

School of Mathematical and Computer Sciences

Department of Actuarial Mathematics and Statistics

R reference sheets – prepared by and copyright  Roger J.Gray

There are spaces at the foot of some pages for you to record any additional notes

���� For more information use the extensive R help facility e.g. ? plot

Entering data into one-dimensional vectors (in the Commands Window)

> a = 5 ← a single number (a scalar)
> b = 5:9 ← a simple consecutive sequence 5 6 7 8 9
> n = c(32, 35, 39, 42, 47, 61) ← a vector of values of a quantitative variable
> age = c(12, 13, 14, 15, 16, 17, 18) ← a vector of values of a quantitative variable
> age = c(12:18) ← same as above
> age2 = c(age, 19) ← a vector of 8 numeric values
> n2 = c(n, “M”) ← a vector of 7 “character values”
> agegroupf = factor(c(1, 2, 3, 1, 2, 3)) ← a vector of codes specifying a discrete classification

 or grouping of components of other vectors
> gender = c(“M”, “F”, “M”, “F”, “M”, “F”) ← a vector of 6 “character values”
> genderf = factor(gender) ← a factor version of the vector gender

Arithmetic/functions/operations – various illustrations

For a,b,c,d vectors of appropriate lengths:
> a = b + 4 > a = b*c > a = b*c/sum(d)
> a = sum(b^2/c) > a = sqrt(b) > a = log(b) > pi = exp(d)/(1 + exp(d))

> a = choose(12,5) ←
12

792
5

 
= 

 
 > a = gamma(6) ← 5! = 120

> a = cumsum(1:6) ← a is the vector 1 3 6 10 15 21

> a = cumprod(1:5) ← a is the vector 1 2 6 24 120

DATA ANALYSIS

georges
Highlight

2

Listing objects in use

> ls() or > objects()

Listing and summarising contents of vectors and other objects

> age ← returns the contents of the vector
> summary(n) ← descriptive summary
> length(n) ← number of values
> table(n) ← frequency distribution of values
> mean(age) > sd(age) > median(age) > max(age)
> quantile(claim) ← 0%, 25%, 50%, 75%, 100% quantiles (min, lower quartile, median,

 upper quartile, max : similar info to “summary” but without the mean)
> quantile(claim, 0.9) ← 90% quantile (10% of values above it)
> quantile(claim, c(0.25, 0.75)) ← lower and upper quartiles
> cor(weight, height) ← correlation coefficient

> a = sort(b) ← sort into increasing order

> levels(agegroupf) ← returns the levels of the factor agegroupf
> names(L) ← give the names of items in a list or fitted model L : see ?names

> a = age[4] ← a is the 4th element of vector age
> agenew = age[26:50] ← agenew is a vector containing elements 26 to 50 of vector age
> big = claim[claim > 5] ← big contains all elements of claim which exceed 5
> pick = b[a<3] ← pick contains the elements of b for which the corresponding elements of a
 are less than 3 : try it with a=c(4,7,1,8,2,5) and b=c(40,70,10,80,20,50)
> pick2 = b[a==2] ← pick2 contains the elements of b for which the corresponding elements of a
 are equal to 2
Editing vectors

> fix(age) ← opens the vector “age” in a text editor - on exiting saves the changes

Plotting data

> plot(age) ← basic plot, with age on y-axis, against an index
> plot(age, n1) ← basic scatter plot, with age on x-axis
> plot(age, n1, pch = 16) ← pch = plotting character (number 16 is a solid circle; try other effects)
> plot(age, n1, pch = “M”) ← uses M as plotting character
> plot(age, n1, type = “l”) ← lines connect the data (try also types “b” and “o”)
> plot(age, n1, type = “n”) ← sets up the plotting scales only – no points shown – useful for plots
 which include two or more sets of points – e.g. set up the plotting scales
 and then add the points for men and then add those for women
> plot(dur, n, xlim = c(18,30), ylim = c(0,40), ylab = “number of claims”, xlab = “age of
 policyholder”, main = “Numbers of claims per 100 policies by age of policyholder”)

 ← sets limits on x and y axes plotting scales, labels axes and plot itself
> plot(x2, y2, log = “y”) ← plots using a log scale on the y axis

Use this to illustrate plotting characters and colours available:
> plot(1:20, pch=1:20, col=1:20)

