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Introduction

Vector Pascal is a dialect of Pascal designed to make efficient use of the multi-media in-
structionsets of recent procesors. It supports data parallel operations and saturated arith-
metic. This manual describes the Vector Pascal language.

A number of widely used contemporary processors have instructionset extensions for
improved performance in multi-media applications. The aimis to allow operations to pro-
ceed on multiple pixels each clock cycle. Such instructionsets have been incorporated both
in specialist DSP chips like the Texas C62xx[35] and in general purpose CPU chips like
the Intel IA32[14] or the AMD K6 [2].

These instructionset extensions are typically based on theSingle Instruction-stream
Multiple Data-stream (SIMD) model in which a single instruction causes the same math-
ematical operation to be carried out on several operands, orpairs of operands at the same
time. The level or parallelism supported ranges from 2 floating point operations at a time on
the AMD K6 architecture to 16 byte operations at a time on the intel P4 architecture. Whilst
processor architectures are moving towards greater levelsof parallelism, the most widely
used programming languages like C, Java and Delphi are structured around a model of com-
putation in which operations take place on a single value at atime. This was appropriate
when processors worked this way, but has become an impediment to programmers seeking
to make use of the performance offered by multi-media instructionsets. The introduction of
SIMD instruction sets[13][29] to Personal Computers potentially provides substantial per-
formance increases, but the ability of most programmers to harness this performance is held
back by two factors. The first is the limited availability of compilers that make effective use
of these instructionsets in a machine independent manner. This remains the case despite the
research efforts to develop compilers for multi-media instructionsets[8][26][24][32]. The
second is the fact that most popular programming languages were designed on the word at
a time model of the classic von Neumann computer.

Vector Pascal aims to provide an efficient and concise notation for programmers using
Multi-Media enhanced CPUs. In doing so it borrows concepts for expressing data paral-
lelism that have a long history, dating back to Iverson’s work on APL in the early ’60s[17].

Define a vector of typeT as having typeT[]. Then if we have a binary operatorω :
(T⊗T)→ T, in languages derived from APL we automatically have an operatorω : (T[]⊗
T[])→ T[] . Thus if x,y are arrays of integersk = x+ y is the array of integers where
ki = xi +yi.

The basic concept is simple, there are complications to do with the semantics of oper-
ations between arrays of different lengths and different dimensions, but Iverson provides a
consistent treatment of these. The most recent languages tobe built round this model are J,
an interpretive language[19][5][20], and F[28] a modernised Fortran. In principle though
any language with array types can be extended in a similar way. Iverson’s approach to
data parallelism is machine independent. It can be implemented using scalar instructions
or using the SIMD model. The only difference is speed.

Vector Pascal incorporates Iverson’s approach to data parallelism. Its aim is to provide
a notation that allows the natural and elegant expression ofdata parallel algorithms within a
base language that is already familiar to a considerable body of programmers and combine
this with modern compilation techniques.

7
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By an elegant algorithm I mean one which is expressed as concisely as possible. El-
egance is a goal that one approaches asymptotically, approaching but never attaining[7].
APL and J allow the construction of very elegant programs, but at a cost. An inevitable
consequence of elegance is the loss of redundancy. APL programs are as concise, or even
more concise than conventional mathematical notation[18]and use a special character-set.
This makes them hard for the uninitiated to understand. J attempts to remedy this by
restricting itself to the ASCII character-set, but still looks dauntingly unfamiliar to pro-
grammers brought up on more conventional languages. Both APL and J are interpretive
which makes them ill suited to many of the applications for which SIMD speed is required.
The aim of Vector Pascal is to provide the conceptual gains ofIverson’s notation within a
framework familiar to imperative programmers.

Pascal[21]was chosen as a base language over the alternatives of C and Java. C was
rejected because notations likex+y for x andy declared asint x[4] , y[4] , already have
the meaning of adding the addresses of the arrays together. Java was rejected because of
the difficulty of efficiently transmitting data parallel operations via its intermediate code to
a just in time code generator.

Iverson’s approach to data parallelism is machine independent. It can be implemented
using scalar instructions or using the SIMD model. The only difference is speed. Vector
Pascal incorporates Iverson’s approach to data parallelism.



Chapter 1

Elements of the language

1.1 Alphabet

The Vector Pascal compiler accepts files in the UTF-8 encoding of Unicode as source.
Since ASCII is a subset of this, ASCII files are valid input.

Vector Pascal programs are made up of letter, digits and special symbols. The letters
digits and special symbols are draw either from a base character set or from an extended
character set. The base character set is drawn from ASCII andrestricts the letters to be
from the Latin alphabet. The extended character set allows letters from other alphabets.

The special symbols used in the base alphabet are shown in table1.1 .

1.1.1 Extended alphabet

The extended alphabet is described in Using Unicode with Vector Pascal.

1.2 Reserved words

The reserved words are
ABS, ADDR, AND, ARRAY,
BEGIN, BYTE2PIXEL,
CASE, CAST, CDECL, CHR, CONST, COS,

DIV, DO, DOWNTO,
END, ELSE, EXIT, EXTERNAL,

Table 1.1: Special symbols

+ : (
- ’ )
* = [
/ <> ]
:= < {
. <= }
, >= ^
; > ..
+: @ *)
-: $ (*
_ **

9
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FALSE, FILE, FOR, FUNCTION,
GOTO,
IF, IMPLEMENTATION, IN, INTERFACE, IOTA,
LABEL, LIBRARY, LN,
MAX, MIN, MOD,
NAME, NDX, NOT,
OF, OR, ORD, OTHERWISE,
PACKED, PERM, PIXEL2BYTE, POW, PRED,

PROCEDURE, PROGRAM, PROTECTED ,
RDU, RECORD, REPEAT, ROUND,
SET, SHL, SHR, SIN, SIZEOF, STRING, SQRT, SUCC,
TAN, THEN, TO, TRANS, TRUE, TYPE,
VAR,
WITH, WHILE, UNIT, UNTIL, USES
Reserved words may be written in either lower case or upper case letters, or any com-

bination of the two.

1.3 Comments

The comment construct
{ < any sequence of characters not containing “}” >}
may be inserted between any two identifiers, special symbols, numbers or reserved

words without altering the semantics or syntactic correctness of the program. The brack-
eting pair(* *) may substitute for{ } . Where a comment starts with{ it continues until
the next} . Where it starts with(* it must be terminated by*) 1.

1.4 Identifiers

Identifiers are used to name values, storage locations, programs, program modules, types,
procedures and functions. An identifier starts with a letterfollowed by zero or more letters,
digits or the special symbol_. Case is not significant in identifiers. ISO Pascal allows the
Latin letters A-Z to be used in identifiers. Vector Pascal extends this by allowing symbols
from the Greek, Cyrillic, Katakana and Hiragana, or CJK character sets

1.5 Literals

1.5.1 Integer numbers

Integer numbers are formed of a sequence of decimal digits, thus1, 23, 9976 etc, or as
hexadecimal numbers, or as numbers of any base between 2 and 36. A hexadecimal number
takes the form of a$ followed by a sequence of hexadecimal digits thus$01, $3ff, $5A .
The letters in a hexadecimal number may be upper or lower caseand drawn from the range
a..f or A..F.

A based integer is written with the base first followed by a # character and then a
sequence of letters or digits. Thus2#1101 is a binary number8#67 an octal number and
20#7i a base 20 number.

The default precision for integers is 32 bits2.

1Note this differs from ISO Pascal which allows a comment starting with { to terminate with *) and vice versa.
2The notation used for grammar definition is a tabularised BNF. Each boxed table defines a production, with

the production name in the left column. Each line in the rightcolumn is an alternative for the production. The
metasymbol + indicates one or more repetitions of what immediately preceeds it. The Kleene star * is used for
zero or more repetitions. Terminal symbols are in single quotes. Sequences in brackets [ ] are optional.
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Table 1.2: The hexadecimal digits of Vector Pascal.
Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Notation 1 0 1 2 3 4 5 6 7 8 9 A B C D E F
Notation 2 0 1 2 3 4 5 6 7 8 9 a b c d e f.

<digit sequence> <digit> +

<decimal integer> <digit sequence>

<hex integer> ‘$’<hexdigit>+

<based integer> <digit sequence>’#’<alphanumeric>+

<unsigned integer> <decimal integer>
<hex integer>

<based integer>

1.5.2 Real numbers

Real numbers are supported in floating point notation, thus14.7 , 9.99e5 , 38E3, 3.6e-4
are all valid denotations for real numbers. The default precision for real numbers is also
32 bit, though intermediate calculations may use higher precision. The choice of 32 bits as
the default precision is influenced by the fact that 32 bit floating point vector operations are
well supported in multi-media instructions.

<exp> ‘e’
‘E’

<scale factor> [<sign>] <unsigned integer>

<sign> ‘-’
‘+’

<unsigned real> <decimal integer> ‘.’ <digit sequence>
<decimal integer>‘ .’ <digit sequence> <exp><scale factor>

<decimal integer><exp> <scale factor>

Fixed point numbers

In Vector Pascal pixels are represented as signed fixed pointfractions in the range -1.0 to
1.0. Within this range, fixed point literals have the same syntactic form as real numbers.

1.5.3 Character strings

Sequences of characters enclosed by quotes are called literal strings. Literal strings consist-
ing of a single character are constants of the standard type char. If the string is to contain a
quote character this quote character must be written twice.
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’A’ ’x’ ’hello’ ’John”s house’

are all valid literal strings. The allowable characters in literal strings are any of the
Unicode characters above u0020. The character strings mustbe input to the compiler in
UTF-8 format.



Chapter 2

Declarations

Vector Pascal is a language supporting nested declaration contexts. A declaration context
is either a program context, and unit interface or implementation context, or a procedure
or function context. A resolution context determines the meaning of an identifier. Within a
resolution context, identifiers can be declared to stand forconstants, types, variables, pro-
cedures or functions. When an identifier is used, the meaningtaken on by the identifier is
that given in the closest containing resolution context. Resolution contexts are any decla-
ration context or awith statement context. The ordering of these contexts when resolving
an identifier is:

1. The declaration context identified by anywith statements which nest the current
occurrence of the identifier. Thesewith statement contexts are searched from the
innermost to the outermost.

2. The declaration context of the currently nested procedure declarations. These proce-
dure contexts are searched from the innermost to the outermost.

3. The declaration context of the current unit or program.

4. The interface declaration contexts of the units mentioned in the use list of the current
unit or program. These contexts are searched from the rightmost unit mentioned in
the use list to the leftmost identifier in the use list.

5. The interface declaration context of the System unit.

6. The pre-declared identifiers of the language.

2.1 Constants

A constant definition introduces an identifier as a synonym for a constant.

<constant declaration> <identifier>=<expression>
<identifier>’:’<type>’=’<typed constant>

Constants can be simple constants or typed constants. A simple constant must be a con-
stant expression whose value is known at compile time. This restricts it to expressions for
which all component identifiers are other constants, and forwhich the permitted operators
are given in table2.1 . This restricts simple constants to beof scalar or string types.

Typed constants provide the program with initialised variables which may hold array
types.

<typed constant> <expression>
<array constant>

13
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Table 2.1: The operators permitted in Vector Pascal constant expressions.
+ - * / div mod shr shl and or

2.1.1 Array constants

Array constants are comma separated lists of constant expressions enclosed by brackets.
Thus

tr:array[1..3] of real =(1.0,1.0,2.0);
is a valid array constant declaration, as is:
t2:array[1..2,1..3] of real=((1.0,2.0,4.0),(1.0,3.0,9 .0));

The array constant must structurally match the type given tothe identifier. That is to
say it must match with respect to number of dimensions, length of each dimension, and
type of the array elements.

<array constant> ’(’ <typed constant> [,<typed constant>]* ’)’

2.1.2 Pre-declared constants

maxint The largest supported integer value.

pi A real numbered approximation toπ

maxchar The highest character in the character set.

maxstring The maximum number of characters allowed in a string.

maxreal The highest representable real.

minreal The smallest representable positive real number.

epsreal The smallest real number which when added to 1.0 yields a value distinguish-
able from 1.0.

maxdouble The highest representable double precision real number.

mindouble The smallest representable positive double precision realnumber.

complexzero A complex number with zero real and imaginary parts.

complexone A complex number with real part 1 and imaginary part 0.

2.2 Labels

Labels are written as digit sequences. Labels must be declared before they are used. They
can be used to label the start of a statement and can be the destination of agoto statement.
A goto statement must have as its destination a label declared within the current innermost
declaration context. A statement can be prefixed by a label followed by a colon.

Example
label 99;
begin read(x); if x>9 goto 99; write(x*2);99: end;
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Table 2.2: Categorisation of the standard types.
type category

real floating point
double floating point
byte integral
pixel fixed point

shortint integral
word integral

integer integral
cardinal integral
boolean scalar

char scalar

2.3 Types

A type declaration determines the set of values that expressions of this type may assume
and associates with this set an identifier.

<type> <simple type>
<structured type>

<pointer type>

<type definition> <identifier>’=’<type>

2.3.1 Simple types

Simple types are either scalar, standard, subrange or dimensioned types.

<simple type> <scalar type>
<integral type>
<subrange type>

<dimensioned type>
<floating point type>

Scalar types

A scalar type defines an ordered set of identifier by listing these identifiers. The declaration
takes the form of a comma separated list of identifiers enclosed by brackets. The identifiers
in the list are declared simultaneously with the declared scalar type to be constants of this
declared scalar type. Thus

colour = (red,green,blue);
day=(monday,tuesday,wednesday,thursday,

friday,saturday,sunday);

are valid scalar type declarations.

Standard types

The following types are provided as standard in Vector Pascal:

integer The numbers are in the range -maxint to +maxint.
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real These are a subset of the reals constrained by the IEEE 32 bit floating point
format.

double These are a subset of the real numbers constrained by the IEEE64 bit floating
point format.

pixel These are represented as fixed point binary fractions in the range -1.0 to 1.0.

boolean These take on the values(false,true) which are ordered such thattrue>false .

char These include the characters fromchr(0) to charmax . All the allowed char-
acters for string literals are in the type char, but the character-set may include
other characters whose printable form is country specific.

pchar Defined aŝ char .

byte These take on the positive integers between 0 and 255.

shortint These take on the signed values between -128 and 127.

word These take on the positive integers from 0 to 65535.

cardinal These take on the positive integers form 0 to 4292967295, i.e., the most that
can be represented in a 32 bit unsigned number.

longint A 32 bit integer, retained for compatibility with Turbo Pascal.

int64 A 64 bit integer.

complex A complex number with the real and imaginary parts held to 32 bit precision.

Subrange types

A type may be declared as a subrange of another scalar or integer type by indicating the
largest and smallest value in the subrange. These values must be constants known at com-
pile time.

<subrange type> <constant> ’..’ <constant>

Examples: 1..10, ’a’..’f’, monday..thursday.

Pixels

Theconceptual modelof pixels in Vector Pascal is that they are real numbers in therange
−1.0..1.0. As a signed representation it lends itself to subtraction. As an unbiased repre-
sentation, it makes the adjustment of contrast easier. For example, one can reduce contrast
50% simply by multiplying an image by 0.51. Assignment to pixel variables in Vector
Pascal is defined to be saturating - real numbers outside the range−1..1 are clipped to it.
The multiplications involved in convolution operations fall naturally into place.

The implementation modelof pixels used in Vector Pascal is of 8 bit signed integers
treated as fixed point binary fractions. All the conversionsnecessary to preserve the mono-
tonicity of addition, the range of multiplication etc, are delegated to the code generator
which, where possible, will implement the semantics using efficient, saturated multi-media
arithmetic instructions.

