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Introduction

Vector Pascal is a dialect of Pascal designed to make effiaenof the multi-media in-
structionsets of recent procesors. It supports data gh@derations and saturated arith-
metic. This manual describes the Vector Pascal language.

A number of widely used contemporary processors have icstmset extensions for
improved performance in multi-media applications. The @no allow operations to pro-
ceed on multiple pixels each clock cycle. Such instructtsmbave been incorporated both
in specialist DSP chips like the Texas C62xx[35] and in gahgurpose CPU chips like
the Intel IA32[14] or the AMD K6 [2].

These instructionset extensions are typically based orSthgle Instruction-stream
Multiple Data-stream (SIMD) model in which a single insttioo causes the same math-
ematical operation to be carried out on several operandsics of operands at the same
time. The level or parallelism supported ranges from 2 flapgioint operations at a time on
the AMD K6 architecture to 16 byte operations at a time ontitel P4 architecture. Whilst
processor architectures are moving towards greater lefgarallelism, the most widely
used programming languages like C, Java and Delphi argstagtaround a model of com-
putation in which operations take place on a single valuetahe. This was appropriate
when processors worked this way, but has become an impetlimprogrammers seeking
to make use of the performance offered by multi-media imsibnsets. The introduction of
SIMD instruction sets[13][29] to Personal Computers pbt&dly provides substantial per-
formance increases, but the ability of most programmeratoédss this performance is held
back by two factors. The first is the limited availability afrapilers that make effective use
of these instructionsets in a machine independent manherrdmains the case despite the
research efforts to develop compilers for multi-mediannstionsets[8][26][24][32]. The
second is the fact that most popular programming languages gesigned on the word at
a time model of the classic von Neumann computer.

Vector Pascal aims to provide an efficient and concise rutdtir programmers using
Multi-Media enhanced CPUs. In doing so it borrows concepisekpressing data paral-
lelism that have a long history, dating back to Iverson’skvam APL in the early '60s[17].

Define a vector of typd as having typel'[]. Then if we have a binary operatar:
(T®T)—T,inlanguages derived from APL we automatically have an afoew: (T[] ®
T[]) = T[] . Thus ifx,y are arrays of integers = x+y is the array of integers where
ki =X +Vi.

The basic concept is simple, there are complications to do te semantics of oper-
ations between arrays of different lengths and differemtafisions, but Iverson provides a
consistent treatment of these. The most recent languadpesttoilt round this model are J,
an interpretive language[19][5][20], and F[28] a modeedis-ortran. In principle though
any language with array types can be extended in a similar Wwasrson’s approach to
data parallelism is machine independent. It can be impléadensing scalar instructions
or using the SIMD model. The only difference is speed.

Vector Pascal incorporates Iverson’s approach to datdlelse. Its aim is to provide
a notation that allows the natural and elegant expressidatafparallel algorithms within a
base language that is already familiar to a considerablg bbpgrogrammers and combine
this with modern compilation techniques.

7
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By an elegant algorithm | mean one which is expressed as selgcis possible. El-
egance is a goal that one approaches asymptotically, agprmpbut never attaining[7].
APL and J allow the construction of very elegant programs,dta cost. An inevitable
consequence of elegance is the loss of redundancy. APLareyare as concise, or even
more concise than conventional mathematical notatiorgh8use a special character-set.
This makes them hard for the uninitiated to understand. elmgits to remedy this by
restricting itself to the ASCII character-set, but stilbks dauntingly unfamiliar to pro-
grammers brought up on more conventional languages. Bothagkiel J are interpretive
which makes them ill suited to many of the applications forahSIMD speed is required.
The aim of Vector Pascal is to provide the conceptual gaingeyton’s notation within a
framework familiar to imperative programmers.

Pascal[21]was chosen as a base language over the altemafi€ and Java. C was
rejected because notations likey for x andy declared ast x[4] , y[4] , already have
the meaning of adding the addresses of the arrays togete. whs rejected because of
the difficulty of efficiently transmitting data parallel ogions via its intermediate code to
a just in time code generator.

Iverson’s approach to data parallelism is machine independt can be implemented
using scalar instructions or using the SIMD model. The oriffetence is speed. Vector
Pascal incorporates Iverson’s approach to data paratielis



Chapter 1

Elements of the language

1.1 Alphabet

The Vector Pascal compiler accepts files in the UTF-8 engpdinUnicode as source.
Since ASCII is a subset of this, ASCII files are valid input.

Vector Pascal programs are made up of letter, digits andap®anbols. The letters
digits and special symbols are draw either from a base ctearset or from an extended
character set. The base character set is drawn from ASCltesidcts the letters to be
from the Latin alphabet. The extended character set allettars from other alphabets.

The special symbols used in the base alphabet are showned thb

1.1.1 Extended alphabet
The extended alphabet is described in Using Unicode withdvdtascal.

1.2 Reserved words

The reserved words are
ABS, ADDR, AND, ARRAY,
BEGIN, BYTE2PIXEL,
CASE, CAST, CDECL, CHR, CONST, COS,
DIV, DO, DOWNTO,
END, ELSE, EXIT, EXTERNAL,

Table 1.1: Special symbols

+ (
- )
* = [
[ ] <> ]
= < {
<=1}
1 >= A
; >
+ | @ |
- $ |
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FALSE, FILE, FOR, FUNCTION,

GOTO,

IF, IMPLEMENTATION, IN, INTERFACE, IOTA,

LABEL, LIBRARY, LN,

MAX, MIN, MOD,

NAME, NDX, NOT,

OF, OR, ORD, OTHERWISE,

PACKED, PERM, PIXEL2BYTE, POW, PRED,
PROCEDURE, PROGRAM, PROTECTED |,

RDU, RECORD, REPEAT, ROUND,

SET, SHL, SHR, SIN, SIZEOF, STRING, SQRT, SUCC,

TAN, THEN, TO, TRANS, TRUE, TYPE,

VAR,

WITH, WHILE, UNIT, UNTIL, USES

Reserved words may be written in either lower case or uppss ters, or any com-
bination of the two.

1.3 Comments

The comment construct

{ <any sequence of characters not containing “J >

may be inserted between any two identifiers, special symimmbers or reserved
words without altering the semantics or syntactic correstnof the program. The brack-
eting pair(* *) may substitute fof } . Where a comment starts withit continues until
the next} . Where it starts witlf* it must be terminated b 1.

1.4 Identifiers

Identifiers are used to name values, storage locationsrgumgy program modules, types,
procedures and functions. An identifier starts with a Iefttlowed by zero or more letters,
digits or the special symbol. Case is not significant in identifiers. 1ISO Pascal allows the
Latin letters A-Z to be used in identifiers. Vector Pascakexs this by allowing symbols
from the Greek, Cyrillic, Katakana and Hiragana, or CJK eletar sets

1.5 Literals

1.5.1 Integer numbers

Integer numbers are formed of a sequence of decimal digits 1t, 23, 9976 etc, or as
hexadecimal numbers, or as numbers of any base between BaAd8xadecimal number
takes the form of & followed by a sequence of hexadecimal digits thdts $3ff, $5A
The letters in a hexadecimal number may be upper or loweraragerawn from the range
a.f orA.F

A based integer is written with the base first followed by a frelcter and then a
sequence of letters or digits. Th2#1101 is a binary numbe8#67 an octal number and
20#7i a base 20 number.

The default precision for integers is 32 Bits

INote this differs from ISO Pascal which allows a commenttistgiwith { to terminate with *) and vice versa.

2The notation used for grammar definition is a tabularised BEBch boxed table defines a production, with
the production name in the left column. Each line in the righiumn is an alternative for the production. The
metasymbol + indicates one or more repetitions of what imately preceeds it. The Kleene star * is used for
zero or more repetitions. Terminal symbols are in singletesioSequences in brackets [ ] are optional.
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Table 1.2: The hexadecimal digits of Vector Pascal.

Value 0 1 2 3 45 6 7 8 9 10 11 12 13 14 15
Notatonl O 1 2 3 4 5 6 7 8 9 A B C D E F
0 1 2 3 45 6 7 8 9 a b C d e f

Notation 2

| <digit sequence3 <digit> + |

| <decimalinteger> <digit sequence3

| <hexinteger>| ‘$’'<hexdigit>+ |

| <based integer} <digit sequence>'#<alphanumeric>+

<unsigned integerx <decimal integer>
<hex integer>
<based integer>

1.5.2 Real numbers

Real numbers are supported in floating point notation, s, 9.99e5 , 38E3, 3.6e-4

are all valid denotations for real numbers. The default isien for real numbers is also
32 bit, though intermediate calculations may use highecipi@n. The choice of 32 bits as
the default precision is influenced by the fact that 32 bittffggapoint vector operations are
well supported in multi-media instructions.

<exp>| ‘e

‘E

| <scale factor>] [<sign>] <unsigned integer}

<sign>| ‘-

<unsigned real> <decimal integer> ‘. <digit sequence>
<decimal integer>‘ .’ <digit sequence> <exp><scale faetpr
<decimal integer><exp> <scale factor>

Fixed point numbers

In Vector Pascal pixels are represented as signed fixed fragttons in the range -1.0 to
1.0. Within this range, fixed point literals have the sameagtic form as real numbers.

1.5.3 Character strings

Sequences of characters enclosed by quotes are callediditéngs. Literal strings consist-
ing of a single character are constants of the standard tyae € the string is to contain a
guote character this quote character must be written twice.
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‘A’ X' 'hello’ "John”s house’

are all valid literal strings. The allowable charactersiterhl strings are any of the
Unicode characters above u0020. The character strings Ipeuisiput to the compiler in
UTF-8 format.



Chapter 2

Declarations

Vector Pascal is a language supporting nested declaratimiexts. A declaration context
is either a program context, and unit interface or impleragoh context, or a procedure
or function context. A resolution context determines themiag of an identifier. Within a
resolution context, identifiers can be declared to standdastants, types, variables, pro-
cedures or functions. When an identifier is used, the meaaiken on by the identifier is
that given in the closest containing resolution contextsdRgtion contexts are any decla-
ration context or avith statement context. The ordering of these contexts wheviago
an identifier is:

1. The declaration context identified by anith statements which nest the current
occurrence of the identifier. Theséth statement contexts are searched from the
innermost to the outermost.

2. The declaration context of the currently nested procedeclarations. These proce-
dure contexts are searched from the innermost to the ousérmo

3. The declaration context of the current unit or program.

4. The interface declaration contexts of the units mentionghe use list of the current
unit or program. These contexts are searched from the rigéttomit mentioned in
the use list to the leftmost identifier in the use list.

5. The interface declaration context of the System unit.

6. The pre-declared identifiers of the language.

2.1 Constants

A constant definition introduces an identifier as a synonynafoonstant.

Vv

<constant declaration <identifier>=<expression>

<identifier>":'<type>'="<typed constant>

Constants can be simple constants or typed constants. Aesgopstant must be a con-
stant expression whose value is known at compile time. H®E8icts it to expressions for
which all component identifiers are other constants, anaviach the permitted operators
are given in table2.1 . This restricts simple constants toftsealar or string types.

Typed constants provide the program with initialised Valea which may hold array

types.

<typed constanty <expression>
<array constant>

13
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Table 2.1: The operators permitted in Vector Pascal conhstgiressions.
[+][-]*]/][div] mod]shr]|shi]|and]| or]

2.1.1 Array constants

Array constants are comma separated lists of constant &sipres enclosed by brackets.
Thus

trarray[1..3] of real =(1.0,1.0,2.0);

is a valid array constant declaration, as is:

t2:array[1..2,1..3] of real=((1.0,2.0,4.0),(1.0,3.0,9 .0));

The array constant must structurally match the type givetheéadentifier. That is to
say it must match with respect to number of dimensions, leogtach dimension, and
type of the array elements.

| <array constant>} '(’ <typed constant> [,<typed constant>]* ")’

2.1.2 Pre-declared constants

maxint The largest supported integer value.

pi A real numbered approximation to

maxchar ~ The highest character in the character set.

maxstring  The maximum number of characters allowed in a string.

maxreal The highest representable real.

minreal The smallest representable positive real number.
epsreal The smallest real number which when added to 1.0 yields a\diktinguish-
able from 1.0.

maxdouble The highest representable double precision real number.
mindouble  The smallest representable positive double precisionmaalber.
complexzero A complex number with zero real and imaginary parts.

complexone A complex number with real part 1 and imaginary part O.

2.2 Labels

Labels are written as digit sequences. Labels must be @edisfore they are used. They
can be used to label the start of a statement and can be tlieadiest of agoto statement.
A goto statement must have as its destination a label declaredhwiith current innermost
declaration context. A statement can be prefixed by a lalielfed by a colon.

Example

label 99;

begin read(x); if x>9 goto 99; write(x*2);99: end;
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Table 2.2: Categorisation of the standard types.
| type | category |

real floating point
double | floating point
byte integral
pixel fixed point
shortint integral
word integral
integer integral
cardinal integral
boolean scalar
char scalar

2.3 Types

A type declaration determines the set of values that exjgmes®f this type may assume
and associates with this set an identifier.

<type>| <simple type>
<structured type>
<pointer type>

| <type definition>] <identifier>'='<type> |

2.3.1 Simple types

Simple types are either scalar, standard, subrange or diovead types.

<simple type> <scalar type>
<integral type>
<subrange type>

<dimensioned type>

<floating point type>

Scalar types

A scalar type defines an ordered set of identifier by listireg#hidentifiers. The declaration
takes the form of a comma separated list of identifiers eeddy brackets. The identifiers
in the list are declared simultaneously with the declarediesdype to be constants of this
declared scalar type. Thus

colour = (red,green,blue);
day=(monday,tuesday,wednesday,thursday,
friday,saturday,sunday);

are valid scalar type declarations.

Standard types

The following types are provided as standard in Vector Hasca

integer The numbers are in the range -maxint to +maxint.



16 CHAPTER 2. DECLARATIONS

real These are a subset of the reals constrained by the IEEE 32iiny point
format.
double These are a subset of the real numbers constrained by theGEBE floating

point format.

pixel These are represented as fixed point binary fractions inathge-1.0 to 1.0.
boolean These take on the valufslse,true) which are ordered such thiate>false
char These include the characters frahr(0) to charmax . All the allowed char-

acters for string literals are in the type char, but the cti@raset may include
other characters whose printable form is country specific.

pchar Defined ag'char .

byte These take on the positive integers between 0 and 255.
shortint These take on the signed values between -128 and 127.
word These take on the positive integers from 0 to 65535.

cardinal These take on the positive integers form 0 to 4292967295 the most that
can be represented in a 32 bit unsigned number.

longint A 32 bit integer, retained for compatibility with Turbo Pasc
int64 A 64 bit integer.

complex A complex number with the real and imaginary parts held to iBpfecision.

Subrange types

A type may be declared as a subrange of another scalar oeimtgge by indicating the
largest and smallest value in the subrange. These valugsmgsnstants known at com-
pile time.

| <subrange type3} <constant>’.. <constant}

Examples: 1..10, 'a’..f’, monday..thursday.

Pixels

The conceptual modeadf pixels in Vector Pascal is that they are real numbers irrdinge
—1.0..1.0. As a signed representation it lends itself to subtractiman unbiased repre-
sentation, it makes the adjustment of contrast easier.>ample, one can reduce contrast
50% simply by multiplying an image by 05 Assignment to pixel variables in Vector
Pascal is defined to be saturating - real numbers outsideatigeer1..1 are clipped to it.
The multiplications involved in convolution operationd faaturally into place.

