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Introduction

Vector Pascal is a dialect of Pascal designed to make effiggnof the multi-media
instructionsets of recent procesors. It supports datdlpboperations and saturated
arithmetic. This manual describes the Vector Pascal lagggua

A number of widely used contemporary processors have ictstnset extensions
for improved performance in multi-media applications. Hma is to allow operations
to proceed on multiple pixels each clock cycle. Such insibasets have been incor-
porated both in specialist DSP chips like the Texas C62X4xd88 in general purpose
CPU chips like the Intel IA32[14] or the AMD K6 [2].

These instructionset extensions are typically based o8itigde Instruction-stream
Multiple Data-stream (SIMD) model in which a single instiioa causes the same
mathematical operation to be carried out on several opsramcairs of operands at
the same time. The level or parallelism supported ranges #dloating point opera-
tions at a time on the AMD K6 architecture to 16 byte operatiana time on the intel
P4 architecture. Whilst processor architectures are ngowwards greater levels of
parallelism, the most widely used programming languagesdi, Java and Delphi are
structured around a model of computation in which operatiake place on a single
value at atime. This was appropriate when processors wohkeday, but has become
an impediment to programmers seeking to make use of therpsafee offered by
multi-media instructionsets. The introduction of SIMDtingtion sets[13][29] to Per-
sonal Computers potentially provides substantial peréorce increases, but the ability
of most programmers to harness this performance is heldtbatko factors. The first
is the limited availability of compilers that make effe@iuse of these instructionsets
in a machine independent manner. This remains the caseeléspiresearch efforts
to develop compilers for multi-media instructionsetsP8[[[24][32]. The second is the
fact that most popular programming languages were designetlie word at a time
model of the classic von Neumann computer.

Vector Pascal aims to provide an efficient and concise rotdtr programmers
using Multi-Media enhanced CPUs. In doing so it borrows emts for expressing
data parallelism that have a long history, dating back tosiee’s work on APL in the
early '60s[17].

Define a vector of typd as having typel'[]. Then if we have a binary operator
w: (T®T)—T, in languages derived from APL we automatically have an aijper
w: (T|®T[])) = T[] . Thusifx,yare arrays of integeks= x+ Yy s the array of integers
wherek; = x; + Vi.

The basic concept is simple, there are complications to dio the semantics of

7
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operations between arrays of different lengths and diffedémensions, but Iverson
provides a consistent treatment of these. The most recegidages to be built round
this model are J, an interpretive language[19][5][20], &{®@B] a modernised Fortran.
In principle though any language with array types can bergdd in a similar way.
Iverson’s approach to data parallelism is machine indegetdt can be implemented
using scalar instructions or using the SIMD model. The oiiffgrence is speed.

Vector Pascal incorporates lverson’s approach to datdlgiéga. Its aim is to pro-
vide a notation that allows the natural and elegant expasdidata parallel algorithms
within a base language that is already familiar to a conatalerbody of programmers
and combine this with modern compilation techniques.

By an elegant algorithm | mean one which is expressed as selgcas possi-
ble. Elegance is a goal that one approaches asymptotiegproaching but never
attaining[7]. APL and J allow the construction of very elegjprograms, but at a cost.
An inevitable consequence of elegance is the loss of rediaydaPL programs are
as concise, or even more concise than conventional matheainadtation[18] and use
a special character-set. This makes them hard for the ia@dtto understand. J at-
tempts to remedy this by restricting itself to the ASCII dwter-set, but still looks
dauntingly unfamiliar to programmers brought up on moreveotional languages.
Both APL and J are interpretive which makes them ill suiteaniany of the appli-
cations for which SIMD speed is required. The aim of Vectosd@his to provide
the conceptual gains of Iverson’s notation within a framewfamiliar to imperative
programmers.

Pascal[21]was chosen as a base language over the altesafti® and Java. C was
rejected because notations likey for x andy declared aint x[4] , y[4] , already
have the meaning of adding the addresses of the arrays &vgetva was rejected
because of the difficulty of efficiently transmitting datagiéel operations via its inter-
mediate code to a just in time code generator.

Iverson’s approach to data parallelism is machine independit can be imple-
mented using scalar instructions or using the SIMD modele ®hly difference is
speed. Vector Pascal incorporates Iverson’s approachagqdaallelism.



Chapter 1

Elements of the language

1.1 Alphabet

The Vector Pascal compiler accepts files in the UTF-8 engpdirfnicode as source.
Since ASCIl is a subset of this, ASCII files are valid input.

Vector Pascal programs are made up of letter, digits andiapganbols. The
letters digits and special symbols are draw either from & lbharacter set or from an
extended character set. The base character set is drawrAfB@H and restricts the
letters to be from the Latin alphabet. The extended charaeteallows letters from
other alphabets.

The special symbols used in the base alphabet are shownéd thb

1.1.1 Extended alphabet
The extended alphabet is described in Using Unicode withovdtascal.

1.2 Reserved words

The reserved words are
ABS, ADDR, AND, ARRAY,
BEGIN, BYTE2PIXEL,
CASE, CAST, CDECL, CHR, CONST, COS,
DIV, DO, DOWNTO,
END, ELSE, EXIT, EXTERNAL,
FALSE, FILE, FOR, FUNCTION,
GOTO,
IF, IMPLEMENTATION, IN, INTERFACE, IOTA,
LABEL, LIBRARY, LN,
MAX, MIN, MOD,
NAME, NDX, NOT,
OF, OR, ORD, OTHERWISE,
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Table 1.1: Special symbols

+

<>

||\>(-|

D ] L) [y (R NGP) [y

<

<=

>=

> .
H@1%

$

PACKED, PERM, PIXEL2BYTE, POW, PRED,
PROCEDURE, PROGRAM, PROTECTED

RDU, RECORD, REPEAT, ROUND,

SET, SHL, SHR, SIN, SIZEOF, STRING, SQRT, SUCC,

TAN, THEN, TO, TRANS, TRUE, TYPE,

VAR,

WITH, WHILE, UNIT, UNTIL, USES

Reserved words may be written in either lower case or uppss ledters, or any
combination of the two.

1.3 Comments

The comment construct

{ <any sequence of characters not containing “} >

may be inserted between any two identifiers, special symbohabers or reserved
words without altering the semantics or syntactic corressnof the program. The
bracketing paif* *) may substitute fof } . Where a comment starts withit con-
tinues until the next. Where it starts witl* it must be terminated b¥) *.

1.4 Identifiers

Identifiers are used to name values, storage locationsfgry program modules,
types, procedures and functions. An identifier starts wilkti@r followed by zero or

more letters, digits or the special symbolCase is not significant in identifiers. 1ISO
Pascal allows the Latin letters A-Z to be used in identifievector Pascal extends

INote this differs from 1SO Pascal which allows a commenttistaiwith { to terminate with *) and vice
versa.
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Table 1.

Value 0 1 2
Notationl1 0 1 2
Notation2 0 1 2

2: The hexadecimal digits of Vector Pascal.
8 9 10 11 12 13 14 15
9 A B C D E F

8
8 9 a b ¢ d e f

' T
3 4 5 6 7
3 4 5 6 7
3 4 5 6 7

this by allowing symbols from the Greek, Cyrillic, Katakaaad Hiragana, or CJK
character sets

1.5 Literals

1.5.1 Integer numbers

Integer numbers are formed of a sequence of decimal dipiis,1t 23, 9976 etc, or
as hexadecimal numbers, or as numbers of any base betwedr88.afy hexadecimal
number takes the form of&followed by a sequence of hexadecimal digits thok
$3ff, $5A . The letters in a hexadecimal number may be upper or lower aad
drawn from the range.f orA.F.

A based integer is written with the base first followed by a #relster and then a
sequence of letters or digits. Th#1101 is a binary numbe8#67 an octal number
and20#7i a base 20 number.

The default precision for integers is 32 Bits

| <digit sequencex <digit> + |

| <decimal integer> <digit sequence

| <hexinteger>| ‘$'<hexdigit>+ |

| <based integer} <digit sequence>"#<alphanumeric3+

<unsigned integers <decimal integer>|
<hex integer>
<based integer>

2The notation used for grammar definition is a tabularised BEEch boxed table defines a production,
with the production name in the left column. Each line in tigatrcolumn is an alternative for the production.
The metasymbol + indicates one or more repetitions of whatediately preceeds it. The Kleene star * is
used for zero or more repetitions. Terminal symbols are riglsiquotes. Sequences in brackets [ ] are
optional.
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1.5.2 Real numbers

Real numbers are supported in floating point notation, ##&, 9.99e5 , 38E3,
3.6e-4 are all valid denotations for real numbers. The defaultisiec for real num-
bers is also 32 bit, though intermediate calculations mayhigher precision. The
choice of 32 bits as the default precision is influenced byfélsethat 32 bit floating
point vector operations are well supported in multi-medgtructions.

e
e

<exp>

| <scale factor>| [<sign>] <unsigned integer}

<sign>| ‘-

<unsigned real> <decimal integer> ‘. <digit sequence>
<decimal integer>' " <digit sequence> <exp><scale faetpr
<decimal integer><exp> <scale factor>

Fixed point numbers

In Vector Pascal pixels are represented as signed fixed fraitttons in the range -
1.0 to 1.0. Within this range, fixed point literals have thmeasyntactic form as real
numbers.

1.5.3 Character strings

Sequences of characters enclosed by quotes are callead §tengs. Literal strings
consisting of a single character are constants of the stdrigiae char. If the string is
to contain a quote character this quote character must bemtivice.

‘A’ X' ’hello’ "John"s house

are all valid literal strings. The allowable charactersterhl strings are any of the
Unicode characters above u0020. The character stringsbausput to the compiler
in UTF-8 format.



Chapter 2

Declarations

Vector Pascal is a language supporting nested declaraiittexts. A declaration con-
text is either a program context, and unit interface or imp@atation context, or a
procedure or function context. A resolution context deiags the meaning of an
identifier. Within a resolution context, identifiers can leeldred to stand for constants,
types, variables, procedures or functions. When an idenigfused, the meaning taken
on by the identifier is that given in the closest containirgptetion context. Resolution
contexts are any declaration context avith statement context. The ordering of these
contexts when resolving an identifier is:

1. The declaration context identified by amyh statements which nest the current
occurrence of the identifier. Thesdth statement contexts are searched from
the innermost to the outermost.

2. The declaration context of the currently nested procedieclarations. These
procedure contexts are searched from the innermost to teenooist.

3. The declaration context of the current unit or program.

4. The interface declaration contexts of the units mentlonehe use list of the
current unit or program. These contexts are searched fremightmost unit
mentioned in the use list to the leftmost identifier in the liste

5. The interface declaration context of the System unit.

6. The pre-declared identifiers of the language.

2.1 Constants

A constant definition introduces an identifier as a synonynafconstant.