1When pixels are represented as integers in the range 0..255,a 50% contrast reduction has to be expressed as
((p−128)÷2)+128.
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Dimensioned types

These provide a means by which floating point types can be specialised to represent dimen-
sioned numbers as is required in physics calculations. For example:

kms =(mass,distance,time);
meter=real of distance;
kilo=real of mass;
second=real of time;
newton=real of mass * distance * time POW -2;
meterpersecond = real of distance *time POW -1;
The grammar is given by:

<dimensioned type> <real type> <dimension >[’*’ <dimension>]*

<real type> ’real’
’double’

<dimension> <identifier> [’POW’ [<sign>] <unsigned integer>]

The identifier must be a member of a scalar type, and that scalar type is then referred
to as the basis space of the dimensioned type. The identifiersof the basis space are re-
ferred to as the dimensions of the dimensioned type. Associated with each dimension of
a dimensioned type there is an integer number referred to as the power of that dimension.
This is either introduced explicitly at type declaration time, or determined implicitly for the
dimensional type of expressions.

A value of a dimensioned type is a dimensioned value. Let logd t of a dimensioned type
t be the power to which the dimensiond of type t is raised. Thus fort =newton in the
example above, andd =time, logd t =−2

If x andy are values of dimensioned typestxandtyrespectively, then the following op-
erators are only permissible iftx = ty

+ - < > <> = <= >=

For + and -, the dimensional type of the result is the same as that of the arguments. The
operations

* /

are permitted if the typestxandty share the same basis space, or if the basis space of
one of the types is a subrange of the basis space of the other.

The operationPOWis permitted between dimensioned types and integers.

Dimension deduction rules

1. If x = y∗ z for x : t1,y : t2,z : t3 with basis spaceB then

∀d∈B logd t1 = logd t2 + logd t3

2. If x = y/z for x : t1,y : t2,z : t3 with basis spaceB then

∀d∈B logd t1 = logd t2− logd t3

3. If x = y POWz for x : t1,y : t2,z : integerwith basis space fort2, B then

∀d∈B logd t1 = logd t2×z
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.

2.3.2 Structured types

Static Array types

An array type is a structure consisting of a fixed number of elements all of which are the
same type. The type of the elements is referred to as the element type. The elements of an
array value are indicated by bracketed indexing expressions. The definition of an array type
simultaneously defines the permitted type of indexing expression and the element type.

The index type of a static array must be a scalar or subrange type. This implies that the
bounds of a static array are known at compile time.

<array type> ’array’ ’[’ <index type>[,<index type>]* ’]’ ’of’ <type>

<index type> <subrange type>
<scalar type>

<integral type>

Examples
array[colour] of boolean;
array[1..100] of integer;
array[1..2,4..6] of byte;
array[1..2] of array[4..6] of byte;
The notation [b,c] in an array declaration is shorthand for the notation [b] of array [

c ]. The number of dimensions of an array type is referred to as its rank. Scalar types have
rank 0.

String types

A string type denotes the set of all sequences of characters up to some finite length and
must have the syntactic form:

<string-type> ’string[’ <integer constant>’]’
’string’

’string(’ <ingeger constant>’)’

the integer constant indicates the maximum number of characters that may be held
in the string type. The maximum number of characters that canbe held in any string
is indicated by the pre-declared constantmaxstring . The typestring is shorthand for
string[maxstring] .

Record types

A record type defines a set of similar data structures. Each member of this set, a record
instance, is a Cartesian product of number of components orfieldsspecified in the record
type definition. Each field has an identifier and a type. The scope of these identifiers is the
record itself.

A record type may have as a final component avariant part. The variant part, if a
variant part exists, is a union of several variants, each of which may itself be a Cartesian
product of a set of fields. If a variant part exists there may bea tag field whose value
indicates which variant is assumed by the record instance.

All field identifiers even if they occur within different variant parts, must be unique
within the record type.
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<record type> ’record’ <field list> ’end’

<field list> <fixed part>
<fixed part>’;’ <variant part>

<variant part>

<fixed part> <record section> [ ’;’ <record section.]*

<record section> <identifier>[’,’ <identifier>]* ’:’ <type>
<empty>

<variant part> ’case’ [<tag field> ’:’] <type identifier> ’of’<variant>[’;’ <variant>]*

<variant> <constant> [’,’ <constant>]*’:’ ’(’ <field list> ’)’
<empty>

Set types

A set type defines the range of values which is the power-set ofits base type. The base type
must be an ordered type, that is a type on which the operations<, = and> are defined2.
Thus sets may be declared whose base types are characters, numbers, ordinals, or strings.
Any user defined type on which the comparison operators have been defined can also be
the base type of a set.

<set type> ’set’ ’of’ <base type>

2.3.3 Dynamic types

Variables declared within the program are accessed by theiridentifier. These variables exist
throughout the existence of the scope within which they are declared, be this unit, program
or procedure. These variables are assigned storage locations whose addresses, either ab-
solute or relative to some register, can be determined at compile time. Such locations a
referred to as static3. Storage locations may also be allocated dynamically. Given a typet ,
the type of a pointer to an instance of typet is ^t .

A pointer of type^t can be initialised to point to a new store location of type t byuse
of the built in procedurenew. Thus ifp:^t ,

new(p);
causesp to point at a store location of typet .

Pointers to dynamic arrays

The types pointed to by pointer types can be any of the types mentioned so far, that is to
say, any of the types allowed for static variables. In addition however, pointer types can

2ISO Pascal requires the base type to be a scalar type, a character type, integer type or a subrange thereof.
When the base type is one of these, Vector Pascal implements the set using bitmaps. When the type is other than
these, balanced binary trees are used. It is strongly recomended that use be made of Boehm garbage collector (see
section 5.1.2) if non-bitmapped sets are used in a program.

3The Pascal concept of static variables should not be equatedwith the notion of static variables in some other
languages such as C or Java. In Pascal a variable is considered static if its offset either relative to the stack base
or relative to the start of the global segment can be determined at compile/link time. In C a variable is static only
if its location relative to the start of the global segment isknown at compile time.
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be declared to point at dynamic arrays. A dynamic array is an array whose bounds are
determined at run time.

Pascal 90[15] introduced the notion of schematic or parameterised types as a means of
creating dynamic arrays. Thus wherer is some integral or ordinal type one can write

type z(a,b:r)=array[a..b] of t;
If p:^z , then
new(p,n,m)
wheren,m:r initialisesp to point to an array of boundsn..m . The bounds of the array

can then be accessed asp^.a, p^.b . In this casea, b are the formal parameters of the
array type. Vector Pascal currently only allows parameterised types to be allocated on the
heap vianew. The extended form of the procedurenew must be passed an actual parameter
for each formal parameter in the array type.

Dynamic arrays

Vector Pascal also allows the use of Delphi style declarations for dynamic arrays. Thus one
can declare:

type vector = array of real;
matrix = array of array of real;

The size of such arrays has to be explicitly initialised at runtime by a call to the library
proceduresetlength . Thus one might have:

function readtotal:real;
var len:integer;

v:vector;
begin

readln(len);
setlength(v,len);
readln(v);
readtotal := \+ v;

end;

The functionreadtotal reads the number of elements in a vector from the standard input.
It then callssetlength to initialise the vector length. Next it reads in the vector and
computes its total using the reduction operator\+ .

In the example, the variablev denotes an array of reals not a pointer to an array of
reals. However, since the array size is not known at compile time setlength will allocate
space for the array on the heap not in the local stack frame. The use ofsetlength is
thus restricted to programs which have been compiled with the garbage collection flag
enabled (see section 5.1.2). The proceduresetlength must be passed a parameter for
each dimension of the dynamic array. The bounds of the arraya formed by
setlength(a,i,j,k)
would then be0..i-1, 0..j-1, 0..k-1 .

Low and High

The build in functionslow andhigh return the lower and upper bounds of an array respec-
tively. They work with both static and dynamic arrays. Consider the following examples.

program arrays;
type z(a,b:integer)=array[a..b] of real;

vec = array of real;
line= array [1..80] of char;
matrix = array of array of real;
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var i:^z; v:vec; l:line; m:matrix;
begin

setlength(v,10);setlength(m,5,4);
new(i,11,13);
writeln(low(v), high(v));
writeln(low(m), high(m));
writeln(low(m[0]),high(m[0]));
writeln(low(l),high(l));
writeln(low(i^),high(i^));

end.

would print

0 9
0 4
0 3
1 80

11 13

2.4 File types

A type may be declared to be a file of a type. This form of definition is kept only for back-
ward compatibility. All file types are treated as being equivalent. A file type corresponds to
a handle to an operating system file. A file variable must be associated with the operating
system file by using the proceduresassign, rewrite, append , andreset provided by
the system unit. A pre-declared file typetext exists.

Text files are assumed to be in Unicode UTF-8 format. Conversions are performed
between the internal representation of characters and UTF-8 on input/output from/to a text
file.

2.5 Variables

Variable declarations consist of a list of identifiers denoting the new variables, followed by
their types.

<variable declaration> <identifier> [’,’ <identifier>]* ’:’ <type><extmod>

Variables are abstractions over values. They can be either simple identifiers, compo-
nents or ranges of components of arrays, fields of records or referenced dynamic variables.

<variable> <identifier>
<indexed variable>
<indexed range>

<field designator>
<referenced variable>

Examples
x,y:real;
i:integer;
point:^real;
dataset:array[1..n]of integer;
twoDdata:array[1..n,4..7] of real;
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2.5.1 External Variables

A variable may be declared to be external by appending the external modifier.

<extmod> ’;’ ’external’ ’name’ <stringlit>

This indicates that the variable is declared in a non Vector Pascal external library. The
name by which the variable is known in the external library isspecified in a string literal.

Example
count:integer; external name ’_count’;

2.5.2 Entire Variables

An entire variable is denoted by its identifier. Examplesx,y,point ,

2.5.3 Indexed Variables

A component of ann dimensional array variable is denoted by the variable followed byn
index expressions in brackets.

<indexed variable> <variable>’[’ <expression>[’,’<expression>]* ’]’

The type of the indexing expression must conform to the indextype of the array vari-
able. The type of the indexed variable is the component type of the array.

Examples
twoDdata[2,6]
dataset[i]
Given the declaration
a=array[p] of q
then the elements of arrays of typea, will have typeq and will be identified by indices

of typep thus:
b[i]
wherei:p , b:a .
Given the declaration
z = string[x]
for some integer x≤maxstring , then the characters within strings of typez will be

identified by indices in the range1..x, thus:
y[j]
wherey:z , j:1..x .

Indexed Ranges

A range of components of an array variable are denoted by the variable followed by a range
expression in brackets.

<indexed range> <variable> ’[’ <range expression>[’,’ <range expression>]* ’]’

<range expression> <expression> ’..’ <expression>

The expressions within the range expression must conform tothe index type of the
array variable. The type of a range expressiona[i..j] wherea: array[p..q] of t is
array[0..j-i] of t.

Examples:
dataset[i..i+2]:=blank;
twoDdata[2..3,5..6]:=twoDdata[4..5,11..12]*0.5;
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Subranges may be passed in as actual parameters to procedures whose corresponding
formal parameters are declared as variables of a schematic type. Hence given the following
declarations:

type image(miny,maxy,minx,maxx:integer)=array[miny.. maxy,minx..maxx]
of byte;

procedure invert(var im:image);begin im:=255-im; end;
var screen:array[0..319,0..199] of byte;
then the following statement would be valid:
invert(screen[40..60,20..30]);

Indexing arrays with arrays

If an array variable occurs on the right hand side of an assignment statement, there is a fur-
ther form of indexing possible. An array may be indexed by another array. Ifx:array[t0]
of t1 andy:array[t1] of t2 , theny[x] denotes the virtual array of typearray[t0]
of t2 such thaty[x][i]=y[x[i]] . This construct is useful for performing permutations.
To fully understand the following example refer to sections3.1.3,3.2.1.

Example Given the declarations
const perms:array[0..3] of integer=(3,1,2,0);
var ma,m0:array[0..3] of integer;
then the statements
m0:= (iota 0)+1;
write(’m0=’);for j:=0 to 3 do write(m0[j]);writeln;
ma:=m0[perms];
write(’perms=’);for j:=0 to 3 do write(perms[j]);writeln ;
writeln(’ma:=m0[perms]’);for j:=0 to 3 do write(ma[j]);w riteln;
would produce the output

m0= 1 2 3 4
perms= 3 1 2 0
ma:=m0[perms]
4 2 3 1

This basic method can also be applied to multi-dimensional array. Consider the follow-
ing example of an image warp:

type pos = 0..255;
image = array[pos,pos] of pixel;
warper = array[pos,pos,0..1] of pos;

var im1 ,im2 :image;
warp :warper;

begin
....
getbackwardswarp(warp);
im2 := im1 [ warp ];
....

The proceduregetbackwardswarp determines for each pixel positionx, y in an image
the position in the source image from which it is to be obtained. After the assignment we
have the postcondition

im2[x,y] = im1[warp[x,y,0],warp[x,y,1]]∀x,y ∈ pos
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2.5.4 Field Designators

A component of an instance of a record type, or the parametersof an instance of a schematic
type are denoted by the record or schematic type instance followed by the field or parameter
name.

<field designator> <variable>’.’<identifier>

2.5.5 Referenced Variables

If p:^t , thenp^ denotes the dynamic variable of typet referenced byp.

<referenced variable> <variable> ’^’

2.6 Procedures and Functions

Procedure and function declarations allow algorithms to beidentified by name and have
arguments associated with them so that they may be invoked byprocedure statements or
function calls.

<procedure declaration> <procedure heading>’;’[<proc tail>]
<proc tail> ’forward’

’external’ [ ’name’ <string>]
<block>

<paramlist> ’(’<formal parameter sec>[’;’<formal parameter sec>]*’)’
<procedure heading> ’procedure’ <identifier> [<paramlist>]

’function’<identifier> [<paramlist>]’:’<type>
<formal parameter sec> [’var’]<identifier>[’,’<identifier>]’:’<type>

<procedure heading>
<procedure type> ’procedure’ [<paramlist>]

’function’ [<paramlist>]’:’<type>
The parameters declared in the procedure heading are local to the scope of the pro-

cedure. The parameters in the procedure heading are termed formal parameters. If the
identifiers in a formal parameter section are preceded by theword var , then the formal pa-
rameters are termed variable parameters. The block4 of a procedure or function constitutes
a scope local to its executable compound statement. Within afunction declaration there
must be at least one statement assigning a value to the function identifier. This assign-
ment determines the result of a function, but assignment to this identifier does not cause an
immediate return from the function.

Function return values can be scalars, pointers, records, strings, static arrays or sets.
Arrays whose size is determined at run time may not be returned from a function.

Where a procedure is declared as forward it must be followed by a full definition of
procedure lower in the current scope.

The external declaration form allows calls to be made to libraries written in other lan-
guages.

Examples The function sba is the mirror image of the abs function.
function sba(i:integer):integer;
begin if i>o then sba:=-i else sba:=i end;
type stack:array[0..100] of integer;
procedure push(var s:stack;i:integer);

4see section 4.
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begin s[s[0]]:=i;s[0]:=s[0]+1; end;

procedure append(var f:fileptr);external;
procedure close (var f:fileptr); external name ’pasclose’ ;

2.6.1 Procedural Parameters to Procedures

A procedure may have parameters that are themselves procedures as shown in the following
example.

program CONF103(output);
var

i : integer;
procedure alsoconforms(x : integer);
begin

writeln(’ PASS...6.6.3.1-4 (CONF103)’)
end;
procedure conforms(procedure alsoconforms(x : integer)) ;

var x : boolean;
begin

x:=true;
alsoconforms(1)

end;
begin

i:=2;
conforms(alsoconforms)

end.

