < oo. Thus,E[N] = (1 — p)Ex,[nX]. If m2 is from a two-parameter, sy, v),
family of distributions, then the mixture defines a third-order approximation since in the
generic cas®, 1 andv are determined by solving equations for three valuds. dhus,
the mixture distribution may be determined by the first-, second- and third-order moments,
E[n], E[n%] andE[n3]. Therdore, E[n*(t)] in (7) is gpproximated by a function dE[n],
E[n?] and E[n3]. The fam of this approximation is shown iAppendix Cfor both the
log-normal and beta-binomial mixtures.

The results of both third-order approximations for tB& model are compared with
stochastic simulation results Figs. 4and5. There ismprovemenfor both mixuresover
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Fig. 5. Mixture approximations and stochastic simulatiangected number of infectives, (a), (b), and variance,
(c), (d), from mixture approximations and stastic simulations in the meta-stable region= 0.30. Graphs
(a), (c) show meta-stable persistermbtained by log-normal mixture and bebinomial mixture approximations
as compared to simulations on a shorter timescaleé @), (d) show long term behaviour predicted by
approximations as compared to simulations.

the second-order approximations in the sitizal region where the log-normal mixture
is able to predict extinction and the beta-binomial mixture predicts extinction on a more
accurate timescale than the corresponding@sderder approximatn. Furthermore, in
this region, the estimated variances also agree with stochastic simulation. In the critical
region, there is again a large improvement for both mixtures as they are able to capture
the behaviour shown by stochastic simulation, which can be interpreted as short term
outbreaks. Unfortunately, both mixtures esti extinction of the outbreaks on a slightly
shorter timescale thamat observed in stochastic simulations. In the meta-stable region,
the behaviour shown by the mixtures is qualitatively correct but it is unable to mimic
the observed meta-stability of the epidenan alonger timescale as shown in graphs
(b), (d) of Fig. 5. Both log-normal and beta-binomial mixtures tend to overestimate the
probability of extinction and threfore underestimate the time to extinction. In fact both
mixture gproximaions capture well the qualitative behaviour of the stochastic model but
tend to underestimate the time to extinction.

To illustrate this more clearlyFig. 6 shows thephase plot of expected number of
infectives versus extinction probability. In both subcritical and critical regions, it can
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Fig. 6. Diagrams of extinction probability: (a)—(c) show the expected number of infectives versus extinction
probability and (d)—(f) show the second moment versus extinction probability, obtained from mixture
approximations and stochastic simulations for (a) the subcritical regios= 0.06), (b) the citical region

(« = 0.10), (c) the neta-stable regiox = 0.30).

be seen that once again the beta-binomialtane is the better approximation. In the
meta-stable region, botmixtures are able to match the simulation results for extinction
probability >0.05. In graph (c) ofig. 6, the resulfrom stochasc simulation shows that
the expected number of infectives is a linear function of the probability of extinction.
This is due to the large rate of infection whan= 0.30 which speeds the disease to
reach endemic levels that persist over a long tithex 6 x 107). For the SIS model
considered in our study, the quasi-equilibrium distribution is attained relatively quickly
in the meta-stable region. Thus the mean conditioned on non-extinction is simply the mean
of the quasi-equilibrium distributiorig. Therefore for a given probability of extinction p,

E[n] = 1po(1 — p). Although the expected time to extinction is poorly estimated by our
mixture approximations in the meta-stable region, graph (c) shows that they are able to
predict the relationship between probability of extinction and expected epidemic size seen
in stochastic simulatins. Graphs (d)—(e) d¢fig. 6 show that the second moment predicted
by beta-binomial mixture approximation idbla to track tle simuldion results for the
subcritical and critical regions. Both mixtures are able to match the simulation results in the

meta-stable region as seen in graph (f). These results show that the mixture approximations
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Fig. 7. Comparison of theoretical, beta-binomial mietand log-normal mixture quasi-equilibrium probabilities:
subcritical region: (a)a = 0.06; critical region: (b)o = 0.10; meta-stable region: (a}: = 0.30.

are able to match the main features of the quasi-equilibrium distribution of the stochastic
process, at least in terms of the lower ordemments. A comparison of the beta-binomial
mixture andthe log-normal mixture probability functions with the theoretical probabilities
from the stochasti® S model is shown irFig. 7. The probabilities shown are the quasi-
equilibrium probailities meaning that the are conditional on extinction not having
occurred Renshaw, 1991 The beta-binomial mixture diribution is able to capture

the dynamics of the theoretical probability mass function of the stochastic model better
than the log-normal mixture distribution imoth the critical and meta-stable regions. In
summary, the mixture distributions are able to match the quasi-equilibrium distribution of
the stochastic process.