Theimplementation modedf pixels used in Vector Pascal is of 8 bit signed integers
treated as fixed point binary fractions. All the conversinaesessary to preserve the mono-
tonicity of addition, the range of multiplication etc, areleigated to the code generator
which, where possible, will implement the semantics usifigient, saturated multi-media
arithmetic instructions.

1when pixels are represented as integers in the range 0aZE®) contrast reduction has to be expressed as
((p—128 +2)+128.
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Dimensioned types

These provide a means by which floating point types can beased to represent dimen-
sioned numbers as is required in physics calculations. kXamele:

kms =(mass,distance,time);

meter=real of distance;

kilo=real of mass;

second=real of time;

newton=real of mass * distance * time POW -2

meterpersecond = real of distance *time POW -1;

The grammar is given by:

| <dimensioned type3 <real type> <dimension >["*’ <dimension>]}

<real type>| ‘’real
'double’

| <dimension>| <identifier> [POW’ [<sign>] <unsigned integer]

The identifier must be a member of a scalar type, and thatrsiygde is then referred
to as the basis space of the dimensioned type. The identifigtse basis space are re-
ferred to as the dimensions of the dimensioned type. Asttiaith each dimension of
a dimensioned type there is an integer number referred theapdwer of that dimension.
This is either introduced explicitly at type declaratiomé, or determined implicitly for the
dimensional type of expressions.

Avalue of a dimensioned type is a dimensioned value. Leftlofa dimensioned type
t be the power to which the dimensiahof typet is raised. Thus fot =newton in the
example above, amdi=time, logyt = -2

If x andy are values of dimensioned typgandtyrespectively, then the following op-
erators are only permissibletif =t

|+|-|<|>|<>|:|<:|>:|

For + and -, the dimensional type of the result is the samea®ftihe arguments. The
operations

are permitted if the typeandty, share the same basis space, or if the basis space of

one of the types is a subrange of the basis space of the other.
The operatioPOWSs permitted between dimensioned types and integers.

Dimension deduction rules

1. If x=yxzforx:ty,y:t2,z: t3 with basis spac8 then

Vdelogyts = logyta +logyts

2. Ifx=y/zforx:t1,y:tp,z: t3 with basis spac8 then

Vdeloggts = logytz —logyts

3. If x=yPOWzfor x:ty,y:t2,z: integerwith basis space fdp, B then

Vdeslogyts =logyts x z
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2.3.2 Structured types
Static Array types

An array type is a structure consisting of a fixed number ofnelets all of which are the
same type. The type of the elements is referred to as the atagpe. The elements of an
array value are indicated by bracketed indexing expressidhe definition of an array type
simultaneously defines the permitted type of indexing esgioe and the element type.

The index type of a static array must be a scalar or subrange fhis implies that the
bounds of a static array are known at compile time.

| <array type>| ‘array’ [’ <index type>[,<index type>]* '] 'of’ <type> |

<index type>| <subrange type>
<scalar type>
<integral type>

Examples

array[colour] of boolean;

array[1..100] of integer;

array[1..2,4..6] of byte;

array[1..2] of array[4..6] of byte;

The notationp,d] in an array declaration is shorthand for the notatibhdf array [
¢ ]. The number of dimensions of an array type is referred tdsasank. Scalar types have
rank 0.

String types

A string type denotes the set of all sequences of charactets some finite length and
must have the syntactic form:

<string-type>| ’string[’ <integer constant>']’
'string’
'string(’ <ingeger constant>’)’

the integer constant indicates the maximum number of ckemrsathat may be held
in the string type. The maximum number of characters thatlmameld in any string
is indicated by the pre-declared constamaixstring . The typestring is shorthand for
string[maxstring]

Record types

A record type defines a set of similar data structures. Eaamlmee of this set, a record
instance, is a Cartesian product of number of componerisldsspecified in the record
type definition. Each field has an identifier and a type. Thesead these identifiers is the
record itself.

A record type may have as a final componentagiant part The variant part, if a
variant part exists, is a union of several variants, eachtutiwmay itself be a Cartesian
product of a set of fields. If a variant part exists there mayaltag field whose value
indicates which variant is assumed by the record instance.

All field identifiers even if they occur within different vannt parts, must be unique
within the record type.
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| <record type>| 'record’ <field list>"end’ |

<field list> <fixed part>
<fixed part>’;’ <variant part>
<variant part>

| <fixed part>] <record section> [’; <record section.]¥

<record section> <identifier>[', <identifier>]* " <type>
<empty>

<variant part>| 'case’ [<tag field> "] <type identifier> 'of’<variant>["; <variant>]* |

<variant>| <constant> [, <constant>]*:" (' <field list>")’
<empty>

Set types

A set type defines the range of values which is the power-stt base type. The base type
must be an ordered type, that is a type on which the operatigrs and > are defined
Thus sets may be declared whose base types are charactak®nsyordinals, or strings.
Any user defined type on which the comparison operators haee befined can also be
the base type of a set.

| <settype>| 'set’ 'of <base type>|

2.3.3 Dynamic types

Variables declared within the program are accessed byittegitifier. These variables exist
throughout the existence of the scope within which they ardaded, be this unit, program
or procedure. These variables are assigned storage Insatibose addresses, either ab-
solute or relative to some register, can be determined apdertime. Such locations a
referred to as statfc Storage locations may also be allocated dynamically. Gaveypet ,
the type of a pointer to an instance of types t .

A pointer of type™ can be initialised to point to a new store location of type ukg
of the built in procedureew. Thus ifp:At ,

new(p);

cause9 to point at a store location of tyfe

Pointers to dynamic arrays

The types pointed to by pointer types can be any of the typegiored so far, that is to
say, any of the types allowed for static variables. In addithowever, pointer types can

2|SO Pascal requires the base type to be a scalar type, a wagme, integer type or a subrange thereof.
When the base type is one of these, Vector Pascal implententet using bitmaps. When the type is other than
these, balanced binary trees are used. It is strongly recdetethat use be made of Boehm garbage collector (see
section 5.1.2) if non-bitmapped sets are used in a program.

3The Pascal concept of static variables should not be equétedhe notion of static variables in some other
languages such as C or Java. In Pascal a variable is cortsistate if its offset either relative to the stack base
or relative to the start of the global segment can be detexdhat compile/link time. In C a variable is static only
if its location relative to the start of the global segmeritiigswn at compile time.
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be declared to point at dynamic arrays. A dynamic array isramyavhose bounds are
determined at run time.

Pascal 90[15] introduced the notion of schematic or pararisetd types as a means of
creating dynamic arrays. Thus wheré some integral or ordinal type one can write

type z(ab:r)=array[a..b] of t;

If p:Az |, then

new(p,n,m)

wherenm:r initialisesp to point to an array of bounds.m . The bounds of the array
can then be accessed@s, p*b . Inthis case, b are the formal parameters of the

array type. Vector Pascal currently only allows paramsestitypes to be allocated on the
heap vianew. The extended form of the proceduiev must be passed an actual parameter
for each formal parameter in the array type.

Dynamic arrays

Vector Pascal also allows the use of Delphi style declamatior dynamic arrays. Thus one
can declare:

type vector = array of real;
matrix = array of array of real;

The size of such arrays has to be explicitly initialised attime by a call to the library
proceduresetlength . Thus one might have:

function readtotal:real;

var len:integer;
v.vector;

begin

readin(len);

setlength(v,len);

readin(v);

readtotal = \+ v;

end;

The functiorreadtotal  reads the number of elements in a vector from the standatd.inp
It then callssetlength  to initialise the vector length. Next it reads in the vectoda
computes its total using the reduction operater.

In the example, the variable denotes an array of reals not a pointer to an array of
reals. However, since the array size is not known at comipile ¢etlength  will allocate
space for the array on the heap not in the local stack frame= UBe ofsetlength  is
thus restricted to programs which have been compiled withgarbage collection flag
enabled (see section 5.1.2). The procedetiength must be passed a parameter for
each dimension of the dynamic array. The bounds of the arfaymed by
setlength(a,i,},k)
would then bé..i-1, 0.j-1, 0.k-1

Low and High

The build in functiondsow andhigh return the lower and upper bounds of an array respec-
tively. They work with both static and dynamic arrays. Calesithe following examples.

program arrays;
type z(a,biinteger)=array[a..b] of real;
vec = array of real;
line= array [1..80] of char;
matrix = array of array of real;
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var i"z; vivec; lline; m:matrix;
begin
setlength(v,10);setlength(m,5,4);
new(i,11,13);

writeln(low(v), high(v));
writeln(low(m), high(m));
writeln(low(m[0]),high(m[0]));
writeln(low(l),high(1));
writeln(low(i*),high(i");

end.

0
0

would print

PRk ooo
o'
w3 wb©

[EY

2.4 File types

A type may be declared to be a file of a type. This form of definiis kept only for back-
ward compatibility. All file types are treated as being ealewnt. A file type corresponds to
a handle to an operating system file. A file variable must becated with the operating
system file by using the procedurassign, rewrite, append , andreset provided by
the system unit. A pre-declared file tyfest exists.

Text files are assumed to be in Unicode UTF-8 format. Conwassare performed
between the internal representation of characters and &dkinput/output from/to a text
file.

2.5 Variables

Variable declarations consist of a list of identifiers démgthe new variables, followed by
their types.

| <variable declaration <identifier>['; <identifier>]* " <type><extmod> |

Variables are abstractions over values. They can be eithges identifiers, compo-
nents or ranges of components of arrays, fields of recordsferanced dynamic variables.

<variable> <identifier>
<indexed variable>
<indexed range>
<field designator>
<referenced variable>

Examples

x,y-real;

i:integer;

point:*real;

dataset:array[1..n]of integer;
twoDdata:array[1..n,4..7] of real;
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2.5.1 External Variables

A variable may be declared to be external by appending therexitt modifier.

| <extmod>| ’;’ 'external’ 'name’ <stringlit> |

This indicates that the variable is declared in a non VectscBl external library. The
name by which the variable is known in the external librargpgcified in a string literal.

Example

countinteger; external name ’'_count’;

2.5.2 Entire Variables

An entire variable is denoted by its identifier. Examplggoint

2.5.3 Indexed Variables

A component of am dimensional array variable is denoted by the variable fodld byn
index expressions in brackets.

| <indexed variable> <variable>'[ <expression>[',<expression>]*T]|

The type of the indexing expression must conform to the irtgipr of the array vari-
able. The type of the indexed variable is the component typieecarray.

Examples

twoDdata[2,6]

dataset[i]

Given the declaration

a=array[p] of q

then the elements of arrays of typewill have typeq and will be identified by indices
of typep thus:

bli]

whereip , ba .

Given the declaration

z = string[x]

for some integer x<maxstring , then the characters within strings of typewill be
identified by indices in the randex, thus:

ylil

wherey:z , j:1.X

Indexed Ranges

A range of components of an array variable are denoted byahiahle followed by a range
expression in brackets.

| <indexed range> <variable> ' <range expression>['; <range expressijn¥ |

| <range expression} <expression>'..’ <expression}

The expressions within the range expression must confortheédndex type of the
array variable. The type of a range expressiftj] wherea: array[p..q] of t is
array[0..j-i] of t.

Examples:

dataset]i..i+2]:=blank;

twoDdata[2..3,5..6]:=twoDdata[4..5,11..12]*0.5;
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Subranges may be passed in as actual parameters to pracadase corresponding
formal parameters are declared as variables of a scherppéiciience given the following
declarations:

type image(miny,maxy,minx,maxx:integer)=array[miny.. maxy,minx..maxx]
of byte;

procedure invert(var im:image);begin im:=255-im; end;

var screen:array[0..319,0..199] of byte;

then the following statement would be valid:

invert(screen[40..60,20..30]);

Indexing arrays with arrays

If an array variable occurs on the right hand side of an agsem statement, there is a fur-
ther form of indexing possible. An array may be indexed bythaoarray. Ifx:array|[t0]

of t1 andy:array[tl] of t2 , theny[x] denotes the virtual array of typeray|t0]

of 2 such thay[x][il=y[X[i]] . This construct is useful for performing permutations.
To fully understand the following example refer to secti@nk.3,3.2.1.

Example Given the declarations
const perms:array[0..3] of integer=(3,1,2,0);
var ma,m0:array[0..3] of integer;
then the statements
m0:= (iota 0)+1;
write(m0=");for j;=0 to 3 do write(mOJ[j]);writeln;
ma:=mO0[perms];
write(perms=);for j:=0 to 3 do write(perms][j]);writeln X
writeln('ma:=mO[perms]’);for j;=0 to 3 do write(ma]j]);w riteln;
would produce the output

mo=1234
perms= 3120
ma:=m0[perms]
4231

This basic method can also be applied to multi-dimensiomayaConsider the follow-
ing example of an image warp:

type pos = 0..255;

image = array[pos,pos] of pixel;

warper = array[pos,pos,0..1] of pos;
var iml ,im2 :image;

warp :warper;

begin
getbackwardswarp(warp);

im2 := iml [ warp ];

The procedurgetbackwardswarp determines for each pixel position y in an image
the position in the source image from which it is to be obtdingfter the assignment we
have the postcondition

im2[x,y] = im1[warp[x,y,0],warp[x,y, 1]]Vx,y € pos
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2.5.4 Field Designators

A component of an instance of a record type, or the parametarsinstance of a schematic
type are denoted by the record or schematic type instaniosvied by the field or parameter
name.

| <field designator>] <variable>".’<identifier>|

2.5.5 Referenced Variables

If p:At , thenp® denotes the dynamic variable of typeeferenced by.

| <referenced variable> <variable> """ |

2.6 Procedures and Functions

Procedure and function declarations allow algorithms tadeatified by name and have
arguments associated with them so that they may be invokeutdnedure statements or
function calls.

<procedure declaration® <procedure heading>';'[<proc tail>]

<proc tail> 'forward’
‘external’ [ 'name’ <string>]
<block>
<paramlist> '('<formal parameter sec>[';'<formal parameter sec>]*

<procedure heading> | 'procedure’ <identifier> [<paramlist>]
‘function’<identifier> [<paramlist>]":'<type>
<formal parameter sec> [var]<identifier>[",<identifier>]:’<type>
<procedure heading>
<procedure type> ‘procedure’ [<paramlist>]
function’ [<paramlist>]:'<type>

The parameters declared in the procedure heading are lo¢hetscope of the pro-
cedure. The parameters in the procedure heading are teronedlf parameters. If the
identifiers in a formal parameter section are preceded bwtrdvar , then the formal pa-
rameters are termed variable parameters. The Blotk procedure or function constitutes
a scope local to its executable compound statement. Witlfiimetion declaration there
must be at least one statement assigning a value to the darickentifier. This assign-
ment determines the result of a function, but assignmefisdadentifier does not cause an
immediate return from the function.

Function return values can be scalars, pointers, recotdsgs, static arrays or sets.
Arrays whose size is determined at run time may not be retUimoen a function.

Where a procedure is declared as forward it must be followed Eull definition of
procedure lower in the current scope.

The external declaration form allows calls to be made taliles written in other lan-
guages.

Examples The function sba is the mirror image of the abs function.
function sha(i:integer):integer;
begin if i>0 then sba:=-i else sha:=i end,
type stack:array[0..100] of integer;
procedure push(var s:stack;i:integer);

4see section 4.
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begin s[s[0]]:=i;s[0]:=s[0]+1; end;

procedure append(var f:fileptr);external;
procedure close (var ffileptr); external name ’'pasclose’ ;

2.6.1 Procedural Parameters to Procedures

A procedure may have parameters that are themselves pressiishown in the following
example.

program CONF103(output);

var
i : integer;
procedure alsoconforms(x : integer);
begin
writeln( PASS...6.6.3.1-4 (CONF103))
end;

procedure conforms(procedure alsoconforms(x : integer)) ;
var X : boolean;
begin
X:=true;
alsoconforms(1)
end;
begin
i:=2;
conforms(alsoconforms)
end.