2.6.2 Procedure types

Procedural types may be declared. This in turn allows procedure variables. These store the
address of a procedure or function and can be assigned to using the address operator @.

Example

program procvar;
type t=procedure (x:integer);
var v:t;

procedure f(a:integer);begin writeln(a);end;
begin

v:= @f;
v(3);

end.
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Chapter 3

Algorithms

3.1 Expressions

An expression is a rule for computing a value by the application of operators and functions
to other values. These operators can bemonadic- taking a single argument, ordyadic-
taking two arguments.

3.1.1 Mixed type expressions

The arithmetic operators are defined over the base types integer and real. If a dyadic op-
erator that can take either real or integer arguments is applied to arguments one of which
is an integer and the other a real, the integer argument is first implicitly converted to a real
before the operator is applied. Similarly, if a dyadic operator is applied to two integral
numbers of different precision, the number of lower precision is initially converted to the
higher precisions, and the result is of the higher precision. Higher precision of typest,u
is defined such that the type with the greater precision is theone which can represent the
largest range of numbers. Hence reals are taken to be higher precision than longints even
though the number of significant bits in a real may be less thanin a longint.

When performing mixed type arithmetic between pixels and another numeric data type,
the values of both types are converted to reals before the arithmetic is performed. If the
result of such a mixed type expression is subsequently assigned to a pixel variable, all
values greater than 1.0 are mapped to 1.0 and all values below-1.0 are mapped to -1.0.

3.1.2 Primary expressions

<primary expression> ’(’ <expression> ’)’
<literal string>

’true’
’false’

<unsigned integer>
<unsigned real>

<variable>
<constant id>

<function call>
<set construction>

The most primitive expressions are instances of the literals defined in the language:
literal strings, boolean literals, literal reals and literal integers. ’Salerno’,true , 12, $ea8f,
1.2e9 are all primary expressions. The next level of abstraction is provided by symbolic

27
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identifiers for values.X, left , a.max , p^.next , z[1] , image[4..200,100..150] are
all primary expressions provided that the identifiers have been declared as variables or
constants.

An expression surrounded by brackets( ) is also a primary expression. Thus ife is an
expression so is( e ) .

<function call> <function id> [ ’(’ <expression> [,<expression>]* ’)’ ]

<element> <expression>
<range expression>

Let e be an expression of typet1 and if f is an identifier of typefunction( t1 ): t2,
then f( e ) is a primary expression of typet2. A function which takes no parameters is
invoked without following its identifier by brackets. It will be an error if any of the actual
parameters supplied to a function are incompatible with theformal parameters declared for
the function.

<set construction> ’[’ [<element>[,<element>]*] ’]’

Finally a primary expression may be a set construction. A setconstruction is written as a
sequence of zero or more elements enclosed in brackets[ ] and separated by commas. The
elements themselves are either expressions evaluating to single values or range expressions
denoting a sequence of consecutive values. The type of a set construction is deduced by
the compiler from the context in which it occurs. A set construction occurring on the right
hand side of an assignment inherits the type of the variable to which it is being assigned.
The following are all valid set constructions:

[], [1..9], [z..j,9], [a,b,c,]
[] denotes the empty set.

3.1.3 Unary expressions

A unary expression is formed by applying a unary operator to another unary or primary ex-
pression. The unary operators supported are+, -, *, /, div, mod, and, or, not,
round, sqrt, sin, cos, tan, abs, ln, ord, chr, byte2pixel, pi xel2byte, succ,
pred, iota, trans, addr and@.

Thus the following are valid unary expressions: -1 , +b, not true , sqrt abs x ,
sin theta. In standard Pascal some of these operators are treated as functions,. Syntacti-
cally this means that their arguments must be enclosed in brackets, as insin(theta) . This
usage remains syntactically correct in Vector Pascal.

The dyadic operators+, -, *, /, div, mod , and or are all extended to unary
context by the insertion of an implicit value under the operation. Thus just as-a = 0-a so
too /2 = 1/2 . For sets the notation-s means the complement of the sets. The implicit
value inserted are given below.

type operators implicit value

number +,- 0
string + ”

set + empty set
number *,/ ,div,mod 1
number max lowest representable number of the type
number min highest representable number of the type
boolean and true
boolean or false
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Table 3.1: Unary operators
lhs rhs meaning

<unaryop> ’+’ +x = 0+x identity operator
’-’ -x = 0-x,

note: this is defined on integer, real and complex
’*’, ’ ×’ *x=1*x identity operator

’/’ /x=1.0/x
note: this is defined on integer, real and complex

’div’, ’ ÷’ div x =1 div x
’mod’ mod x = 1 mod x
’and’ and x = true and x
’or’ or x = false or x

’not’, ’¬’ complements booleans
’round’ rounds a real to the closest integer

’sqrt’, ’√’ returns square root as a real number.
’sin’ sine of its argument. Argument in radians. Result is real.
’cos’ cosine of its argument. Argument in radians. Result is real.
’tan’ tangent of its argument. Argument in radians. Result is real.
’abs’ if x<0 then abs x = -x else abs x= x
’ln’ loge of its argument. Result is real.

’ord’ argument scalar type, returns ordinal
number of the argument.

’chr’ converts an integer into a character.
’succ’ argument scalar type,

returns the next scalar in the type.
’pred’ argument scalar type,

returns the previous scalar in the type.
’iota’, ’ ι’ iota i returns the ith current index
’trans’ transposes a matrix or vector

’pixel2byte’ convert pixel in range -1.0..1.0 to byte in range 0..255
’byte2pixel’ convert a byte in range 0..255 to a pixel in

the range -1.0..1.0
’@’,’addr’ Given a variable, this returns an

untyped pointer to the variable.

A unary operator can be applied to an array argument and returns an array result. Sim-
ilarly any user declared function over a scalar type can be applied to an array type and
return an array. Iff is a function or unary operator mapping from typer to type t then
if x is an array ofr, anda an array oft , thena:=f(x) assigns an array oft such that
a[i]=f(x[i])

<unary expression> <unaryop> <unary expression>
’sizeof’ ’(’ <type> ’)’
<operator reduction>
<primary expression>

’if’<expression> ’then’ <expression> ’else’ <expression>

sizeof

The constructsizeof( t ) wheret is a type, returns the number of bytes occupied by an
instance of the type.
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iota

The operator iota i returns the ith current implicit index1.

Examples Thus given the definitions
var v1:array[1..3]of integer;
v2:array[0..4] of integer;
then the program fragment
v1:=iota 0;
v2:=iota 0 *2;

for i:=1 to 3 do write( v1[i]); writeln;
writeln(’v2’);
for i:=0 to 4 do write( v2[i]); writeln;
would produce the output

v1
1 2 3
v2
0 2 4 6 8

whilst given the definitions
m1:array[1..3,0..4] of integer;m2:array[0..4,1..3]of i nteger;
then the program fragment
m2:= iota 0 +2*iota 1;
writeln(’m2:= iota 0 +2*iota 1 ’);
for i:=0 to 4 do begin for j:=1 to 3 do write(m2[i,j]); writeln ; end;

would produce the output

m2:= iota 0 +2*iota 1
2 4 6
3 5 7
4 6 8
5 7 9
6 8 10

The argument toiota must be an integer known at compile time within the range of implicit
indices in the current context. The reserved wordndx is a synonym foriota .

perm A generalised permutation of the implicit indices is performed using the syntactic
form:

perm[ index-sel[,index-sel]* ]expression

The index-sels are integers known at compile time which specify a permutation on the
implicit indices. Thus ine evaluated in contextperm[ i, j,k] e, then:

iota 0 = iota i, iota 1= iota j, iota 2= iota k

This is particularly useful in converting between different image formats. Hardware frame
buffers typically represent images with the pixels in the red, green, blue, and alpha channels
adjacent in memory. For image processing it is convenient tohold them in distinct planes.
Theperm operator provides a concise notation for translation between these formats:

1See section 3.2.1.
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type rowindex=0..479;
colindex=0..639;

var channel=red..alpha;
screen:array[rowindex,colindex,channel] of pixel;
img:array[channel,colindex,rowindex] of pixel;

...
screen:=perm[2,0,1]img;

trans anddiag provide shorthand notions for expressions in terms ofperm . Thus in
an assignment context of rank 2,trans = perm[1,0] anddiag = perm[0,0] .

trans

The operator trans transposes a vector or matrix. It achieves this by cyclic rotation of the
implicit indices. Thus iftrans e is evaluated in a context with implicit indices

iota 0.. iota n
then the expression e is evaluated in a context with implicitindices
iota ’0.. iota ’n
where
iota ’x = iota ( (x+1)modn+1)
It should be noted that transposition is generalised to arrays of rank greater than 2.

Examples Given the definitions used above in section 3.1.3, the program fragment:
m1:= (trans v1)*v2;
writeln(’(trans v1)*v2’);
for i:=1 to 3 do begin for j:=0 to 4 do write(m1[i,j]); writeln ; end;

m2 := trans m1;
writeln(’transpose 1..3,0..4 matrix’);
for i:=0 to 4 do begin for j:=1 to 3 do write(m2[i,j]); writeln ; end;
will produce the output:

(trans v1)*v2
0 2 4 6 8
0 4 8 12 16
0 6 12 18 24
transpose 1..3,0..4 matrix
0 0 0
2 4 6
4 8 12
6 12 18
8 16 24

3.1.4 Operator Reduction

Any dyadic operator can be converted to a monadic reduction operator by the functional \.
Thus if a is an array,\+a denotes the sum over the array. More generally\Φx for some
dyadic operatorΦ meansx0Φ(x1Φ..(xnΦι)) whereι is the implicit value given the operator
and the type. Thus we can write\+ for summation,\* for nary product etc. The dot product
of two vectors can thus be written as

x:= \+ y*x;
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instead of
x:=0;
for i:=0 to n do x:= x+ y[i]*z[i];
A reduction operation takes an argument of rankr and returns an argument of rankr-1

except in the case where its argument is of rank 0, in which case it acts as the identity
operation. Reduction is always performed along the last array dimension of its argument.

The operations of summation and product can be be written eithter as the two functional
forms\ + and\ ∗ or as the prefix operators∑ (Unicode 2211) and∏ (Unicode 220f).

<operator reduction> ’\’<dyadic op> <multiplicative expression>
’∑’ <mutliplicative expression>
’∏’ < multiplicative expression>

<dyadic op> <expop>
<multop>
<addop>

The reserved wordrdu is available as a lexical alternative to \, so \+ is equivalent to
rdu +.

3.1.5 Complex conversion

Complex numbers can be produced from reals using the function cmplx . cmplx( re,im) is
the complex number with real partre, and imaginaray partim.

The real and imaginary parts of a complex number can be obtained by the functionsre
and im . re (c) is the real part of the complex numberc. im (c) is the imaginary part of the
complex numberc.

3.1.6 Conditional expressions

The conditional expression allows two different values to be returned depenent upon a
boolean expression.

var a:array[0..63] of real;
...

a:=if a>0 then a else -a;

...

The if expression can be compiled in two ways:

1. Where the two arms of the if expression are parallelisable, the condition and both
arms are evaluated and then merged under a boolean mask. Thus, the above assign-
ment would be equivalent to:

a:= (a and (a >0))or(not (a >0) and -a);

were the above legal Pascal2.

2. If the code is not paralleliseable it is translated as equivalent to a standard if state-
ment. Thus, the previous example would be equivalent to:

for i:=0 to 63 do if a[i] >0 then a[i]:=a[i] else a[i]:=-a[i];

Expressions are non parallelisable if they include function calls.
2This compilation strategy requires that true is equivalentto -1 and false to 0. This is typically the represen-

tation of booleans returned by vector comparison instructions on SIMD instruction sets. In Vector Pascal this
representation is used generally and in consequence,true <false .
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Table 3.2: Null elements for boolean masking

Type Null Element
Numbers 0
Strings empty string
Booleans false

The dual compilation strategy allows the same linguistic construct to be used in recursive
function definitions and parallel data selection.

Use of boolean mask vectors

In array programming many operations can be efficiently be expressed in terms of boolean
mask vectors. Given the declarations:

const
s:array[1..4] of string[8]=(’dog’,’fish’,’bee’,’beans ’);
i:array[1..4] of integer=(1,2,3,4);
r:array[1..4] of real=(0.5,1.0,2.0,4.0);
b:array[1..4] of boolean=(false,true,false,true);

var
c:array[1..4] of complex;

and if c is intialised to cmplx(1,0.5), then the statements

write (b,i and b, r and b);
write(s:12, (s and b):12 );
write(c and b);

will output

false true false true
0 2 0 4
0 1 0 4

dog fish bee beans
fish beans

0j0 1j5e-1 0j0 1j5e-1

and operations using boolean arrays are particularly usefull in performing parallel selection
operations on arrays. For numeric types, they commpile efficiently to SIMD code. Anding
a value with boolean true leaves the value unchanged, andingwith false returns a null
element.

3.1.7 Factor

A factor is an expression that optionally performs exponentiation. Vector Pascal supports
exponentiation either by integer exponents or by real exponents. A numberx can be raised
to an integral powery by using the constructionx pow y. A number can be raised to an
arbitrary real power by the** operator. The result of** is always real valued.

<expop> ’pow’
’**’

<factor> <unary expression> [ <expop> <unary expression>]



34 CHAPTER 3. ALGORITHMS

Table 3.3: Multiplicative operators
Operator Left Right Result Effect ofa op b

*, × integer integer integer multiply
string integer string replicate, ’ab’*2 =’abab’
real real real multiply

complex complex complex multiply
/ integer integer real division

real real real division
complex complex complex division

div, ÷ integer integer integer division
mod integer integer integer remainder
and boolean boolean boolean logical and
shr integer integer integer shifta by b bits right
shl integer integer integer shifta by b bits left

in, ∈ t set of t boolean true ifa is member ofb

3.1.8 Multiplicative expressions

Multiplicative expressions consist of factors linked by the multiplicative operators*, ×,
/, div, ÷,, mod, shr, shl and . The use of these operators is summarised in table
3.3.

<multop> ’*’
’×’
’/’

’div’
’÷’
’shr’
’shl’
’and’
’mod’

<multiplicative expression> <factor> [ <multop> <factor> ]*
<factor>’in’<multiplicative expression>

3.1.9 Additive expressions

An additive expression allows multiplicative expressionsto be combined using the addition
operators+, -, or, +:,max, min, -: , ><. The additive operations are summarised in
table3.4 .

<addop> ’+’

’-’

’or’

’max’

’min’

’+:’

’-:’

<additive expression> <multiplicative expression> [ <addop> <multiplicative expression> ]*
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Table 3.4: Addition operations
Left Right Result Effect ofa op b

+ integer integer integer sum ofa andb

real real real sum ofa andb

complex complex complex sum ofa andb

set set set union ofa andb

string string string concatenatea with b ’ac’+’de’=’acde’

- integer integer integer result of subtractingb from a

real real real result of subtractingb from a

complex complex complex result of subtractingb from a

set set set complement ofb relative toa

+: 0..255 0..255 0..255 saturated + clipped to 0..255

-128..127 -128..127 -128..127 saturated + clipped to -128..127

-: 0..255 0..255 0..255 saturated - clipped to 0..255

-128..127 -128..127 -128..127 saturated - clipped to -128..127

min integer integer integer returns the lesser of the numbers

real real real returns the lesser of the numbers

max integer integer integer returns the greater of the numbers

real real real returns the greater of the numbers

or boolean boolean boolean logical or

>< set set set symetric difference

Table 3.5: Relational operators

< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to
<> Not equal to
= Equal to

<expression> <additive expression> <relational operator> <expression>

3.1.10 Expressions

An expression can optionally involve the use of a relationaloperator to compare the results
of two additive expressions. Relational operators always return boolean results and are
listed in table 3.5.