5. Application toinference

Here we further demonstrate the utility of our mixture approximation by showing how
it can be used to construct a reliable approximation to a likelihood function.

Consider a set of data,= {n(tj) : i =0, 1,..., k}, gererated from the stochast&S
model with parametex. The parameter likelihood, («; n), can be calculated using the
Markov property as the product probabilities of transition between the observed states
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and can be written as follows:
K
L(a; n) = Prob(n | @) = [ [Probn(ti) | n(ti—1), ). (11)
i=1

For convenience, consider the log-likelihood,

[ k
;) =y L(e;n(t) | n(ti-1)) = Y _ log(Prokn(t) | n(ti-1), a)).
i=1 i=1

The full log-likelihood could be calculated if we had éhcomplete dataet recording
ewvery event. In this case the contribution to the log-likelihood for every event of the data
setn is calculated usingr, andyg as follows:

k
Loz =Y (=Wl +Yp) (G —ti-1) +logy(i) (12)

i=1

whereyr (i) is ¥, (i) for an infection andg (i ) for a recovery.

Since it is often the case thave have inomplete data set (e.g. observations recorded
at fixed intervals), approximations to the transition probabilities, @v@p | n(ti—1), ),
are needed. Thus, in the log-likelihood functiohl), these are approximated from our
log-normal mixture distribution and moment equations. Since the approximated function
requires fixed initial conditiongn(ti_1)), the beta-binomia mixture gproximation is
not suitable here. The results obtained using the log-normal mixture approximation are
compared to full log-likelihood,12).

For ather case apmximate confidence intervals far can be derived on the basis of
first-order asymptotic theonBg@rndorff-Nielsen and Cox, 1994If @ is the value of that
maximised («) andag is the true value o, then a gpproximate confidence interval for
a can be obtained using the pivotal quantity

2(1@) — (o)} ~ x2.

Hence, we obtai a 95% confidence interval fax by considering the corresponding
values of the likelihood that fall within the range of approximately 2 units from the
maximum likelihood value.

Maximum likelihood parameter estimates and associated confidence intervals obtained
are giveninTable 1 The resits shown are olatined by applying the mixture approximation
to a set ofdata generated from the stochasfi& model withthe three values of as
before. The data points were recorded at equal intervals for all three regions and for the
subcritical and critial regions observations ended only once extinction had occurred. In
order to calculate the full log-likelihood, every event was recorded.

A plot of the standardised log-likelihood estimates obtained by application of the mix-
ture gproximation to the same data is givenhig. 8 The full log-likelihood is also
shown & acomparison to the log-likelihood obtained from the log-normal mixture ap-
proximation. It is seen that the log-normal mixture approximation gives a good param-
eter estimation in both the subcritical ancta-stable regions as seen in graphs (a) and
(c). When the frequency of sampling is increased, it shows what might be intuitively
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Table 1
Point andinterval estimates fax from the full log-likelihood function and mixture approximation
Subcritical Critical Meta-stable
Approximation MLE 0.058 0.100 0.293
95% C.I. (0.045, 0.070) (0.080, 0.122) (0.203, 0.423)
Approximation MLE 0.058 0.089 0.300
(increased data points) 95% C.I. (0.046, 0.070) (0.078, 0.100) (0.265, 0.339)
Full log-likelihood MLE 0.057 0.103 0.300
95% C.I. (0.045, 0.072) (0.095, 0.112) (0.286, 0.315)
° @
1 — - 6 points of obs. 3 a
-4+ - - 11 points of obs P \\\\\
8 1 — full'log-likelihood 7 N
-12 i "
—16 /; .7
0- .
=2 .
g o 0.02
e o
<
3 1 — - 5 points of obs.
X —4- - - 15 points of obs.
_t'm 8; — full log-likelihood
g -
® —12-
2 -
k]
=1 -16
2 20
- r T
& o0 0.04
0
1 — - 5 points of obs.
—2 - —— 50 points of obs.
1 — full log-likelihood
—4 4
—6
_8 o
-10 T T
0 0.1

Alpha

Fig. 8. Plots of the standardisedgHlikelihood function: comparison dhe log-normal mixture approximation
with full log-likelihood: (a) subcritical regiorie = 0.06), (b) ciitical region (¢ = 0.1), (c) metastable egion
(¢ = 0.3). The tue parameter values are indiedtin the graphs by triangles.