<constant declaration® <identifier>=<expression>
<identifier>":'<type>'='<typed constant>

13
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Table 2.1: The operators permitted in Vector Pascal cohetqressions.
[+]-]*]/[div] mod]shr|shl|and]| or |

Constants can be simple constants or typed constants. Aesicopstant must
be a constant expression whose value is known at compile tifhés restricts it to
expressions for which all component identifiers are othestants, and for which the
permitted operators are given in table2.1 . This restriatpke constants to be of scalar
or string types.

Typed constants provide the program with initialised Valga which may hold
array types.

<typed constanty <expression>
<array constant>

2.1.1 Array constants

Array constants are comma separated lists of constant&siprs enclosed by brack-
ets. Thus

trarray[1..3] of real =(1.0,1.0,2.0);

is a valid array constant declaration, as is:

t2:array[1..2,1..3] of real=((1.0,2.0,4.0),(1.0,3.0,9 0));

The array constant must structurally match the type givehéddentifier. That is
to say it must match with respect to number of dimensiongtlenf each dimension,
and type of the array elements.

| <array constant3 '(’ <typed constant> [,<typed constant>]* ")/

2.1.2 Pre-declared constants

maxint The largest supported integer value.

pi A real numbered approximation 1o

maxchar  The highest character in the character set.

maxstring  The maximum number of characters allowed in a string.
maxreal The highest representable real.

minreal The smallest representable positive real number.

epsreal The smallest real number which when added to 1.0 yields ae\diktin-
guishable from 1.0.

maxdouble The highest representable double precision real number.

mindouble  The smallest representable positive double precisiomwgaber.
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complexzero A complex number with zero real and imaginary parts.

complexone A complex number with real part 1 and imaginary part 0.

2.2 Labels

Labels are written as digit sequences. Labels must be @ectafore they are used.
They can be used to label the start of a statement and can dedtieation of goto
statement. Agoto statement must have as its destination a label declaredhwiitl
currentinnermost declaration context. A statement carréixpd by a label followed
by a colon.

Example

label 99;

begin read(x); if x>9 goto 99; write(x*2);99: end;

2.3 Types

A type declaration determines the set of values that exjpresef this type may assume
and associates with this set an identifier.

<type>| <simple type>
<structured type>
<pointer type>

[ <type definition>] <identifier>'="<type> |

2.3.1 Simple types

Simple types are either scalar, standard, subrange or dioverd types.

<simple type> <scalar type>
<integral type>
<subrange type>

<dimensioned type>

<floating point type>

Scalar types

A scalar type defines an ordered set of identifier by listirgséhidentifiers. The dec-
laration takes the form of a comma separated list of idergimclosed by brackets.
The identifiers in the list are declared simultaneously it declared scalar type to
be constants of this declared scalar type. Thus
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Table 2.2: Categorisation of the standard types.
| type | category |

real floating point
double | floating point
byte integral
pixel fixed point
shortint integral
word integral
integer integral
cardinal integral
boolean scalar
char scalar

colour = (red,green,blue);
day=(monday,tuesday,wednesday,thursday,
friday,saturday,sunday);

are valid scalar type declarations.

Standard types

The following types are provided as standard in Vector Hasca

integer

real

double

pixel

boolean

char

pchar
byte
shortint

word

The numbers are in the range -maxint to +maxint.

These are a subset of the reals constrained by the IEEE 3@dditfi) point
format.

These are a subset of the real numbers constrained by the 6BHii
floating point format.

These are represented as fixed point binary fractions inathger-1.0 to
1.0.

These take on the valuéalse,true) which are ordered such thate>false

These include the characters frahm(0) to charmax . All the allowed
characters for string literals are in the type char, but tieracter-set may
include other characters whose printable form is countegig.

Defined ag'char .
These take on the positive integers between 0 and 255.
These take on the signed values between -128 and 127.

These take on the positive integers from 0 to 65535.
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cardinal These take on the positive integers form 0 to 4292967295 tihe most
that can be represented in a 32 bit unsigned number.

longint A 32 bit integer, retained for compatibility with Turbo Pakc

int64 A 64 bit integer.

complex A complex number with the real and imaginary parts held toi8pueci-
sion.

Subrange types

A type may be declared as a subrange of another scalar oeimtgae by indicating
the largest and smallest value in the subrange. These valugtsbe constants known
at compile time.

| <subrange type} <constant>’.’ <constant

Examples: 1..10, 'a’..'f’, monday..thursday.

Pixels

The conceptual modedf pixels in Vector Pascal is that they are real numbers in the
range—1.0..1.0. As a signed representation it lends itself to subtractisman unbi-
ased representation, it makes the adjustment of contraigre&or example, one can
reduce contrast 50% simply by multiplying an image by B.5Assignment to pixel
variables in Vector Pascal is defined to be saturating - nembers outside the range
—1..1 are clipped to it. The multiplications involved in convbdn operations fall
naturally into place.

Theimplementation modedf pixels used in Vector Pascal is of 8 bit signed inte-
gers treated as fixed point binary fractions. All the conegrs necessary to preserve
the monotonicity of addition, the range of multiplicatioic eare delegated to the code
generator which, where possible, will implement the seimantsing efficient, satu-
rated multi-media arithmetic instructions.

Dimensioned types

These provide a means by which floating point types can beaised to represent
dimensioned numbers as is required in physics calculatiemrsexample:

kms =(mass,distance,time);

meter=real of distance;

kilo=real of mass;

second=real of time;

newton=real of mass * distance * time POW -2

meterpersecond = real of distance *time POW -1,

The grammar is given by:

1when pixels are represented as integers in the range 0aB885 contrast reduction has to be expressed
as((p—128) +2)+128.
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| <dimensioned type3 <real type> <dimension >["*’ <dimension>]}

<real type>| ‘’real’
'double’

| <dimension>| <identifier> [POW’ [<sign>] <unsigned integer>]

The identifier must be a member of a scalar type, and thatrsiygla is then re-
ferred to as the basis space of the dimensioned type. Théfidenof the basis space
are referred to as the dimensions of the dimensioned typmdated with each dimen-
sion of a dimensioned type there is an integer number reféoras the power of that
dimension. This is either introduced explicitly at type kdeation time, or determined
implicitly for the dimensional type of expressions.

A value of a dimensioned type is a dimensioned value. Lejtloda dimensioned
typet be the power to which the dimensidrof typet is raised. Thus for =newton in
the example above, amb=time, logyt = —2

If x andy are values of dimensioned typgandtyrespectively, then the following
operators are only permissibletif=ty

|+|-|<|>|<>|:|<:|>:|

For + and -, the dimensional type of the result is the samea®ftithe arguments.
The operations

are permitted if the typetgandty share the same basis space, or if the basis space

of one of the types is a subrange of the basis space of the other
The operatiolPOWSs permitted between dimensioned types and integers.

Dimension deduction rules

1. If x=yxzfor x:ty,y:t2,2:t3 with basis spac8 then

Vdeloggts = logytz +logyts

2. Ifx=y/zfor x:t1,y: tp,z: t3 with basis spac8 then

Vaeloggts = logytz —logyts

3. If x=yPOWzfor x:t1,y:tp,2z: integerwith basis space fdp, B then

Vaeploggty = logytz x z
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2.3.2 Structured types
Static Array types

An array type is a structure consisting of a fixed number ahelets all of which are
the same type. The type of the elements is referred to aseheeek type. The elements
of an array value are indicated by bracketed indexing espres. The definition of an
array type simultaneously defines the permitted type ofximdeexpression and the
element type.

The index type of a static array must be a scalar or subrampge Hhis implies that
the bounds of a static array are known at compile time.

| <array type>| "array’ | <index type>[,<index type>]* ] 'of’ <type> |

<scalar type>

<index type>| <subrange type
<integral type>

Examples

array[colour] of boolean;

array[1..100] of integer;

array[1..2,4..6] of byte;

array[1..2] of array[4..6] of byte;

The notation,d in an array declaration is shorthand for the notatigjrof array
[ ¢]- The number of dimensions of an array type is referred tésamnk. Scalar types
have rank 0.

String types

A string type denotes the set of all sequences of charagesasome finite length and
must have the syntactic form:

<string-type>| ’string[’ <integer constant>"]’
'string’
'string(’ <ingeger constant>")’

the integer constant indicates the maximum number of ctemsathat may be held
in the string type. The maximum number of characters thabeameld in any string is
indicated by the pre-declared constamixstring . The typestring is shorthand for
string[maxstring]

Record types

A record type defines a set of similar data structures. Eachbeeof this set, a record
instance, is a Cartesian product of number of componenfieldls specified in the
record type definition. Each field has an identifier and a typbe scope of these
identifiers is the record itself.
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A record type may have as a final componertdant part The variant part, if a
variant part exists, is a union of several variants, eachhi¢lvmay itself be a Cartesian
product of a set of fields. If a variant part exists there mag &g field whose value
indicates which variant is assumed by the record instance.

All field identifiers even if they occur within different vamt parts, must be unique
within the record type.

| <record type>| 'record’ <field list>"end’ |

<field list> <fixed part>
<fixed part>’;’ <variant part>
<variant part>

| <fixed part>] <record section>[’; <record section.]F

<record section> <identifier>['; <identifier>]* .’ <type>
<empty>

<variant part>| 'case’ [<tag field>":"] <type identifier> 'of <variant>[";<variant>]* |

<variant>| <constant>[’, <constant>]*:" (' <field list>")’
<empty>

Set types

A set type defines the range of values which is the power-sis dfase type. The
base type must be an ordered type, that is a type on which thatigns<, = and
> are defined Thus sets may be declared whose base types are charaateksgns,
ordinals, or strings. Any user defined type on which the caispa operators have
been defined can also be the base type of a set.

| <settype>| 'set 'of’ <base type>]

2.3.3 Dynamic types

Variables declared within the program are accessed byitteitifier. These variables
exist throughout the existence of the scope within whicly Hre declared, be this unit,
program or procedure. These variables are assigned stog®ns whose addresses,

21SO Pascal requires the base type to be a scalar type, a Ehayge, integer type or a subrange thereof.
When the base type is one of these, Vector Pascal implententet using bitmaps. When the type is other
than these, balanced binary trees are used. It is strongtymended that use be made of Boehm garbage
collector (see section 5.1.2) if non-bitmapped sets ard imsa program.
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either absolute or relative to some register, can be detexhdt compile time. Such
locations a referred to as staticStorage locations may also be allocated dynamically.
Given a typd , the type of a pointer to an instance of tytpies /t .