Alternative approach, using a “structure” in place of two vectors (whose names might be duplicated and
thus lead to confusion)
> plot(wt ~ ht, data = frame4) ← takes the vectors wt and ht from data frame “frame4” and plots wt on

the vertical axis against ht
> pairs(frame5) ← “matrix plot”: one scatter plot for each pair of variables in the data

 frame “frame5”

3

♦ Adding points, lines, and a “legend” to an existing plot

> points(age, n2, pch = 8) ← plotting character (number 8 is an asterisk; try various effects)
> lines(age, n3, lty = 2) ← lty = line type (number 2 is a dashed line; try various types)
> abline(a,b) ← adds line with intercept a and slope b to current plot

Use this to illustrate the adding of points and a legend to a plot:
> x=1:20
> plot(x,x)
> points(x,sqrt(x),pch=2,col=3)
> points(x,log(x),pch=3,col=4)
> legend(2.5,15,legend=c(“x”, “sqrt(x)”, “log(x)”), pch=c(1,2,3), col=c(1,3,4))

Some displays (many options available)

> stem(claim) > stem(claim, scale=5)
> hist(claim) > hist(claim, seq(0,6000,300), prob=T) > hist(claim, breaks=25)
> lines(density(claim, bw=150)) >rug(claim)
> boxplot(claim) > boxplot(claim, horizontal=T)
> plot(density(claim))
> qqnorm(claim) > qqline(claim)
> plot(income) ← plot of income against an index 1,2, …, ; basic time series plot
> plot(age, n) > plot (1:50, sales) ← scatter plots : see more on plotting below

Matrices and arrays

> m1 = matrix(c(19, 497, 29, 560, 24, 269), 2, 3) ← a 2×3 matrix, entries read in by column
> m2 = matrix(c(19, 497, 29, 560, 24, 269), 2, 3, byrow = T)
 ← a 2×3 matrix, entries read in by row
> m3 = matrix(c(5, 7), 2, 6) ← a 2×6 matrix with 6 identical columns
> m4 = cbind(n1,n2) ← creates a k×2 matrix, with columns n1 and n2,
 where n1 and n2 are both of length k

> arr1 = array(a1, c(4, 2, 3)) ← creates an array of dim 4×2×3, where a1 is a vector of length 24:
 produces 3 matrices of order 4×2; try array(1:24, c(4,2,3))

> b1 = as.vector(arr1) ← returns the contents of the array arr1 as a vector of length 24;
here b1 is a copy of a1

> b2 = c(arr1) ← same effect as using as.vector

> m2 = t(m1) ← matrix m2 is the transpose of matrix m1
> m3 = m1 %*% m2 ← matrix multiplication
> m3 = m1*m2 ← elementwise multiplication within two matrices
> m4 = diag(1:6) > m4 = diag(x) ← matrix m4 is a square matrix with diagonal elements 1 to 6

 or the elements in the vector x
> b = diag(m1) ← b is the vector containing the diagonal elements of matrix m1
> m4 = solve(m3) ← m4 is the inverse of square matrix m3

For m1 a matrix or arr1 an array of order r×s:

> a = sum(m1) ← sum of all rs entries in m1
> rsum = apply(m1, 1, sum) ← vector of r row sums of m1
> cmean = apply(arr1, 2, mean) ← vector of s column means of array arr1

4

Patterned data (using replicates and sequences)

> age = c(12:20) ← vector “age” contains integers from 12 to 20
> a = rep(1,6) ← vector “a” contains 1 1 1 1 1 1
> b = rep(1:3,2) ← vector “b” contains 1 2 3 1 2 3
> c = rep(1:3, each = 2) ← vector “c” contains 1 1 2 2 3 3
> rep(1:3, each = 2) ← returns 1 1 2 2 3 3
> evens = seq(4, 12, 2) ← vector “evens” contains 4 6 8 10 12

> rc = factor(c(rep(1:4, each = 3))) ← reads in row codes for a 4×3 table read in row by row
> cc = factor(c(rep(1:4, 3))) ← reads in col codes for a 4×3 table read in row by row

Simulation: generating random observations

> s1 = rnorm(100) > s2 = rnorm(50, 10, 2)
← random samples s1: 100 obs from N(0,1) ; s2: 50 from N(10,22)