expected where the estimates from our mixture approximation converge towards the full
log-likelihood. From both the point and interval estimates and the log-likelihood function
plot, we see that the mixture approximation method agrees closely with the full log-
likelihood in these regions. In the criticakgion, the log-normal mixture gives good
estimates when the sample size is small.eWhhe frequency of sampling is increased

(in this case when some of the samples taken come after the time when the infection starts
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going extinct), the peak, as shown in graph (b), shifts to the left, slightly underestimating
the contact rate. To investigatoverageproperties of confidence intervals constructed
using the full and approximated log-likelihoosle simulated 10,000 realisations for each

of the three parameter regions. The cogeraroperties for 95% confidence intervals
based on the full log-likelihood for the sulitical, critical and meta-stable regions are
0.93324+ 0.0050, 09214+ 0.0054 and ®457+ 0.0045 and for 99% confidence intervals
they are 0841+ 0.0025, 09785+ 0.0029 and M893+ 0.0021. As before, for the
approximated log-likelihood, the data points were recorded at equal intervals. The coverage
properties for 95% confidence intervalsskd on the approximated log-likelihood for

the subcritical, critical and meta-stable regions a&266+ 0.0097, 06449+ 0.0096

and Q7307 &+ 0.0089 and for 99% confidence intervals they ar@780 + 0.0084,
0.72914+0.0089 and B497+0.0072. The coverage properties based on the approximated
log-likelihood are narrower than the full log-likelihood. These results indicate that the
approximated intervals are optimistic (too narrow) but the asymptotic results may not be
very gopropriate inthis situation. Nevertheless, the mixture approximation can be applied
to infer model parameters from observed data.

6. Conclusions

In this paper we have introduced a new second-order moment closure approximation
and applied this to th& model. The approximation (which assumes that the number
of infectives follows a beta-hiomial dstribution) agrees well with the true frequencies
obtained by simulation, and offers a considerable improvement on existing second-
order approximations based on the normal or hagmal distributions. The beta-binomial
approximation may be similarly applicable in approximating other stochastic processes for
fixed-size populations.

In the case of thedS model, which exhibits a richer range of dynamics including
extinction and meta-stability, the second-artieta-binomial approxintan performs well
in the subcritical region (where extinctiorcaurs rapidly), but is unable to predict the
extinction occurring in the critical region. lronitrast, the log-normal approximation fails to
model the observed extinction in both critical and subcritical regions. This led us to propose
a family of three-parameter mixtures or zero-inflated distributions combining probability
mass at 0 with log-normal or beta-binomial distribution.

These new mixture approximations are able to predict the extinction exhibited 8y&he
model, although both predict that extinction occurs over a shorter timescale than observed
in simulations. The application of moment closure was further extended to estimate
parameter likelihoods. This was done by appmating the transition probabilities of
a likelihood function using the mixture distribution and moment equations. Parameter
estimation based on such approximated likelihoods using data generated fr@Sthe
model with known parameter values was seen to be reliable.

There are a number of areas where the work of this paper may be potentially extended.
One such example is tpply the mixture approximation to other one-dimensional models
suchas the VerhulstGoel and Richter-Dyn, 1974or example) and Levin metapopulation
models Keeling, 2002 for exanple). Alternativey, the nixture goproximation could be
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extended to higher dimensional models, for example, predator—prey sysienhaw,
1991), chemical kinetics Mlarion et al., 2002 and theSSR model (Nasdl, 2002 for
exampe). Finally, it would be interesting to coler moment closure schemes based on
more general mixture distributions than those considered in this contribution.
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Appendices

Here we show in detail how the set moment guations is derived (il\ppendix A
and the second-order and third-order approximations obtainepjrendices Band C
respectively.

Appendix A. Moment evolution equation

The forward equation for the stochastic process is as given below:

dpt(n)
dt

= p(—D¥e(n =1 — pt(N)¥a(n)
+ P+ Dyps(n+1) — pe(Myp(n). (A1)

wherey, (n) andiyg(n) are the transition probabilities.