3.1.11 Operator overloading

The dyadic operators can be extended to operate on new types by operator overloading.
Figure 3.1 shows how arithmetic on the typecomplex required by Extended Pascal [15] is
defined in Vector Pascal. Each operator is associated with a semantic function and if it is a
non-relational operator, an identity element. The operator symbols must be drawn from the
set of predefined Vector Pascal operators, and when expressions involving them are parsed,
priorities are inherited from the predefined operators. Thetype signature of the operator is
deduced from the type of the function3.

3Vector Pascal allows function results to be of any non-procedural type.
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interface
type

Complex = record data : array [0..1] of real ;
end ;

var
complexzero, complexone : complex;

function real2cmplx ( realpart :real ):complex ;
function cmplx ( realpart ,imag :real ):complex ;
function complex_add ( A ,B :Complex ):complex ;
function complex_conjugate ( A :Complex ):complex ;
function complex_subtract ( A ,B :Complex ):complex ;
function complex_multiply ( A ,B :Complex ):complex ;
function complex_divide ( A ,B :Complex ):complex ;

{ Standard operators on complex numbers }
{ symbol function identity element }
operator + = Complex_add , complexzero ;
operator / = complex_divide , complexone ;
operator * = complex_multiply , complexone ;
operator - = complex_subtract , complexzero ;
operator cast = real2cmplx ;

Note that only the function headers are given here as this code comes from the interface part of the
system unit. The function bodies and the initialisation of the variables complexone and complexzero
are handled in the implementation part of the unit.

Example 3.1: Defining operations on complex numbers

<operator-declaration> ’operator’ ’cast’ ’=’ <identifier>

’operator’ <dyadicop> ’=’ <identifier>’,’<identifier>

’operator’ <relational operator> ’=’ <identifier>

When parsing expressions, the compiler first tries to resolve operations in terms of
the predefined operators of the language, taking into account the standard mechanisms
allowing operators to work on arrays. Only if these fail doesit search for an overloaded
operator whose type signature matches the context.

In the example in figure 3.1, complex numbers are defined to be records containing
an array of reals, rather than simply as an array of reals. Hadthey been so defined, the
operators+,*,-,/ on reals would have masked the corresponding operators on complex
numbers.

The provision of an identity element for complex addition and subtraction ensures that
unary minus, as in−x for x :complex, is well defined, and correspondingly that unary /
denotes complex reciprocal. Overloaded operators can be used in array maps and array
reductions.

Implicit casts

The Vector Pascal language already contains a number of implicit type conversions that
are context determind. An example is the promotion of integers to reals in the context of
arithmetic expressions. The set of implicit casts can be added to by declaring an operator
to be a cast as is shown in the line:

operator cast = real2cmplx ;
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{:tests vector product of integer vectors }
program conf551;
const

a:array[0..3] of integer=(1,1,2,3);
b:array[0..3] of integer=(1,2,3,4);

var i:integer;
begin

i:=a.b;
if i=21 then

writeln(’PASS integer vector product allowed’)
else

writeln(’FAIL integer vector product i=’,i)
end.

Example 3.2: Example of the inner product operation

{:tests vector product of string and integer }
program conf550;
const roman:array[0..4] of string[3]=(’C’,’L’,’X’,’V’, ’I’);

num: array[0..4] of integer =(1,1,2,0,3);
var s:string[80];
begin

s:=num.roman;
if s=’CLXXIII’ then

writeln(’PASS string integer vector product allowed’)
else

writeln(’FAIL CONF550 string integer vector product s=’,s )
end.

Example 3.3: Using vector product to format roman numerals

Given an implict cast from typet0→ t1, the function associated with the implicit cast
is then called on the result of any expressione : t0 whose expression context requires it to
be of typet1.

3.1.12 Vector inner product

The inner product of two vectors is defined as:

a.b = ∑
i

ai×bi

or in Vector Pascal notation:a.b = \+ a*b . Vector Pascal supports this inner product
operation on any pair of vectors with the following properties:

1. The lengths of the vectors must be the same.

2. The types of the vectors must be such that they support the operators + and *.

Inner product can obviously be used on numeric vectors as shown in Example 3.2 but it can
also be used with other types for which + and * are defined, as shown in Example 3.3.

The inner product operation is of higher priority than any other. Its arguments must be
arrays.
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3.1.13 Matrix to Vector Product

Matrix to vector product can be used to carry out generalisedlinear geometry transforms.
We can do this in Vector Pascal if a two dimensional array is used to multiply a one dimen-
sional array, using the dot product operator. IfMis a two dimensional array andv a vector,
M.v produces the transformed vector.VECTOR

The program matvmult shown in Example 3.4, shows the repeated application of a
rotation and translation matrix to the unit x vector. When the matrix

1√
2

−1√
2

0 0
1√
2

1√
2

0 0

0 0 1 0.2
0 0 0 1

is applied to a vector of the form[x,y,z,1], it rotates it by 45◦ and moves it up by 0.2.

Data-flow Hazards

Note that in Example 3.4, one can not simply writev1:=M.v1 , instead one has to write:

v2:=M.v1;
v1:=v2;

since the vectorv1 might be changing whilst it was being read. Had the compiler been
encountered this statement it would have generated the error messages:

compilation failed
17 : Error assignment invalid
17 : Error in primary expression started by m
17 : Error attempting to reduce rank of variable
17 : Error data hazard found. Destination v1 is used with

an index permutation on right hand side of := which
can cause it to be corrupted.
You can get round this by assigning to a temporary
array instead and then assigning the temporary to
destination v1

A check for data-flow hazards is applied to all array assignment statements. If array ex-
pressions could all be evaluated in parallel, then there would be no hazards. The problem
arises because only simple array expressions can be evaluated entirely in parallel. In other
cases the array assignment has to be broken down by the compiler into a sequence of steps.
This gives rise to the danger that an array location may be altered by an early step prior to
it being used a source of data by a subsequent step.

In most cases there will be no problem even where the destination vector appears on
the right hand side of an assignment. Thus:

M:=M+v;

for some matrixMand vectorv, is ok, since here each element ofMdepends only on its own
prior value. However forv1:=M.v1 , we have the equations

v10 =
3

∑
j=0

M0 jv1 j (3.1)

v11 =
3

∑
j=0

M1 jv1 j (3.2)

In which ever order the code for these equations is evaluated, eitherv10 or v11will be
altered before it is used in the other equation.
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program matvmult;
type vec=array[0..3] of real;

mat=array[0..3] of vec;
const

rr2= 0.7071067 ; { 1/sqrt(2) }
M:mat=(( rr2,-rr2,0.0,0.0) , { 45degree spiral matrix }

(rr2,rr2,0.0,0.0),
(0.0,0.0,1.0,0.2),
(0.0,0.0,0.0,1.0));

v:vec=(1.0,0.0,0.0,1.0);
var v1,v2:vec; i:integer;
begin

write (M,v);
v1:=v;
(* perform 8 45degree rotations *)
for i:=1 to 8 do begin

v2:=M.v1;
v1:=v2;
write(v1);

end;
end.

produces as output

0.70711 -0.70711 0.00000 0.00000
0.70711 0.70711 0.00000 0.00000
0.00000 0.00000 1.00000 0.20000
0.00000 0.00000 0.00000 1.00000
1.00000 0.00000 0.00000 1.00000
0.70711 0.70711 0.20000 1.00000
0.00000 1.00000 0.40000 1.00000

-0.70711 0.70711 0.60000 1.00000
-1.00000 -0.00000 0.80000 1.00000
-0.70711 -0.70711 1.00000 1.00000
-0.00000 -1.00000 1.20000 1.00000

0.70711 -0.70711 1.40000 1.00000
1.00000 -0.00000 1.60000 1.00000

Example 3.4: Using a spiral rotation matrix to operate on theunit x vector.
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program matmmult;
const

A:array[1..2,1..3] of integer=((3,1,2),
(2,1,3));

B:array[1..3,1..2] of integer=((1,2),
(3,1),
(2,3));

var C:array[1..2,1..2] of integer;
begin

C:=A.B;
writeln(C);

end.

Produces output

10 13
11 14

Example 3.5: Matrix by matrix multiplication.

3.1.14 Matrix to Matrix multiplication

The dot operator can be used between matrices to perform matrix multiplication as illus-VECTOR

trated in Example 3.5. This applies the standard equation for matrix multiplication:

cik =
p

∑
s=1

aisbsk (3.3)

where A is of order(m× p)and B is of order(p× n) to give a resulting matrix C of
order(m×n).

3.2 Statements

<statement> <variable>’:=’<expression>
<procedure statement>

<empty statement>
’goto’ <label>;

’exit’[’(’<expression>’)’]
’begin’ <statement>[;<statement>]*’end’

’if’<expression>’then’<statement>[’else’<statement>]
<case statement>

’for’ <variable>:= <expression> ’to’ <expression> ’do’ <statement>
’for’ <variable>:= <expression> ’downto’ <expression> ’do’ <statement>

’repeat’ <statement> ’until’ <expression>
’with’ <record variable> ’do’ < statement>

<io statement>
’while’ <expression> ’do’ <statement>

3.2.1 Assignment

An assignment replaces the current value of a variable by a new value specified by an
expression. The assignment operator is :=. Standard Pascalallows assignment of whole
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arrays. Vector Pascal extends this to allow consistent use of mixed rank expressions on the
right hand side of an assignment. Given

r0:real; r1:array[0..7] of real;
r2:array[0..7,0..7] of real
then we can write

1. r1:= r2[3]; { supported in standard Pascal }

2. r1:= /2; { assign 0.5 to each element of r1 }

3. r2:= r1*3; { assign 1.5 to every element of r2}

4. r1:= \+ r2; { r1 gets the totals along the rows of r2}

5. r1:= r1+r2[1];{ r1 gets the corresponding elements of row 1 o f r2 added
to it}

The assignment of arrays is a generalisation of what standard Pascal allows. Consider the
first examples above, they are equivalent to:

1. for i:=0 to 7 do r1[i]:=r2[3,i];

2. for i:=0 to 7 do r1[i]:=/2;

3. for i:=0 to 7 do

for j:=0 to 7 do r2[i,j]:=r1[j]*3;

4. for i:=0 to 7 do

begin

t:=0;

for j:=7 downto 0 do t:=r2[i,j]+t;

r1[i]:=t;

end;

5. for i:=0 to 7 do r1[i]:=r1[i]+r2[1,i];

In other words the compiler has to generate an implicit loop over the elements of the array
being assigned to and over the elements of the array acting asthe data-source. In the above
i,j,t are assumed to be temporary variables not referred to anywhere else in the program.
The loop variables are called implicit indices and may be accessed usingiota .

The variable on the left hand side of an assignment defines an array context within
which expressions on the right hand side are evaluated. Eacharray context has a rank
given by the number of dimensions of the array on the left handside. A scalar variable has
rank 0. Variables occurring in expressions with an array context of rankr must haver or
fewer dimensions. Then bounds of anyn dimensional array variable, withn≤ r occurring
within an expression evaluated in an array context of rankr must match with the rightmost
n bounds of the array on the left hand side of the assignment statement.

Where a variable is of lower rank than its array context, the variable is replicated to
fill the array context. This is shown in examples 2 and 3 above.Because the rank of
any assignment is constrained by the variable on the left hand side, no temporary arrays,
other than machine registers, need be allocated to store theintermediate array results of
expressions.
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3.2.2 Procedure statement

A procedure statement executes a named procedure. A procedure statement may, in the
case where the named procedure has formal parameters, contain a list of actual parame-
ters. These are substituted in place of the formal parameters contained in the declaration.
Parameters may be value parameters or variable parameters.

Semantically the effect of a value parameter is that a copy istaken of the actual pa-
rameter and this copy substituted into the body of the procedure. Value parameters may be
structured values such as records and arrays. For scalar values, expressions may be passed
as actual parameters. Array expressions are not currently allowed as actual parameters.

A variable parameter is passed by reference, and any alteration of the formal parameter
induces a corresponding change in the actual parameter. Actual variable parameters must
be variables.

<parameter> <variable> for formal parameters declared as var
<expression> for other formal parameters

<procedure statement> <identifier>
<identifier> ’(’ <parameter> [’,’<parameter>]* ’)’

Examples

1. printlist;

2. compare(avec,bvec,result);

3.2.3 Goto statement

A goto statement transfers control to a labelled statement.The destination label must be
declared in a label declaration. It is illegal to jump into orout of a procedure.

Example goto 99;

3.2.4 Exit Statement

An exit statement transfers control to the calling point of the current procedure or function.
If the exit statement is within a function then the exit statement can have a parameter: an
expression whose value is returned from the function.

Examples

1. exit;

2. exit(5);

3.2.5 Compound statement

A list of statements separated by semicolons may be grouped into a compound statement
by bracketing them withbegin andend .

Example begin a:=x*3; b:=sqrt a end;
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3.2.6 If statement

The basic control flow construct is the if statement. If the boolean expression betweenif
and then is true then the statement followingthen is followed. If it is false and an else
part is present, the statement followingelse is executed.

3.2.7 Case statement

The case statement specifies an expression which is evaluated and which must be of inte-
gral or ordinal type. Dependent upon the value of the expression control transfers to the
statement labelled by the matching constant.

<case statement> ’case’<expression>’of’<case actions>’end’

<case actions> <case list>
<case list> ’else’ <statement>

<case list> ’otherwise’ <statement>

<case list> <case list element>[’;’<case list element.]*

<case list element> <case label>[’,’ <case label>]’:’<statement>

<case label> <constant>
<constant> ’..’ <constant>

Examples

case i of case c of
1:s:=abs s; ’a’:write(’A’);
2:s:= sqrt s; ’b’,’B’:write(’B’);
3: s:=0 ’A’,’C’..’Z’,’c’..’z’:write(’ ’);
end end

3.2.8 With statement

Within the component statement of the with statement the fields of the record variable can
be referred to without prefixing them by the name of the recordvariable. The effect is to
import the component statement into the scope defined by the record variable declaration
so that the field-names appear as simple variable names.

Example var s:record x,y:real end;
begin
with s do begin x:=0;y:=1 end ;
end

3.2.9 For statement

A for statement executes its component statement repeatedly under the control of an itera-
tion variable. The iteration variable must be of an integralor ordinal type. The variable is
either set to count up through a range or down through a range.

for i:= e1 to e2 do s
is equivalent to



44 CHAPTER 3. ALGORITHMS

i:=e1; temp:=e2;while i<=temp do s;
whilst
for i:= e1 downto e2 do s
is equivalent to
i:=e1; temp:=e2;while i>= temp do s;

3.2.10 While statement

A while statement executes its component statement whilst its boolean expression is true.
The statement

while e do s
is equivalent to
10: if not e then goto 99; s; goto 10; 99:

3.2.11 Repeat statement

A repeat statement executes its component statement at least once, and then continues to
execute the component statement until its component expression becomes true.

repeat s until e
is equivalent to
10: s;if e then goto 99; goto 10;99:

3.3 Input Output

<io statement> ’writeln’[<outparamlist>]
’write’<outparamlist>
’readln’[<inparamlist>]

’read’<inparamlist>

<outparamlist> ’(’<outparam>[’,’<outparam>]*’)’

<outparam> <expression>[’:’ <expression>] [’:’<expression>]

<inparamlist> ’(’<variable>[’,’<variable>]*’)’

Input and output are supported from and to the console and also from and to files.