> s3 = rpois(200, 2) > s4 =rbinom(40,12,0.4)
 ← s3: 200 from Poisson(2) ; s4 : 40 from binomial(12,0.4)

> s5 = rexp(100,0.1) ← s5: 100 obs from exponential λ = 0.1, mean = 10
> s6 = rnbinom(500,4,0.6) ← s6: 500 obs from negative binomial with range x = 0,1,2,… , k=4,

 p=0.6, mean kq/p = 8/3

Other distributions available include beta (beta), chi-squared (chisq), gamma (gamma), geometric
(geom., or nbinom with k =1), uniform (unif)

Cdf (and hence P-values), quantiles (inverse cdf)

> pnorm(1.5) ← cdf P(X < 1.5) for X ~ N(0,1)
> pnorm(13, 10, 2) ← cdf P(X < 13) for X ~ N(10,22)
> qnorm(0.95) ← value for x for which P(X < x) = 0.95 for X ~ N(0,1)
> qnorm(0.9, 12, 3) ← value of x for which P(X < x) = 0.9 for X ~ N(12, 32)
> ppois(5, 2) ← cdf P(X ≤ 5) for X ~ P(λ = 2)
> pbinom(12, 20, 0.6) ← cdf P(X ≤ 15) for X ~ binom(n = 20, p = 0.6)
> pchisq (4.7, 2) ← cdf P(X < 4.7) for X ~ χ2 with 2df

Tests of association in a two-way table

> chisq.test(m1) ← m1 is a matrix of frequencies – chi-squared test
> fisher.test(m1) ← m1 is a matrix of frequencies – exact test

5

Importing data from files

♦♦♦♦ Reading data into a single vector

> rate = scan(“h:/intrates.txt”) ← reads a column of data in a text file held in directory h into a vector

♦♦♦♦ Reading data into a data frame

> claims = read.table(“claimsdata.txt”) ← reads a text file containing 2 or more columns of
values of variables (numerical, factor codes) of the same length, either (i) with row labels
or numbers and a header row (variable names in the first row of the file), or (ii) with no
row labels/numbers and no header row, into a data frame

> claims2 = read.table(“h:/project4/ecology.txt”, col.names = c(“year”, “conc”, “depth”,
 “type”))

> claims3 = read.table(“racestats”, header=TRUE) ← reads a text file containing 2 or more
columns of values of variables (numerical, factor codes) of the same length, with no row
labels/numbers but with a header row, into a data frame

♦♦♦♦ Accessing built-in datsets

R: Over 50 datsets are supplied and others are available in libraries
> data() ← lists the datasets supplied and available for use – thay are in a package

called “base”
> data(morley) ← loads the dataset “morley”, which is a data frame containing 100

observations of 3 variables
To access other libraries and data sets use
Packages menu → Load package then highlight the one you want (e.g. MASS) and double-click

> data(package=MASS) ← lists the data sets, which include a 26x6 data frame called road
> data(road)
> road

♦♦♦♦ Reading data into a single vector direct from the web

> rate = scan(“http://www.ma.hw.ac.uk/~roger/f73sj2/data/intrates.txt”)
← reads a column of data in a text file after downloading it from the web

♦♦♦♦ Reading data into a data frame direct from the web

> claims = read.table(“http://www.ma.hw.ac.uk/~roger/f73sj2/data/claims.txt”)
 ← reads a text file into a data frame after downloading the file from the web

6
Using data frames

♦ Creating a data frame from keyboard

> temp = data.frame(a, b, c) ← creates data frame temp with 3 columns from vectors of equal
 length a, b, and c

> tax = data.frame(mat1) ← creates data frame tax containing the elements of matrix mat1

> frame6 = cbind(a,b,c,d) ← creates data frame (with 4 columns) – different effect

♦ Making data available outside a data frame

> yield$size ← extracts the column with variable name size from data frame yield
> sizenew = yield$size ← as above and defines it as a new object
> duration = claims[,5] ← duration is a vector comprising the 5th column of the data frame

 claims
> attach(claims) ← enables all variables in data frame claims to be used outside the data
 frame (ensure there are no other variables of the same names in existence)
> detach(claims) ← reverses the effect of attach – variables now not available outside data frame

♦ Opening/editing an existing data frame

To view the contents of a data frame (or other object), just type name of object at the prompt and
enter it.