By defirition, E[nK] = Y, nkp(n) for k = 0,1,2,.... Therdore, when A.1) is
multiplied by n and the sum taken ovar we obtain the moment equation, followirigoel
and Richter-Dyn (1974)

dE[n(t)]
d

> npn = Dy — 1) — > npu() i (n)

n=1 n=1

+ > npn + Dy +1) — > npe)yp(n)
n=1 n=1

= > M+ DpMPa() = Y npe(N) ()
n=0 n=0

+ D (= Dpmyp) — D npuypn).
n=1 n=1
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Similarly, thekth-moment guation is

dE[N*®)] _

& E[(n+ DX — n%)yq] + E[((N — DX — )yl (A.2)

Using the fact thatx + y)" = > I, ( ) X"y (A.2) is equivalent to
k(t)] k—1 ‘ k—1 K ‘
Z( ) El " n ol + ) (r) EL(=D""n"ys]
r=0

(';) (EIN ¥l + (—D)* T El" y)).

r=

Appendix B. Second-order approximations

The log-normal is a continuous distribution in which the logarithm of the variable of
interest is assumed to have a normal distribution. If the number of infectiyés,log-
normally distributed, thely = log(n) is normal with manent generating function

k292
My (0) = E[exp0y)] = exp| ki6 + —

wherek; is the mean ankh the variance of (Kendall, 1993. It is straightforward to obtain
the moments of theo-normally distributed variabla since E[n’] = E[exp@y)] =
My (6).
Thus, the first, second and third moments for the log-normal distribution can be obtained
by substitutingg = 1, 2, 3. For example, the third momentis

My (3) = E[n%] = exp<3k1 + %)

If k; andk; are determined in terms &{[n] and E[n?] by solving the equations for the
first two moments of th log-normal case simultaneously, thEfn3] may be expessed as
a function of E[n] and E[n?].

The beta-binomial distribution is a special case of the urn mod&lggfenberger and
Pdya (1923) dthough it remained unnamed and under-used 8k#llam (1948)gave
it a thorough description. Theeba-binomial distribution &s more recently been used in
plant epidemiology byvladden and Hughes (199f) represent quadrat counts of disease
incidence. It is a discrete distribution where the paramptef a binomial digribution is
itself a beta variateHvans et al., 2000 If the number of infectivesn, is from a beta-
binomial didribution, then the moment generating functi@kéllam, 1948 is

Mn(0) =

1
a—1:1 b1, N
B, b)/o PP (l—-pP)" (1 p+ pexpd))" dp

wherea andb are the shape parameters axds the population size. By taking the first,
second and third derivatives of the moni@enerating function and evaluatingéat= 0
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we obtain the moments

Na
ang:B (B.1)
Na(Na+ N + b)
E[n?] = B.2
M= Earb@+rbr (82)
s, Na 3(N-1@+1
E[n]_aer(1 a+b+1
(N —=1)(N — 2)(a+1)(a+2)> (B.3)
(@a+b+1@+b+2 '

The parametera andb may be determined in terms &[n] and E[n?] by sohing
(B.1) and B.2) simutaneously withN fixed by the population size. TheB[n3] may be
approximated in terms df[n] and E[n?].

Finally if n ~ N(u, 02) then its first two moments ate[n] = x andE[n?] = u2+ o2
and its third moment, written in terms of its first two,B§n3] = E[n]® + 3E[n](E[n?] —
E[n]2). Thiscan then be substituted into the moment evolution EQ). (

Thus the log-normal, beta-binomial and normal distributions may be completely
determined by the first- and second-order moments. This is precisely what is required
for a second-order approximation. With these assumptions the third-orderE¢ndit)]
in the equation describing the evolution of the second-order mom@t,ig replaced
by appropriate functions oE[n] and E[n?] for the log-normal and beta-binomial
distributions Similarly, E[n3(7)] in Eq. (10) is written in terms of the first two moments
of n(t) for the log-normal, beta-binomial and normal distributions.

Appendix C. Mixture approximations

For a thrd-order approximation, the fourth moment of the log-normal mixture and beta-
binomial mixure are needed in order to close the system of differential equabpA3).
Thus, whenr is log-normal, the durth moment of the log-normal mixture is

E[n*] = (1 — p) expdky + 8ko)
and if T2 is beta-binomial, the fourth moment of the beta-binomial mixture is

N 7(N -1 1
EUﬁ]:(l——m——E—((l+~i————Kii—l>

a+b at+b+1
(&N—Dm_a@+nw+a>
@+b+H@+b+2)

CN—Dm—am—$@+D@+m@+$»
(@a+b+1@+b+2(@+b+3

where p, k1, ko, a andb are determined in terms d[n], E[n?] and E[n3] by sohing

the equations for the first three moments of the corresponding mixture distributions

simultaneously and witiN fixed by the population size for the beta-binomial mixture.
Therefore E[n*(t)] in (7) is goproximated by a function dE[n], E[n?] andE[n?] for

the log-normal mixture and beta-binomial mixture approximations respectively.
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