3.3.1 Input

The basic form of input is theread statement. This takes a list of parameters the first
of which may optionally be a file variable. If this file variable is present it is the input
file. In the absence of a leading file variable the input file is the standard input stream.
The parameters take the form of variables into which appropriate translations of textual
representations of values in the file are read. The statement

read( a,b,c)
wherea,b,care non file parameters is exactly equivalent to the sequenceof statements
read( a);read( b);read( c)
Thereadln statement has the same effect as the read statement but finishes by reading

a new line from the input file. The representation of the new line is operating system
dependent. The statement

readln( a,b,c)
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wherea,b,care non file parameters is thus exactly equivalent to the sequence of state-
ments

read( a);read( b);read( c);readln;
Allowed typed for read statements are: integers, reals, strings and enumerated types.

3.3.2 Output

The basic form of output is thewrite statement. This takes a list of parameters the first of
which may optionally be a file variable. If this file variable is present it is the output file. In
the absence of a leading file variable the output file is the console. The parameters take the
form of expressions whose values whose textual representations are written to the output
file. The statement

write( a,b,c)
wherea,b,care non file parameters is exactly equivalent to the sequenceof statements
write( a);write( b);write( c)
Thewriteln statement has the same effect as the write statement but finishes by writ-

ing a new line to the output file. The representation of the newline is operating system
dependent. The statement

writeln( a,b,c)
wherea,b,care non file parameters is thus exactly equivalent to the sequence of state-

ments
write( a);write( b);write( c);writeln;
Allowed types for write statements are integers, reals, strings and enumerated types.

Parameter formating

A non file parameter can be followed by up to two integer expressions prefixed by colons
which specify the field widths to be used in the output. The write parameters can thus have
the following forms:

e e:m e:m:n

1. If e is an integral type its decimal expansion will be written preceeded by sufficient
blanks to ensure that the total textual field width produced is not less thanm.

2. If e is a real its decimal expansion will be written preceeded by sufficient blanks to
ensure that the total textual field width produced is not lessthanm. If n is present
the total number of digits after the decimal point will ben. If n is omitted then the
number will be written out in exponent and mantissa form with6 digits after the
decimal point

3. If e is boolean the strings ’true’ or ’false’ will be written intoa field of width not less
than m.

4. If e If the value of e is a string-type value with a length ofn, the default value ofm
shall be n. The representation shall consist of

if m > n,
(m - n) spaces,

if n > 0,
the first through n-th characters of the value of e in that ord er.

if 1 <= m <= n,
the first through m-th characters in that order.

if m = 0,
no characters.
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Chapter 4

Programs, Units and Libraries

Vector Pascal supports the popular system of separate compilation units found in Turbo
Pascal. A compilation unit can be either a program, a unit or alibrary.

<program> ’program’ <identifier>’;’[<uses>’;’]<block>’.’

<invocation> <unitid>[’(’ <type identifier>[’,’<type identifier>]*’)’ ]

<unitid> <identifier>[ ’:’ ’apu’ <identifier> ’[’ <intconst>’]’ ]

<uses> ’uses’ <invocation>[’,’<invocation>]*

<block> [<decls>’;’]*’begin’ <statement>[’;’<statement>]*’end’

<decls> ’const’ <constant declaration>[’;’<constant declaration>]*
’type’<type definition>[’;’<type definition>]*

’label’ <label>[’,’ <label>]
<procedure declaration>

’var’ <variable declaration>[ ’;’ <variable declaration>]

<unit> <unit header> <unit body>

<unit body> ’interface’[<uses>][<decls>] ’implementation’<block>’.’
’interface’[ <uses>][<decls>] ’in’ <invocation> ’;’

<unit header> <unit type><identifier>
’unit’ <identifier> ’(’ <type identifier> [’,’ <type identifier>]* ’)’

<unit type> ’unit’
’library’

An executable compilation unit must be declared as a program. The program can use
several other compilation units all of which must be either units or libraries. The units or
libraries that it directly uses are specified by a list of identifiers in an optional use list at
the start of the program. A unit or library has two declaration portions and an executable
block.

4.1 The export of identifiers from units

The first declaration portion is the interface part and is preceded by the reserved word
interface .
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unit genericsort(t) ;

interface
type

dataarray ( n ,m :integer )=array [n ..m ] of t ;
procedure sort ( var a :dataarray ); (see Figure 4.2 )

implementation

procedure sort ( var a :dataarray ); (see Figure 4.2 )
begin
end .

Example 4.1: A polymorphic sorting unit.

The definitions in the interface section of unit files constitute a sequence of enclosing
scopes, such that successive units in the with list ever moreclosely contain the program
itself. Thus when resolving an identifier, if the identifier can not be resolved within the
program scope, the declaration of the identifier within the interface section of the rightmost
unit in the uses list is taken as the defining occurrence. It follows that rightmost occurrence
of an identifier definition within the interface parts of units on the uses list overrides all
occurrences in interface parts of units to its left in the uses list.

The implementation part of a unit consists of declarations,preceded by the reserved
word implementatio n that are private to the unit with the exception that a function or
procedure declared in an interface context can omit the procedure body, provided that the
function or procedure is redeclared in the implementation part of the unit. In that case the
function or procedure heading given in the interface part istaken to refer to the function
or procedure of the same name whose body is declared in the implementation part. The
function or procedure headings sharing the same name in the interface and implementation
parts must correspond with respect to parameter types, parameter order and, in the case of
functions, with respect to return types.

A unit may itself contain a use list, which is treated in the same way as the use lists of
a program. That is to say, the use list of a unit makes accessible identifiers declared within
the interface parts of the units named within the use list to the unit itself.

4.1.1 The export of Operators from units

A unit can declare a type and export operators for that type.

4.2 Unit parameterisation and generic functions

Standard Pascal provides es some limited support for polymorphism in itsread andwrite
functions. Vector Pascal allows the writing of polymorphicfunctions and procedures
through the use of parameteric units.

A unit header can include an optional parameter list. The parameters identifiers which
are interepreted as type names. These can be used to declare polymorphic procedures and
functions, parameterised by these type names. This is shownin figure 4.1.
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procedure sort ( var a :dataarray );
var

Let i, j ∈ integer;
Let temp ∈ t;

begin
for i← a.n to a.m - 1 do

for j← a.n to a.m - 1 do
if aj > aj+1 then begin begin

temp← aj;
aj← aj+1;
aj+1← temp;

end ;
end ;

Example 4.2: procedure sort

4.3 The invocation of programs and units

Programs and units contain an executable block. The rules for the execution of these are as
follows:

1. When a program is invoked by the operating system, the units or libraries in its use
list are invoked first followed by the executable block of theprogram itself.

2. When a unit or library is invoked, the units or libraries inits use list are invoked first
followed by the executable block of the unit or library itself.

3. The order of invocation of the units or libraries in a use list is left to right with the
exception provided by rule 4.

4. No unit or library may be invoked more than once.

Note that rule 4 implies that a unitx to the right of a unity within a use list, may be invoked
before the unity, if the unity or some other unit toy’s left namesx in its use list.

Note that the executable part of a library will only be invoked if the library in the
context of a Vector Pascal program. If the library is linked to a main program in some
other language, then the library and any units that it uses will not be invoked. Care should
thus be taken to ensure that Vector Pascal libraries to be called from main programs written
in other languages do not depend upon initialisation code contained within the executable
blocks of units.

4.4 The compilation of programs and units.

When the compiler processes the use list of a unit or a programthen, from left to right, for
each identifier in the use list it attempts to find an already compiled unit whose filename
prefix is equal to the identifier. If such a file exists, it then looks for a source file whose
filename prefix is equal to the identifier, and whose suffix is.pas . If such a file exists and
is older than the already compiled file, the already compiledunit, the compiler loads the
definitions contained in the pre-compiled unit. If such a fileexists and is newer than the
pre-compiled unit, then the compiler attempts to re-compile the unit source file. If this re-
compilation proceeds without the detection of any errors the compiler loads the definitions
of the newly compiled unit. The definitions in a unit are savedto a file with the suffix.mpu,
and prefix given by the unit name. The compiler also generatesan assembler file for each
unit compiled.
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4.5 Instantiation of parametric units

Instantiation of a parametric unit refers to the process by which the unbound type variables
introduced in the parameter list of the unit are bound to actual types. In Vector Pascal all
instantiation of parametric units and all type polymorphism are resolved at compile time.
Two mechanisms are provided by which a parametric unit may beinstantiated.

4.5.1 Direct instantiation

If a generic unit is invoked in the use list of a program or unit, then the unit name must
be followed by a list of type identifiers. Thus given the generic sort unit in figure 4.1, one
could instantiate it to sort arrays of reals by writing

uses genericsort(real);
at the head of a program. Following this header, the proceduresort would be declared

as operating on arrays of reals.

4.5.2 Indirect instantiation

A named unit file can indirectly instantiate a generic unit where its unit body uses the
syntax

’interface’ <uses><decls> ’in’ <invocation> ’;’
For example

unit intsort ;
interface

in genericsort (integer );

would create a named unit to sort integers. The naming of the parametric units allows more
than one instance of a given parametric unit to be used in a program. The generic sort unit
could be used to provide both integer and real sorting procedures. The different variants of
the procedures would be distinquished by using fully qualified names - e.g.,intsort.sort .

4.6 The System Unit

All programs and units include by default the unit system.pas as an implicit member of
their with list. This contains declarations of private run time routines needed by Vector
Pascal and also the following user accessible routines.

function abs Return absolute value of a real or integer.

procedure append(var f:file); This opens a file in append mode.

function arctan(x:Real):Real;

procedure assign(var f:file;var fname:string); Associates a file name with a
file. It does not open the file.

procedure blockread(var f:file;var buf;count:integer; v ar resultcount:integer);
Trys to read count bytes from the file into the buffer. Resultcount contains the
number actually read.
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LatexCommand \index{blockwrite}procedure blockwrite(v ar f:file;var buf;count:integer;
var resultcount:integer); Write count bytes from the buffer. Result-
count gives the number actually read.

procedure close (var f:file); Closes a file.

function eof (var f:file):boolean; True if we are at the end of file f.

procedure erase (var f:file); Delete file f.

function eoln (var f:file):boolean; True if at the end of a line.

function exp (d:real):real; Returnex

function filesize (var f: fileptr):integer; Return number of bytes in a file.

function filepos (var f:fileptr):integer; Return current position in a file.

procedure freemem(var p:pointer; num:integer); Free num bytes of heap store.
Called by dispose.

bold procedure getmem(var p:pointer; num:integer); Allocate num bytes of heap.
Called by new.

procedure gettime(var hour,min,sec,hundredth:integer) ; Return time of day.

Return the integer part of r as a real.

function ioresult:integer; Returns a code indicating if the previous file operation
completed ok. Zero if no error occurred.

function length(var s:string):integer; Returns the length of s.

procedure pascalexit(code:integer); Terminate the program with code.

Time in 1/100 seconds since program started.

function random:integer; Returns a random integer.

procedure randomize; Assign a new time dependent seed to the random number gener-
ator.

procedure reset(var f:file); Open a file for reading.

procedure rewrite(var f :file); Open a file for writing.

function trunc(r:real):integer; Truncates a real to an integer.

4.6.1 System unit constants

BLANK =’ ’;
maxint = 2147483647;
pi = 3.1415926535897932385;
MAXSTRING { longest allowed string}
MAXREAL =3.4E38;
MINREAL =1.18E-38;

EPSREAL { smallest increment of reals around 0 }
MAXDOUBLE =1.79E308;
MINDOUBLE =2.23E-308;
MAXCHAR =chr(65535);
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MINCHAR =chr(0);
NILSTR =’’;

minint64 =-9223372036854775807;
maxint64 =9223372036854775807;

4.7 Libraries, static and dynamic

4.7.1 Linking to external libraries

It is possible to specify to which external libraries - that is to say libraries written in another
languge, a program should be linked by placing in the main program linkage directives. For
example

{$linklib ncurses}
would cause the program to be linked to the ncurses library.

4.7.2 The export of procedures from libraries.

If a compilation unit is prefixed by the reserved wordlibrary rather than the words
program or unit , then the procedure and function declarations in its interface part are
made accessible to routines written in other languages.

4.7.3 Creating libraries

Depending on the linking that you do these Vector Pascal libraries can either be staticly
linked into a C program, or can form a Dynamic Link Library (DLL) which can be linked
at runtime to the C code. What follows are two examples of how to do this.

Static Libraries

Static libraries can be used in either Linux or Windows systems. Building and using a
library involves several stages and should be controlled bythe use of make files.

Here is an example library:

library examplelib;
interface

procedure exampleproc;

implementation

procedure exampleproc;
begin

writeln(’ procedure in library called’);
end;

end.

and here is an example C program that calls the library:

#include<stdio.h>
main(argc, argv)
{

extern void examplelib_exampleproc();
printf("start of C program \n");
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dllinit(); /* initialise the pascal runtime library */
examplelib_exampleproc(); /* call the library procedure * /
printf("end of C program\n");

}

In order to use the library from C we must do the following:

1. Compile the library to assembler language.

2. Use the gnu tools to assemble this to an object file.

3. Create an object file version of the pascal runtime library.

4. Link both of these with the C program that is going to use thelibrary.

The steps could be performed by the following makefile:

CFLAGS=-g

all: uselib
uselib

examplelib.s: examplelib.pas
vpc examplelib -S -Aexamplelib.s -cpugnuPentium

# complile the library to assembly language

examplelib.o: examplelib.s
gcc $(CFLAGS) -c examplelib.s

rtl.o: rtl.c
gcc $(CFLAGS) -DBUILD_DLL -c rtl.c

# compile it in a form suitable for use in a library

rtl.c: ../../mmpc/rtl.c
cp ../../mmpc/rtl.c rtl.c

# get a copy of the pascal run time library
# from wherever we have installed the vector pascal system

uselib: uselib.c examplelib.o rtl.o
gcc $(CFLAGS) uselib.c rtl.o examplelib.o -o uselib

# link the C program with the examplelib

DLLs

DLLs or Dynamic Link Libraries are a type of Windows file that can be linked to at runtime.
Building them is more complex than a static library as one needs to write a .def file which
defines which functions are to be exported from the DLL, and one must also build a stub
library to which the main program can be linked. One can use the gnudlltool to build
the stub library.

We illustrate the process with a similar example. First the Cprogram:

#include<stdio.h>
main(argc, argv)
{
printf("start\n");
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dllinit();
exampledll_exampleproc();
}

Next the example DLL in Pascal:

library exampledll;
interface

procedure exampleproc;
implementation

procedure exampleproc;
begin

writeln(’ procedure in dll called’);
end;

end.

We now provide a file exampledll.def file which tells the gnudlltool which functions we
want to export:

EXPORTS
exampledll_exampleproc
dllinit

Finally the make file:

CFLAGS=-mno-cygwin
# specify that cygwin gcc is to rely on the windows built in C li braries

all: usedll.exe exampledll.dll
usedll

exampledll.s: exampledll.pas
vpc exampledll -S -Aexampledll.s -U -cpugnuPentium

exampledll.o: exampledll.s
gcc $(CFLAGS) -DBUILD_DLL -c exampledll.s

rtl.o: rtl.c
gcc $(CFLAGS) -DBUILD_DLL -c rtl.c

# compile it in a form suitable for use in a dll

rtl.c: ../../mmpc/rtl.c
cp ../../mmpc/rtl.c rtl.c

# get a copy of the pascal run time library

exports.o: exampledll.a

exampledll.a: exampledll.def makefile
dlltool -v -e exports.o -l exampledll.a -d exampledll.def - D exampledll.dll exampledll.o rtl.o

# Note that you must use the -D option to tell dlltool the name o f the dll you will build
# this also reads in the .def file it produces exampledll.a wi th which
# you statically link your c program ( it contains stubs to the real dynamic fns )

exampledll.dll: exports.o rtl.o exampledll.o
gcc $(CFLAGS) -shared exports.o rtl.o exampledll.o -o exam pledll.dll

# build the dll using the export spec produced by dlltool

usedll.o: usedll.c
gcc $(CFLAGS) -c usedll.c

# compile the c program to an object file

usedll.exe: usedll.o exampledll.a
gcc $(CFLAGS) usedll.c exampledll.a -o usedll

# link the c program with the exampledll stub library
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4.7.4 Cross Language Parameter Passing

When calling Pascal from C observe the following rules:

• Atomic values of type integer and real can be passed as value parameters. Pascal
typereal corresponds to C typefloat .