2.6.2 Procedure types

Procedural types may be declared. This in turn allows proeedariables. These store the
address of a procedure or function and can be assigned g tiiraddress operator @.
Example

program procvar;
type t=procedure (x:integer);

var vit;
procedure f(a:integer);begin writeln(a);end;
begin
vi= @f;
v@3);

end.
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Chapter 3

Algorithms

3.1 Expressions

An expression is a rule for computing a value by the applicatif operators and functions
to other values. These operators camf@nadic- taking a single argument, alyadic-
taking two arguments.

3.1.1 Mixed type expressions

The arithmetic operators are defined over the base typegeinnd real. If a dyadic op-
erator that can take either real or integer arguments isiegppd arguments one of which
is an integer and the other a real, the integer argument srfigdicitly converted to a real
before the operator is applied. Similarly, if a dyadic operas applied to two integral
numbers of different precision, the number of lower premisis initially converted to the
higher precisions, and the result is of the higher precisidigher precision of typesu
is defined such that the type with the greater precision iotiewhich can represent the
largest range of numbers. Hence reals are taken to be higbesin than longints even
though the number of significant bits in a real may be less itharongint.

When performing mixed type arithmetic between pixels aratla@r numeric data type,
the values of both types are converted to reals before tiienaetic is performed. If the
result of such a mixed type expression is subsequently reesditp a pixel variable, all
values greater than 1.0 are mapped to 1.0 and all values b&l6vare mapped to -1.0.

3.1.2 Primary expressions

<primary expression> ’'(’ <expression>")’
<literal string>
‘true’

'false’
<unsigned integer>
<unsigned real>
<variable>
<constant id>
<function call>
<set construction>

The most primitive expressions are instances of the |sedafined in the language:
literal strings, boolean literals, literal reals and lakintegers. 'Salernotrue , 12, $ea8f,
1.2e9 are all primary expressions. The next level of abstiads provided by symbolic

27
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identifiers for values.X, left , a.max, phnext , z[1] , image[4..200,100..150] are
all primary expressions provided that the identifiers hagerbdeclared as variables or
constants.

An expression surrounded by brackgéts is also a primary expression. Thuseifs an
expressionso i e).

| <function call>| <function id>['(’ <expression> [,<expression>]*")']

<element> <expression>
<range expression®

Let e be an expression of type and if f is an identifier of typdunction( t; ): to,
thenf( e) is a primary expression of type. A function which takes no parameters is
invoked without following its identifier by brackets. It Wibe an error if any of the actual
parameters supplied to a function are incompatible wittfdhmal parameters declared for
the function.

| <set constructiony ' [<element>[,<element>]*] T

Finally a primary expression may be a set construction. &Agestruction is written as a
sequence of zero or more elements enclosed in bracke®nd separated by commas. The
elements themselves are either expressions evaluatinggie salues or range expressions
denoting a sequence of consecutive values. The type of asstraction is deduced by
the compiler from the context in which it occurs. A set coastion occurring on the right
hand side of an assignment inherits the type of the variab¥ehtich it is being assigned.
The following are all valid set constructions:

0, [1.9], [z.4,9], [ab,c)]

[[ denotesthe empty set.

3.1.3 Unary expressions

A unary expression is formed by applying a unary operatontatlaer unary or primary ex-
pression. The unary operators supported+are * /, div, mod, and, or, not,

round, sqrt, sin, cos, tan, abs, In, ord, chr, byte2pixel, pi xel2byte, succ,
pred, iota, trans, addr and@

Thus the following are valid unary expressionsl , +b, not true , sgrt abs x
sin theta. In standard Pascal some of these operators are treatedai®fis). Syntacti-
cally this means that their arguments must be enclosed okbéts, as irsin(theta) . This
usage remains syntactically correct in Vector Pascal.

The dyadic operators, -, *, /, div, mod , and or are all extended to unary
context by the insertion of an implicit value under the ofiera Thus justasa = 0-a so
too/2 = 1/2 . For sets the notatios means the complement of the setThe implicit
value inserted are given below.

| type | operatos | implicit value |

number +- 0

string + "

set + empty set

number| */ div,mod 1

number max lowest representable number of the type
number min highest representable number of the type
boolean and true

boolean or false
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Table 3.1: Unary operators

Ihs rhs meaning
<unaryop> + +x = 0+X identity operator
) -X = 0-X,
note: this is defined on integer, real and complex
w X! *x=1*x identity operator
'’ /x=1.0/x
note: this is defined on integer, real and complex
div’, T+ div x =1 div X
'mod’ mod x = 1 mod X
‘and’ and x = true and x
‘or’ or x = false or x
‘not’, ' ' complements booleans
‘round’ rounds a real to the closest integer
'sgrt’, ’\/’ returns square root as a real number.
'sin’ sine of its argument. Argument in radians. Result is real.
‘cos’ cosine of its argument. Argument in radians. Result is regl.
‘tan’ tangent of its argument. Argument in radians. Result is real
"abs’ if x<0 then abs x = -x else abs x= x
I’ log, of its argument. Result is real.
‘ord’ argument scalar type, returns ordinal
number of the argument.
‘chr’ converts an integer into a character.
'succ’ argument scalar type,
returns the next scalar in the type.
‘pred’ argument scalar type,
returns the previous scalar in the type.
‘iota’, "1’ iota i returns the ith current index
‘trans’ transposes a matrix or vector

'pixel2byte’ || convert pixel in range -1.0..1.0 to byte in range 0..255
‘byte2pixel’ || convert a byte in range 0..255 to a pixel in

the range -1.0..1.0

‘@’',addr’ Given a variable, this returns an

untyped pointer to the variable.

A unary operator can be applied to an array argument andngaur array result. Sim-
ilarly any user declared function over a scalar type can h@ieghto an array type and
return an array. If is a function or unary operator mapping from typeo typet then
if x is an array of, anda an array oft, thena:=f(x) assigns an array df such that

afi]=f(x{i)

<unary expressionx <unaryop> <unary expression>
'sizeof’ '(’ <type>"')
<operator reduction>
<primary expression>

'if’<expression>'then’ <expression>'else’ <expression

sizeof

The construcsizeof( t) wheret is a type, returns the number of bytes occupied by an
instance of the type.
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iota

The operator iota i returns the ith current implicit index

Examples Thus given the definitions
var vl:array[l..3]of integer;
v2:array[0..4] of integer;
then the program fragment
vl:=iota O;
v2:=iota 0 *2;

for i:=1 to 3 do write( VA[i]); writeln;
writeln('v2);

for i:=0 to 4 do write( V2[i]); writeln;
would produce the output

vl

123
V2
02468

whilst given the definitions
ml:array[1..3,0..4] of integer;m2:array[0..4,1..3]of i nteger;
then the program fragment
m2:= iota 0 +2*ota 1,
writeln(m2:= iota 0 +2*iota 1 );
for i:=0 to 4 do begin for j;=1 to 3 do write(m2[i,j]); writeln ;end;

would produce the output

= iota 0 +2%ota 1

The argumentt@mta must be an integer known at compile time within the range glioit
indices in the current context. The reserved wadgl is a synonym foiota .

perm A generalised permutation of the implicit indices is penfied using the syntactic
form:

perm[ i ndex-sel [, i ndex-sel ]+ ]expression

The index-se$ are integers known at compile time which specify a pernarabn the
implicit indices. Thus ire evaluated in contexterm|[ i, j,K] e, then:

iota 0 = iota i,iota 1= iota |, iota 2= iota Kk

This is particularly useful in converting between differénage formats. Hardware frame
buffers typically representimages with the pixels in the, igreen, blue, and alpha channels
adjacent in memory. For image processing it is conveniehotd them in distinct planes.
Theperm operator provides a concise notation for translation betwbese formats:

1See section 3.2.1.
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type rowindex=0..479;
colindex=0..639;

var channel=red..alpha;
screen:array[rowindex,colindex,channel] of pixel;
img:array[channel,colindex,rowindex] of pixel;

screen:=perm[2,0,1]img;

trans anddiag provide shorthand notions for expressions in termpeni. Thus in
an assignment context of rankt®ns = perm[1,0] anddiag = perm[0,0]

trans

The operator trans transposes a vector or matrix. It achithie by cyclic rotation of the
implicitindices. Thus itrans eis evaluated in a context with implicit indices

iota O..iota n

then the expression e is evaluated in a context with imphdiices

iota '0..iota 'n

where

iota 'x=iota ((Xx+1)modn+1)

It should be noted that transposition is generalised tojamérank greater than 2.

Examples Given the definitions used above in section 3.1.3, the prodragment:
ml:= (trans v1)*v2;
writeln('(trans  v1)*v2’);
for i:=1 to 3 do begin for j;=0 to 4 do write(m1[i,j]); writeln ;end;

m2 = trans mil;

writeln('transpose 1..3,0..4 matrix’);

for i:=0 to 4 do begin for j;=1 to 3 do write(m2[i,j]); writeln ;end;
will produce the output:
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3.1.4 Operator Reduction

Any dyadic operator can be converted to a monadic reducii@nator by the functional \.
Thus ifa is an array\+ta denotes the sum over the array. More genergihx for some
dyadic operato® meansq®(x1®P..(xn®1)) wheret is the implicit value given the operator
and the type. Thus we can write for summation}* for nary product etc. The dot product
of two vectors can thus be written as

x= oy
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instead of

x:=0;

for i:=0 to n do x:= x+ y[iJ*zi];

A reduction operation takes an argument of rardnd returns an argument of ranit
except in the case where its argument is of rank 0, in whicle @aacts as the identity
operation. Reduction is always performed along the lastyadimension of its argument.

The operations of summation and product can be be writtateeids the two functional
forms\ + and\ * or as the prefix operatofs (Unicode 2211) angf] (Unicode 220f).

<operator reductionx '\'<dyadic op> <multiplicative expressions
'S’ <mutliplicative expression>
"I’ < multiplicative expression>

<dyadic op>| <expop>
<multop>
<addop>

The reserved worddu is available as a lexical alternative to \, so \+ is equivaten
rdu +.

3.1.5 Complex conversion

Complex numbers can be produced from reals using the fumatiplx . cmplx( re,im) is
the complex number with real pag, and imaginaray paitn.

The real and imaginary parts of a complex number can be addig the functionse
andim. re (c) is the real part of the complex numberim(c) is the imaginary part of the
complex numbec.

3.1.6 Conditional expressions

The conditional expression allows two different values &orbturned depenent upon a
boolean expression.

var a:array[0..63] of real;

a:=if a>0 then a else -a;

Theif expression can be compiled in two ways:

1. Where the two arms of the if expression are parallelisable condition and both
arms are evaluated and then merged under a boolean mask.ti@above assign-
ment would be equivalent to:

a= (a and (& >0)or(not (@ >0) and -a);
were the above legal Pastal
2. If the code is not paralleliseable it is translated as\edent to a standard if state-
ment. Thus, the previous example would be equivalent to:
for i:=0 to 63 do if afi] >0 then afi]:=a[i] else a]i]:=-a[i];
Expressions are non parallelisable if they include funrctalls.

2This compilation strategy requires that true is equivatentl and false to 0. This is typically the represen-
tation of booleans returned by vector comparison instomstion SIMD instruction sets. In Vector Pascal this
representation is used generally and in consequémnee <false .
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Table 3.2: Null elements for boolean masking

Type Null Element
Numbers 0

Strings empty string
Booleans false

The dual compilation strategy allows the same linguistiestnuct to be used in recursive
function definitions and parallel data selection.
Use of boolean mask vectors

In array programming many operations can be efficiently lessed in terms of boolean
mask vectors. Given the declarations:

const
s:array[l..4] of string[8]=(dog’, fish’,’bee’,'beans ;
i:array[1..4] of integer=(1,2,3,4);
rarray[1..4] of real=(0.5,1.0,2.0,4.0);
b:array[1..4] of boolean=(false,true,false,true);
var

c.array[1..4] of complex;
and if c is intialised to cmplx(1,0.5), then the statements

write (b,i and b, r and b);
write(s:12, (s and b):12 );
write(c and b);

will output
false true false true
0 2 0 4
0 1 0 4
dog fish bee beans
fish beans
0j0 1j5e-1 0j0 1j5e-1

and operations using boolean arrays are particularly Usefoerforming parallel selection
operations on arrays. For numeric types, they commpileieffity to SIMD code. Anding
a value with boolean true leaves the value unchanged, andiigfalse returns a null
element.

3.1.7 Factor

A factor is an expression that optionally performs expoiatioin. Vector Pascal supports
exponentiation either by integer exponents or by real egpts) A numbek can be raised
to an integral powey by using the constructior pow y. A number can be raised to an
arbitrary real power by th& operator. The result ot is always real valued.

<expop>| 'pow’

Thk?

| <factor>| <unary expression> [ <expop> <unary expressioh>]
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Table 3.3: Multiplicative operators

Operator Left Right Result Effect @fop b
X integer integer integer multiply
string integer string replicate, 'ab’*2 =’abab’
real real real multiply
complex complex complex multiply
/ integer integer real division
real real real division
complex complex complex division
div, =+ integer integer integer division
mod integer integer integer remainder
and boolean  boolean  boolean logical and
shr integer integer integer shitt by b bits right
shl integer integer integer shi& by b bits left
in, € t set of t boolean trueifris member ob

3.1.8 Multiplicative expressions

Multiplicative expressions consist of factors linked b thultiplicative operatory  x,
[, div, -+,, mod, shr, shl and . The use of these operators is summarised in table
3.3.

<multop>| ¥

.
div’
'shr’
'shl’
‘and’
'mod’

<multiplicative expression> <factor> [ <multop> <factor> J*
<factor>"in’<multiplicative expression>

3.1.9 Additive expressions

An additive expression allows multiplicative expressitmbe combined using the addition
operatorst, -, or, +,max, min, - , ><. The additive operations are summarised in
table3.4 .

<addop>| '+

or’
‘max’
‘min’

<additive expression>| <multiplicative expression> [ <addop> <multiplicativepegssion> ]* |
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Table 3.4: Addition operations

Left Right Result Effect ohiop b
+ integer integer integer sum afandb
real real real sum of andb
complex complex complex sum afandb
set set set union o andb
string string string concatenatewith b 'ac’+'de’="acde’
integer integer integer result of subtractibdgrom a
real real real result of subtractingfrom a
complex complex complex result of subtractibdrom a
set set set complement bfrelative toa
+ 0..255 0..255 0..255 saturated + clipped to 0..255
-128..127 -128..127  -128..127 saturated + clipped to -128.
0..255 0..255 0..255 saturated - clipped to 0..255
-128..127 -128..127  -128..127 saturated - clipped to -123.
min integer integer integer returns the lesser of the numbers
real real real returns the lesser of the numbers
max integer integer integer returns the greater of the numbers
real real real returns the greater of the numbers
or boolean boolean boolean logical or
>< set set set symetric difference

Table 3.5: Relational operators

< Less than

> Greater than

<= Less than or equal to
>=  Greater than or equal to
<> Not equal to

= Equal to

| <expression>| <additive expression> <relational operator> <expressi4n

3.1.10 Expressions

An expression can optionally involve the use of a relatiaparator to compare the results
of two additive expressions. Relational operators alwaarn boolean results and are
listed in table 3.5.

