HERIOT-WATT UNIVERSITY

F71SB2 Statistics II

Wednesday, 15 March 2006, 13.30 - 15.30

Attempt ALL 8 questions. A total of 100 marks is available.

Approved electronic calculators may be used

- 1. A group of 8 students consists of 4 sets of twins. Suppose that 3 students are selected at random without replacement.
 - (a) Find the probability that the selection does not contain a pair of twins. [5]
 - (b) Hence, or otherwise, find the probability that the selection contains one pair of twins. [3]
- 2. (a) Define the cumulative distribution function (cdf) of a random variable X, $F_X(x)$, by expressing it as a probability and state the properties it must satisfy. [5]
 - (b) Let X be a random variable with range $S_x = \{1, 2, 3, 4\}$. For each of the following determine whether the given values can serve as the values of the *cdf* of X, giving reasons for your answers:

i)
$$F_X(1) = 0.3, F_X(2) = 0.5, F_X(3) = 0.8, F_X(4) = 1.2;$$
 [2]

ii)
$$F_X(1) = 0.5, F_X(2) = 0.4, F_X(3) = 0.7, F_X(4) = 1.0.$$
 [2]

(c) Consider a discrete random variable X with the following cdf:

$$F_X(x) = \begin{cases} 0, & \text{for } x < 1\\ \frac{1}{3}, & \text{for } 1 \le x < 4\\ \frac{1}{2}, & \text{for } 4 \le x < 6\\ \frac{5}{6}, & \text{for } 6 \le x < 10\\ 1, & \text{for } x \ge 10. \end{cases}$$

i) Draw the graph of the cdf of X.[3]ii) Calculate $P(2 < X \le 6)$.[3]iii) Calculate P(X = 4).[3]

CONTINUED/

3. For a random sample of 100 motorists, the number of times each required to sit the driving test was noted. The results were as follows.

Number of attempts (x): 1 2 3 4 ≥ 5 Number of motorists (f_x) : 42 27 20 11 0

It is assumed that these data are a random sample from a Geometric(p) distribution for some value of p. (Hint: If $X \sim \text{Geometric}(p)$ then $P(X = x) = (1 - p)^{x-1}p$ and $E(X) = p^{-1}$.)

- (a) Apply the method-of-moments to the above data set to estimate the unknown parameter, p. [4]
- (b) Compute the expected numbers in each category for a sample of size 100 using your estimated value of p. [6]
- (c) Compare the expected numbers with the actual numbers given above. Do you think the geometric model fits these data well? [2]
- 4. Let X be a continuous random variable whose probability density function (pdf) is

$$f(x) = \begin{cases} \theta x^{\theta - 1}, & \text{for } 0 < x < 1; \\ 0, & \text{elsewhere} \end{cases}$$

where $\theta > 0$ is a parameter of the distribution.

- (a) By evaluating an appropriate integral, show that $E(X) = \frac{\theta}{\theta+1}$. [4]
- (b) Let the values in a random sample of size 5 from this distribution be

$$0.41 \quad 0.84 \quad 0.89 \quad 0.94 \quad 0.98.$$

Calculate $\hat{\theta}$, the method-of-moments estimate of θ , from these data. [4]

CONTINUED/

5. (a) Let X be a random variable whose distribution is $N(\mu, \sigma^2)$, with probability density function (pdf) given by

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, \qquad -\infty < x, \mu < \infty, \quad \sigma > 0.$$

Derive the *pdf* of the random variable $Z = \frac{X-\mu}{\sigma}$, and identify fully its distribution. [6]

- (b) Suppose that $X \sim N(80, 16)$. Use statistical tables to calculate the following probabilities:
 - i) P(X > 85); [3]

ii)
$$P(77 < X < 81)$$
. [5]

6. The inside-leg measurements (in inches) of 30 randomly selected male students are given below (in ascending order):

25.1	25.5	27.2	27.9	28.8	28.9	29.3	29.5	29.9	30.1
30.3	30.6	30.6	31.1	31.5	31.7	31.7	31.9	32.2	32.4
32.6	32.9	33.2	33.6	33.8	34.2	34.5	34.9	35.3	36.3

- (a) Calculate the 5-point summary for these data.
- (b) Construct a stem-and-leaf diagram for the data. Does the plot support the suggestion that the distribution of inside-leg measurements is Normal? [6]
- 7. Suppose that the time, T, until you receive the next call on your mobile phone, measured in hours, follows an Exp(0.5) distribution.
 - (a) Calculate the probability that you will not receive a phone call for at least the next two hours, assuming that you have not received a call in the last one hour.[4]
 - (b) Let X be the random variable representing the number of phone calls that you receive in one hour. Identify fully the distribution of X and hence, or otherwise, find the probability that you will not receive a call in the next one hour. [4]
 - (c) Let T_1, T_2, \ldots, T_{25} , be independent random variables from an Exp(0.5) distribution. Use the Central Limit Theorem to calculate the approximate probability $P(\bar{T} > 1)$, where $\bar{T} = \frac{1}{25} \sum_{i=1}^{25} T_i$. (Hint: If $X \sim \text{Exp}(\lambda)$, then $E(X) = \lambda^{-1}$ and $\operatorname{var}(X) = \lambda^{-2}$.) [6]

CONTINUED/

 $\left[5\right]$

8. The population distribution of the length (measured in microns) of a certain kind of bacteria (A) is known to be Normal with unknown mean and variance. Eight bacteria are selected at random and their lengths measured. The resulting data are:

 $6.3 \quad 7.3 \quad 6.6 \quad 6.8 \quad 8.0 \quad 7.6 \quad 7.1 \quad 7.0.$

For these data $\sum x_i = 56.7$ and $\sum x_i^2 = 403.95$.

- (a) Evaluate the sample mean and sample variance for these data. [3]
- (b) Use the sample mean and sample variance, evaluated in (a), to calculate a 95% confidence interval for the unknown mean, μ_A , of the population. [6]
- (c) Explain briefly the meaning of an observed '95% confidence interval' for an unknown parameter μ . [3]
- (d) Now suppose that a sample of a different kind of bacteria (B) is taken, and a 95% confidence interval for the difference $\mu_A \mu_B$ in the mean length of bacteria A and B is calculated as (0.42, 1.58). Comment on any difference in the mean length of the two kinds of bacteria. [3]

[Grand total: 100]

END OF PAPER