A pointer of type™ can be initialised to point to a new store location of type t by
use of the built in procedumew. Thus ifp:t |

new(p);

cause9 to point at a store location of tyge

Pointers to dynamic arrays

The types pointed to by pointer types can be any of the typediomed so far, that is
to say, any of the types allowed for static variables. In toidihowever, pointer types
can be declared to point at dynamic arrays. A dynamic arrag srray whose bounds
are determined at run time.

Pascal 90[15] introduced the notion of schematic or pararised types as a means
of creating dynamic arrays. Thus wheris some integral or ordinal type one can write

type z(a,b:r)=array[a..b] of t;

If p:Az , then

new(p,n,m)

wheren,m:r initialisesp to point to an array of bounds.m . The bounds of the
array can then be accessegas, p*b . Inthiscasea, b are the formal parameters
of the array type. Vector Pascal currently only allows pagtarised types to be allo-
cated on the heap view. The extended form of the proceduw must be passed
an actual parameter for each formal parameter in the arpaey ty

Dynamic arrays

Vector Pascal also allows the use of Delphi style declamatfor dynamic arrays. Thus
one can declare:

type vector = array of real;
matrix = array of array of real;

The size of such arrays has to be explicitly initialised atime by a call to the library
proceduresetlength . Thus one might have:

function readtotal:real;
var leninteger;
v.vector;
begin
readin(len);
setlength(v,len);
readin(v);

3The Pascal concept of static variables should not be equétedhe notion of static variables in some
other languages such as C or Java. In Pascal a variable islemt static if its offset either relative to
the stack base or relative to the start of the global segnembe determined at compile/link time. In C a
variable is static only if its location relative to the staftthe global segment is known at compile time.
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readtotal = \+ v;
end;

The functionreadtotal ~ reads the number of elements in a vector from the standard
input. It then callsetlength  to initialise the vector length. Next it reads in the vector
and computes its total using the reduction operator

In the example, the variabledenotes an array of reals not a pointer to an array of
reals. However, since the array size is not known at comipilegetlength ~ will allo-
cate space for the array on the heap not in the local staclefraire use ofetlength
is thus restricted to programs which have been compiled thighgarbage collection
flag enabled (see section 5.1.2). The procedeitength must be passed a param-
eter for each dimension of the dynamic array. The boundseoétraya formed by
setlength(a,i,},k)
would then bé..i-1, 0.j-1, 0..k-1

Low and High

The build in functiondow andhigh return the lower and upper bounds of an array
respectively. They work with both static and dynamic arrg@ensider the following
examples.

program arrays;
type z(abiinteger)=array[a..b] of real;
vec = array of real,
line= array [1..80] of char;
matrix = array of array of real,
var i*z; vivec, lline; m:matrix;
begin
setlength(v,10);setlength(m,5,4);
new(i,11,13);
writeln(low(v), high(v));
writeln(low(m), high(m));
writeln(low(m([0]),high(m[0]));
writeln(low(1),high(1));
writeln(low(i*),high(i™));
end.

0
0

=~ = = =

would print

P = O OO
[ee]
W o wh o

[EY
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2.4 File types

A type may be declared to be a file of a type. This form of debnitis kept only
for backward compatibility. All file types are treated asrgpequivalent. A file type
corresponds to a handle to an operating system file. A filablgimust be associated
with the operating system file by using the procedwassgn, rewrite, append ,
andreset provided by the system unit. A pre-declared file tygpe exists.

Text files are assumed to be in Unicode UTF-8 format. Convessare performed
between the internal representation of characters and&)adirinput/output from/to a
text file.

2.5 Variables

Variable declarations consist of a list of identifiers démpthe new variables, followed
by their types.

| <variable declaration <identifier> [ <identifier>]* "’ <type><extmod>|

Variables are abstractions over values. They can be eiingtesidentifiers, com-
ponents or ranges of components of arrays, fields of recardsferenced dynamic
variables.

<variable> <identifier>
<indexed variable>
<indexed range>
<field designator>
<referenced variable>

Examples

x,y-real;

i:integer;

point:*real;

dataset:array[1..n]of integer;
twoDdata:array[1..n,4..7] of real

2.5.1 External Variables

A variable may be declared to be external by appending themitmodifier.

| <extmod>| ’;’ 'external’ 'name’ <stringlit> |

This indicates that the variable is declared in a non VecéscRl external library.
The name by which the variable is known in the external lipiasspecified in a string
literal.

Example

countinteger; external name ’_count’;
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2.5.2 Entire Variables

An entire variable is denoted by its identifier. Examplgoint

2.5.3 Indexed Variables

A component of am dimensional array variable is denoted by the variable Yoo by
nindex expressions in brackets.

| <indexed variable <variable>"T <expression>[',<expression>]*T]

The type of the indexing expression must conform to the irtgipr of the array
variable. The type of the indexed variable is the compongrd of the array.

Examples

twoDdata[2,6]

dataset[i]

Given the declaration

a=array[p] of g

then the elements of arrays of typewill have typeq and will be identified by
indices of typep thus:

bli]

whereiip , ba.

Given the declaration

z = string[x]

for some integer xXmaxstring , then the characters within strings of typevill
be identified by indices in the randex, thus:

ylil

wherey:z , j:1.x

Indexed Ranges

A range of components of an array variable are denoted byatiable followed by a
range expression in brackets.

| <indexed range> <variable> ' <range expression>[',’ <range expressign} |

| <range expression} <expression>'.. <expression}>

The expressions within the range expression must confothetmdex type of the
array variable. The type of a range expressifi]| wherea: array[p..q] of
t isarray[0..j-] of t.

Examples:

dataset]i..i+2]:=blank;

twoDdata[2..3,5..6]:=twoDdata[4..5,11..12]*0.5;

Subranges may be passed in as actual parameters to precethose correspond-
ing formal parameters are declared as variables of a schetyp¢. Hence given the
following declarations:
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type image(miny,maxy,minx,maxx:integer)=array[miny.. maxy,minx..maxx]
of byte;

procedure invert(var im:image);begin im:=255-im; end;

var screen:array[0..319,0..199] of byte;

then the following statement would be valid:

invert(screen[40..60,20..30]);

Indexing arrays with arrays

If an array variable occurs on the right hand side of an assgm statement, there
is a further form of indexing possible. An array may be inadkkg another array. If
x:array[to] of t1 andy:array[tl] of t2 , theny[x] denotes the virtual array
of typearray[t0] of t2 such thaty[x][i]=y[x[i] . This construct is useful for
performing permutations. To fully understand the follog/example refer to sections
3.1.3,3.2.1.

Example Given the declarations
const perms:array[0..3] of integer=(3,1,2,0);
var ma,m0:array[0..3] of integer;
then the statements
m0:= (iota 0)+1;
write('mO0=");for j:=0 to 3 do write(mO[j]);writeln;
ma:=mO0[perms];
write(perms=");for j:=0 to 3 do write(perms[j]);writeln ;
writeln('ma:=mO[perms]’);for j:=0 to 3 do write(mal[j]);w riteln;
would produce the output

mo=12 34
perms= 3120
ma:=mO[perms]
4231

This basic method can also be applied to multi-dimensiorralya Consider the
following example of an image warp:

type pos = 0..255;

image = array[pos,pos] of pixel;

warper = array[pos,pos,0..1] of pos;
var iml ,im2 :image;

warp :warper;

begin

getbackwardswarp(warp);
im2 := iml [ warp ];
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The procedureetbackwardswarp determines for each pixel position y in an
image the position in the source image from which it is to beaimled. After the
assignment we have the postcondition

im2[x,y] = im1[warp[x,y,0],warp|x,y, 1]]Vx,y € pos

2.5.4 Field Designators

A component of an instance of a record type, or the paramefeas instance of a
schematic type are denoted by the record or schematic tygpenice followed by the

field or parameter name.

| <field designator> <variable>'’<identifier>]|

2.5.5 Referenced Variables

If pAt , thenp” denotes the dynamic variable of typeeferenced by.

| <referen

ced variable} <variable>"" |

2.6 Procedures and Functions

Procedure and function declarations allow algorithms talbstified by name and have
arguments associated with them so that they may be invokgddmedure statements

or function calls.

<procedure declarationy

<procedure heading>';’[<proc tail>]

<proc tail> ‘forward’
‘external’ [ 'name’ <string>]
<block>
<paramlist> '('<formal parameter sec>[";'<formal parameter sec>]*

<procedure heading>

'procedure’ <identifier> [<paramlist>]
'function’<identifier> [<paramlist>]':'<type>

<formal parameter sec>

['var']<identifier>[’, <identifier>]":'<type>
<procedure heading>

<procedure type>

'procedure’ [<paramlist>]
‘function’ [<paramlist>]":’<type>

The parameters declared i

n the procedure heading are doited scope of the pro-

cedure. The parameters in the procedure heading are teomedlfparameters. If the
identifiers in a formal parameter section are preceded byvtrd var , then the for-

mal parameters are termed variable parameters. The‘tbekprocedure or function
constitutes a scope local to its executable compound stgaeW/ithin a function dec-

laration there must be at least

one statement assigningia tathe function identifier.

4see section 4.
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This assignment determines the result of a function, bugasent to this identifier
does not cause an immediate return from the function.

Function return values can be scalars, pointers, recdrgys, static arrays or sets.
Arrays whose size is determined at run time may not be retlinoen a function.

Where a procedure is declared as forward it must be followea full definition
of procedure lower in the current scope.

The external declaration form allows calls to be made taliles written in other
languages.

Examples The function sba is the mirror image of the abs function.
function sba(i:integer):integer;
begin if i>0 then sba:=-i else sba:=i end;
type stack:array[0..100] of integer;
procedure push(var s:stack;i:integer);
begin s[s[0]]:=i;s[0]:=s[0]+1; end;

procedure append(var f:fileptr);external;
procedure close (var f:fileptr); external name ’pasclose’ X

2.6.1 Procedural Parameters to Procedures

A procedure may have parameters that are themselves presezkishown in the fol-
lowing example.

program CONF103(output);

var
i . integer;
procedure alsoconforms(x : integer);
begin
writeln( PASS...6.6.3.1-4 (CONF103))
end;

procedure conforms(procedure alsoconforms(x : integer)) X
var x : boolean;
begin
X:=true;
alsoconforms(1)
end;
begin
i=2;
conforms(alsoconforms)
end.
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2.6.2 Procedure types

Procedural types may be declared. This in turn allows praeedariables. These store
the address of a procedure or function and can be assignsihtpthe address operator
@.

Example

program procvar;
type t=procedure (x:integer);

var vit;
procedure f(a:integer);begin writeln(a);end;
begin
vi= @f;
v(3);

end.



Chapter 3

Algorithms

3.1 Expressions

An expression is a rule for computing a value by the applicatif operators and func-
tions to other values. These operators camlo@adic- taking a single argument, or
dyadic- taking two arguments.