3.1.11 Operator overloading

The dyadic operators can be extended to operate on new typegdrator overloading.
Figure 3.1 shows how arithmetic on the tygenplex required by Extended Pascal [15] is
defined in Vector Pascal. Each operator is associated withmastic function and if it is a
non-relational operator, an identity element. The opemtmbols must be drawn from the
set of predefined Vector Pascal operators, and when expnssgivolving them are parsed,
priorities are inherited from the predefined operators. fifpe signature of the operator is
deduced from the type of the functidn

3Vector Pascal allows function results to be of any non-placal type.
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interface
type
Complex = record data : array [0..1] of real ;
end ;
var
complexzero, complexone : complex;

function real2cmplx ( realpart :real ):complex ;
function cmplx ( realpart ,imag :real ):complex ;
function complex_add ( A ,B :Complex ):.complex ;
function complex_conjugate ( A :Complex ):complex ;
function complex_subtract ( A ,B :Complex ):complex ;
function complex_multiply ( A ,B :Complex ):complex ;
function complex_divide ( A ,B :Complex ):complex ;
{ Standard operators on complex numbers }
{ symbol function identity element }
operator + = Complex_add , complexzero ;
operator / = complex_divide , complexone ;
operator * = complex_multiply , complexone ;
operator - = complex_subtract , complexzero ;
operator cast = real2cmplx ;

Note that only the function headers are given here as thie cothes from the interface part of the
system unit. The function bodies and the initialisationhef variables complexone and complexzero
are handled in the implementation part of the unit.

Example 3.1: Defining operations on complex numbers

<operator-declaration> ‘operator’ 'cast’ '=’ <identifier>
‘operator’ <dyadicop> '=' <identifier>’,'<identifier>
‘operator’ <relational operator> "=’ <identifier>

When parsing expressions, the compiler first tries to resalperations in terms of
the predefined operators of the language, taking into adatenstandard mechanisms
allowing operators to work on arrays. Only if these fail daesearch for an overloaded
operator whose type signature matches the context.

In the example in figure 3.1, complex humbers are defined teeberds containing
an array of reals, rather than simply as an array of reals. tHag been so defined, the
operatorst,*-/ on reals would have masked the corresponding operatorsropleg
numbers.

The provision of an identity element for complex additiomaubtraction ensures that
unary minus, as in-x for x :complex, is well defined, and correspondingly that unary /
denotes complex reciprocal. Overloaded operators can && insarray maps and array
reductions.

Implicit casts

The Vector Pascal language already contains a number ofcitniylpe conversions that
are context determind. An example is the promotion of intege reals in the context of
arithmetic expressions. The set of implicit casts can beeddd by declaring an operator
to be a cast as is shown in the line:

oper at or cast = real 2cnmpl x ;
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{tests vector product of integer vectors }
program conf551;
const

acarray[0..3] of integer=(1,1,2,3);

b:array[0..3] of integer=(1,2,3,4);

var iinteger;
begin
i=a.b;
if i=21 then
writeln(PASS  integer vector product allowed’)
else
writeln(FAIL integer vector product i=',)
end.
Example 3.2: Example of the inner product operation
{tests vector product of string and integer }
program conf550;
const roman:array[0..4] of string[3]=(C",'L'/X,'V’, ;

num:  array[0..4] of integer =(1,1,2,0,3);
var s:string[80];
begin
s:=num.roman;
if s='"CLXXIII' then
writeln(PASS string integer vector product allowed’)
else
writeln(FAIL CONF550 string integer vector product s=',s )
end.

Example 3.3: Using vector product to format roman numerals

Given an implict cast from typ — t1, the function associated with the implicit cast
is then called on the result of any express&rty whose expression context requires it to
be of typet;.

3.1.12 Vector inner product

The inner product of two vectors is defined as:

a.b:zai x b
I

or in Vector Pascal notatiora.b = \+ a*h . Vector Pascal supports this inner product
operation on any pair of vectors with the following propesti

1. The lengths of the vectors must be the same.
2. The types of the vectors must be such that they supporitbetors + and *.

Inner product can obviously be used on numeric vectors agrshoExample 3.2 but it can
also be used with other types for which + and * are defined, asslin Example 3.3.

The inner product operation is of higher priority than anlgeat Its arguments must be
arrays.
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3.1.13 Matrix to Vector Product

Matrix to vector product can be used to carry out generalise@dr geometry transforms.
We can do this in Vector Pascal if a two dimensional array &lus multiply a one dimen-
sional array, using the dot product operatoMi a two dimensional array anda vector,
M.v produces the transformed vector.

The program matvmult shown in Example 3.4, shows the repespplication of a
rotation and translation matrix to the unit x vector. Whea thatrix

2 0 0
L 0 o0
0 1 Q2
0 0 1

is applied to a vector of the forfx,y, z 1], it rotates it by 45 and moves it up by 0.2.

SN
N

Data-flow Hazards

Note that in Example 3.4, one can not simply wsite=M.v1 , instead one has to write:

v2:=M.v1;
vl=v2;

since the vectorl might be changing whilst it was being read. Had the compitsrb
encountered this statement it would have generated theragssages:

compilation failed

17 : Error assignment invalid

17 : Eror in primary expression started by m

17 : Eror attempting to reduce rank of variable

17 : Error data hazard found. Destination v1 is used with
an index permutation on right hand side of := which
can cause it to be corrupted.
You can get round this by assigning to a temporary
array instead and then assigning the temporary to
destination v1

A check for data-flow hazards is applied to all array assigmnseéatements. If array ex-
pressions could all be evaluated in parallel, then thereladvbe no hazards. The problem
arises because only simple array expressions can be exdleiatirely in parallel. In other
cases the array assignment has to be broken down by the esimpd a sequence of steps.
This gives rise to the danger that an array location may leeealtby an early step prior to
it being used a source of data by a subsequent step.

In most cases there will be no problem even where the deistimaéctor appears on
the right hand side of an assignment. Thus:

M:=M+v;,
for some matrixMand vectow, is ok, since here each elementwdepends only on its own
prior value. However fovl:=M.vl , we have the equations

3
vlg = EOMOJ'VIJ' 3.1
i=

3
vl = Z)Mljvlj 3.2
i=

In which ever order the code for these equations is evalyaittbrvl, or vi;will be
altered before it is used in the other equation.
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program matvmult;
type vec=array[0..3] of real;
mat=array[0..3] of vec;

const
rr2= 0.7071067 ; { Usqrt(2) }
M:mat=(( rr2,-r12,0.0,0.0) , { 45degree spiral matrix }
(rr2,rr2,0.0,0.0),
(0.0,0.0,1.0,0.2),
(0.0,0.0,0.0,1.0));

v:vec=(1.0,0.0,0.0,1.0);
var vlyv2.vec; iinteger;
begin
write (M,v);
vl=v,
(* perform 8 45degree rotations *)
for i:=1 to 8 do begin
v2:=M.v1;
vi=v2;
write(v1);
end;
end.

produces as output

0.70711 -0.70711 0.00000 0.00000
0.70711 0.70711 0.00000 0.00000
0.00000 0.00000 1.00000 0.20000
0.00000 0.00000 0.00000 1.00000
1.00000 0.00000 0.00000 1.00000
0.70711 0.70711 0.20000 1.00000
0.00000 1.00000 0.40000 1.00000
-0.70711 0.70711 0.60000 1.00000
-1.00000 -0.00000 0.80000 1.00000
-0.70711 -0.70711 1.00000 1.00000
-0.00000 -1.00000 1.20000 1.00000
0.70711 -0.70711 1.40000 1.00000
1.00000 -0.00000 1.60000 1.00000

Example 3.4: Using a spiral rotation matrix to operate ontthié X vector.
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program matmmult;
const
Aarray[1..2,1..3] of integer=((3,1,2),

(2,1,3));
B:array[1..3,1..2] of integer=((1,2),
(3.1),
(2,3);
var Carray[1..2,1..2] of integer;
begin
C:=A.B;
writeln(C);
end.

Produces output

10 13
11 14

Example 3.5: Matrix by matrix multiplication.

3.1.14 Matrix to Matrix multiplication

VECTOR The dot operator can be used between matrices to perfornixnaditiplication as illus-
trated in Example 3.5. This applies the standard equatiomédrix multiplication:

p
Ck=Y aisbsk (3.3)
i S; s0s

where A is of ordefm x p)and B is of ordefp x n) to give a resulting matrix C of
order(mx n).

3.2 Statements

<statement>| <variable>":='<expression>
<procedure statement>
<empty statement>
‘goto’ <label>;
‘exit’['('<expression>’)’]
‘begin’ <statement>[;<statement>]*end’
'if’<expression>'then’<statement>['else’<statemeht>
<case statement>
'for’ <variable>:= <expression> 'to’ <expression> 'do’ tdement>
'for’ <variable>:= <expression> 'downto’ <expression>o’c<statement>
‘repeat’ <statement> 'until’ <expression>
‘'with’ <record variable>'do’ < statement>
<io statement>
‘'while’ <expression> 'do’ <statement>

3.2.1 Assignment

An assignment replaces the current value of a variable bywavadue specified by an
expression. The assignment operator is :=. Standard Palboak assignment of whole
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arrays. Vector Pascal extends this to allow consistent fiséxaed rank expressions on the
right hand side of an assignment. Given

rO:real; rl:array[0..7] of real;

r2:array[0..7,0..7] of real

then we can write

1. rl:= r2[3]; { supported in standard Pascal }

2. rl:= [2; { assign 0.5 to each element of rl }

3. r2:= r1*3; { assign 1.5 to every element of r2}

4. rl:= \+ r2; { rl gets the totals along the rows of r2}

5. rLl:= r1+r2[1]{ r1 gets the corresponding elements of row 1 o f r2 added
to it}

The assignment of arrays is a generalisation of what stdr@ascal allows. Consider the
first examples above, they are equivalent to:

1. for i:=0 to 7 do r1[i]:=r2[3,i];
2. for =0 to 7 do ri[i]:=/2;

3. for i:=0 to 7 do
for ;=0 to 7 do r2]ij]:=r[j*3;

4. for =0 to 7 do
begin
t:=0;
for j:=7 downto O do t=r2[ij]+t;
rifi]:=t;
end;

5. for =0 to 7 do rifi]:=r1[i]+r2[1,i];

In other words the compiler has to generate an implicit loegrohe elements of the array
being assigned to and over the elements of the array actithgeaata-source. In the above
ijt  areassumed to be temporary variables not referred to amgveltee in the program.
The loop variables are called implicit indices and may besased usingta .

The variable on the left hand side of an assignment definesrag eontext within
which expressions on the right hand side are evaluated. Baaly context has a rank
given by the number of dimensions of the array on the left hsidd. A scalar variable has
rank 0. Variables occurring in expressions with an arraytexinof rankr must have or
fewer dimensions. The bounds of anyr dimensional array variable, with< r occurring
within an expression evaluated in an array context of ramkist match with the rightmost
n bounds of the array on the left hand side of the assignmeteinstant.

Where a variable is of lower rank than its array context, thgable is replicated to
fill the array context. This is shown in examples 2 and 3 aboBecause the rank of
any assignment is constrained by the variable on the leftl lsa&de, no temporary arrays,
other than machine registers, need be allocated to storimtrenediate array results of
expressions.
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3.2.2 Procedure statement

A procedure statement executes a named procedure. A pnacstitement may, in the
case where the named procedure has formal parametersircarist of actual parame-
ters. These are substituted in place of the formal parasetertained in the declaration.
Parameters may be value parameters or variable parameters.

Semantically the effect of a value parameter is that a copgikien of the actual pa-
rameter and this copy substituted into the body of the promed/alue parameters may be
structured values such as records and arrays. For scalss/axpressions may be passed
as actual parameters. Array expressions are not currditlyed as actual parameters.

A variable parameter is passed by reference, and any édte@ftthe formal parameter
induces a corresponding change in the actual parametenalariable parameters must
be variables.

<parameter> <variable> | for formal parameters declared as Var
<expression>| for other formal parameters

<procedure statementp <identifier>
<identifier> (' <parameter> [, <parameter>]*’)’

Examples
1. printlist;

2. compare(avec,bvec,result);

3.2.3 Goto statement

A goto statement transfers control to a labelled statem€&hé destination label must be
declared in a label declaration. It is illegal to jump intoout of a procedure.

Example goto 99;

3.2.4 Exit Statement

An exit statement transfers control to the calling pointtaf turrent procedure or function.
If the exit statement is within a function then the exit staémt can have a parameter: an
expression whose value is returned from the function.

Examples
1. exit;

2. exit(5);

3.2.5 Compound statement

A list of statements separated by semicolons may be grouyteciicompound statement
by bracketing them withegin andend .

Example begin a:=x*3; b:=sqrt a end;
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3.2.6 If statement

The basic control flow construct is the if statement. If thelban expression betweén
andthen is true then the statement followirigen is followed. If it is false and an else
part is present, the statement followielge is executed.

3.2.7 Case statement

The case statement specifies an expression which is evélamatewhich must be of inte-
gral or ordinal type. Dependent upon the value of the expyassontrol transfers to the
statement labelled by the matching constant.

| <case statement}> 'case’<expression>'of'<case actions>'end’

<case actions> <case list>
<case list> 'else’ <statement>
<case list> 'otherwise’ <statement

V

| <case list>| <case list element>[';'<case list element]*

| <case list element} <case label>['; <case label>]'’'<statement{>

<case label>] <constant>
<constant>'.. <constant»

case i of case cof
lis:i=abs s; ‘awrite('A);
Examples 2:s:= sqrit s;  'b/B:write('B);
3 s=0 ACLZ ez write( )
end end

3.2.8 With statement

Within the component statement of the with statement thddief the record variable can
be referred to without prefixing them by the name of the rec@niable. The effect is to
import the component statement into the scope defined byetterd variable declaration
so that the field-names appear as simple variable names.

Example var s:record xy:real end;
begin
with s do begin x:=0;y:=1 end ;
end

3.2.9 For statement

A for statement executes its component statement repgatader the control of an itera-
tion variable. The iteration variable must be of an integrabrdinal type. The variable is
either set to count up through a range or down through a range.

for ii= el to €2 do s

is equivalent to
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i.=el; temp:=e2;while i<=temp do s;
whilst

for i:= el downto e2 do s

is equivalent to

i.=el; temp:=e2;while i>= temp do s;

3.2.10 While statement

A while statement executes its component statement wisl§tdolean expression is true.
The statement

while e do s

is equivalent to

10: if not e then goto 99; s; goto 10; 99:

3.2.11 Repeat statement

A repeat statement executes its component statement ableses and then continues to
execute the component statement until its component esipresecomes true.

repeat s until e

is equivalent to

10: s;if e then goto 99; goto 10;99:

3.3 Input Output

<io statement>| 'writeln’[<outparamlist>]
'write’<outparamlist>

readIn’[<inparamlist>]
‘read’<inparamlist>

| <outparamlist>] '('<outparam>[',<outparam>]*")’ |

<outparam>| <expression>[".’ <expression>][';’<expression
p p P

| <inparamlist>] ’(<variable>['/<variable>]*")’ |

Input and output are supported from and to the console andr@is) and to files.

3.3.1 Input

The basic form of input is theesad statement. This takes a list of parameters the first
of which may optionally be a file variable. If this file variagbis present it is the input
file. In the absence of a leading file variable the input filehis standard input stream.
The parameters take the form of variables into which appatg@translations of textual
representations of values in the file are read. The statement

read( a,b,q9

wherea,b,care non file parameters is exactly equivalent to the sequefrstatements

read( a)read( b)read( c)

Thereadin statement has the same effect as the read statement bug$iligineading
a new line from the input file. The representation of the nawve lis operating system
dependent. The statement

readin( a,b,q
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wherea,b,care non file parameters is thus exactly equivalent to theesezpiof state-
ments

read( a);read( b);read( c);readin;

Allowed typed for read statements are: integers, realisggrand enumerated types.

