NAME (BLOCK LETTERS)
I affirm that this assignment is my sole and original work. SIGNATURE
TUTORIAL CLASS: Day..
Due: 25 February 2008 at 4.30 pm (use the AMS course-work box, outside EM 1.25).
INSTRUCTIONS: Attempt ALL FOUR questions. To receive full credit you must show your work and explain your answers. There are 40 marks available.

1. Let X be a continuous random variable whose probability density function $(p d f)$ is

$$
f_{X}(x)=\left\{\begin{array}{cl}
\frac{1}{x^{2}}, & \text { for } 1<x<\infty \\
0, & \text { elsewhere }
\end{array}\right.
$$

(a) Find an expression for the cumulative distribution function $(c d f) F_{X}(x)$.
(b) Hence, or otherwise, calculate the probability $P(X>5)$.
(c) Consider now a transformation of X given by $Y=g(X)=X^{-1}$.
i) Determine the range of the random variable Y.
ii) Identify fully the distribution of Y using your answers to i) and ii).
2. Test scores (out of 100) in a large class of students are thought to be normally distributed with mean $\mu=62$ and standard deviation $\sigma=12$.
(a) Calculate the probability that the score of a randomly selected student from this class will be greater than 40 .
(b) Find the score which will be exceeded by the score of a randomly selected student with probability 0.05 .
3. The height (in cm) of 30 randomly selected plants of a certain kind are given below (in ascending order):

25.1	25.5	27.2	27.9	28.8	28.9	29.1	29.7	29.9	30.1
30.3	30.6	30.6	31.1	31.3	31.7	31.7	31.9	32.2	32.4
32.6	32.9	33.3	33.5	33.8	34.2	34.5	34.9	35.3	36.3

(For the above data $\sum x_{i}=937.3$ and $\sum x_{i}^{2}=29504.21$)
(a) Calculate the median, first quartile and third quartile of these data.
(b) Calculate the interquartile range (IQR) and explain briefly its meaning.
(c) Construct a stem-and-leaf diagram for the data. Does the plot support the suggestion that the distribution of heights is Normal? Give reasons for your answer.
(d) Calculate the sample mean and sample standard deviation of the data.
(e) What percentage of these data lie within (i) one sample standard deviation of the sample mean; (ii) two sample standard deviations of the sample mean? Do these percentages support the suggestion that the distribution of heights is Normal?
4. A fair coin is tossed independently 100 times. Use the Central Limit Theorem to calculate the approximate probability that the number of times that a 'head' is achieved will exceed 40.

BLANK (use this space to continue your answers if needed)