• Composite values such as records arrays or strings should bepassed as pascal var
parameters, and in C call the address of the composite item must be passed.

• Strings in Vector Pascal are stored in 16 bit unicode preceded by a 16 bit length word.
C strings are stored as arrays ASCII of bytes. If a Pascal procedure requires a string
parameter, then the C code calling it must pack the string into an array ofshort .

Thus a Pascal procedure exported from library mylib and declared as follows

type intarray=array[0..99] of integer;
procedure foo(var s:string; r:real; var f:intarray);

would have the C prototype

extern void mylib_foo(short *, float, int *);



56 CHAPTER 4. PROGRAMS, UNITS AND LIBRARIES



Chapter 5

Implementation issues

The compiler is implemented in java to ease portability between operating systems.

5.1 Invoking the compiler

The compiler is invoked with the command

vpc filename

where filename is the name of a Pascal program or unit. For example

vpc test

will compile the program test.pas and generate an executable file test , (test.exe under
windows).

The commandvpc is a shell script which invokes the java runtime system to execute a
.jar file containing the compiler classes. Instead of running vpcthe java interpreter can
be directly invoked as follows

java -jar mmpc.jar filename

The vpc script sets various compiler options appropriate to the operating system being
used.

5.1.1 Environment variable

The environment variablemmpcdir must be set to the directory which contains themmpc.jar
file, the runtime libraryrtl.o and thesystem.pas file.

5.1.2 Compiler options

The following flags can be supplied to the compiler :

-L Causes a latex listing to be produced of all files compiled. The level of detail
can be controled using the codes -L1 to -L3, otherwise the maximum detail
level is used.

-OPTn Sets the optimisation level attempted. -OPT0 is no optimisation, -OPT3 is the
maximum level attempted. The default is -OPT1.

-cores n generate code forn cores executing in parallel. This option in supported on
the Opteron cpu flag. Note that late model Intel processors operating in 64 bit
mode can also accept code compiled with the Opteron instructionset.
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Table 5.1: Code generators supported
CGFLAG description

IA32 generates code for the Intel 486 instruction-set
uses the NASM assembler

Pentium generates code for the Intel P6 with MMX instruction-set
uses the NASM assembler

gnuPentium generates code for the Intel P6 with MMX instruction-set
using theas assembler in the gcc package

K6 generates code for the AMD K6 instruction-set, use for Athlon
uses the NASM assembler

P3 generates code for the Intel PIII processor family
uses the NASM assembler

P4 generates code for the Intel PIV family and Athlon XP
uses the NASM assembler

gnuP4 generates code for the Intel PIV family and Athlon XP
uses the gas assembler

Opteron generates code for the AMD64 family
uses the gas assembler

-Afilename Defines the assembler file to be created. In the absence of thisoption the
assembler file isp.asm.

-Ddirname Defines the directory in which to findrtl.o andsystem.pas .

-BOEHM Causes the program to be linked with the Boehm conservative garbage collec-
tor.

-V Causes the code generator to produce a verbose diagnostic listing tofoo.lst
when compilingfoo.pas .

-oexefile Causes the linker to output toexefile instead of the default output ofp.exe.

-U Defines whether references to external procedures in the assembler file should
be preceded by an under-bar ’_’. This is required for the coffobject format but
not for elf.

-S Suppresses assembly and linking of the program. An assembler file is still
generated.

-fFORMAT Specifies the object format to be generated by the assembler.The object for-
mats currently used are elf when compiling under Unix or whencompiling
under windows using the cygwin version of the gcc linker, or coff when us-
ing the djgpp version of the gcc linker. for other formats consult the NASM
documentation.

-cpuCGFLAG Specifies the code generator to be used. Currently the code generators shown
in table 5.1 are supported.

5.1.3 Dependencies

The Vector Pascal compiler depends upon a number of other utilities which are usually
pre-installed on Linux systems, and are freely available for Windows systems.
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NASM The net-wide assembler. This is used to convert the output of the code genera-
tor to linkable modules. It is freely available on the web forWindows. For the
Pentium processor it is possible to use theas assembler instead.

gcc The GNU C Compiler, used to compile the run time library and to link modules
produced by the assembler to the run time library.

java The java virtual machine must be available to interpretthe compiler. There are
number of java interpreters and just in time compilers are freely available for
Windows.

5.2 Procedure and function mechanism

5.2.1 Requirements

1. Must be able to call C routines as well as Pascal ones.

2. Must establish a name correspondence with C routines thatwe call externally.

3. Must pass parameters appropriately

4. Must get results back from C routines

Name correspondance

name correspondence with the C routine
Issues here

1. Case of the names

2. allowed characters

3. how are these passed in assembler

Characters and significance

Case is significant both in C, but this is not the case of all languages.
Pascal for instance makes case insignificant, and requires that externals where the case

is significant be given a name in quotes for example:

procedure close (var f:fileptr);
external name ’pasclose’;

This allows the external routine to have a different name to the internal representation of
it. The allowed characters in a name in Hi are limited to the letters, that means we can not
call and C routine with an _ or a digit in its name unless we wereto extend the syntax for
externals along the above lines.

Assembler representation

In the assembler file, the compiler must list all the externals as follows (note this is the
Nasm syntax, it will be different for other assemblers):

extern vconcat
extern iota
extern putChar
extern getNum
extern getChar
extern putNum
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Then we can call them just as if they were declared within thisfile.

call vconcat

Underscores

Most 32-bit C compilers share the convention used by 16-bit compilers, that the names of
all global symbols (functions or data) they define are formedby prefixing an underscore to
the name as it appears in the C program.

However, not all of them do: the ‘ELF’ specification states that C symbols donot have
a leading underscore on their assembly-language names.

Thus if you are producing code for Linux, which uses ELF, do not use underscores.
In Vector Pascal the -U flag on the command line selects whether leading underscores

are to be generated.

5.2.2 The C calling convention

Before explaining the Vector Pascal function calling technique we present, the simpler
technique used in C and that could be used in Pascal if there were no nesting of procedures.
The convention used in diagrams in this section is that low addresses are show at the top of
the page and high addresses at the bottom.

To call a C function, whether from C or from Pascal the following must be done.

1. The caller pushes the function’s parameters on the stack,one after another, in reverse
order (right to left, so that the first argument specified to the function is pushed last).

2. The caller then executes a near ‘CALL’ instruction to passcontrol to the callee.

3. The callee receives control, and typically (although this is not actually necessary, in
functions which do not need to access their parameters) starts by saving the value of
‘ESP’ in ‘EBP’ so as to be able to use ‘EBP’ as a base pointer to find its parameters
on the stack. However, the caller was probably doing this too, so part of the calling
convention states that ‘EBP’ must be preserved by any C function. Hence the callee,
if it is going to set up ‘EBP’ as a frame pointer, must push the previous value first.

4. The callee may then access its parameters relative to ‘EBP’. The doubleword at
‘[EBP]’ holds the previous value of ‘EBP’ as it was pushed; the next doubleword, at
‘[EBP+4]’, holds the return address, pushed implicitly by ‘CALL’. The parameters
start after that, at ‘[EBP+8]’. The leftmost parameter of the function, since it was
pushed last, is accessible at this offset from ‘EBP’; the others follow, at successively
greater offsets. Thus, in a function such as ‘printf’ which takes a variable number of
parameters, the pushing of the parameters in reverse order means that the function
knows where to find its first parameter, which tells it the number and type of the
remaining ones.

5. The callee may also wish to decrease ‘ESP’ further, so as toallocate space on the
stack for local variables, which will then be accessible at negative offsets from ‘EBP’.

6. The callee, if it wishes to return a value to the caller, should leave the value in ‘AL’,
‘AX’ or ‘EAX’ depending on the size of the value. Floating-point results are typically
returned in ‘ST0’.

7. Once the callee has finished processing, it restores ‘ESP’from ‘EBP’ if it had allo-
cated local stack space, then pops the previous value of ‘EBP’, and returns via ‘RET’
.
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8. When the caller regains control from the callee, the function parameters are still on
the stack, so it typically adds an immediate constant to ‘ESP’ to remove them (instead
of executing a number of slow ‘POP’ instructions). Thus, if afunction is accidentally
called with the wrong number of parameters due to a prototypemismatch, the stack
will still be returned to a sensible state since the caller, which _knows_ how many
parameters it pushed, does the removing.

consider the Pascal code:

var zot:record x,y:integer; z:double; end;
function foo( x,y:integer; z:double):integer;begin foo: =x+y end;
procedure bar;
var x, y:integer;

z:double ;
begin

x:=foo(1,2,3.0);
end

The memory allocation, if nested functions did not exist in Pascal, could be implemented
as shown in figure 5.1.

Note that the addresses of parameters and variables can be specified relative either to a
special register called the frame pointer or to the stack pointer. If your code does not
dynamically push things onto the stack or if your compiler keeps track of the stack position,
then the SP register may be prefered. In Vector Pascal however, as is conventional with
most other Pascal compilers we use the Frame Pointer register to access parameters and
variables.

Key points:

1. If you address via the frame pointer (EBP on a Pentium) thenthe parameters have
+ve addresses and the locals have -ve addresses.

2. If you address using the stack pointer they all have +ve addresses.

3. If you use the SP (ESP on a Pentium) the compiler has to take into account tempo-
raries that are pushed on the stack.

5.2.3 Var Params

We have been assuming value parameters.
If we have var parameters ( parameters which, when assigned to, change the value of the

actual parameter ) then the address of the parameter rather than the value of the parameter
has to be passed on the stack. The compiler then places and extra level of indirection onto
the addressing of the parameter.

5.2.4 Nested Functions

The existence of nesting of functions and procedures generates complexities that force us to
use a more elaborate calling method than C. Consider the following Pascal example where
we allow function nesting.
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struct zot
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stack on entry to foo

Figure 5.1: Stacks and records

type vec1 = array[1..10] of integer;
scalar = integer;

function sum(var v:vec1);scalar;
function total( i:scalar):scalar;
begin

total:=if i<1 then 0 else v[i]+total(i-1);
end
total(length(v))

Total recurses on i, but each invocation accesses the same copy of v.

Can we use the d-link to access v?

No

Consider the following:

ret add

dlink

ret add

dlink

i

v

3

7

2

frame of
total

frame of
sum

vector on 
heap

sum([3,7])

first invocation of total

SP,FP

At this point we can access v at mem[dlink+8], but what happens on the next recursion?
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next invocation of total

ret add

dlink

v

3

7

2

first frame of
total

frame of
sum

vector on 
heap

sum([3,7])

SP,FP

ret add

dlink

i

ret add

dlink

i

second
frame of
total

if we use mem[dlink+8] we get the previous version of i, v is now at mem[mem[dlink]+8]
We need an alternative approach. There are 3 practical alternatives:

• Displays

• Static Links

• Lambda Lifting

We have chosen to use displays since Intel hardware providessupport for these. They do
place slight restrictions on function parameters1, but it was felt that the simplicity of display
implementation, and the ability to use the same calling mechanism as C outweighed this.

Displays

These can use the Intel Enter instruction defined as:

enter storage,level
push ebp
temp:=esp
if level>0
then

repeat (level-1) times
ebp:=ebp-4
push dword[ebp]

end repeat
push temp

fi
ebp:=temp
esp:=esp - storage

For machines other than the Intel family, you, as a compiler modifier, have to generate
sequences of simpler instructions to emulate the Intel Enter instruction.

Up to now we have assumed procedures use

enter xxx,0

Consider the effect of using enter 0,1 for sum and enter 0,2 for total :

1A functions f may not be an actual parameter to procedure or functiong, if the scope ofg outer to that off
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first frame of
total

frame of
sum

sum([3,7])

SP

ret add

dlink

i

ret add

dlink

v

ret add

dlink

i

second
frame of
total

3

7

2 vector on 
heap

FP

ll1

ll1

ll2

ll1

ll2 display
of 2nd call
of total

display 
of 1st call
of total

display of sum

All variables are now addressed as a pair (lexlevel,offset), where an outer level function is
lexical level 1, the first nested function is lexical level 2 etc.

A parameter can now be addressed as

mem[ display[lexlevel]+offset]

The display is an array in memory at the start of the current frame. Using this notation,
parameter i is always addressed as

mem[display[2]+8]= mem[ mem[fp-8]+8]

and v is always at

mem[display[1]+8]

hh

Optimisations FP always points to the current lexical level so at lexical level 2 we have

mem[display[2]+8]
= mem[ mem[fp-8]+8]
= mem[fp+8]

Likewise we can chose to cache other display values in registers so avoiding repeated deref-
erencing of the display on stack.

Other registers sometimes have to be saved because of the definition of the ABI of the
processor. If this is the case then they are saved after spacehas been reserved for local
variables as shown in Figure [?].

5.2.5 Detail of calling method used on the Pentium

Procedure parameters are passed using a modified C calling convention to facilitate calls
to external C procedures. Parameters are pushed on to the stack from right to left. Value
parameters are pushed entire onto the stack, var parametersare pushed as addresses.
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FP

SP

dynamic link

display

local variables

other saved registers

Figure 5.2: Full stack frame layout

Example

program callconv;
type t1= record a,b:integer end;
var

x,y:t1;
procedure foo(var a:t1; b:t1; c:integer);
begin
end;

function bar:t1;
begin bar:=y;end;

begin
x:=bar;
foo(x,y,3);

end.

This would generate the following code for the procedure foo.

; procedure generated by code generator class ilcg.tree.Pe ntiumCG;0
label114b8f429f3a:;0
; foo;0
; entering a procedure at lexical level 1;0

enter spaceforfool1-4*1,1; create display and variable sp ace
push ebx; save registers as demanded by Linux ABI
push esi;
push edi;
; ------------------ Code for Foo would go here if
;------------------- it were not a null procedure

spaceforfool1 equ 4; declare space needed this is done here
; because the code generation may cause
; new temporary vars to be needed so
; we dont know the space required to here

fool1exit:;2
pop edi; restore saved registers
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pop esi;0
pop ebx;0
leave; restore old stack frame

ret 0; pop return address into PC

and the calling code is

push DWORD 3; right most parameter 3
lea esp,[ esp+ -8]; create space for y on stack
movq MM4, [ PmainBase+ -16]; fetch y
movq [ esp],MM4; store on the stack
push DWORD PmainBase+ -8; push the address of x
EMMS ; clear mmx status flags

call label114b8f429f3a; call the procedure
add esp, 16; restore the stack

Function results

Function results are returned in registers for scalars following the C calling convention for
the operating system on which the compiler is implemented. Records, strings and sets are
returned by the caller passing an implicit parameter containing the address of a temporary
buffer in the calling environment into which the result can be assigned. Given the following
program

The call ofbar in the previous example would generate

push DWORD PmainBase+ -24; pass the address of a result buffe r
call label114b8f429f712; call the function
add esp, 4; restore the stack
movq MM4, [ PmainBase+ -24]; get the result buffer in MM4
movq [ PmainBase+ -8],MM4; store in x

5.3 Array representation

The maximum number of array dimensions supported in the compiler is 5.
A static array is represented simply by the number of bytes required to store the array

being allocated in the global segment or on the stack.
A dynamic array is always represented on the heap. Since its rank is known to the

compiler what needs to be stored at run time are the bounds andthe means to access it.
For simplicity we make the format of dynamic and conformant arrays the same. Thus for
schema

s(a,b,c,d:integer)= array[a..b,c..d] of integer
whose run time bounds are evaluated to be 2..4,3..7 we would have the following struc-

ture:

address field value

x base of data address of first integer in the array
x+4 a 2
x+8 b 4
x+12 step 20
x+16 c 3
x+20 d 7

The base address for a schematic array on the heap, will pointat the first byte after the
array header show. For a conformant array, it will point at the first data byte of the array or
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array range being passed as a parameter. The step field specifies the length of an element
of the second dimension in bytes. It is included to allow for the case where we have a
conformant array formal parameter

x:array[a..b:integer,c..d:integer] of integer
to which we pass as actual parameter the range
p[2..4,3..7]
as actual parameter, wherep:array[1..10,1..10] of integer
In this case the base address would point at @p[2,3] and the step would be 40 - the

length of 10 integers.