3.3.2 Output

The basic form of output is therite  statement. This takes a list of parameters the first of
which may optionally be a file variable. If this file variabtepresent it is the output file. In
the absence of a leading file variable the output file is thesaolen The parameters take the
form of expressions whose values whose textual represamsedre written to the output
file. The statement

write( a,b,q

wherea,b,care non file parameters is exactly equivalent to the sequefrstatements

write(  a);write(  b);write(  ¢)

Thewriteln  statement has the same effect as the write statement biefenlsy writ-
ing a new line to the output file. The representation of the fieeris operating system
dependent. The statement

writeln(  a,b,q

wherea,b,care non file parameters is thus exactly equivalent to theesempuof state-
ments

write(  a);write(  b);write( c);writeln;

Allowed types for write statements are integers, realfygtrand enumerated types.

Parameter formating

A non file parameter can be followed by up to two integer exgiass prefixed by colons
which specify the field widths to be used in the output. Theenparameters can thus have
the following forms:

eememn

1. If eis an integral type its decimal expansion will be writtenqgaeded by sufficient
blanks to ensure that the total textual field width produsethit less tham.

2. If eis a real its decimal expansion will be written preceededufficsent blanks to
ensure that the total textual field width produced is not taasm. If n is present
the total number of digits after the decimal point will belf nis omitted then the
number will be written out in exponent and mantissa form v@tdigits after the
decimal point

3. If eis boolean the strings 'true’ or false’ will be written intofield of width not less
than m.

4. If elf the value of e is a string-type value with a lengthrpfthe default value ofn
shall be n. The representation shall consist of

if m > n,
(m - n) spaces,
if n >0,
the first through n-th characters of the value of e in that ord er.
if 1 <= m <= n,
the first through m-th characters in that order.
if m =0,
no characters.
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Chapter 4

Programs, Units and Libraries

Vector Pascal supports the popular system of separate tatropiunits found in Turbo
Pascal. A compilation unit can be either a program, a unitldorary.

| <program>| 'program’ <identifier>';[<uses>";'|<block>"" |

| <invocation>] <unitid>['( <type identifier>[',<type identifier>]*)' ]

| <unitid> | <identifier>[":’ "apu’ <identifier> ' <intconst>T] |

| <uses>| 'uses’ <invocation>[',<invocation>]*|

| <block> | [<decls>"; T begin’ <statement>[';'<statement>]*ed

<decls>| ’const’ <constant declaration>[';'<constant declarati}*
‘type’<type definition>[';'<type definition>]*
'label’ <label>[', <label>]
<procedure declaration>
‘var’ <variable declaration>[’;’ <variable declaratior]>

| <unit> | <unit header> <unit body

<unit body> | ’interface’[<uses>][<decls>] 'implementation’<block>
'interface’[ <uses>][<decls>] 'in’ <invocation>";’

<unit header> <unit type><identifier>
‘unit’ <identifier>'(’ <type identifier> [’ <type identifer>]* "y’

<unit type>| ’unit’
library’

An executable compilation unit must be declared as a progime program can use
several other compilation units all of which must be eitheitsior libraries. The units or
libraries that it directly uses are specified by a list of itifggrs in an optional use list at
the start of the program. A unit or library has two declamatportions and an executable
block.

4.1 The export of identifiers from units

The first declaration portion is the interface part and iscpded by the reserved word
interface

47
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unit genericsort(t) ;
interface
type
dataarray ( n,m :integer )=array [n..m] of t ;
procedure sort ( var a :dataarray ); (see Figure 4.2)

implementation

procedure sort ( var a :dataarray ); (see Figure 4.2)
begin
end .

Example 4.1: A polymorphic sorting unit.

The definitions in the interface section of unit files congéta sequence of enclosing
scopes, such that successive units in the with list ever mlosely contain the program
itself. Thus when resolving an identifier, if the identifiemrcnot be resolved within the
program scope, the declaration of the identifier within titefiface section of the rightmost
unit in the uses list is taken as the defining occurrencelltiis that rightmost occurrence
of an identifier definition within the interface parts of wiin the uses list overrides all
occurrences in interface parts of units to its left in thesugst.

The implementation part of a unit consists of declaratigmeceded by the reserved
word implementatio  n that are private to the unit with the exception that a fuorcior
procedure declared in an interface context can omit thequiae body, provided that the
function or procedure is redeclared in the implementatiar pf the unit. In that case the
function or procedure heading given in the interface pataken to refer to the function
or procedure of the same name whose body is declared in thenmeptation part. The
function or procedure headings sharing the same name intiwédace and implementation
parts must correspond with respect to parameter typesimedes order and, in the case of
functions, with respect to return types.

A unit may itself contain a use list, which is treated in thensawvay as the use lists of
a program. That is to say, the use list of a unit makes acdesdintifiers declared within
the interface parts of the units named within the use lishéounit itself.

4.1.1 The export of Operators from units

A unit can declare a type and export operators for that type.

4.2 Unit parameterisation and generic functions

Standard Pascal provides es some limited support for palyhiem in itsread andwrite
functions. Vector Pascal allows the writing of polymorpfiicctions and procedures
through the use of parameteric units.

A unit header can include an optional parameter list. Thamp@ters identifiers which
are interepreted as type names. These can be used to demllarephic procedures and
functions, parameterised by these type names. This is shofigure 4.1.
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procedure sort ( var a:dataarray );

var
Leti, j € integer;
Lettemp € t;
begin

for i«<—a.n to am-1 do

for j«—a.n to am-1 do

if aj > aj, then begin begin
temp«— aj;
aj <~ &g,
aj, 1 < temp;

end ;
end ;

Example 4.2: procedure sort

4.3 The invocation of programs and units

Programs and units contain an executable block. The rutehdécexecution of these are as
follows:

1. When a program is invoked by the operating system, the wnilibraries in its use
list are invoked first followed by the executable block of gregram itself.

2. When a unit or library is invoked, the units or librariegtsuse list are invoked first
followed by the executable block of the unit or library itsel

3. The order of invocation of the units or libraries in a us is left to right with the
exception provided by rule 4.

4. No unit or library may be invoked more than once.

Note that rule 4 implies that a unitto the right of a uniy within a use list, may be invoked
before the uniy, if the unity or some other unit tg’s left namesxin its use list.

Note that the executable part of a library will only be invdkié the library in the
context of a Vector Pascal program. If the library is linkedat main program in some
other language, then the library and any units that it us#sai be invoked. Care should
thus be taken to ensure that Vector Pascal libraries to feddabm main programs written
in other languages do not depend upon initialisation coaéatoed within the executable
blocks of units.

4.4 The compilation of programs and units.

When the compiler processes the use list of a unit or a proginam from left to right, for
each identifier in the use list it attempts to find an alreadypited unit whose filename
prefix is equal to the identifier. If such a file exists, it thewks for a source file whose
filename prefix is equal to the identifier, and whose suffipas . If such a file exists and
is older than the already compiled file, the already compilei, the compiler loads the
definitions contained in the pre-compiled unit. If such a éilésts and is newer than the
pre-compiled unit, then the compiler attempts to re-comtie unit source file. If this re-
compilation proceeds without the detection of any erroesdbmpiler loads the definitions
of the newly compiled unit. The definitions in a unit are satced file with the suffixmpu,
and prefix given by the unit name. The compiler also genertesssembler file for each
unit compiled.
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4.5 Instantiation of parametric units

Instantiation of a parametric unit refers to the process hictvthe unbound type variables
introduced in the parameter list of the unit are bound to adigpes. In Vector Pascal all
instantiation of parametric units and all type polymorphiare resolved at compile time.
Two mechanisms are provided by which a parametric unit mapstantiated.

45.1 Directinstantiation

If a generic unit is invoked in the use list of a program or pttien the unit name must
be followed by a list of type identifiers. Thus given the gemeort unit in figure 4.1, one
could instantiate it to sort arrays of reals by writing

uses genericsort(real);

at the head of a program. Following this header, the proaestut would be declared
as operating on arrays of reals.

4.5.2 Indirect instantiation

A named unit file can indirectly instantiate a generic unitendhits unit body uses the
syntax

‘interface’ <uses><decls>'in’ <invocation>";’

For example

unit intsort ;

interface
in genericsort (integer);

would create a named unit to sort integers. The naming ofain@mpetric units allows more
than one instance of a given parametric unit to be used ingrano. The generic sort unit
could be used to provide both integer and real sorting proieed The different variants of
the procedures would be distinquished by using fully quedifiames - e.g.intsort.sort.

4.6 The System Unit

All programs and units include by default the unit systera.pa an implicit member of
their with list. This contains declarations of private rumé routines needed by Vector
Pascal and also the following user accessible routines.

function abs  Return absolute value of a real or integer.
procedure append(var f:file); This opens a file in append mode.
function arctan(x:Real):Real;

procedure assign(var f:file;var fname:string); Associates a file name with a
file. It does not open the file.

procedure blockread(var f:file;var buf;count:integer; v ar resultcount:integer);
Trys to read count bytes from the file into the buffer. Resulttt contains the
number actually read.
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LatexCommand \index{blockwrite}procedure blockwrite(v ar ffile;var buf,countinteger;
var resultcount:integer); Write count bytes from the buffer. Result-
count gives the number actually read.

procedure close (var f:file); Closes a file.

function eof (var f:file):boolean; True if we are at the end of file f.
procedure erase (var f:file); Delete file f.

function eoln  (var f:file):boolean; True if at the end of a line.

function exp (d:real):real; Reture*

function filesize (var f: fileptr):integer; Return number of bytes in a file.

function filepos (var f:fileptr):integer; Return current position in a file.

procedure freemem(var p:pointer; num:integer); Free num bytes of heap store.
Called by dispose.

bold procedure getmem(var p:pointer; num:integer); Adliecnum bytes of heap.
Called by new.

procedure gettime(var hour,min,sec,hundredth:integer) ; Return time of day.

Return the integer part of r as a real.

function ioresult:integer; Returns a code indicating if the previous file operation
completed ok. Zero if no error occurred.

function length(var s:string):integer; Returns the length of s.

procedure pascalexit(code:integer); Terminate the program with code.

Time in 1/100 seconds since program started.
function random:integer; Returns a random integer.

procedure randomize; Assign a new time dependent seed to the random number gener-

ator.
procedure reset(var ffile); Open afile for reading.
procedure rewrite(var f :file); Open a file for writing.
function trunc(r:real):integer; Truncates a real to an integer.

4.6.1 System unit constants

BLANK =

maxint = 2147483647;

pi = 3.1415926535897932385;
MAXSTRING { longest allowed string}
MAXREAL =3.4E38;

MINREAL =1.18E-38;

EPSREAL { smallest increment of reals around 0 }
MAXDOUBLE =1.79E308;
MINDOUBLE =2.23E-308;
MAXCHAR =chr(65535);
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MINCHAR  =chr(0);
NILSTR =";

minint64 =-9223372036854775807;
maxint64 =9223372036854775807;

4.7 Libraries, static and dynamic

4.7.1 Linking to external libraries

Itis possible to specify to which external libraries - thata say libraries written in another
languge, a program should be linked by placing in the maignm linkage directives. For
example

{$linklib ncurses}

would cause the program to be linked to the ncurses library.

4.7.2 The export of procedures from libraries.

If a compilation unit is prefixed by the reserved wditstary  rather than the words
program or unit , then the procedure and function declarations in its iat&fpart are
made accessible to routines written in other languages.

4.7.3 Creating libraries

Depending on the linking that you do these Vector Pascadiies can either be staticly
linked into a C program, or can form a Dynamic Link Library (DLwhich can be linked
at runtime to the C code. What follows are two examples of hmda this.

Static Libraries

Static libraries can be used in either Linux or Windows syste Building and using a
library involves several stages and should be controllethbyuse of make files.
Here is an example library:

library examplelib;
interface

procedure exampleproc;
implementation

procedure exampleproc;
begin
writeln( procedure in library called);
end;
end.

and here is an example C program that calls the library:

#include<stdio.h>

main(argc, argv)

{
extern void examplelib_exampleproc();
printf("start of C program \n");
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dllinit(); [* initialise the pascal runtime library */
examplelib_exampleproc(); [* call the library procedure * /
printf("end of C program\n®);

}

In order to use the library from C we must do the following:
1. Compile the library to assembler language.
2. Use the gnu tools to assemble this to an object file.
3. Create an object file version of the pascal runtime library
4. Link both of these with the C program that is going to uselitirary.

The steps could be performed by the following makefile:

CFLAGS=-g
all: uselib
uselib

examplelib.s: examplelib.pas
vpc examplelib -S -Aexamplelib.s -cpugnuPentium
# complile the library to assembly language

examplelib.o: examplelib.s
gcc $(CFLAGS) -c examplelib.s

rtl.o: rtl.c
gcc $(CFLAGS) -DBUILD_DLL  -c rtl.c
# compile it in a form suitable for use in a library

rtl.c: ..J./mmpcirtl.c
cp ..[l.mmpcirtl.c rtl.c
# get a copy of the pascal run time library
# from wherever we have installed the vector pascal system

uselib: uselib.c examplelib.o rtl.o
gcc $(CFLAGS) uselib.c rtl.o examplelib.o -0 uselib
# link the C program with the examplelib

DLLs

DLLs or Dynamic Link Libraries are a type of Windows file thaircbe linked to at runtime.
Building them is more complex than a static library as onedsde write a .def file which
defines which functions are to be exported from the DLL, ané st also build a stub
library to which the main program can be linked. One can usegthudiitool  to build
the stub library.

We illustrate the process with a similar example. First ther@yram:

#include<stdio.h>
main(argc, argv)
{

printf("start\n");
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dllinit();
exampledIl_exampleproc();

}

Next the example DLL in Pascal:

library exampledll;

interface
procedure exampleproc;
implementation
procedure exampleproc;
begin
writeln(" procedure in dil called’);
end;
end.

We now provide a file exampledll.def file which tells the gititool ~ which functions we
want to export:

EXPORTS

exampledll_exampleproc

dllinit

Finally the make file:

CFLAGS=-mno-cygwin

# specify that cygwin gce is to rely on the windows built in C i braries

all: usedll.exe exampledil.dll
usedll

exampledll.s: exampledll.pas
vpc exampledll -S -Aexampledil.s -U -cpugnuPentium

exampledll.o: exampledll.s
gcc $(CFLAGS) -DBUILD_DLL  -¢c exampledll.s

rtl.o: rtl.c

gcc $(CFLAGS) -DBUILD_DLL  -c rtl.c
# compile it in a form suitable for use in a dll
rtl.c: .././mmpcirtl.c

cp ..[./mmpcirtl.c rtl.c
# get a copy of the pascal run time library

exports.o: exampledil.a

exampledil.a: exampledil.def makefile

diltool -v -e exports.o -I exampledil.a -d exampledil.def - D exampledil.dll exampledll.o rtl.o
# Note that you must use the -D option to tell diitool the name o f the dil you will build
# this also reads in the .def file it produces exampledll.a wi th which
# you statically link your ¢ program ( it contains stubs to the real dynamic fns )

exampledll.dll: exports.o rtl.o exampledll.o
gcc $(CFLAGS) -shared exports.o rtl.o exampledll.o -0 exam pledil.dil
# build the dil using the export spec produced by dlltool

usedll.o: usedll.c
gcc $(CFLAGS) -c usedll.c
# compile the ¢ program to an object file

usedll.exe: usedll.o exampledil.a
gcc $(CFLAGS) usedll.c exampledil.a -0 usedll
# link the ¢ program with the exampledIl stub library
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4.7.4 Cross Language Parameter Passing

When calling Pascal from C observe the following rules:

e Atomic values of type integer and real can be passed as valaneters. Pascal
typereal corresponds to C typioat

e Composite values such as records arrays or strings shoupdidésed as pascal var
parameters, and in C call the address of the composite itest Ineypassed.

e Stringsin Vector Pascal are stored in 16 bit unicode pretégie 16 bit length word.
C strings are stored as arrays ASCII of bytes. If a Pascalgoloe requires a string
parameter, then the C code calling it must pack the strirgantarray ofhort .