3.1.1 Mixed type expressions

The arithmetic operators are defined over the base typegeingnd real. If a dyadic
operator that can take either real or integer argumentsgkegjpto arguments one of
which is an integer and the other a real, the integer arguimérgt implicitly converted
to a real before the operator is applied. Similarly, if a dgagperator is applied to
two integral numbers of different precision, the numberooiér precision is initially
converted to the higher precisions, and the result is of tgkdn precision. Higher
precision of types,u is defined such that the type with the greater precision istige
which can represent the largest range of numbers. Henceaeataken to be higher
precision than longints even though the number of signifibéa in a real may be less
than in a longint.

When performing mixed type arithmetic between pixels anotlzer numeric data
type, the values of both types are converted to reals bdferarithmetic is performed.
If the result of such a mixed type expression is subsequeastigned to a pixel vari-
able, all values greater than 1.0 are mapped to 1.0 and asalelow -1.0 are mapped
to-1.0.

29
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3.1.2 Primary expressions

<primary expressionx '(’ <expression>")’
<literal string>
‘true’

‘false’
<unsigned integer>
<unsigned real>
<variable>
<constant id>
<function call>
<set construction>

The most primitive expressions are instances of the lgetafined in the language:
literal strings, boolean literals, literal reals and lgkeintegers. 'Salerno’true , 12,
$ea8f, 1.2e9 are all primary expressions. The next levebsfraction is provided by
symbolic identifiers for values, left , a.max, p*.next ,z[1] ,image[4..200,100..150]
are all primary expressions provided that the identifiex&teeen declared as variables
or constants.

An expression surrounded by brackéts is also a primary expression. Thusif
is an expression so (se) .

| <function call> | <function id> [’'(’ <expression> [,<expression>]*")']

<element> <expression>
<range expression®

Let e be an expression of tygeand iff is an identifier of typdunction( t; ): to,
thenf( e) is a primary expression of tyge. A function which takes no parameters
is invoked without following its identifier by brackets. Itilwbe an error if any of the
actual parameters supplied to a function are incompatilite thhe formal parameters
declared for the function.

| <set construction3} [ [<element>[,<element>]*] T ]

Finally a primary expression may be a set construction. Ases$truction is written
as a sequence of zero or more elements enclosed in brgcketnd separated by
commas. The elements themselves are either expressidoatavg to single values
or range expressions denoting a sequence of consecutivesvallhe type of a set
construction is deduced by the compiler from the context lvickv it occurs. A set
construction occurring on the right hand side of an assigrinmberits the type of the
variable to which it is being assigned. The following arevalid set constructions:

0, [1.9], [z.,9], [ab.c)]
[[ denotes the empty set.
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3.1.3 Unary expressions

A unary expression is formed by applying a unary operatontdteer unary or primary
expression. The unary operators supportedtare * /, div, mod, and, or,

not, round, sqgrt, sin, cos, tan, abs, In, ord, chr, byte2pixe I, pixel2byte,
succ, pred, iota, trans, addr and@

Thus the following are valid unary expressionsl , +b, not true , sqrt abs
X, sin theta. In standard Pascal some of these operators are treated@®fisn

Syntactically this means that their arguments must be sadliim brackets, as #in(theta)
This usage remains syntactically correct in Vector Pascal.

The dyadic operators -, *, /, div, mod , and or are all extended to unary
context by the insertion of an implicit value under the ofiera Thus justasa = 0-a
so too/2 = 1/2 . For sets the notatios means the complement of the sefThe im-
plicit value inserted are given below.

| type | operatos | implicit value |

number +,- 0

string + "

set + empty set

number| */ ,div,mod 1

number max lowest representable number of the type
number min highest representable number of the type
boolean and true

boolean or false

A unary operator can be applied to an array argument andhsetur array result.
Similarly any user declared function over a scalar type @agplied to an array type
and return an array. ff is a function or unary operator mapping from typto typet
thenifx is an array of, anda an array ot , thena:=f(x)  assigns an array ¢fsuch
thatali]=f(xi])

v

<unary expression3 <unaryop> <unary expression>
'sizeof” ’(" <type>")’
<operator reduction>
<primary expression>

'if’<expression>'then’ <expression> 'else’ <expression

sizeof

The construcsizeof( t) wheret is a type, returns the number of bytes occupied by
an instance of the type.

iota

The operator iota i returns the ith current implicit index

1see section 3.2.1.
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Table 3.1: Unary operators
lhs rhs meaning
<unaryop> + +Xx = 0+x identity operator
-X = 0-X,
note: this is defined on integer, real and complex
w X! *x=1*x identity operator
'’ /x=1.0/x
note: this is defined on integer, real and complex
div', div x =1 div x
'mod’ mod x =1 mod X
‘and’ and x = true and x
‘or’ or x = false or x
'not’, ' =’ complements booleans
‘round’ rounds a real to the closest integer
sart’, "/ returns square root as a real number.
'sin’ sine of its argument. Argument in radians. Result is real.
‘cos’ cosine of its argument. Argument in radians. Result is re
‘tan’ tangent of its argument. Argument in radians. Result is r
‘abs’ if x<0 then abs x = -x else abs x= x
I’ loge of its argument. Result is real.
‘ord’ argument scalar type, returns ordinal
number of the argument.
‘chr’ converts an integer into a character.
'succ’ argument scalar type,
returns the next scalar in the type.
‘pred’ argument scalar type,
returns the previous scalar in the type.
‘iota’, "’ iota i returns the ith current index
‘trans’ transposes a matrix or vector
‘pixel2byte’ || convert pixel in range -1.0..1.0 to byte in range 0..255
‘byte2pixel’ || convert a byte in range 0..255 to a pixel in
the range -1.0..1.0
'@’,addr’ Given a variable, this returns an

untyped pointer to the variable.
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Examples Thus given the definitions
var vl:array[l..3]of integer;
v2:array[0..4] of integer;
then the program fragment
vl:=iota 0;
v2:=iota 0 *2;

for i:=1 to 3 do write( VA[i]); writeln;
writeln('v2);

for i:=0 to 4 do write( V2[i]); writeln;
would produce the output

vl

123
V2
02468

whilst given the definitions
ml.array[1..3,0..4] of integer;m2:array[0..4,1..3]of i nteger;
then the program fragment
m2:= iota 0 +2*%ota 1;
writeln(m2:= iota 0 +2*iota 1 °);
for i:=0 to 4 do begin for j;=1 to 3 do write(m2[i,j]); writeln ;end;

would produce the output

2:= jota 0 +2*%ota 1

The argument tiota must be an integer known at compile time within the range of
implicit indices in the current context. The reserved wakl is a synonym foiota .

perm A generalised permutation of the implicit indices is penfied using the syn-
tactic form:

perm[ i ndex-sel [, i ndex-sel ]* ] expression

Theindex-ses are integers known at compile time which specify a perriartain the
implicit indices. Thus ire evaluated in contexterm[ i, j,K] e, then:

iota 0 = iota i,iota 1= iota  j,iota 2= iota Kk
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This is particularly useful in converting between differémage formats. Hardware
frame buffers typically represent images with the pixel¢he red, green, blue, and
alpha channels adjacent in memory. For image processirggdbmvenient to hold
them in distinct planes. Theerm operator provides a concise notation for translation
between these formats:

type rowindex=0..479;
colindex=0..639;

var channel=red..alpha;
screen:array[rowindex,colindex,channel] of pixel;
img:array[channel,colindex,rowindex] of pixel;

screen:=perm[2,0,1]img;

trans anddiag provide shorthand notions for expressions in termgeah. Thus
in an assignment context of rankt&ns = perm[1,0] anddiag = perm[0,0]

trans

The operator trans transposes a vector or matrix. It achignie by cyclic rotation of
the implicitindices. Thus ifrans eis evaluated in a context with implicit indices

iota O..iota n

then the expression e is evaluated in a context with imphidices

iota '0..iota 'n

where

iota 'x=liota ((x+1)modn+1)

It should be noted that transposition is generalised toamwérank greater than 2.

Examples Given the definitions used above in section 3.1.3, the prodgragment:
ml:= (trans v1)*v2;
writeln(’(trans  v1)*v2’);
for i:=1 to 3 do begin for ;=0 to 4 do write(m1[i,]); writeln ; end;

m2 := trans ml,

writeln('transpose 1..3,0..4 matrix);

for i:=0 to 4 do begin for j;:=1 to 3 do write(m2[i,j]); writeln ; end;
will produce the output:

(trans v1)*v2
0 2 4 6 8

0 4 812 16

0 612 18 24

transpose 1..3,0..4 matrix
0 00
2 4 6
4 812
6 12 18
8 16 24
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3.1.4 Operator Reduction

Any dyadic operator can be converted to a monadic reducpenator by the functional
\. Thus ifa is an array)+a denotes the sum over the array. More genergdx for
some dyadic operatdP meansio®(x1®..(xaP1)) wherel is the implicit value given
the operator and the type. Thus we can writefor summation)\* for nary product
etc. The dot product of two vectors can thus be written as

X= \+ yEx;

instead of

x:=0;

for i:=0 to n do x:= x+ y[iJ*zi];

A reduction operation takes an argument of ramd returns an argument of rank
r-1 except in the case where its argument is of rank 0, in whicle daacts as the
identity operation. Reduction is always performed aloregl#st array dimension of its
argument.

The operations of summation and product can be be writtbteeias the two func-
tional forms\ + and\ * or as the prefix operatofs (Unicode 2211) angf] (Unicode
220f).

\'4

<operator reduction> ''<dyadic op> <multiplicative expression
'S’ <mutliplicative expression>
"1 < multiplicative expression>

<dyadic op>| <expop>
<multop>
<addop>

The reserved wordlu is available as a lexical alternative to \, so \+ is equivalen
tordu +.

3.1.5 Complex conversion

Complex numbers can be produced from reals using the funatipix . cmplx( re,im)
is the complex number with real pag, and imaginaray paimn.

The real and imaginary parts of a complex number can be adutdiy the functions
re andim. re () is the real part of the complex numberim(c) is the imaginary part
of the complex numbaer.

3.1.6 Conditional expressions

The conditional expression allows two different valueseadturned depenent upon a
boolean expression.

var a:array[0..63] of real;
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a:=if a>0 then a else -a;

Theif expression can be compiled in two ways:

1. Where the two arms of the if expression are parallelisahlke condition and
both arms are evaluated and then merged under a boolean Tk the above
assignment would be equivalent to:

a= (a and (a >0)or(not (@ >0) and -a);
were the above legal Pasgal
2. If the code is not paralleliseable it is translated as\edent to a standard if
statement. Thus, the previous example would be equivalent t
for i:=0 to 63 do if afi] >0 then afi]:=a[i] else a]i]:=-a[i];
Expressions are non parallelisable if they include fumctalls.