5.3.1 Range checking

When arrays are indexed, the compiler plants run time checksto see if the indices are
within bounds. In many cases the optimiser is able to remove these checks, but in those
cases where it is unable to do so, some performance degradation can occur. Range checks
can be disabled or enabled by the compiler directives.

{$r-} { disable range checks }
{$r+} { enable range checks }
Performance can be further enhanced by the practice of declaring arrays to have lower

bounds of zero. The optimiser is generally able to generate more efficient code for zero
based arrays.
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Chapter 6

Compiler porting tools

Vector Pascal is an open-source project. It aims to create a productive an efficient program
development environment for SIMD programming. In order to validate the concepts it has
been developed initially for the Intel family of processorsrunning Linux and Microsoft
Windows. However it has been intended from the outset that the technology should be
portable to other families of CPUs. This chapter addresses some of the issues involved in
porting the compiler to new systems.

6.1 Dependencies

The Vector Pascal compiler tool-set can be divided along twoaxes as shown in figure 6.1.

1. Tools can be divided into (a) those provided as part of the release , versus (b) tools
provided as part of the operating environment.

(a) These are mainly written in Java, the exceptions being a small run-time library
in C, a Pascal System unit, and several machine descriptions.

(b) These are all available as standard under Linux, and Windows versions are
freely downloadable from the web.

2. Tools can further divided into (a) those required for program preparation and docu-
mentation, (b) code translation tools, and (c) code generator preparation tools.

(a) The program preparation tools are the VIPER IDE described in Chapter??,
along with the standard LATEXdocument prepartion system, DVI viewers, and
the TTH tool to prepare web enabled versions of Vector Pascalprogram de-
scriptions.

(b) The program translation tools are:

i. The ilcg.pascal Java package which contains the Pascal compiler itself
and classes to support Pascal type declarations. This carries out the first
stage of code translation, from Pascal to an ILCG tree[10].

ii. A set of machine generated code generators for CPUs such as the Pentium,
the K6 etc. These carry out the second phase of code translation - into an
assembler file.

iii. The ilcg.tree Java package which supports the internal representation
of ILCG trees (see section 6.3).

iv. The Java system which is need to run all of the above.
v. An assembler, which is necessary to carry out the third phase of code trans-

lation, from an assembler file to a relocatable object file.

69



70 CHAPTER 6. COMPILER PORTING TOOLS
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Figure 6.1: Vector Pascal toolset

vi. A C compiler and linkage system is needed to compile the C run-time
library and to link the relocatable object files into final executables.

vii. In addition if one wants to alter the reserved words of Vector Pascal or
make other lexical changes one needs the JLex lexical analyser generator.

6.2 Compiler Structure

The structure of the Vector Pascal translation system is shown in figure 6.2. The main
program class of the compilerilcg.Pascal.PascalCompiler.java translates the source
code of the program into an internal structure called an ILCGtree [10]. A machine gener-
ated code generator then translates this into assembler code. An example would be the class
ilcg.tree.IA32. An assembler and linker specified in descendent class of the code generator
then translate the assembler code into an executable file.

Consider first the path followed from a source file, the phasesthat it goes through are

• i. The source file (1) is parsed by a java class PascalCompiler.class (2) a hand written,
recursive descent parser[?], and results in a Java data structure (3), an ILCG tree,
which is basically a semantic tree for the program.

• ii. The resulting tree is transformed (4) from sequential toparallel form and machine
independent optimisations are performed. Since ILCG treesare java objects, they can
contain methods to self-optimise. Each class contains for instance a methodeval
which attempts to evaluate a tree at compile time. Another method simplify ap-
plies generic machine independent transpormations to the code. Thus thesimplify
method of the classFor can perform loop unrolling, removal of redundant loops etc.
Other methods allow tree walkers to apply context specific transformations.
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4.transformations
5.ILCG semantics

6.optimisation rules

7.transformed ILCG program

10.code generator

11.machine code for CPU

9.code generator-
generator

8.ILCG for CPU

In this case PascalCompiler.class

(For example Pentium.ilc)

details of available
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Figure 6.2: The translation of Vector Pascal to assembler.

{ var i;
for i=1 to 9 step 1 do {

v1[^i]:= +(^(v2[^i]),^(v3[^i]));
};

}

Figure 6.3: Sequential form of array assignment

• iii. The resulting ilcg tree (7) is walked over by a class thatencapsulates the seman-
tics of the target machine’s instructionset (10); for example Pentium.class. During
code generation the tree is futher transformed, as machine specific register optimisa-
tions are performed. The output of this process is an assembler file (11).

• iv. This is then fed through an appropriate assembler and linker, assumed to be
externally provided to generate an executable program.

6.2.1 Vectorisation

The parser initially generates serial code for all constructs. It then interogates the cur-
rent code generator class to determine the degree of parallelism possible for the types of
operations performed in a loop, and if these are greater thanone, it vectorises the code.

Given the declaration
var v1,v2,v3:array[1..9] of integer;
then the statement
v1:=v2+v3;
would first be translated to the ILCG sequence shown in figure 6.3 In the example
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{ var i;
for i= 1 to 8 step 2 do {

(ref int32 vector ( 2 ))mem(+(@v1,*(-(^i,1),4))):=
+(^((ref int32 vector ( 2 ))mem(+(@v2,*(-(^i,1),4)))),

^((ref int32 vector ( 2 ))mem(+(@v3,*(-(^i,1),4)))));
};
for i= 9 to 9 step 1 do {

v1[^i]:= +(^(v2[^i]),^(v3[^i]));
};

}

Figure 6.4: Parallelised loop

above variable names such asv1 andi have been used for clarity. In realityi would be an
addressing expression like:

(ref int32)mem(+(^((ref int32)ebp), -1860)) ,
which encodes both the type and the address of the variable. The code generator is

queried as to the parallelism available on the typeint32 and, since it is a Pentium with
MMX, returns 2. The loop is then split into two, a portion thatcan be executed in par-
allel and a residual sequential component, resulting in theILCG shown in figure 6.4. In
the parallel part of the code, the array subscriptions have been replaced by explictly cast
memory addresses. This coerces the locations from their original types to the type required
by the vectorisation. Applying thesimplify method of the For class the following generic
transformations are performed:

1. The second loop is replaced by a single statement.

2. The parallel loop is unrolled twofold.

3. The For class is replaced by a sequence of statements with explicit gotos.

The result is shown in figure 6.5. When theeval method is invoked, constant folding
causes the loop test condition to be evaluated to

if >(^i,8) thengoto leb4af11b47f .

6.2.2 Porting strategy

To port the compiler to a new machine, say a G5, it is necessaryto

1. Write a new machine descriptionG5.ilc in ILCG source code.

2. Compile this to a code generator in java with the ilcg compiler generator using a
command of the form

(a) java ilcg.ILCG cpus/G5.ilc ilcg/tree/G5.java G5

3. Write an interface classilcg/tree/G5CG which is a subclass ofG5 and which in-
vokes the assembler and linker. The linker and assembler used will depend on the
machine but one can assume that at least agcc assembler and linker will be avail-
able. The classG5CGmust take responsibility to handle the translation of procedure
calls from the abstract form provided in ILCG to the concreteform required by the
G5 processor.
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{ var i:
i:= 1;
leb4af11b47e:
if >( 2, 0) thenif >(^i,8) thengoto leb4af11b47f

else null
fi

else if <(^i, 8) thengoto leb4af11b47f
else null
fi

fi;
(ref int32 vector ( 2 ))mem(+(@v1,*(-(^i,1),4))):=

+(^((ref int32 vector ( 2 ))mem(+(@v2,*(-(^i,1),4)))),
^((ref int32 vector ( 2 ))mem(+(@v3,*(-(^i,1),4)))));

i:=+(^i,2);
(ref int32 vector ( 2 ))mem(+(@v1,*(-(^i,1),4))):=

+(^((ref int32 vector ( 2 ))mem(+(@v2,*(-(^i,1),4)))),
^((ref int32 vector ( 2 ))mem(+(@v3,*(-(^i,1),4)))));

i:=+(^i,2);
goto leb4af11b47e;
leb4af11b47f:
i:= 9;
v1[^i]:= +(^(v2[^i]),^(v3[^i]));

}

Figure 6.5: After applyingsimplify to the tree

mov DWORD ecx, 1
leb4b08729615:

cmp DWORD ecx, 8
jg near leb4b08729616
lea edi,[ ecx-( 1)]; substituting in edi with 3 occurences
movq MM1, [ ebp+edi* 4+ -1620]
paddd MM1, [ ebp+edi* 4+ -1640]
movq [ ebp+edi* 4+ -1600],MM1
lea ecx,[ ecx+ 2]
lea edi,[ ecx-( 1)]; substituting in edi with 3 occurences
movq MM1, [ ebp+edi* 4+ -1620]
paddd MM1, [ ebp+edi* 4+ -1640]
movq [ ebp+edi* 4+ -1600],MM1
lea ecx,[ ecx+ 2]
jmp leb4b08729615

leb4b08729616:

Figure 6.6: The result of matching the parallelised loop against the Pentium instruction set
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public int getParallelism(String elementType)
{ if(elementType.equals(Node.int32)) return 2;

if(elementType.equals(Node.int16)) return 4;
if(elementType.equals(Node.int8)) return 8;
if(elementType.equals(Node.uint32)) return 2;
if(elementType.equals(Node.uint16)) return 4;
if(elementType.equals(Node.uint8)) return 8;
if(elementType.equals(Node.ieee32))return 4;
if(elementType.equals(Node.ieee64))return 1;
return 1;

}

Figure 6.7: The method getParallelism for a P4 processor.

4. The classG5CGshould also export the methodgetparallelism which specifies to
the vectoriser the degree of parallelism available for given data types. An example
for a P4 is given in figure 6.7. Note that although a P4 is potentially capable of
performing 16 way parallelism on 8 bit operands the measuredspeed when doing
this on is less than that measured for 8 way parallelism. Thisis due to the restriction
placed on un-aligned loads of 16 byte quantities in the P4 architecture. For image
processing operations aligned accesses are the exception.Thus when specifying the
degree of parallelism for a processor one should not simply give the maximal degree
supported by the architecture. The maximal level of parallelism is not necessarily
the fastest.

Sample machine descriptions are given on the Vector Pascal web site to help those wishing
to port the compiler. These are given in the ILCG machine description language, an outline
of which follows.

6.3 ILCG

The purpose of ILCG (Intermediate Language for Code Generation) is to mediate between
CPU instruction sets and high level language programs. It poth provides a representation
to which compilers can translate a variety of source level programming languages and also
a notation for defining the semantics of CPU instructions.

Its purpose is to act as an input to two types of programs:

1. ILCG structures produced by a HLL compiler are input to an automatically con-
structed code generator, working on the syntax matching principles described in [12].
This then generates equivalent sequences of assembler statements.

2. Machine descriptions written as ILCG source files are input to code-generator-generators
which produce java programs which perform function (1) above.

So far one HLL compiler producing ILCG structures as output exists: the Vector Pascal
compiler. There also exists one code-generator-generatorwhich produces code generators
that use a top-down pattern matching technique analogous toProlog unification. ILCG is
intended to be flexible enough to describe a wide variety of machine architectures. In par-
ticular it can specify both SISD and SIMD instructions and either stack-based or register-
based machines. However, it does assume certain things about the machine: that certain
basic types are supported and that the machine is addressed at the byte level.

In ILCG all type conversions, dereferences etc have to be made absolutely explicit. In
what follows we will designate terminals of the language in bold thusoctetand nonterminal
in sloping font thusword8.
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6.4 Supported types

6.4.1 Data formats

The data in a memory can be distinguished initially in terms of the number of bits in the
individually addressable chunks. The addressable chunks are assumed to be the powers
of two from 3 to 7, so we thus have as allowed formats:word8, word16, word32, word64,
word128. These are treated as non terminals in the grammar of ILCG.

When data is being explicitly operated on without regard to its type, we have terminals
which stand for these formats:octet, halfword, word, doubleword, quadword.

6.4.2 Typed formats

Each of these underlying formats can contain information ofdifferent types, either signed
or unsigned integers, floats etc. ILCG allows the following integer types as terminals :int8,
uint8, int16, uint16, int32, uint32, int64, uint64 to stand for signed and unsigned integers
of the appropriate lengths.

The integers are logically grouped intosignedandunsigned. As non-terminal types
they are represented asbyte, short, integer, longandubyte, ushort, uinteger, ulong.

Floating point numbers are either assumed to be 32 bit or 64 bit with 32 bit numbers
given the nonterminal symbolsfloat,double. If we wish to specify a particular representa-
tion of floats of doubles we can use the terminalsieee32, ieee64.

6.4.3 Ref types

ILCG uses a simplified version of the Algol-68 reference typing model. A value can be a
reference to another type. Thus an integer when used as an address of a 64 bit floating point
number would be aref ieee64. Ref types include registers. An integer register would be a
ref int32 when holding an integer, aref ref int32 when holding the address of an integer
etc.

6.5 Supported operations

6.5.1 Type casts

The syntax for the type casts is C style so we have for example(ieee32) int32 to repre-
sent a desire to treat a 32 bit integer as a 32 bit real. These type casts act only as constraints
on the pattern matcher during code generation. They do not indicate that the underlying
hardware will perform any data transformation. They are inserted into machine descritions
to constrain the types of the arguments that will be matched for an instruction. They are
also used by compilers to decorate ILCG trees in order both toenforce, and to allow limited
breaking of, the type rules.

6.5.2 Arithmetic

The allowed dyadic arithmetic operations are addition, saturated addition, multiplication,
saturated multiplication, subtraction, saturated subtraction, division and remainder with
operator symboles+, +:, *, *:, -, -:, div , mod ..

The concrete syntax is prefix with bracketing. Thus the infix operation 3+5÷7 would
be represented as+(3 div (5 7)).
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6.5.3 Memory

Memory is explicitly represented. All accesses to memory are represented by array op-
erations on a predefined arraymem. Thus location 100 in memory is represented as
mem(100). The type of such an expression isaddress. It can be cast to a reference type of
a given format. Thus we could have(ref int32)mem(100)

6.5.4 Assignment

We have a set of storage operators corresponding to the word lengths supported. These
have the form of infix operators. The size of the store being performed depends on the size
of the right hand side. A valid storage statement might be(ref octet)mem( 299) :=(int8)
99

The first argument is always a reference and the second argument a value of the appro-
priate format.

If the left hand side is a format the right hand side must be a value of the appropriate
size. If the left hand side is an explicit type rather than a format, the right hand side must
have the same type.