Thus a Pascal procedure exported from library mylib andated as follows

type intarray=array[0..99] of integer;
procedure foo(var s:string; rireal; var fintarray);

would have the C prototype

extern void mylib_foo(short *, float, int *);
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Chapter 5

Implementation issues

The compiler is implemented in java to ease portability swoperating systems.

5.1 Invoking the compiler

The compiler is invoked with the command
vpc filename

where filename is the name of a Pascal program or unit. For pbeam
vpc test

will compile the program test.pas and generate an exe@fddtest , (test.exe under
windows).

The commandpc is a shell script which invokes the java runtime system tacaiea
Jar file containing the compiler classes. Instead of running tihgcjava interpreter can
be directly invoked as follows

java -jar mmpc.jar filename
Thevpc script sets various compiler options appropriate to therapey system being
used.
5.1.1 Environment variable
The environmentvariablampcdir must be set to the directory which containstinepc.jar
file, the runtime librarytl.o  and thesystem.pas file.
5.1.2 Compiler options

The following flags can be supplied to the compiler :

-L Causes a latex listing to be produced of all files compilece [Elel of detail
can be controled using the codes -L1 to -L3, otherwise theirmam detail
level is used.

-OPTn Sets the optimisation level attempted. -OPTO is no optititiea-OPT3 is the
maximum level attempted. The default is -OPT1.

-cores n  generate code fam cores executing in parallel. This option in supported on
the Opteron cpu flag. Note that late model Intel processoesatimg in 64 bit
mode can also accept code compiled with the Opteron inginset.
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Table 5.1: Code generators supported

| CGFLAG | description

IA32 generates code for the Intel 486 instruction-set

uses the NASM assembler

Pentium generates code for the Intel P6 with MMX instruction-set

uses the NASM assembler

gnuPentium generates code for the Intel P6 with MMX instruction-set

using theas assembler in the gcc package

K6 generates code for the AMD K6 instruction-set, use for Ath|o

uses the NASM assembler

P3 generates code for the Intel Pl processor family

uses the NASM assembler

P4 generates code for the Intel PIV family and Athlon XP

uses the NASM assembler

gnuP4 generates code for the Intel PIV family and Athlon XP

uses the gas assembler

Opteron generates code for the AMD64 family

uses the gas assembler

-Afilename

-Ddirname

-BOEHM

-oexefile

-U

-fFORMAT

Defines the assembler file to be created. In the absence obglian the
assembler file ip.asm.

Defines the directory in which to fint.o  andsystem.pas

Causes the program to be linked with the Boehm conservatikigagye collec-
tor.

Causes the code generator to produce a verbose diagnsstig liofoo.Ist
when compilingoo.pas

Causes the linker to output ézefile  instead of the default output pfexe.

Defines whether references to external procedures in tleerddsr file should
be preceded by an under-bar’_". This is required for the obféct format but
not for elf.

Suppresses assembly and linking of the program. An assetfilblés still
generated.

Specifies the object format to be generated by the asseniiiierobject for-
mats currently used are elf when compiling under Unix or whempiling
under windows using the cygwin version of the gcc linker, off evhen us-
ing the djgpp version of the gcc linker. for other formats solh the NASM
documentation.

-CpUCGFLAG Specifies the code generator to be used. Currently the couzajers shown

in table 5.1 are supported.

5.1.3 Dependencies

The Vector Pascal compiler depends upon a number of othiirestiwhich are usually
pre-installed on Linux systems, and are freely availabféNondows systems.
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NASM The net-wide assembler. This is used to convert thewdwfthe code genera-
tor to linkable modules. It is freely available on the webWdindows. For the
Pentium processor it is possible to use dhkeassembler instead.

gce The GNU C Compiler, used to compile the run time librargl tonlink modules
produced by the assembler to the run time library.

java The java virtual machine must be available to interfitrettompiler. There are
number of java interpreters and just in time compilers aeelfy available for
Windows.

5.2 Procedure and function mechanism

5.2.1 Requirements

1. Must be able to call C routines as well as Pascal ones.

2. Must establish a name correspondence with C routinesvhagll externally.
3. Must pass parameters appropriately
4

. Must get results back from C routines

Name correspondance

name correspondence with the C routine
Issues here

1. Case of the names
2. allowed characters

3. how are these passed in assembler

Characters and significance

Case is significant both in C, but this is not the case of aljleges.
Pascal for instance makes case insignificant, and reqhia¢gxternals where the case
is significant be given a name in quotes for example:

procedure close (var fifileptr);
external name 'pasclose’;

This allows the external routine to have a different naméwinternal representation of
it. The allowed characters in a name in Hi are limited to thtels, that means we can not
call and C routine with an _ or a digit in its name unless we wierextend the syntax for

externals along the above lines.

Assembler representation

In the assembler file, the compiler must list all the extesrad follows (note this is the
Nasm syntax, it will be different for other assemblers):

extern vconcat
extern iota

extern putChar
extern getNum
extern getChar
extern putNum
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Then we can call them just as if they were declared withinfités

call vconcat

Underscores

Most 32-hit C compilers share the convention used by 16ditmilers, that the names of
all global symbols (functions or data) they define are formaggrefixing an underscore to
the name as it appears in the C program.

However, not all of them do: the ‘ELF’ specification stateatt symbols d#10t have
a leading underscore on their assembly-language names.

Thus if you are producing code for Linux, which uses ELF, douse underscores.

In Vector Pascal the -U flag on the command line selects whéthding underscores
are to be generated.

5.2.2 The C calling convention

Before explaining the Vector Pascal function calling tdge we present, the simpler
technique used in C and that could be used in Pascal if thexemweenesting of procedures.
The convention used in diagrams in this section is that losregses are show at the top of
the page and high addresses at the bottom.

To call a C function, whether from C or from Pascal the follogZimust be done.

1. The caller pushes the function’s parameters on the staekafter another, in reverse
order (right to left, so that the first argument specified ®fimction is pushed last).

2. The caller then executes a near ‘CALL’ instruction to passtrol to the callee.

3. The callee receives control, and typically (although thinot actually necessary, in
functions which do not need to access their parameters$ &tpisaving the value of
‘ESP’ in ‘EBP’ so as to be able to use ‘EBP’ as a base pointentbifs parameters
on the stack. However, the caller was probably doing this sogart of the calling
convention states that ‘EBP’ must be preserved by any C immctHence the callee,
if it is going to set up ‘EBP’ as a frame pointer, must push the/jpus value first.

4. The callee may then access its parameters relative to’:EBf doubleword at
‘[EBPY’ holds the previous value of ‘EBP’ as it was pushedt tiext doubleword, at
‘[EBP+4]’, holds the return address, pushed implicitly BYALL. The parameters
start after that, at ‘[EBP+8]'. The leftmost parameter of flanction, since it was
pushed last, is accessible at this offset from ‘EBP’; theHollow, at successively
greater offsets. Thus, in a function such as ‘printf’ whiakes a variable number of
parameters, the pushing of the parameters in reverse ore@nsthat the function
knows where to find its first parameter, which tells it the ne@mand type of the
remaining ones.

5. The callee may also wish to decrease ‘ESP’ further, so afidoate space on the
stack for local variables, which will then be accessiblesgative offsets from ‘EBP’.

6. The callee, if it wishes to return a value to the caller,udtideave the value in ‘AL,
‘AX’ or ‘EAX’ depending on the size of the value. Floating-imbresults are typically
returned in ‘STO'.

7. Once the callee has finished processing, it restores ‘ESR ‘EBP’ if it had allo-
cated local stack space, then pops the previous value of ;iBR& returns via ‘RET’
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8. When the caller regains control from the callee, the fiomcparameters are still on
the stack, so it typically adds an immediate constant to ‘E&sfémove them (instead
of executing a number of slow ‘POP’ instructions). Thus,fifiaction is accidentally
called with the wrong number of parameters due to a prototyisenatch, the stack
will still be returned to a sensible state since the callériclv _knows_ how many
parameters it pushed, does the removing.

consider the Pascal code:

var zotrrecord x,y.integer; z:double; end;
function foo( x,y:integer; z:double):integer;begin foo: =x+y end,
procedure bar;
var X, yinteger,
z:double ;

begin

x:=foo(1,2,3.0);
end

The memory allocation, if nested functions did not exist as€al, could be implemented
as shown in figure 5.1.

Note that the addresses of parameters and variables carebiiexp relative either to a
special register called the frame pointer or to the stackteai If your code does not
dynamically push things onto the stack or if your compilezfretrack of the stack position,
then the SP register may be prefered. In Vector Pascal howasés conventional with
most other Pascal compilers we use the Frame Pointer regiistecess parameters and
variables.

Key points:

1. If you address via the frame pointer (EBP on a Pentium) therparameters have
+ve addresses and the locals have -ve addresses.

2. If you address using the stack pointer they all have +vees$es.

3. If you use the SP (ESP on a Pentium) the compiler has to ta&eccount tempo-
raries that are pushed on the stack.

5.2.3 Var Params

We have been assuming value parameters.

If we have var parameters ( parameters which, when assignetdange the value of the
actual parameter ) then the address of the parameter rathettie value of the parameter
has to be passed on the stack. The compiler then places aadesxl of indirection onto
the addressing of the parameter.

5.2.4 Nested Functions

The existence of nesting of functions and procedures gascamplexities that force us to
use a more elaborate calling method than C. Consider thenfmi Pascal example where
we allow function nesting.
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stack before a call

struct zot to foo
baseaddr stack —
of zot 0 X pntr 0 X
4 y 4 y
8 8
z z

stack on entry to bar

stack
pntr 0 X -12
stack on entry to foo
4 y -8
stack
8 pntr locals
z of foo
0
frame base frame base

d link register n d link register

ret add n+4 | retadd
n+8 X 8

n+12 y 12

n+16 16

Figure 5.1: Stacks and records

type vecl = array[1..10] of integer;
scalar = integer;
function sum(var v:vecl);scalar;
function total( i:scalar):scalar;

begin

total:=if i<1 then 0 else vii|+total(i-1);
end
total(length(v))

Total recurses on i, but each invocation accesses the sggete.
Can we use the d-link to access v?
No
Consider the following:

first invocation of total

SP,FP
dlink
frame of
ret add total
i
» dlink
frame of
ret add sum
vV 2 vector on
heap
3

sum([3,7])

At this point we can access v at mem[dlink+8], but what hagpenthe next recursion?
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next invocation of total
SP,FP

dlink second
frame of
ret add total
i
dlink
; first frame of
ret add total
i
» dlink
frame of
ret add sum
vV 2 vector on
heap
3
7
sum([3,7])

if we use mem[dlink+8] we get the previous version of i, v iswet mem[mem][dlink]+8]
We need an alternative approach. There are 3 practicahatiees:

e Displays
e Static Links

e Lambda Lifting

We have chosen to use displays since Intel hardware prosiggsort for these. They do
place slight restrictions on function parameteksit it was felt that the simplicity of display
implementation, and the ability to use the same calling raeidm as C outweighed this.

Displays

These can use the Intel Enter instruction defined as:

enter storage,level
push ebp
temp:=esp
if level>0
then
repeat (level-1) times
ebp:=ebp-4
push dword[ebp]
end repeat
push temp
fi
ebp:=temp
esp:=esp - storage

For machines other than the Intel family, you, as a compiledifirer, have to generate
sequences of simpler instructions to emulate the IntelrEnsgruction.
Up to now we have assumed procedures use

enter xxx,0

Consider the effect of using enter 0,1 for sum and enter @,®fal :

1A functions f may not be an actual parameter to procedure or fungjjéithe scope ofy outer to that off
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SP

112 - display
of 2nd call
1k of total
FP P B,

dlink second
frame of
ret add total

i
y

112 1 ) display
of 1st call
11 of total

| _dlink

first frame of
ret add total

i
5 A .
1 3 display of sum

dink | | frame of
sum

retadd| |

\ 2 vector on
heap

sum([3,7]) 7

All variables are now addressed as a pair (lexlevel,offsdtere an outer level function is
lexical level 1, the first nested function is lexical levelt2.e
A parameter can now be addressed as
mem[ display[lexlevel]+offset]

The display is an array in memory at the start of the curreanni. Using this notation,
parameter i is always addressed as

mem[display[2]+8]= mem[ mem(fp-8]+8]
and v is always at
mem][display[1]+8]

hh

Optimisations FP always points to the current lexical level so at lexice¢l® we have

mem][display[2]+8]
mem[ mem[fp-8]+8]
mem[fp+8]

Likewise we can chose to cache other display values in eagisb avoiding repeated deref-
erencing of the display on stack.

Other registers sometimes have to be saved because of thiidefof the ABI of the
processor. If this is the case then they are saved after spcbeen reserved for local
variables as shown in Figur&][

5.2.5 Detail of calling method used on the Pentium

Procedure parameters are passed using a modified C callinvgeiion to facilitate calls
to external C procedures. Parameters are pushed on to ttiefsien right to left. Value
parameters are pushed entire onto the stack, var paranaetgpraished as addresses.
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dynamic link

FP .

o

display

local variables

[

SP \ other saved registers

Figure 5.2: Full stack frame layout

Example

program callconv;
type tl1= record ab:integer end;
var
X,yitl;
procedure foo(var a:tl; b:tl; cinteger);
begin
end;

function bar:tl;
begin bar:=y;end;

begin
X:=bar;
foo(x,y,3);
end.

This would generate the following code for the procedure foo

; procedure generated by code generator class ilcg.tree.Pe ntiumCG;0
label114b8f429f3a:;0

; foo,0

; entering a procedure at lexical level 1,0

enter spaceforfooll-4*1,1;  create display and variable sp ace
push ebx; save registers as demanded by Linux ABI

push esi;

push edi;

— Code for Foo would go here if
—— it were not a null procedure

spaceforfooll equ 4, declare space needed this is done here
X because the code generation may cause
X new temporary vars to be needed so
X we dont know the space required to here
foollexit:;2
pop edi; restore saved registers

65
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pop esi;0

pop ebx;0

leave; restore old stack frame

ret 0; pop return address into PC

and the calling code is

push DWORD 3; right most parameter 3
lea esp,[ esp+ -8; create space for y on stack
movg MM4, [ PmainBase+ -16]; fetch y

movq [ esp],MM4; store on the stack

push DWORD  PmainBase+ -8; push the address of x
EMMS ; clear mmx status flags
call label114b8f429f3a; call the procedure

add esp, 16; restore the stack

Function results

Function results are returned in registers for scalarefatg the C calling convention for
the operating system on which the compiler is implementeztoRls, strings and sets are
returned by the caller passing an implicit parameter cairigithe address of a temporary
buffer in the calling environmentinto which the result candssigned. Given the following
program

The call ofbar in the previous example would generate

push DWORD  PmainBase+ -24, pass the address of a result buffe
call label114h8f429f712; call the function

add esp, 4, restore the stack

movg MM4, [ PmainBase+ -24); get the result buffer in MM4

movg [ PmainBase+ -8],MM4; store in Xx

5.3 Array representation

The maximum number of array dimensions supported in the demip 5.

A static array is represented simply by the number of bytgsired to store the array
being allocated in the global segment or on the stack.