The dual compilation strategy allows the same linguistiestauct to be used in recur-
sive function definitions and parallel data selection.

Use of boolean mask vectors

In array programming many operations can be efficiently bgressed in terms of
boolean mask vectors. Given the declarations:

const
s:array[1..4] of string[8]=(dog’, fish’,’bee’,'beans ;
i:array[1..4] of integer=(1,2,3,4);
rarray[1..4] of real=(0.5,1.0,2.0,4.0);
b:array[1..4] of boolean=(false,true,false,true);
var

c:array[1..4] of complex;
and if c is intialised to cmplx(1,0.5), then the statements
write (b,i and b, r and b);
write(s:12, (s and b):12 );

write(c and b);

will output

2This compilation strategy requires that true is equivakentl and false to 0. This is typically the
representation of booleans returned by vector comparisgtruictions on SIMD instruction sets. In Vector
Pascal this representation is used generally and in coasegjrue <false .
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Table 3.2: Null elements for boolean masking

Type Null Element
Numbers 0

Strings empty string
Booleans false

false true false true
0 2 0 4
0 1 0 4
dog fish bee beans
fish beans
0j0 1j5e-1 0jo 1j5e-1

and operations using boolean arrays are particularly Usefperforming parallel se-
lection operations on arrays. For numeric types, they coitengfficiently to SIMD
code. Anding a value with boolean true leaves the value urgddy anding with false
returns a null element.

3.1.7 Factor

A factor is an expression that optionally performs expoiaion. Vector Pascal sup-
ports exponentiation either by integer exponents or byegabnents. A numbercan
be raised to an integral powgiby using the constructiorn pow y. A number can be
raised to an arbitrary real power by tke operator. The result of is always real
valued.

<expop>| 'pow’

k%!

| <factor>]| <unary expression> [ <expop> <unary expressioh>]

3.1.8 Multiplicative expressions

Multiplicative expressions consist of factors linked by timultiplicative operatory

x, 1, div, —+,, mod, shr, shl and . The use of these operators is summarised
in table 3.3.
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Table 3.3: Multiplicative operators

Operator Left Right Result Effect @fop b
X integer integer integer multiply
string integer string replicate, 'ab’*2 ="abab’
real real real multiply
complex complex complex multiply
/ integer integer real division
real real real division
complex complex complex division
div, integer integer integer division
mod integer integer integer remainder
and boolean  boolean  boolean logical and
shr integer integer integer shié by b bits right
shl integer integer integer shiét by b bits left
in, € t set of t boolean true ifr is member ob

<multop>| ¥

o
'div’
'shr’
'shl’
"and’

'mod’

<multiplicative expression> <factor> [ <multop> <factor> |*
<factor>"in’<multiplicative expression>

3.1.9 Additive expressions

An additive expression allows multiplicative expressitmbe combined using the ad-
dition operators, -, or, +,max, min, - , ><. The additive operations are sum-
marised in table3.4 .

<addop>| '+

or’
max’
'min’
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Table 3.4: Addition operations

Left Right Result Effectohop b
+ integer integer integer sum efandb
real real real sum od andb
complex complex complex sum efandb
set set set union o andb
string string string concatenagewith b 'ac’+'de’="acde’
integer integer integer result of subtractibdrom a
real real real result of subtractirgfrom a
complex complex complex result of subtractibdgrom a
set set set complement bfrelative toa
+ 0..255 0..255 0..255 saturated + clipped to 0..255
-128..127 -128..127  -128..127 saturated + clipped to -123.
0..255 0..255 0..255 saturated - clipped to 0..255
-128..127 -128..127  -128..127 saturated - clipped to -128.
min integer integer integer returns the lesser of the numbers
real real real returns the lesser of the numbers
max integer integer integer returns the greater of the numbers
real real real returns the greater of the numbers
or boolean boolean boolean logical or
>< set set set symetric difference

| <additive expression>| <multiplicative expression> [ <addop> <multiplicativepegssion> ]* |

| <expression>| <additive expression> <relational operator> <expressi4»n

3.1.10 Expressions

An expression can optionally involve the use of a relatic@drator to compare the
results of two additive expressions. Relational operatways return boolean results
and are listed in table 3.5.

Table 3.5: Relational operators

< Less than

> Greater than

<= Less than or equal to
>=  Greater than or equal to
<> Not equal to

= Equal to
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interface
type
Complex = record data : array [0..1] of real ;
end ;
var
complexzero, complexone . complex;

function real2cmplx ( realpart :real ):complex ;
function cmplx ( realpart ,imag :real ).complex ;
function complex_add ( A ,B :Complex ):complex ;
function complex_conjugate ( A :Complex ):complex ;
function complex_subtract ( A ,B :Complex ):.complex ;
function complex_multiply ( A ,B :Complex ):complex ;
function complex_divide ( A ,B :Complex ):.complex ;
{ Standard operators on complex numbers }
{ symbol function identity element }
operator + = Complex_add , complexzero ;
operator / = complex_divide , complexone ;
operator * = complex_multiply , complexone ;
operator - = complex_subtract , complexzero ;
operator cast = real2cmplx ;

Note that only the function headers are given here as thie cothes from the interface part
of the system unit. The function bodies and the initialmatf the variables complexone and
complexzero are handled in the implementation part of tlie un

Example 3.1: Defining operations on complex numbers

3.1.11 Operator overloading

The dyadic operators can be extended to operate on new tygebator overloading.
Figure 3.1 shows how arithmetic on the tygenplex required by Extended Pascal
[15] is defined in Vector Pascal. Each operator is associaittda semantic function
and if it is a non-relational operator, an identity elemeFhe operator symbols must
be drawn from the set of predefined Vector Pascal operatotsywhen expressions
involving them are parsed, priorities are inherited from finedefined operators. The
type signature of the operator is deduced from the type dfuthetior?.

<operator-declaration> ‘operator’ 'cast’ '=’ <identifier>
‘operator’ <dyadicop> '=’ <identifier>','<identifier>
‘operator’ <relational operator> =’ <identifier>

When parsing expressions, the compiler first tries to resoperations in terms of
the predefined operators of the language, taking into a¢¢barstandard mechanisms

3Vector Pascal allows function results to be of any non-mioca type.
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allowing operators to work on arrays. Only if these fail didegarch for an overloaded
operator whose type signature matches the context.

In the example in figure 3.1, complex numbers are defined ted@ds containing
an array of reals, rather than simply as an array of reals. tHeyl been so defined,
the operators,*,-,/ on reals would have masked the corresponding operators on
complex numbers.

The provision of an identity element for complex additiom aubtraction ensures
that unary minus, as irx for x :complex, is well defined, and correspondingly that
unary / denotes complex reciprocal. Overloaded operatorde used in array maps
and array reductions.

Implicit casts

The Vector Pascal language already contains a number ofitippe conversions that
are context determind. An example is the promotion of inte¢@ reals in the context
of arithmetic expressions. The set of implicit casts can dided to by declaring an
operator to be a cast as is shown in the line:

operator cast = real 2cnpl x ;

Given an implict cast from typg — t1, the function associated with the implicit
cast is then called on the result of any expressioty whose expression context re-
quires it to be of typéy.

3.1.12 Vector inner product

The inner product of two vectors is defined as:
ab= IZa; x by
orin Vector Pascal notatiom:b = \+ a*b . Vector Pascal supports this inner product
operation on any pair of vectors with the following propesti
1. The lengths of the vectors must be the same.
2. The types of the vectors must be such that they supporipeators + and *.

Inner product can obviously be used on numeric vectors asrsiroExample 3.2 but
it can also be used with other types for which + and * are defiaeghown in Example
3.3.

The inner product operation is of higher priority than artyast Its arguments must
be arrays.

3.1.13 Matrix to Vector Product

Matrix to vector product can be used to carry out generalisedr geometry trans-
forms. We can do this in Vector Pascal if a two dimensionaais used to multiply a
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{tests vector product of integer vectors }
program conf551;
const

a:array[0..3] of integer=(1,1,2,3);

b:array[0..3] of integer=(1,2,3,4);

var iinteger;
begin
i=a.b;
if i=21 then
writeln(PASS  integer vector product allowed’)
else
writeln(FAIL integer vector product i=',i)
end.
Example 3.2: Example of the inner product operation
{tests vector product of string and integer }
program conf550;
const roman:array[0..4] of string[3]=('C',L')X,'V’, ;

num:  array[0..4] of integer =(1,1,2,0,3);
var s:string[80];
begin
s:=nhum.roman;
if s="CLXXIII'" then
writeln(PASS string integer vector product allowed’)
else
writeln(FAIL CONF550 string integer vector product s=',s )
end.

Example 3.3: Using vector product to format roman numerals

one dimensional array, using the dot product operatdidfa two dimensional array
andv a vectorM.v produces the transformed vector. VECTOR

The program matvmult shown in Example 3.4, shows the redesdplication of a
rotation and translation matrix to the unit x vector. Whes timatrix

I
z w20
1 1 o0 o0
V2 V2
0 0 1 Q2
0 0 0 1

is applied to a vector of the forix,y,z 1], it rotates it by 48 and moves it up by
0.2.
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program matvmult;
type vec=array[0..3] of real;
mat=array[0..3] of vec;
const
rr2= 0.7071067 ; { Usqgrt(2) }
M:mat=(( rr2,-rr2,0.0,0.0) , { 45degree spiral matrix }
(rr2,rr2,0.0,0.0),
(0.0,0.0,1.0,0.2),
(0.0,0.0,0.0,1.0));
v:vec=(1.0,0.0,0.0,1.0);
var vlyv2.vec; iinteger;
begin
write (M,v);
vl=v;
(* perform 8 45degree rotations *)
for ii=1 to 8 do begin
v2:=M.v1;
vi=v2,
write(vl);
end;
end.

produces as output

0.70711 -0.70711 0.00000 0.00000
0.70711 0.70711 0.00000 0.00000
0.00000 0.00000 1.00000 0.20000
0.00000 0.00000 0.00000 1.00000
1.00000 0.00000 0.00000 1.00000
0.70711 0.70711 0.20000 1.00000
0.00000 1.00000 0.40000 1.00000
-0.70711 0.70711 0.60000 1.00000
-1.00000 -0.00000 0.80000 1.00000
-0.70711 -0.70711 1.00000 1.00000
-0.00000 -1.00000 1.20000 1.00000
0.70711 -0.70711 1.40000 1.00000
1.00000 -0.00000 1.60000 1.00000

Example 3.4: Using a spiral rotation matrix to operate onuhiéx vector.
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Data-flow Hazards

Note that in Example 3.4, one can not simply wkite=M.v1 , instead one has to write:

v2:=M.v1;
vl=v2;

since the vectorl might be changing whilst it was being read. Had the compiéarb
encountered this statement it would have generated theregssages:

compilation failed

17 : Error assignment invalid

17 : Error in primary expression started by m

17 : Error attempting to reduce rank of variable

17 : Error data hazard found. Destination v1 is used with
an index permutation on right hand side of := which
can cause it to be corrupted.
You can get round this by assigning to a temporary
array instead and then assigning the temporary to
destination v1

A check for data-flow hazards is applied to all array assigmnrstatements. If array
expressions could all be evaluated in parallel, then thereldvbe no hazards. The
problem arises because only simple array expressions caveheated entirely in par-
allel. In other cases the array assignment has to be broken bip the compiler into
a sequence of steps. This gives rise to the danger that gnlecetion may be altered
by an early step prior to it being used a source of data by aesutesnt step.