6.5.5 Dereferencing

Dereferencing is done explicitly when a value other than a literal is required. There is a
dereference operator, which converts a reference into the value that it references. A valid
load expression might be:(octet)↑ ( (ref octet)mem(99))

The argument to the load operator must be a reference.

6.6 Machine description

Ilcg can be used to describe the semantics of machine instructions. A machine description
typically consists of a set of register declarations followed by a set of instruction formats
and a set of operations. This approach works well only with machines that have an orthog-
onal instruction set, ie, those that allow addressing modesand operators to be combined in
an independent manner.

6.6.1 Registers

When entering machine descriptions in ilcg registers can bedeclared along with their type
henceregister word EBX assembles[’ebx’] ;

reserved register word ESP assembles[’esp’];
would declareEBX to be of typeref word .

Aliasing

A register can be declared to be a sub-field of another register, hence we could writealias
register octet AL = EAX(0:7) assembles[’al’];

alias register octet BL = EBX(0:7) assembles[’bl’];
to indicate thatBL occupies the bottom 8 bits of registerEBX. In this notation bit zero

is taken to be the least significant bit of a value. There are assumed to be two pregiven
registersFP, GP that are used by compilers to point to areas of memory. These can be
aliased to a particular real register.register word EBP assembles[’ebp’] ;

alias register word FP = EBP(0:31) assembles [’ebp’];
Additional registers may be reserved, indicating that the code generator must not use

them to hold temporary values:
reserved register word ESP assembles[’esp’];
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6.6.2 Register sets

A set of registers that are used in the same way by the instructionset can be defined.pattern
reg means [EBP|EBX|ESI|EDI|ECX|EAX|EDX|ESP] ;

pattern breg means[AL|AH|BL|BH|CL|CH|DL|DH];
All registers in an register set should be of the same length.

6.6.3 Register Arrays

Some machine designs have regular arrays of registers. Rather than have these exhaustively
enumerated it is convenient to have a means of providing an array of registers. This can be
declared as:

register vector(8)doubleword MM assembles[’MM’i] ;
This declares the symbol MMX to stand for the entire MMX register set. It implicitly

defines how the register names are to be printed in the assembly language by defining an
indexing variable i that is used in the assembly language definition.

We also need a syntax for explicitly identifying individualregisters in the set. This is
done by using the dyadic subscript operator:subscript(MM,2)

which would be of typeref doubleword.

6.6.4 Register Stacks

Whilst some machines have registers organised as an array, another class of machines,
those oriented around postfix instructionsets, have register stacks.

The ilcg syntax allows register stacks to be declared:
register stack (8)ieee64 FP assembles[ ’ ’] ;
Two access operations are supported on stacks:

PUSH is a void dyadic operator taking a stack of type reft as first argument and a value
of typet as the second argument. Thus we might have:PUSH(FP,↑mem(20))

POP is a monadic operator returningt on stacks of typet. So we might havemem(20):=POP(FP)
In addition there are two predicates on stacks that can be used in pattern pre-conditions.

FULL is a monadic boolean operator on stacks.

EMPTY is a monadic boolean operator on stacks.

6.6.5 Instruction formats

An instruction format is an abstraction over a class of concrete instructions. It abstracts over
particular operations and types thereof whilst specifyinghow arguments can be combined.
instruction pattern

RR( operator op, anyreg r1, anyreg r2, int t)
means[r1:=(t) op(↑((ref t) r1),↑((ref t) r2))]
assembles[op ’ ’ r1 ’,’ r2];
In the above example, we specify a register to register instruction format that uses the

first register as a source and a destination whilst the secondregister is only a destination.
The result is returned in register r1.

We might however wish to have a more powerful abstraction, which was capable of
taking more abstract apecifications for its arguments. For example, many machines allow
arguments to instructions to be addressing modes that can beeither registers or memory
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references. For us to be able to specify this in an instruction format we need to be able to
provide grammer non-terminals as arguments to the instruction formats.

For example we might want to be able to say
instruction pattern
RRM(operator op, reg r1, maddrmode rm, int t)
means [r1:=(t) op(↑((ref t)r1),↑((ref t) rm))]
assembles[op ’ ’ r1 ’,’ rm ] ;
This implies that addrmode and reg must be non terminals. Since the non terminals

required by different machines will vary, there must be a means of declaring such non-
terminals in ilcg.

An example would be:pattern regindirf(reg r)
means[↑(r) ] assembles[ r ];
pattern baseplusoffsetf(reg r, signed s)
means[+(↑(r) ,const s)] assembles[ r ’+’ s ];
pattern addrform means[baseplusoffsetf| regindirf];
pattern maddrmode(addrform f)
means[mem(f) ] assembles[ ’[’ f ’]’ ];
This gives us a way of including non terminals as parameters to patterns.

6.7 Grammar of ILCG

The following grammar is given in Sable [34] compatible form. The Sable parser gen-
erator is used to generate a parser for ILCG from this grammar. The ILCG parser then
translates a CPU specification into a tree structure which isthen walked by an ILCG-tree-
walk-generator to produce an ILCG-tree-walk Java class specific to that CPU.

If the ILCG grammar is extended, for example to allow new arithmetic operators, then
the ILCG-tree-walk-generator must itself be modified to generate translation rules for the
new operators.

/*

6.8 ILCG grammar
This is a definition of the grammer of ILCG using the Sable grammar specification lanaguage. It is
input to Sable to generate a parser for machine descriptionsin ilcg

*/

Package ilcg;
/*

6.8.1 Helpers
Helpers are regular expressions macros used in the definition of terminal symbols of the grammar.

*/
Helpers

letter = [[’A’..’Z’]+[’a’..’z’]];
digit = [’0’..’9’];
alphanum = [letter+[’0’..’9’]];
cr = 13;
lf = 10;
tab = 9;
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digit_sequence = digit+;
fractional_constant = digit_sequence? ’.’ digit_sequenc e | digit_sequence ’.’;
sign = ’+’ | ’-’;
exponent_part = (’e’ | ’E’) sign? digit_sequence;
floating_suffix = ’f’ | ’F’ | ’l’ | ’L’;

eol = cr lf | cr | lf; // This takes care of different platforms
not_cr_lf = [[32..127] - [cr + lf]];
exponent = (’e’|’E’);
quote = ’’’;
all =[0..127];
schar = [all-’’’];
not_star = [all - ’*’];
not_star_slash = [not_star - ’/’];

/*

6.8.2 Tokens
The tokens section defines the terminal symbols of the grammar.

*/
Tokens

floating_constant = fractional_constant exponent_part? floating_suffix? |
digit_sequence exponent_part floating_suffix?;

/*

terminals specifying data formats

*/
void =’void’;
octet = ’octet’; int8 = ’int8’; uint8 = ’uint8’;
halfword = ’halfword’; int16 = ’int16’ ; uint16 = ’uint16’ ;
word = ’word’; int32 = ’int32’ ;
uint32 = ’uint32’ ; ieee32 = ’ieee32’;
doubleword = ’doubleword’; int64 = ’int64’ ;
uint64 = ’uint64’; ieee64 = ’ieee64’;
quadword = ’quadword’;

/*

terminals describing reserved words

*/
function= ’function’;
flag = ’flag’;
location = ’loc’;
procedure=’instruction’;
returns =’returns’;
label = ’label’;
goto=’goto’;
fail =’interrupt’;
for =’for’;
to=’to’;
step=’step’;
do =’do’;
ref=’ref’;
const=’const’;
reg= ’register’;
operation = ’operation’;
alias = ’alias’;
instruction = ’instruction’;
address = ’address’;
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vector =’vector’;
stack = ’stack’;
sideeffect=’sideeffect’;
if =’if’;
reserved=’reserved’;
precondition =’precondition’;

instructionset=’instructionset’;
/*

terminals for describing new patterns

*/
pattern = ’pattern’;
means = ’means’;
assembles = ’assembles’;

/*

terminals specifying operators

*/
colon = ’:’;
semicolon= ’;’;
comma = ’,’;
dot = ’.’ ;
bra =’(’;

ket =’)’;
plus = ’+’;
satplus = ’+:’;
satminus = ’-:’;
satmult =’*:’;

/* map=’->’;*/
map=’map’;
equals = ’=’;
le = ’<=’;
ge=’>=’;
ne=’<>’;
shl=’<<’;
shr=’>>’;
lt=’<’;
gt=’>’;
minus = ’-’;
times = ’*’;
exponentiate = ’**’;
divide = ’div’;
replicate = ’rep’;
and = ’AND’;
or = ’OR’ ;
xor = ’XOR’;
not = ’NOT’;
sin=’SIN’;
cos=’COS’;
abs=’ABS’;
tan=’TAN’;
ln=’LN’;
min=’MIN’;
max=’MAX’;
sqrt=’SQRT’;
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sqr=’SQR’;
trunc=’TRUNCATE’;
round=’ROUND’;
float=’FLOAT’;
remainder = ’MOD’;
extend= ’EXTEND’;
store = ’:=’;
deref = ’^’;
push =’PUSH’;
pop =’POP’;
call=’APPLY’;
full=’FULL’;
empty=’EMPTY’;
subscript=’SUBSCRIPT’;
intlit = digit+;

vbar = ’|’;
sket=’]’;
sbra=’[’;
end=’end’;
typetoken=’type’;
mem=’mem’;
string = quote schar+ quote;

/*

identifiers come after reserved words in the grammar

*/
identifier = letter alphanum*;
blank = (’ ’|cr|lf|tab)+;
comment = ’/*’ not_star* ’*’+ (not_star_slash not_star* ’* ’+)* ’/’;

Ignored Tokens
blank,comment;
/*

6.8.3 Non terminal symbols
*/
Productions

program = statementlist instructionlist;
instructionlist =instructionset sbra alternatives sket;

/*

non terminals specifying data formats

*/
format = {octet} octet|

{halfword} halfword |
{word} word |

{doubleword} doubleword |
{quadword} quadword;

/*

non terminals corresponding to type descriptions

*/
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reference = ref type ;
array = vector bra number ket;
aggregate ={stack} stack bra number ket |
{vector}array |
{non};
predeclaredtype= {format} format|{tformat}tformat ;
typeprim = {typeid} typeid|

{predeclaredtype}predeclaredtype;
type = {predeclaredtype}predeclaredtype|

{typeid} typeid|
{array}typeprim array|

{cartesian}sbra type cartesian* sket|
{reftype}reference|
{map}bra [arg]:type map [result]:type ket;

cartesian = comma type;

tformat = {signed} signed|
{unsigned}unsigned|
{ieee32}ieee32|
{ieee63}ieee64;

signed = int32 |
{int8} int8 |
{int16} int16 |
{int64} int64;

unsigned = uint32 |
{uint8} uint8 |
{uint16} uint16 |
{uint64} uint64;

/*

non terminals corresponding to typed values

*/
value = /*{refval}refval | */

{rhs}rhs|
{loc}loc|
{void}void|
{cartval}cartval|

{dyadic} dyadic bra [left]:value comma [right]:value ket|
{monadic}monadic bra value ket;
/*

value corresponding to a cartesian product type e.g. recordinitialisers

*/
cartval =sbra value carttail* sket;
carttail = comma value;

/*

conditions used in defining control structures

*/
condition ={dyadic} dyadic bra [left]:condition comma [ri ght]:condition ket|
{monadic}monadic bra condition ket |
{id}identifier|
{number}number;

rhs= {number}number|
{cast}bra type ket value|
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{const}const identifier |
{castpop}bra type ket pop [b2]:bra value [k2]:ket|

{deref}deref bra refval ket;

refval = loc|
{refcast} bra type ket loc;

loc = {id}identifier|
{memory}mem bra value ket ;

/*predeclaredregister = {fp}fp|{gp}gp;*/
number = {reallit} optionalsign reallit|

{integer} optionalsign intlit;
optionalsign = |{plus}plus|{minus}minus;
reallit= floating_constant;

/*

operators

*/
dyadic = {plus} plus|
{minus} minus |
{identifier} identifier|
{exp}exponentiate|

{times} times |
{divide} divide|

{replicate} replicate|
{lt}lt|
{gt}gt|
{call}call|

{le}le|
{ge}ge|
{eq}equals|
{ne}ne|
{min}min|{max}max|
{push}push|
{subscript}subscript|
{satplus}satplus|
{satmult}satmult|
{satminus}satminus|
{shl}shl|
{shr}shr|

{remainder} remainder|
{or}or|
{and}and|
{xor}xor;

monadic = {not}not|
{full}full|
{empty}empty|
/*{pop}pop|*/
{sin}sin|
{trunc}trunc|
{round}round|
{float}float|
{extend}extend|
{cos}cos|
{tan}tan|
{abs}abs|
{sqrt}sqrt |
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{sqr}sqr |
{ln}ln;
/*

register declaration

*/
registerdecl = reservation reg aggregate type identifier a ssembles sbra string sket ;
reservation = {reserved}reserved|{unreserved};

aliasdecl = alias reg aggregate type
[child]:identifier equals [parent]:identifier bra [lowb it]:intlit colon [highbit]:intlit ket
assembles sbra string sket;

opdecl = operation identifier means operator assembles sbr a string sket;
operator = {plus}plus|
{minus}minus|
{times}times|
{lt}lt|
{gt}gt|
{min}min|
{max}max|
{satplus}satplus|
{satmult}satmult|
{satminus}satminus|
{shl}shl|
{shr}shr|

{le}le|
{ge}ge|
{eq}equals|
{ne}ne|
{divide} divide|

{remainder}remainder|
{or}or|
{and}and|
{xor}xor;

/*

pattern declarations

*/
assign = refval store value ;
meaning =
{value}value|
{assign}assign|
{goto}goto value|
{fail}fail value|
{if}if bra value ket meaning|
{for} for refval store [start]:value to [stop]:value step [ increment]:value do meaning|

{loc}location value;
patterndecl = pattern identifier paramlist means sbra mean ing sket assemblesto sideeffects precond|

{alternatives} pattern identifier means sbra alternative s sket;

paramlist = bra param paramtail* ket|{nullparam}bra ket;
param = typeid identifier|{typeparam} typetoken identifi er|{label}label identifier;
typeid = identifier;
paramtail = comma param;
alternatives = type alts*;
alts = vbar type;
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precond = precondition sbra condition sket|
{unconditional};
asideeffect = sideeffect returnval;
sideeffects = asideeffect*;
assemblesto = assembles sbra assemblypattern sket;
assemblypattern = assemblertoken*;
assemblertoken = {string} string |
{identifier} identifier;
returnval = returns identifier;
/*

statements

*/
statement =
{aliasdecl} aliasdecl|

{registerdecl} registerdecl |
{addressmode} address patterndecl|
{instructionformat}procedure patterndecl|
{opdecl}opdecl|
{flag} flag identifier equals intlit|
{typerename}typetoken predeclaredtype equals identifie r|
{patterndecl} patterndecl;
statementlist = statement semicolon statements*;
statements = statement semicolon;

//
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Name syntax num args comment
plus ’+’
satplus ’+:’
satminus ’-:’
satmult ’*:’
equals ’=’
le ’<=’
ge ’>=’
ne ’<>’
shl ’«’
shr ’»’
lt ’<’
gt ’>’
minus ’-’
times ’*’
exponentiate ’**’
divide ’div’
replicate ’rep’
and ’AND’
or ’OR’
xor ’XOR’
not ’NOT’
sin ’SIN’
cos ’COS’
abs ’ABS’
tan ’TAN’
ln ’LN’
min ’MIN’
max ’MAX’
sqrt ’SQRT’
trunc ’TRUNCATE’
round ’ROUND’
float ’FLOAT’
remainder ’MOD’
extend ’EXTEND’
store ’:=’
deref ’̂’
push ’PUSH’
pop ’POP’

Table 6.1: The prefix operations of ILCG
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