A dynamic array is always represented on the heap. Sincaurits is known to the
compiler what needs to be stored at run time are the boundshancheans to access it.
For simplicity we make the format of dynamic and conformamgs the same. Thus for
schema

s(a,b,c,d:integer)= array[a..b,c..d] of integer

whose run time bounds are evaluated to be 2..4,3..7 we wawiel the following struc-
ture:

| address| field | value |
X base of data address of first integer in the array
X+4 a 2
X+8 b 4
x+12 step 20
x+16 c 3
x+20 d 7

The base address for a schematic array on the heap, will gbihé first byte after the
array header show. For a conformant array, it will point &t finst data byte of the array or
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array range being passed as a parameter. The step field epéladilength of an element
of the second dimension in bytes. It is included to allow fog tase where we have a
conformant array formal parameter

x:array[a..b:integer,c..d:integer] of integer

to which we pass as actual parameter the range

p[2..4,3..7]

as actual parameter, wherarray[1..10,1..10] of integer

In this case the base address would point at @p[2,3] and ¢pevebuld be 40 - the
length of 10 integers.

5.3.1 Range checking

When arrays are indexed, the compiler plants run time chezlsee if the indices are
within bounds. In many cases the optimiser is able to rembgse checks, but in those
cases where it is unable to do so, some performance degradaiin occur. Range checks
can be disabled or enabled by the compiler directives.

{$r-} { disable range checks }

{$r+} { enable range checks }

Performance can be further enhanced by the practice of ileglarrays to have lower
bounds of zero. The optimiser is generally able to generateerafficient code for zero
based arrays.
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Chapter 6

Compiler porting tools

Vector Pascal is an open-source project. It aims to createduptive an efficient program
development environment for SIMD programming. In orderatidate the concepts it has
been developed initially for the Intel family of processousining Linux and Microsoft
Windows. However it has been intended from the outset thateohnology should be
portable to other families of CPUs. This chapter addresseeof the issues involved in
porting the compiler to new systems.

6.1 Dependencies
The Vector Pascal compiler tool-set can be divided alongawes as shown in figure 6.1.

1. Tools can be divided into (a) those provided as part of ¢hease , versus (b) tools
provided as part of the operating environment.

(a) These are mainly written in Java, the exceptions beimgal sun-time library
in C, a Pascal System unit, and several machine descriptions

(b) These are all available as standard under Linux, and @Wsdversions are
freely downloadable from the web.

2. Tools can further divided into (a) those required for peog preparation and docu-
mentation, (b) code translation tools, and (c) code geoepaéparation tools.

(@) The program preparation tools are the VIPER IDE desdribeChapter??,
along with the standardTgXdocument prepartion system, DVI viewers, and
the TTH tool to prepare web enabled versions of Vector Paaacajram de-
scriptions.

(b) The program translation tools are:

i. Theilcg.pascal Java package which contains the Pascal compiler itself
and classes to support Pascal type declarations. Thiesat the first
stage of code translation, from Pascal to an ILCG tree[10].

ii. A setof machine generated code generators for CPUs sitttedPentium,
the K6 etc. These carry out the second phase of code tramsltatito an
assembler file.

ii. The ilcg.tree Java package which supports the internal representation
of ILCG trees (see section 6.3).
iv. The Java system which is need to run all of the above.

v. An assembler, which is necessary to carry out the thiréplofcode trans-

lation, from an assembler file to a relocatable object file.
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Program Preparation tools | Code translation tools | Code Generator Preparation
| tools
VIPER ilcg.Pascal ILCG CodeGenerator
| java package | Generator
VP\TeX | / \
| Pentium.java | Machine
| Kéjava  etc | files
Pentium.m4
| | MMX.m4
) K6.m4 etc
ilcg.tree
Provided as part of | java package |
the Vector Pascal
System | |
Provided as part of
the operating | Java system | m4 macro processor
environment
Latex | Assembler e.g., NASM | Sable compiler
generator
DVliviewer | C compiler e.g. GCC |
TTH | |
ULex lexical analyser
| generator * |

Figure 6.1: Vector Pascal toolset

vi. A C compiler and linkage system is needed to compile thauGtime
library and to link the relocatable object files into final entables.

vii. In addition if one wants to alter the reserved words ot Pascal or
make other lexical changes one needs the JLex lexical arajgserator.

6.2 Compiler Structure

The structure of the Vector Pascal translation system isvshia figure 6.2. The main
program class of the compiléey.Pascal.PascalCompiler.java translates the source
code of the program into an internal structure called an ILt&® [10]. A machine gener-
ated code generator then translates this into assembler éocexample would be the class
ilcg.tree.lA32. An assembler and linker specified in deslesn class of the code generator
then translate the assembler code into an executable file.

Consider first the path followed from a source file, the ph#isatit goes through are

e i. The sourcefile (1) is parsed by a java class PascalConqgtéles (2) a hand written,
recursive descent pars@}[ and results in a Java data structure (3), an ILCG tree,
which is basically a semantic tree for the program.

e ii. The resulting tree is transformed (4) from sequentiglaoallel form and machine
independent optimisations are performed. Since ILCG @eefava objects, they can
contain methods to self-optimise. Each class containsnfetance a methoebal
which attempts to evaluate a tree at compile time. Anothehousimplify — ap-
plies generic machine independent transpormations todte.crhus thaimplify
method of the clasBor can perform loop unrolling, removal of redundant loops etc.
Other methods allow tree walkers to apply context speciingformations.
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1.HLL program

2.ILCG compliant In this case PascalCompiler.class

front end

3.ILCG program

l«5.ILCG semantics
4 transformations

l«——=6.optimisation rules

detajfs of available
pardllelism

7 transformed ILCG program 8.ILCG for CPU

(For example Pentium.ilc)

10.code generato 9.code generator-
generator

11.machine code for CPU

Figure 6.2: The translation of Vector Pascal to assembler.

{ var i

for i=1 to 9 step 1 do {
vIPL= +(A(v2[N]),N(VBMND));
3
}

Figure 6.3: Sequential form of array assignment

e iii. The resulting ilcg tree (7) is walked over by a class teatapsulates the seman-
tics of the target machine’s instructionset (10); for ex#aripentium.class. During
code generation the tree is futher transformed, as macpeafi register optimisa-
tions are performed. The output of this process is an asserfilel (11).

e iv. This is then fed through an appropriate assembler aricetinassumed to be
externally provided to generate an executable program.

6.2.1 \ectorisation

The parser initially generates serial code for all conggudt then interogates the cur-
rent code generator class to determine the degree of damallpossible for the types of
operations performed in a loop, and if these are greaterdhanit vectorises the code.

Given the declaration

var vl,v2,v3:array[1..9] of integer;

then the statement

v1:=v2+v3;

would first be translated to the ILCG sequence shown in figuBel6 the example
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{ var i;
for i= 1to 8 step 2 do {
(ref int32 vector ( 2 ))mem(+(@v1,*(-(",1),4))):=
+(™((ref int32 vector ( 2 ))mem(+(@v2,*(-(",1),4)))),
M(ref int32 vector (2 ))mem(+(@v3,*(-("i,1),4)))));

3

for i= 9to 9 step 1 do {
vIPl= +(N(V2[N]),MVBPMND);

3

Figure 6.4: Parallelised loop

above variable names suchvdsandi have been used for clarity. In realitywould be an
addressing expression like:
(ref int32)mem(+(*((ref int32)ebp), -1860)) ,

which encodes both the type and the address of the varialile.cdde generator is
gueried as to the parallelism available on the typ& and, since it is a Pentium with
MMX, returns 2. The loop is then split into two, a portion than be executed in par-
allel and a residual sequential component, resulting inltks shown in figure 6.4. In
the parallel part of the code, the array subscriptions haenlreplaced by explictly cast
memory addresses. This coerces the locations from thejinatitypes to the type required
by the vectorisation. Applying th@mplify  method of the For class the following generic
transformations are performed:

1. The second loop is replaced by a single statement.
2. The parallel loop is unrolled twofold.

3. The For class is replaced by a sequence of statementsxpiihiegotos.

The result is shown in figure 6.5. When theal method is invoked, constant folding
causes the loop test condition to be evaluated to
if >("i,8) thengoto leb4afl1b47f

6.2.2 Porting strategy

To port the compiler to a new machine, say a G5, it is necegeary

1. Write a new machine descripti@b.ilc in ILCG source code.

2. Compile this to a code generator in java with the ilcg cderpgenerator using a
command of the form

(a) java ilcg.ILCG cpus/G5.ilc ilcgl/tree/G5.java G5

3. Write an interface claskg/tree/G5CG which is a subclass d&5 and which in-
vokes the assembler and linker. The linker and assemblerwaledepend on the
machine but one can assume that at leagicaassembler and linker will be avail-
able. The clas&5CGmust take responsibility to handle the translation of pdace
calls from the abstract form provided in ILCG to the concrieten required by the
G5 processor.
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{ var i
i= 1
leb4afllb47e:
if >( 2, 0) thenif >(",8) thengoto leb4afl1b47f
else null
fi
else if <(", 8) thengoto lebdafllb47f
else null
fi
fi;
(ref int32 vector ( 2 ))mem(+(@v1,*(-(",1),4))):=
+("((ref int32 vector ( 2 ))mem(+(@v2,*(-("i,1),4)))),
A(ref int32 vector ( 2 ))mem(+(@v3,*(-("i,1),4)))));
i:=+(",2);
(ref int32 vector ( 2 ))mem(+(@v1,*(-(",1),4))):=
+("((ref int32 vector ( 2 ))mem(+(@v2,*(-("i,1),4)))),
A(ref int32 vector ( 2 ))mem(+(@v3,*(-("i,1),4)))));

i:=+(N,2);

goto lebdafllb47e;

leb4af11b47f:

= 9;

VA[N]= +(Y(V2[MN]),A(V3M));
}

Figure 6.5: After applyingimplify  to the tree

mov DWORD ecx, 1
leb4b08729615:

cmp DWORD ecx, 8

jg near leb4b08729616

lea edi[ ecx-( 1)]; substituting in edi with 3 occurences
movg MM1, [ ebptedi* 4+ -1620]

paddd MM1, [ ebp+edi* 4+ -1640]

movq [ ebptedi* 4+ -1600],MM1

lea ecx,[ ecx+ 2]

lea edi[ ecx-( 1)]; substituting in edi with 3 occurences
movg MM1, [ ebptedi* 4+ -1620]

paddd MM1, [ ebp+edi* 4+ -1640]

movq [ ebptedi* 4+ -1600],MM1

lea ecx,[ ecx+ 2]

jmp  leb4b08729615
leb4b08729616:

Figure 6.6: The result of matching the parallelised looprgahe Pentium instruction set
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public int getParallelism(String elementType)

{ if(clementType.equals(Node.int32)) return 2;
if(elementType.equals(Node.int16)) return 4,
if(elementType.equals(Node.int8)) return 8;
if(elementType.equals(Node.uint32)) return 2;
if(elementType.equals(Node.uint16)) return 4;
if(elementType.equals(Node.uint8)) return 8;
if(elementType.equals(Node.ieee32))return 4;
if(elementType.equals(Node.ieee64))return 1;
return 1,

Figure 6.7: The method getParallelism for a P4 processor.

4. The clas$35CGshould also export the methgdtparallelism which specifies to
the vectoriser the degree of parallelism available for gidata types. An example
for a P4 is given in figure 6.7. Note that although a P4 is pidéntcapable of
performing 16 way parallelism on 8 bit operands the measapegd when doing
this on is less than that measured for 8 way parallelism. iBhisie to the restriction
placed on un-aligned loads of 16 byte quantities in the PHitcture. For image
processing operations aligned accesses are the exceplioa.when specifying the
degree of parallelism for a processor one should not simiplytipe maximal degree
supported by the architecture. The maximal level of paliafieis not necessarily
the fastest.

Sample machine descriptions are given on the Vector Pastakite to help those wishing
to port the compiler. These are given in the ILCG machine digtson language, an outline
of which follows.

6.3 ILCG

The purpose of ILCG (Intermediate Language for Code Geroerais to mediate between
CPU instruction sets and high level language programs. tht pmvides a representation
to which compilers can translate a variety of source levegprmming languages and also
a notation for defining the semantics of CPU instructions.

Its purpose is to act as an input to two types of programs:

1. ILCG structures produced by a HLL compiler are input to amoenatically con-
structed code generator, working on the syntax matchimgpies described in [12].
This then generates equivalent sequences of assembimstas.

2. Machine descriptions written as ILCG source files areitpuode-generator-generators
which produce java programs which perform function (1) abov

So far one HLL compiler producing ILCG structures as outpusts: the Vector Pascal
compiler. There also exists one code-generator-genesdtich produces code generators
that use a top-down pattern matching technique analogoBeotog unification. ILCG is
intended to be flexible enough to describe a wide variety afhiree architectures. In par-
ticular it can specify both SISD and SIMD instructions anithei stack-based or register-
based machines. However, it does assume certain things isomachine: that certain
basic types are supported and that the machine is addresbedyte level.

In ILCG all type conversions, dereferences etc have to beeraidolutely explicit. In
what follows we will designate terminals of the languagealddhusoctetand nonterminal
in sloping font thusvord8



6.4. SUPPORTED TYPES 75

6.4 Supported types

6.4.1 Data formats

The data in a memory can be distinguished initially in terrhthe number of bits in the
individually addressable chunks. The addressable churgkassumed to be the powers
of two from 3 to 7, so we thus have as allowed formatsd8, word16, word32, word64,
word128 These are treated as non terminals in the grammar of ILCG.

When data is being explicitly operated on without regardddyipe, we have terminals
which stand for these formatectet, halfword, word, doubleword, quadword.

6.4.2 Typed formats

Each of these underlying formats can contain informatiodifférent types, either signed
or unsigned integers, floats etc. ILCG allows the followintgger types as terminaiat8,
uint8, intl6, uintl6, int32, uint32, int64, uinté4to stand for signed and unsigned integers
of the appropriate lengths.

The integers are logically grouped insignedand unsigned As non-terminal types
they are represented agte, short, integer, longndubyte, ushort, uinteger, ulong

Floating point numbers are either assumed to be 32 bit or 64itsi 32 bit numbers
given the nonterminal symboftoat,double If we wish to specify a particular representa-
tion of floats of doubles we can use the termiriaée32, ieee64

6.4.3 Reftypes

ILCG uses a simplified version of the Algol-68 reference tgpmodel. A value can be a
reference to another type. Thus an integer when used as agsadif a 64 bit floating point
number would be gef ieeeb64. Ref types include registers. An integer register would be a
ref int32 when holding an integer, i@f ref int32 when holding the address of an integer
etc.

6.5 Supported operations

6.5.1 Type casts

The syntax for the type casts is C style so we have for exafiggks2) int32 to repre-
sent a desire to treat a 32 bit integer as a 32 bit real. Thesedgsts act only as constraints
on the pattern matcher during code generation. They do mixtate that the underlying
hardware will perform any data transformation. They arerited into machine descritions
to constrain the types of the arguments that will be matcbedh instruction. They are
also used by compilers to decorate ILCG trees in order batinforce, and to allow limited
breaking of, the type rules.

6.5.2 Arithmetic

The allowed dyadic arithmetic operations are additionyrsdéd addition, multiplication,
saturated multiplication, subtraction, saturated suftiva, division and remainder with
operator symboles, +:, *, *:, - -, div, mod ..

The concrete syntax is prefix with bracketing. Thus the infirmation 3+ 5= 7 would
be represented ag3 div (5 7)).
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6.5.3 Memory

Memory is explicitly represented. All accesses to memogy r@presented by array op-
erations on a predefined arramyem. Thus location 100 in memory is represented as
mem(100) The type of such an expressioraddresslit can be cast to a reference type of
a given format. Thus we could hapef int32)mem(100)

6.5.4 Assignment

We have a set of storage operators corresponding to the wagths supported. These
have the form of infix operators. The size of the store beinfppmed depends on the size
of the right hand side. A valid storage statement migh{reéoctet)ymem( 299) :=(int8)
99

The first argument is always a reference and the second argunvalue of the appro-
priate format.