In most cases there will be no problem even where the deistmeg¢ctor appears
on the right hand side of an assignment. Thus:

M:=M+v;

for some matrixMand vectow, is ok, since here each elementdepends only on its
own prior value. However forl:=M.vl , we have the equations

3
vlg= ) MoVl (3.1
2

3
vl =) My;vi (3.2)
2,

In which ever order the code for these equations is evaluatttbrvly or viwill
be altered before it is used in the other equation.
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program matmmult;
const

Aarray[1..2,1..3] of integer=((3,1,2),

(2,1.3));
B:array[1..3,1..2] of integer=((1,2),
(3.1),
(2.3));
var C:array[1..2,1..2] of integer;
begin
C:=A.B;
writeln(C);
end.

Produces output

10 13
11 14

Example 3.5: Matrix by matrix multiplication.
3.1.14 Matrix to Matrix multiplication

The dot operator can be used between matrices to perfornixnatittiplication as
illustrated in Example 3.5. This applies the standard eqa#&br matrix multiplication:

P
Cik = ) aisbsk (3.3)
s=1

where A is of ordefmx p)and B is of ordef p x n) to give a resulting matrix C of
order(mx n).
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3.2 Statements

<statement> <variable>":='<expression>
<procedure statement>
<empty statement>
'goto’ <label>;
‘exit’['('<expression>’)’]
'begin’ <statement>[;<statement>]*end’
'if’<expression>'then’<statement>['else’<statemeht>
<case statement>
'for’ <variable>:= <expression> 'to’ <expression>'do’ tsdement>
'for’ <variable>:= <expression> 'downto’ <expression>o’ckstatement>
‘repeat’ <statement> 'until’ <expression>
‘with’ <record variable> 'do’ < statement>
<io statement>
‘'while’ <expression> 'do’ <statement>

3.2.1 Assignment

An assignment replaces the current value of a variable byvavakie specified by an
expression. The assignment operator is :=. Standard Rdleves assignment of whole
arrays. Vector Pascal extends this to allow consistent usexed rank expressions on
the right hand side of an assignment. Given

rO:real; rl:array[0..7] of real;

r2:array[0..7,0..7] of real

then we can write

1. rl:= r2[3]; { supported in standard Pascal }

2. rl:= f2; { assign 0.5 to each element of rl }

3. r2:= r1*3; { assign 1.5 to every element of r2}

4. rl:= \+ r2; { rl gets the totals along the rows of r2}
5.

rl:= r1+r2[1];{ rl gets the corresponding elements of row 1 o fr2
added to it}

The assignment of arrays is a generalisation of what stdrieiascal allows. Consider
the first examples above, they are equivalent to:

1. for i:=0 to 7 do ri[i]:=r2[3,i];
2. for i:=0 to 7 do rifi|:=/2;

3. for i:=0 to 7 do
for j:=0 to 7 do r2[i:=r1[j*3;
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4. for =0 to 7 do
begin
t:=0;
for j:=7 downto O do t:=r2[ij]+t;
rifi]:=t;
end;

5. for =0 to 7 do rifi:=r1[il+r2[1,i];

In other words the compiler has to generate an implicit loegr dhe elements of the
array being assigned to and over the elements of the arramngeaad the data-source.
In the abova,jt are assumed to be temporary variables not referred to amgwhe
else in the program. The loop variables are called implidides and may be accessed
usingiota .

The variable on the left hand side of an assignment definegray eontext within
which expressions on the right hand side are evaluated. &aat context has a rank
given by the number of dimensions of the array on the left lsadhel. A scalar variable
has rank 0. Variables occurring in expressions with an aroayext of rank must have
r or fewer dimensions. The bounds of anyh dimensional array variable, with < r
occurring within an expression evaluated in an array cdrmtesankr must match with
the rightmost bounds of the array on the left hand side of the assignmetenséant.

Where a variable is of lower rank than its array context, theable is replicated
to fill the array context. This is shown in examples 2 and 3 ab®ecause the rank
of any assignment is constrained by the variable on the Bitllside, no temporary
arrays, other than machine registers, need be allocatadr®the intermediate array
results of expressions.

3.2.2 Procedure statement

A procedure statement executes a named procedure. A precgi@dbement may, in
the case where the named procedure has formal parametatainca list of actual
parameters. These are substituted in place of the formahpeters contained in the
declaration. Parameters may be value parameters or v@pabdmeters.

Semantically the effect of a value parameter is that a copglkisn of the actual
parameter and this copy substituted into the body of thequhoe. Value parameters
may be structured values such as records and arrays. Far sadflies, expressions
may be passed as actual parameters. Array expressionstazerrently allowed as
actual parameters.

A variable parameter is passed by reference, and any &teraitthe formal pa-
rameter induces a corresponding change in the actual peeametual variable pa-
rameters must be variables.

<parameter> <variable> || for formal parameters declared as var
<expression> for other formal parameters
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V

<identifier>
<identifier>'(’ <parameter> [’/ <parameter>]*")’

<procedure statement

Examples
1. printlist;

2. compare(avec,bvec,result);

3.2.3 Goto statement

A goto statement transfers control to a labelled stateniEme. destination label must
be declared in a label declaration. It is illegal to jump iataut of a procedure.

Example goto 99;

3.2.4 EXxit Statement

An exit statement transfers control to the calling point loé turrent procedure or
function. If the exit statement is within a function then #wdt statement can have a
parameter: an expression whose value is returned from tictidun.

Examples
1. exit;

2. exit(5);

3.2.5 Compound statement

A list of statements separated by semicolons may be grouptechicompound state-
ment by bracketing them witbegin andend .

Example begin a:=x*3; b:=sqrt a end;

3.2.6 If statement

The basic control flow construct is the if statement. If thelban expression between
if andthen is true then the statement followitigen is followed. If it is false and an
else part is present, the statement followéisg is executed.
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3.2.7 Case statement

The case statement specifies an expression which is evdlaatewhich must be of
integral or ordinal type. Dependent upon the value of theesgion control transfers
to the statement labelled by the matching constant.

| <case statement} 'case’<expression>'of'<case actions>'end’

<case actions> <case list>
<case list> 'else’ <statement>
<case list> 'otherwise’ <statement

\Y

| <case list>| <case list element>[';'<case list element]*

| <case list element} <case label>['; <case label>]'’<statement{>

<case label>| <constant>
<constant>'..’ <constant>»

case i of case cof
lis:=abs s; ‘awrite(A’);
Examples 2:s:= sqrt s;  'b’,/B:write('B’);
3 s=0 'AVCLZe 2 write( ),
end end

3.2.8 With statement

Within the component statement of the with statement thddief the record variable
can be referred to without prefixing them by the name of thenegeariable. The effect
is to import the component statement into the scope definetthdoyecord variable
declaration so that the field-names appear as simple varnievhes.

Example var sirecord xy:real end;
begin
with s do begin x:=0;y:=1 end ;
end

3.2.9 For statement

A for statement executes its component statement repgatader the control of an
iteration variable. The iteration variable must be of argnal or ordinal type. The
variable is either set to count up through a range or downutiita range.
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for ii= el to e2 do s

is equivalent to

i:=el; temp:=e2;while i<=temp do s;
whilst

for i:= el downto e2 do s

is equivalent to

i:=el; temp:=e2;while i>= temp do s;

3.2.10 While statement

A while statement executes its component statement wkéldidolean expression is
true. The statement

while e do s

is equivalent to

10: if not e then goto 99; s; goto 10; 99:

3.2.11 Repeat statement

A repeat statement executes its component statement tibleaes and then continues
to execute the component statement until its componenessgfmm becomes true.
repeat s until e
is equivalent to
10: s;if e then goto 99; goto 10;99:

3.3 Input Output

<io statement> 'writeln’[<outparamlist>]
'write’<outparamlist>

‘readIn’[<inparamlist>]
‘read’<inparamlist>

| <outparamlist>| '('<outparam>[',<outparam>]*)'|

| <outparam>| <expression>[:’ <expression>][''<expression]

| <inparamlist>] ’(<variable>['/<variable>]*")" |

Input and output are supported from and to the console andrals and to files.

3.3.1 Input

The basic form of input is theead statement. This takes a list of parameters the first
of which may optionally be a file variable. If this file varigdk present it is the input



3.3. INPUT OUTPUT 51

file. In the absence of a leading file variable the input fildes $tandard input stream.
The parameters take the form of variables into which apigptranslations of textual
representations of values in the file are read. The statement

read( a,b,q

wherea,b,care non file parameters is exactly equivalent to the sequeinstate-
ments

read( a)read( b)read( c)

Thereadin statement has the same effect as the read statement buedirigh
reading a new line from the input file. The representatiornefriew line is operating
system dependent. The statement

readin( a,b,q

wherea,b,care non file parameters is thus exactly equivalent to theesemguof
statements

read( a);read( b);read( c);readin;

Allowed typed for read statements are: integers, realg)gstrand enumerated
types.

3.3.2 Output

The basic form of output is therite statement. This takes a list of parameters the
first of which may optionally be a file variable. If this file vable is present it is the
output file. In the absence of a leading file variable the otfifgiis the console. The
parameters take the form of expressions whose values whrt&lk representations
are written to the output file. The statement

write( a,b,q

wherea,b,care non file parameters is exactly equivalent to the sequefirstate-
ments

write(  a);write(  b);write( )

Thewriteln  statement has the same effect as the write statement binefinis/
writing a new line to the output file. The representation & tiew line is operating
system dependent. The statement

writeln( a,b,q

wherea,b,care non file parameters is thus exactly equivalent to theesemguof
statements

write(  a);write(  b);write(  c);writeln;

Allowed types for write statements are integers, realsygtrand enumerated types.