To edit the contents of a data frame (including changing names and types of variables):

Use menus: Edit → Data editor or

> fix(claims) or > edit.data.frame(claims) ← opens the frame in an editor window

Clicking on a variable name allows you to edit it.

Using simple functions – three examples

If you type the function outside R in a simple text editor you should store the resulting text file
(say file func1.txt) in the directory which contains your R workspace (the R image − the file of the
form *.RData) and then load it using the R command “source”, e.g. funcA=source(“func1.txt")

♦ function fA calculates 2i + i2 for i = 1,2, … n for a specified n; first type in the function line by
 line as follows (R will supply a “+” at the start of each line − or type it externally as a text file
 and source it)

 > fA=function(n){
 a=rep(0,n)
 for(i in 1:n){
 a[i]=2*i + i*i
 }
 a
 }

 then issue
 > b=fA(5)
 > b
 producing output [1] 3 8 15 24 35

7

♦ function fB calculates the means of n samples of 200 observations simulated from an
 exponential distribution with mean 10; the output is a vector of those means which lie between
 9 and 11

♦ function fC calculates the means of n samples of 200 observations simulated from a Pareto
 distribution with parameters α = 3 and λ = 20 (and so with mean 10); the output is a vector of
 those means which lie between 9 and 11

 > fB=function(n){ > fC=function(n){
 e=rep(0,n) b= -1/3
 for (i in (1:n)){ e=rep(0,n)
 c=rexp(200,0.1) for (i in (1:n)){
 d=mean(c) a=runif(200)
 e[i]=d c=20*(a^b – 1)
 f=sort(e) d=mean(c)
 g=f[f>9] e[i]=d
 h=g[g<11] f=sort(e)
 } g=f[f>9]
 h h=g[g<11]
 } }
 h
 }

 > m1=fB(100) > m2=fC(100)
 > m1 > m2

Statistical modelling

If the model includes one or more qualitative factors, see Contrasts for factors below before
fitting the model.

Linear models

> model1 = lm(y ~ x) ← normal linear regression model of y on x

> model2 = lm(y1~x1+x2, data = illus3) ← normal linear regression model of y1 on x1 and x2,
 data held in data frame “illus3”

♦♦♦♦ Information from fitted models

> summary(model3) ← displays parameter estimates and st. errors, deviance, and
 correlation matrix

>summary.aov(model5) ← displays the analysis of variance for the fitted model

> fitted(model4) > resid(model4) > coef(model4)

> f4 = fitted(model4) ← vectors containing fitted values, residuals, coefficients in
> r2 = resid(model2) fitted model
> c3 = coef(model3)

8

> plot(fitted(model3), resid(model3)) ← plot of residuals against fitted values
> abline(model3) ← adds fitted line to current data plot
> abline(h=0, lty=2) ← adds a horizontal dashed line at y = 0 to current data plot

> plot(model3) ← supplies 4 plots associated with the fitted model “model3”: click on the
 command window (and then return) each time to get each plot;
 1 residuals v fitted, 2 normal Q-Q plot,
 3 scale-location plot, and 4 Cook’s distance plot

Generalised linear models

Log linear models

> model2 = glm(n ~ rc + cc, family = poisson)
> model3 = glm(n ~ age, family = poisson)
> model4 = glm(n ~ attitude + age + gender, family = poisson)
> model5 = glm(n ~ attitude*age + gender, family = poisson))
> model6 = glm(n ~ attitude*age*gender, family = poisson)

Logistic regression models

> model7 = glm(propdead ~ dose + age, weights = groupsize, family = binomial)
> model8 = glm(propdead ~ dose*age, weights = groupsize, family = binomial)

Contrasts for factors

This refers to the parameterisation which contrasts the response at each level of a factor with
that of the first level of the factor. There are several possible ways to set the parameterisation.

In R the default setting is the “treatment setting”. In this case the parameter values given are the
additions required for the second, third, … levels of the factor (the first level for each factor being
the “base” or “reference” level). This is convenient and easy to understand.

files R_ref_sheets_2008.doc
R_ref_sheets_2008.pdf available at www.ma.hw.ac.uk/~roger/f71sm1