If the left hand side is a format the right hand side must belaevaf the appropriate
size. If the left hand side is an explicit type rather than ranfat, the right hand side must
have the same type.

6.5.5 Dereferencing

Dereferencing is done explicitly when a value other thartexdi is required. There is a
dereference operator, which converts a reference intodhe\that it references. A valid
load expression might béoctet)] ( (ref octet)mem(99))

The argument to the load operator must be a reference.

6.6 Machine description

llcg can be used to describe the semantics of machine itistingc A machine description

typically consists of a set of register declarations fokalby a set of instruction formats
and a set of operations. This approach works well only witlcimrzes that have an orthog-
onal instruction set, ie, those that allow addressing madelsoperators to be combined in
an independent manner.

6.6.1 Registers

When entering machine descriptions in ilcg registers caddmared along with their type
henceregister word EBX assembles['ebx’] ;

reserved register word ESP assembles['esp’];

would declareEBX to be of typeref word.

Aliasing

A register can be declared to be a sub-field of another registace we could writalias
register octet AL = EAX(0:7) assembles['al’];

alias register octet BL = EBX(0:7) assembles['bl'];

to indicate thaBL occupies the bottom 8 bits of registeBX. In this notation bit zero
is taken to be the least significant bit of a value. There aserasd to be two pregiven
registersFP, GP that are used by compilers to point to areas of memory. Thasebe
aliased to a particular real registegister word EBP assembles['ebp’] ;

alias register word FP = EBP(0:31) assembles ['ebp’];

Additional registers may be reserved, indicating that tbéecgenerator must not use
them to hold temporary values:

reserved register word ESP assembles['esp’];
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6.6.2 Register sets

A set of registers that are used in the same way by the inginsst can be definegattern
reg means EBPEBX|ESIEDI|[ECX|[EAX|EDX|ESH;

pattern breg meanspAL|AH|BL|BH|CL|CH|DL|DH];

All registers in an register set should be of the same length.

6.6.3 Register Arrays

Some machine designs have regular arrays of registerseRat#n have these exhaustively
enumerated it is convenient to have a means of providingrary af registers. This can be
declared as:

register vector(8)doubleword MM assembles[MM'i] ;

This declares the symbol MMX to stand for the entire MMX regiset. It implicitly
defines how the register names are to be printed in the asgéamguage by defining an
indexing variable i that is used in the assembly languagaitiefi.

We also need a syntax for explicitly identifying individuabisters in the set. This is
done by using the dyadic subscript operasubscript(MM,2)

which would be of typeef doubleword.

6.6.4 Register Stacks

Whilst some machines have registers organised as an amathex class of machines,
those oriented around postfix instructionsets, have rgssacks.

The ilcg syntax allows register stacks to be declared:

register stack (8)ieee64 FP assembles[’ ] ;

Two access operations are supported on stacks:

PUSH is a void dyadic operator taking a stack of typetres first argument and a value
of typet as the second argument. Thus we might h&@SH(FP; mem(20))

POP isamonadic operatorreturnihgn stacks of type So we might havenem(20):=POP(FP)
In addition there are two predicates on stacks that can lebinggttern pre-conditions.

FULL is a monadic boolean operator on stacks.

EMPTY is a monadic boolean operator on stacks.

6.6.5 Instruction formats

An instruction formatis an abstraction over a class of ceteinstructions. It abstracts over
particular operations and types thereof whilst specifyiog arguments can be combined.
instruction pattern

RR( operator op, anyreg rl, anyreg r2, int t)

means[rl:=(t) op(T((reft) rl), T((reft) r2))]

assemblesfop’’r1°’, r2];

In the above example, we specify a register to registeruottn format that uses the
first register as a source and a destination whilst the seragister is only a destination.
The result is returned in register r1.

We might however wish to have a more powerful abstractionicivlvas capable of
taking more abstract apecifications for its arguments. kanmgple, many machines allow
arguments to instructions to be addressing modes that caither registers or memory
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references. For us to be able to specify this in an instrndtiomat we need to be able to
provide grammer non-terminals as arguments to the instnuébrmats.

For example we might want to be able to say

instruction pattern

RRM(operator op, reg rl, maddrmode rm, int t)

means [r1:=(t) op(T((ref t)rl), T((reft) rm))]

assemblesfop’’rl’,) rm];

This implies that addrmode and reg must be non terminalsceSime non terminals
required by different machines will vary, there must be a nseaf declaring such non-
terminals in ilcg.

An example would bepattern regindirf(reg r)

meansff(r) ] assembles[ r];

pattern baseplusoffsetf(reg r, signed s)

means[+(](r) ,const s)] assembles[r '+’ s ];

pattern addrform means[baseplusoffsetfregindirf];

pattern maddrmode(addrform f)

means[mem(f) ] assembles[ [ f'T ];

This gives us a way of including non terminals as parametepatterns.

6.7 Grammar of ILCG

The following grammar is given in Sable [34] compatible forfhe Sable parser gen-
erator is used to generate a parser for ILCG from this gramnile ILCG parser then
translates a CPU specification into a tree structure whithea walked by an ILCG-tree-
walk-generator to produce an ILCG-tree-walk Java classifipéo that CPU.

If the ILCG grammar is extended, for example to allow newtamietic operators, then
the ILCG-tree-walk-generator must itself be modified to gare translation rules for the
new operators.

/*

6.8 ILCG grammar

This is a definition of the grammer of ILCG using the Sable granspecification lanaguage. It is
input to Sable to generate a parser for machine descripitioiiesy

*

Package ilcg;
/*

6.8.1 Helpers

Helpers are regular expressions macros used in the defimifiterminal symbols of the grammar.

*/

Helpers
letter = [[A..Z+Ha..2]);
digit = [0..'97;
alphanum = [letter+['0".."9"]);
cr = 13;
If = 10;
tab = 9;
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digit_sequence = digit+;
fractional_constant = digit_sequence? .’ digit_sequenc

Slgn = I+Y | l_);
exponent_part = (e’ | 'E) sign? digit_sequence;
floating_suffix = 'f | 'F | I | 'L}

eol =crlf | cr|If
not_cr_If = [[32..127] - [cr + If]];
exponent = (e’|E);

quote ="

all =[0..127];

schar = [all-"];

not_star = [all - ™*];
not_star_slash = [not_star - '/1;

/*

6.8.2 Tokens

The tokens section defines the terminal symbols of the gramma
¥/

Tokens

floating_constant = fractional_constant exponent_part?
digit_sequence exponent_part floating_suffix?;
/*

terminals specifying data formats

*

void ='void",

octet = 'octet’; int8 = 'int8’; uint8 = 'uint8’;

halfword = 'halfword’; intl6 = 'intl6’ ; uintlé = 'uintl6’
word = 'word’; int32 = 'int32" ;

uint32 = 'uint32’ ; ieee32 = 'ieee32’;

doubleword = ’'doubleword’; int64 = 'int64’ ;

uinté4 = 'uint64’; ieee6d = 'ieeebd’;

quadword = 'quadword’;

/*

terminals describing reserved words

*

function= 'function’;
flag = 'flag’;
location = ’loc’;

procedure="instruction’;
returns ='returns’;
label = 'label’;
goto="goto’;

fail ='interrupt’;

for ='for’;

to="to’;

step='step’;

do ='do’;

ref="ref’;

const="const’;

reg= 'register’;
operation = 'operation’;
alias = ‘alias’;
instruction = instruction’;
address = 'address’;

Il This takes care of different platforms
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floating_suffix? |
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vector ='vector’,

stack = ’stack’;
sideeffect="sideeffect’;

if ='if";

reserved="reserved’;
precondition ="precondition’;

instructionset="instructionset’;
/*

terminals for describing new patterns

*

pattern = ’pattern’;
means = 'means’;
assembles = 'assembles’;

/*
terminals specifying operators

*
colon ="

’
1

semicolon= ",
comma = ",;
dot = ' ;

bra ='(;

ket =,
plus = "+,
satplus = '+
satminus = '-’;
satmult ="*;
[* map="->";*/
map="map’,
equals = ="

le = <=
ge=">=";
ne='<>";
shi="<<’;
shr=">>",

lt="<’;

gt=>"

minus = -
times = ',
exponentiate = "**;
divide = 'div’;
replicate = 'rep’;
and = 'AND’;
or = 'OR ;

xor = 'XOR’;
not = 'NOT’;
sin="SIN’;
cos="COS’;
abs='ABS’;
tan="TAN’;
In="LN’;
min="MIN’;
max="MAX’;
sqrt="SQRT’;

CHAPTER 6. COMPILER PORTING TOOLS
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sqr="SQR’;
trunc="TRUNCATE’;
round="ROUND’;
float="FLOAT’;
remainder = 'MOD’;
extend= 'EXTEND’;
store = "=

deref = "

push ="PUSH’;

pop ="POP’;
call="APPLY";
full="FULL’;
empty="EMPTY";
subscript="SUBSCRIPT’,
intlit = digit+;

vbar =,

sket=T;

sbra="[’;

end="end’;

typetoken="type’;
mem="mem’;

string = quote schar+ guote;
/*

identifiers come after reserved words in the grammar

¥

identifier = letter alphanum®;

blank = (* ’|cr]lf|tab)+;

comment = /¥ not_star* "'+ (not_star_slash not_star* *

Ignored Tokens
blank,comment;
/*

6.8.3 Non terminal symbols

*/
Productions

program = statementlist instructionlist;
instructionlist =instructionset sbra alternatives sket;
/*
non terminals specifying data formats
*/

format = {octet} octet|

{halfword} halfword |

{word} word |

{doubleword} doubleword |
{quadword} quadword;

/*
non terminals corresponding to type descriptions

¥

,+)* 1/1;
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reference =  ref type ;

array = vector bra number ket;
aggregate ={stack} stack bra number ket |
{vectorjarray |

{non};

predeclaredtype=  {format} format|{tformat}tformat ;
typeprim = {typeid} typeid|
{predeclaredtype}predeclaredtype;

type = {predeclaredtype}predeclaredtype|
{typeid} typeid|
{array}typeprim array|

{cartesian}sbra type cartesian* sket|
{reftype}reference|
{map}bra [arg]:type map [result]:type ket;
cartesian = comma type;

tformat = {signed} signed|
{unsigned}unsigned|
{ieee32}ieee3?|
{ieee63}ieeebs;
signed = int32 |
{int8} int8 |

{int16} intl6 |

{int64} int64;
unsigned = uint32 |
{uint8} uint8 |
{uint16} uint16 |
{uint64} uint64;

/*
non terminals corresponding to typed values

*/
value = [{refval}refval | */
{rhs}rhs|
{loc}loc|
{void}void|
{cartval}cartval|
{dyadic} dyadic bra [left]:value comma [right]:value ket|
{monadic}monadic bra value ket;
/*

value corresponding to a cartesian product type e.g. raodrdlisers

*

cartval =sbra value carttail* sket;
carttal = comma value;

/*

conditions used in defining control structures

*/
condition ={dyadic} dyadic bra [left]:condition comma [ri
{monadic}monadic bra condition ket |
{id}identifier|
{number}number;
rhs= {number}number|
{cast}bra type ket value|

ght]:condition ket
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{const}const identifier |
{castpop}bra type ket pop [b2]:bra value [k2]:ket|
{dereflderef bra refval ket;

refval = loc|

{refcast} bra type ket loc;

loc = ({id}identifier|
{memory}mem bra value ket ;

[*predeclaredregister = {fp}fp|{gp}ap;*/

number = {reallit} optionalsign reallit|
{integer} optionalsign intlit;

optionalsign = |{plus}plus|{minus}minus;

reallit="floating_constant;

/*

operators

*/
dyadic = {plus} plus|
{minus} minus |
{identifier} identifier]|
{exp}exponentiate|
{times} times |
{divide} divide|
{replicate} replicate|
{1}l
{otiat]
{call}call|
{le}le|
{gelgel
{eqg}equals|
{ne}ne|
{min}min|{max}max|
{push}push|
{subscript}subscript|
{satplus}satplus|
{satmult}satmult|
{satminus}satminus|
{shi}shl|
{shr}shr|
{remainder} remainder|
{or}or|
{and}and|
{xor}xor;
monadic = {not}not|
{full}full]
{empty}lempty|
1<{pop}pop|*/
{sin}sin|
{trunc}trunc|
{round}round|
{float}float]
{extend}extend|
{cos}cos|
{tan}tan|
{abs}abs|
{sqrt}sart |
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{sarsar |
{In}In;
/*

register declaration

*/
registerdecl = reservation reg aggregate type identifier a ssembles sbra string sket ;
reservation = {reservedjreserved|{unreserved}

aliasdecl = alias reg aggregate type
[child]:identifier equals [parent]:identifier bra [lowb it]:intlit colon [highbit]:intlit ket
assembles sbra string sket;

opdecl = operation identifier means operator assembles sbr a string sket;
operator = {plus}plus|
{minus}minus|
{times}times|
{1}t
{gtigt|
{min}min|
{max}max|
{satplus}satplus|
{satmult}satmult|
{satminus}satminus|
{shi}shl|
{shr}shr|

{le}le|
{gelgel
{eqg}equals|
{ne}ne|
{divide} divide|

{remainder}remainder|

{or}or|
{and}and|
{xor}xor;

/*
pattern declarations

*/

assign = refval store value ;
meaning =

{value}value|

{assign}assign|

{goto}goto value|

{fail}fail value|

{if}if bra value ket meaning|

{for} for refval store [start]:value to [stop]:value step [ increment]:value do meaning|
{loc}location value;
patterndecl = pattern identifier paramlist means sbra mean ing sket assemblesto sideeffects precond|
{alternatives} pattern identifier means sbra alternative S sket;

paramlist = bra param paramtail* ket|{nullparam}bra ket;

param = typeid identifier|{typeparam} typetoken identifi er/{label}label identifier;
typeid = identifier;
paramtail = comma param;

alternatives = type alts*;
alts = vbar type;
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precond = precondition sbra condition sket|
{unconditional};

asideeffect = sideeffect returnval;

sideeffects = asideeffect*;

assemblesto = assembles shra assemblypattern sket;
assemblypattern = assemblertoken*;

assemblertoken = {string} string |

{identifier} identifier;

returnval = returns identifier;

/*

statements

*/
statement =
{aliasdecl} aliasdecl|

{registerdecl} registerdecl |
{addressmode} address patterndecl|
{instructionformat}procedure patterndecl|
{opdecl}opdecl|
{flag} flag identifier equals intlit|
{typerename}typetoken predeclaredtype equals identifie
{patterndecl} patterndecl;
statementlist = statement semicolon statements*;
statements = statement semicolon;

Il
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Name syntax numargs comment
plus "+’
satplus '+
satminus
satmult !
equals =’

le <=

ge >=

ne <>

shl "«

shr "’

It <

gt >

minus -

times *
exponentiate "**
divide div’
replicate rep’

and "AND’

or 'OR’

Xor 'XOR’
not 'NOT’

sin 'SIN’

cos 'COS’
abs 'ABS’
tan "TAN’

In LN’

min 'MIN’
max 'MAX’
sqrt 'SQRT’
trunc "TRUNCATE’
round 'ROUND’
float 'FLOAT’
remainder 'MOD’
extend 'EXTEND’
store =
deref d

push 'PUSH’
pop 'POP’

Table 6.1: The prefix operations of ILCG
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