Parameter formating

A non file parameter can be followed by up to two integer exgices prefixed by
colons which specify the field widths to be used in the outfutte write parameters
can thus have the following forms:

eememn

1. If eis an integral type its decimal expansion will be writtengaeded by suffi-
cient blanks to ensure that the total textual field width pieetl is not less than
m.
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2. If eis areal its decimal expansion will be written preceededlfficsent blanks
to ensure that the total textual field width produced is nss$ ldhanm. If nis
present the total number of digits after the decimal poitithvé n. If nis omitted
then the number will be written out in exponent and mantissanfwith 6 digits
after the decimal point

3. If eis boolean the strings 'true’ or 'false’ will be written intofield of width not
less than m.

4. If elf the value of e is a string-type value with a lengthmthe default value of
m shall be n. The representation shall consist of

if m > n,
(m - n) spaces,
if n >0,
the first through n-th characters of the value of e in that ord er.
if 1 <=m <=n,
the first through m-th characters in that order.
if m =0,
no characters.
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Programs, Units and Libraries

Vector Pascal supports the popular system of separate imopiunits found in Turbo
Pascal. A compilation unit can be either a program, a unitlirary.

| <program>| 'program’ <identifier>';'[<uses>';'[<block>"" |

| <invocation>| <unitid>['(’ <type identifier>[",<type identifier>]*)"] |

| <unitid> [ <identifier>[':’ "apu’ <identifier> [ <intconst>"T] |

| <uses>| 'uses’ <invocation>[',<invocation>]*|

| <block> | [<decls>';']"begin’ <statement>[;'<statement>]"ed |

<decls>| 'const’ <constant declaration>[";’<constant declarati*
‘type’<type definition>[";’<type definition>]*
'label’ <label>['", <label>]
<procedure declaration>
'var’ <variable declaration>[’;’ <variable declaratio}>

| <unit> | <unit header> <unit body>

<unit body> | ’interface’[<uses>][<decls>] 'implementation’<block>
'interface’[ <uses>][<decls>]'in’ <invocation>";’

<unit header>| <unit type><identifier>
‘unit’ <identifier> (' <type identifier> [} <type identifer>]* )’

<unittype>| ’unit’
library’

An executable compilation unit must be declared as a progiidma program can
use several other compilation units all of which must beegitimits or libraries. The

53
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units or libraries that it directly uses are specified by edfddentifiers in an optional
use list at the start of the program. A unit or library has tveeldration portions and
an executable block.

4.1 The export of identifiers from units

The first declaration portion is the interface part and iseded by the reserved word
interface

The definitions in the interface section of unit files congéta sequence of enclos-
ing scopes, such that successive units in the with list evxaerolosely contain the
program itself. Thus when resolving an identifier, if theritifer can not be resolved
within the program scope, the declaration of the identifighiw the interface section
of the rightmost unit in the uses list is taken as the definioguarence. It follows that
rightmost occurrence of an identifier definition within tierface parts of units on the
uses list overrides all occurrences in interface parts @t its left in the uses list.

The implementation part of a unit consists of declaratipnsgeded by the reserved
wordimplementatio  n that are private to the unit with the exception that a fuorctr
procedure declared in an interface context can omit thegghare body, provided that
the function or procedure is redeclared in the implemenrtgpiart of the unit. In that
case the function or procedure heading given in the intenfact is taken to refer to the
function or procedure of the same name whose body is dedlathd implementation
part. The function or procedure headings sharing the same @ the interface and
implementation parts must correspond with respect to petertypes, parameter order
and, in the case of functions, with respect to return types.

A unit may itself contain a use list, which is treated in thensavay as the use lists
of a program. That is to say, the use list of a unit makes aitilesdentifiers declared
within the interface parts of the units named within the ustetd the unit itself.

4.1.1 The export of Operators from units

A unit can declare a type and export operators for that type.

4.2 Unit parameterisation and generic functions

Standard Pascal provides es some limited support for palyhiem in itsread and
write  functions. Vector Pascal allows the writing of polymorphiactions and pro-
cedures through the use of parameteric units.

A unit header can include an optional parameter list. Theupaters identifiers
which are interepreted as type names. These can be usedaoedgalymorphic pro-

cedures and functions, parameterised by these type nanigs.isTshown in figure
4.1.
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unit genericsort(t) ;
interface
type
dataarray ( n,m :integer )=array [n..m]of t;
procedure sort ( var a :dataarray ); (see Figure 4.2)

implementation

procedure sort ( var a :dataarray ); (see Figure 4.2)
begin
end .

Example 4.1: A polymorphic sorting unit.

4.3 The invocation of programs and units

Programs and units contain an executable block. The rutehéoexecution of these
are as follows:

1. When a program is invoked by the operating system, tha onilibraries in its
use list are invoked first followed by the executable blockhefprogram itself.

2. When a unit or library is invoked, the units or librariestsuse list are invoked
first followed by the executable block of the unit or libratysilf.

3. The order of invocation of the units or libraries in a usg i left to right with
the exception provided by rule 4.

4. No unit or library may be invoked more than once.

Note that rule 4 implies that a unitto the right of a unity within a use list, may be
invoked before the uny, if the unity or some other unit tg's left namesx in its use
list.

Note that the executable part of a library will only be invdké the library in
the context of a Vector Pascal program. If the library is éidko a main program in
some other language, then the library and any units thaiess wsll not be invoked.
Care should thus be taken to ensure that Vector Pascaliéibitarbe called from main
programs written in other languages do not depend uposlisiiion code contained
within the executable blocks of units.

4.4 The compilation of programs and units.

When the compiler processes the use list of a unit or a program from left to right,
for each identifier in the use list it attempts to find an alseadmpiled unit whose
filename prefix is equal to the identifier. If such a file exigtthen looks for a source
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procedure sort ( var a:dataarray );

var
Leti, j € integer;
Lettemp € t;
begin

for i«—a.n to am-1 do
for j«—a.n to am-1 do
if aj>aj, then begin begin
temp< a;;
aj — aj+l;
ajq temp;
end ;
end ;

Example 4.2: procedure sort

file whose filename prefix is equal to the identifier, and whasfxsis .pas . If such

a file exists and is older than the already compiled file, theaaly compiled unit, the
compiler loads the definitions contained in the pre-congpileit. If such a file exists
and is newer than the pre-compiled unit, then the compitengits to re-compile the
unit source file. If this recompilation proceeds without tredection of any errors the
compiler loads the definitions of the newly compiled uniteTdefinitions in a unit are
saved to a file with the suffixnpu, and prefix given by the unit name. The compiler
also generates an assembler file for each unit compiled.

4.5 Instantiation of parametric units

Instantiation of a parametric unit refers to the process biglvthe unbound type vari-
ables introduced in the parameter list of the unit are boorattual types. In Vector
Pascal all instantiation of parametric units and all typl/morphism are resolved at
compile time. Two mechanisms are provided by which a paramenit may be in-
stantiated.

45.1 Directinstantiation

If a generic unit is invoked in the use list of a program or pifien the unit name must
be followed by a list of type identifiers. Thus given the geémsort unit in figure 4.1,
one could instantiate it to sort arrays of reals by writing

uses genericsort(real);

at the head of a program. Following this header, the proeeshrt would be
declared as operating on arrays of reals.
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4.5.2 Indirect instantiation

A named unit file can indirectly instantiate a generic uniendits unit body uses the
syntax

'interface’ <uses><decls>'in’ <invocation>";’

For example

unit intsort ;
interface
in genericsort (integer);

would create a named unit to sort integers. The naming of éinerpetric units allows
more than one instance of a given parametric unit to be usagingram. The generic
sort unit could be used to provide both integer and realrsgpprocedures. The differ-
ent variants of the procedures would be distinquished hyguiilly qualified names -
e.g., intsort.sort.

4.6 The System Unit

All programs and units include by default the unit systers gman implicit member of
their with list. This contains declarations of private rime routines needed by Vector
Pascal and also the following user accessible routines.

function abs  Return absolute value of a real or integer.
procedure append(var ffile); This opens a file in append mode.
function  arctan(x:Real):Real;

procedure assign(var ffile;var fname:string); Associates a file name with
afile. It does not open the file.

procedure blockread(var f:file;var buf;count:integer; v ar resultcount:integer);
Trys to read count bytes from the file into the buffer. Resulttt contains
the number actually read.

LatexCommand \index{blockwrite}procedure blockwrite(v ar ffile;var buf,countinteger;
var resultcount:integer); Write count bytes from the buffer. Result-
count gives the number actually read.

procedure close (var f:file); Closes afile.
function eof (var f:file):boolean; True if we are at the end of file f.

procedure erase (var f:file); Delete file f.
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function eoln  (var f:file):boolean; True if at the end of a line.
function exp (d:real):real; Reture®
function filesize (var f: fileptr):integer; Return number of bytes in a file.

function filepos (var f:fileptr):integer; Return current position in a file.

procedure freemem(var p:pointer; num:integer); Free num bytes of heap store.
Called by dispose.

bold procedure getmem(var p:pointer; num:integer); Adleaum bytes of heap.
Called by new.

procedure gettime(var hour,min,sec,hundredth:integer) ; Return time of day.

Return the integer part of r as a real.

function ioresultiinteger; Returns a code indicating if the previous file opera-
tion completed ok. Zero if no error occurred.

function length(var s:string).integer; Returns the length of s.

procedure pascalexit(code:integer); Terminate the program with code.

Time in 1/100 seconds since program started.

function random:integer; Returns a random integer.

procedure randomize; Assign a new time dependent seed to the random number
generator.

procedure reset(var ffile); Open a file for reading.

procedure rewrite(var f :file); Open a file for writing.

function trunc(r:real):integer; Truncates a real to an integer.

4.6.1 System unit constants

BLANK =

maxint = 2147483647;

pi = 3.1415926535897932385;
MAXSTRING { longest allowed string}
MAXREAL =3.4E38;

MINREAL =1.18E-38;

EPSREAL { smallest increment of reals around 0 }
MAXDOUBLE =1.79E308;

MINDOUBLE =2.23E-308;

MAXCHAR =chr(65535);
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MINCHAR  =chr(0);
NILSTR =";

minint64 =-9223372036854775807;
maxint64 =9223372036854775807,

4.7 Libraries, static and dynamic

4.7.1 Linking to external libraries

It is possible to specify to which external libraries - thatd say libraries written in
another languge, a program should be linked by placing inrtaim program linkage
directives. For example

{$linklib ncurses}

would cause the program to be linked to the ncurses library.

4.7.2 The export of procedures from libraries.

If a compilation unit is prefixed by the reserved wdibdary  rather than the words
program orunit , then the procedure and function declarations in its intaripart are
made accessible to routines written in other languages.

4.7.3 Creating libraries

Depending on the linking that you do these Vector Pascalties can either be staticly
linked into a C program, or can form a Dynamic Link Library (DLwhich can be
linked at runtime to the C code. What follows are two exampfdsow to do this.

Static Libraries

Static libraries can be used in either Linux or Windows systeBuilding and using a
library involves several stages and should be controlleghbyise of make files.
Here is an example library:

library examplelib;
interface

procedure exampleproc;
implementation

procedure exampleproc;

begin

writeln(’ procedure in library called’);
end;
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end.
and here is an example C program that calls the library:

#include<stdio.h>

main(argc, argv)

{
extern void examplelib_exampleproc();
printf("start of C program \n");

dllinit(); [* initialise the pascal runtime library */
examplelib_exampleproc(); * call the library procedure * /
printf("*end of C program\n®);

}

In order to use the library from C we must do the following:
1. Compile the library to assembler language.
2. Use the gnu tools to assemble this to an object file.
3. Create an object file version of the pascal runtime library
4. Link both of these with the C program that is going to usditirary.

The steps could be performed by the following makefile:

CFLAGS=-g
all: uselib
uselib

examplelib.s: examplelib.pas
vpc examplelib -S -Aexamplelib.s -cpugnuPentium
# complile the library to assembly language

examplelib.o: examplelib.s
gcc $(CFLAGS) -c examplelib.s

rtl.o: rtl.c
gcc $(CFLAGS) -DBUILD_DLL  -c rtl.c
# compile it in a form suitable for use in a library

rtl.c: ..J./mmpcirtl.c
cp ..J./mmpcirtl.c rtl.c
# get a copy of the pascal run time library
# from wherever we have installed the vector pascal system

uselib: uselib.c examplelib.o rtl.o
gcc $(CFLAGS) uselib.c rtl.o examplelib.o -0 uselib
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# link the C program with the examplelib

DLLs

DLLs or Dynamic Link Libraries are a type of Windows file thatrcbe linked to at
runtime. Building them is more complex than a static librasyone needs to write a
.def file which defines which functions are to be exported ftbenDLL, and one must
also build a stub library to which the main program can bedthkOne can use the gnu
diitool  to build the stub library.

We illustrate the process with a similar example. First ther&@ram:

#include<stdio.h>
main(argc, argv)

printf("start\n");
dllinit();
exampledll_exampleproc();

}

Next the example DLL in Pascal:

library exampledll;

interface
procedure exampleproc;
implementation
procedure exampleproc;
begin
writeln(" procedure in dil called’);
end;
end.

We now provide a file exampledll.def file which tells the gifitool ~ which functions
we want to export:

EXPORTS
exampledll_exampleproc
dllinit

Finally the make file:

CFLAGS=-mno-cygwin
# specify that cygwin gcc is to rely on the windows built in C i braries

all: usedll.exe exampledil.dll
usedll

exampledll.s: exampledll.pas
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vpc exampledll -S -Aexampledil.s -U -cpugnuPentium

exampledll.o: exampledil.s
gcc $(CFLAGS) -DBUILD_DLL  -c exampledll.s

rtl.o: rtl.c
gec $(CFLAGS) -DBUILD DLL - rtl.c
# compile it in a form suitable for use in a dll

rtl.c: .././mmpc/rtl.c
cp ..[./mmpcirtl.c rtl.c
# get a copy of the pascal run time library

exports.o: exampledll.a

exampledll.a: exampledll.def makefile

diitool -v -e exports.o -I exampledil.a -d exampledil.def -
# Note that you must use the -D option to tell dlitool the name o
# this also reads in the .def file it produces exampledil.a wi
# you statically link your ¢ program ( it contains stubs to the

exampledIl.dll: exports.o rtl.o exampledil.o
gcc $(CFLAGS) -shared exports.o rtl.o exampledll.o -0 exam
# build the dil using the export spec produced by dlitool

usedll.o: usedll.c
gcc $(CFLAGS) -c usedll.c
# compile the ¢ program to an object file

usedll.exe: usedll.o exampledil.a

gcc $(CFLAGS) usedll.c exampledll.a -0 usedll
# link the ¢ program with the exampledll stub library

4.7.4 Cross Language Parameter Passing

When calling Pascal from C observe the following rules:

D exampledll.dil exampledil.o rtl.o
f the dil you will build
th which
real dynamic fns )

pledil.dll

e Atomic values of type integer and real can be passed as vahaeneters. Pascal

typereal corresponds to C typiat

e Composite values such as records arrays or strings shoyldds=d as pascal
var parameters, and in C call the address of the compogitenitest be passed.

e Strings in Vector Pascal are stored in 16 bit unicode pregtégiea 16 bit length
word. C strings are stored as arrays ASCII of bytes. If a Rgscaedure re-
quires a string parameter, then the C code calling it must freestring into an

array ofshort .

Thus a Pascal procedure exported from library mylib andattedlas follows

type intarray=array[0..99] of integer;
procedure foo(var s:string; rreal; var fintarray);

would have the C prototype
extern void mylib_foo(short *, float, int *);
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Implementation issues

The compiler is implemented in java to ease portability stvoperating systems.

5.1 Invoking the compiler
The compiler is invoked with the command

vpc filename
where filename is the name of a Pascal program or unit. Forgbeam

vpc test
will compile the program test.pas and generate an exeeufdbéltest , (test.exe
under windows).

The commandpc is a shell script which invokes the java runtime system tcate

a.jar file containing the compiler classes. Instead of runningtiiedava interpreter
can be directly invoked as follows

java -jar mmpc.jar filename

Thevpc script sets various compiler options appropriate to theatpey system being
used.

5.1.1 Environment variable

The environment variablmmpcdir must be set to the directory which contains the
mmpc.jar file, the runtime librarytl.o  and thesystem.pas file.

63
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5.1.2 Compiler options

The following flags can be supplied to the compiler :

-L Causes a latex listing to be produced of all files compilede Evel of
detail can be controled using the codes -L 1 to -L3, otherthisenaximum
detail level is used.

-OPTn Sets the optimisation level attempted. -OPTO is no optititiea-OPT3 is
the maximum level attempted. The default is -OPT1.

-cores N generate code farcores executing in parallel. This option in supported on
the Opteron cpu flag. Note that late model Intel processasating in 64
bit mode can also accept code compiled with the Opteronlctstnset.

-Afilename  Defines the assembiler file to be created. In the absence aigtiis the
assembler file ip.asm.

-Ddirname  Defines the directory in which to fimtl.o  andsystem.pas

-BOEHM  Causes the program to be linked with the Boehm conservatvieage
collector.

-V Causes the code generator to produce a verbose diagnstitig tofoo. Ist
when compilingoo.pas

-oexefile Causes the linker to output txefile  instead of the default output of
p.exe.

-U Defines whether references to external procedures in themdmar file
should be preceded by an under-bar’ . This is requiredfecbff object
format but not for elf.

-S Suppresses assembly and linking of the program. An assefitblis still
generated.

-fFORMAT Specifies the object format to be generated by the assenililerobject
formats currently used are elf when compiling under Unix Giew com-
piling under windows using the cygwin version of the gcc énkor coff
when using the djgpp version of the gcc linker. for other fatsnconsult
the NASM documentation.

-CpUCGFLAG Specifies the code generator to be used. Currently the caovgajers
shown in table 5.1 are supported.
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Table 5.1: Code generators supported
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| CGFLAG | description
I1A32 generates code for the Intel 486 instruction-set
uses the NASM assembler
Pentium generates code for the Intel P6 with MMX instruction-set
uses the NASM assembler
gnuPentium | generates code for the Intel P6 with MMX instruction-set
using theas assembler in the gcc package
K6 generates code for the AMD K6 instruction-set, use for Ath
uses the NASM assembler
P3 generates code for the Intel Plll processor family
uses the NASM assembler
P4 generates code for the Intel PIV family and Athlon XP
uses the NASM assembler
gnuP4 generates code for the Intel PIV family and Athlon XP
uses the gas assembler
Opteron generates code for the AMDG64 family
uses the gas assembler

5.1.3 Dependencies

The Vector Pascal compiler depends upon a number of othigiestivhich are usually
pre-installed on Linux systems, and are freely availabté&fndows systems.

NASM

gcc

java

The net-wide assembler. This is used to convert theudatithe code gen-

erator to linkable modules. It is freely available on the vi@bWindows.
For the Pentium processor it is possible to useathassembler instead.

The GNU C Compiler, used to compile the run time librarg &m link
modules produced by the assembler to the run time library.

The java virtual machine must be available to interfretompiler. There
are number of java interpreters and just in time compileediaely avail-
able for Windows.

5.2 Procedure and function mechanism

5.2.1 Requirements

1.

2
3.
4

Must be able to call C routines as well as Pascal ones.

Must pass parameters appropriately

. Must get results back from C routines

. Must establish a name correspondence with C routinesvénatll externally.
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Name correspondance

name correspondence with the C routine
Issues here

1. Case of the names
2. allowed characters

3. how are these passed in assembler

Characters and significance

Case is significant both in C, but this is not the case of aljleges.
Pascal for instance makes case insignificant, and reqhia¢externals where the
case is significant be given a name in quotes for example:

procedure close (var f:fileptr);
external name 'pasclose’;

This allows the external routine to have a different namééointernal representation
of it. The allowed characters in a name in Hi are limited tol#teers, that means we
can not call and C routine with an _ or a digit in its name unlessvere to extend the
syntax for externals along the above lines.

Assembler representation

In the assembler file, the compiler must list all the extesiaalfollows (note this is the
Nasm syntax, it will be different for other assemblers):

extern vconcat
extern iota

extern putChar
extern getNum
extern getChar
extern  putNum

Then we can call them just as if they were declared withinfilds

call vconcat

Underscores

Most 32-bit C compilers share the convention used by 16dtmilers, that the names
of all global symbols (functions or data) they define are fedrby prefixing an under-
score to the name as it appears in the C program.

However, not all of them do: the ‘ELF’ specification statestt® symbols daot
have a leading underscore on their assembly-language names

Thus if you are producing code for Linux, which uses ELF, douse underscores.

In Vector Pascal the -U flag on the command line selects whéghding under-
scores are to be generated.
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5.2.2 The C calling convention

Before explaining the Vector Pascal function calling teéghie we present, the simpler
technique used in C and that could be used in Pascal if theeeweenesting of proce-
dures. The convention used in diagrams in this section tddhaaddresses are show
at the top of the page and high addresses at the bottom.

To call a C function, whether from C or from Pascal the follogimust be done.

1. The caller pushes the function’s parameters on the stawk after another, in
reverse order (right to left, so that the first argument djwetto the function is
pushed last).

2. The caller then executes a near ‘CALL’ instruction to pamstrol to the callee.

3. The callee receives control, and typically (although thinot actually necessary,
in functions which do not need to access their parameteagsdby saving the
value of ‘ESP’ in ‘EBP’ so as to be able to use ‘EBP’ as a basatpoto find its
parameters on the stack. However, the caller was probabigdais too, so part
of the calling convention states that ‘EBP’ must be presg¢tbyeany C function.
Hence the callee, if it is going to set up ‘EBP’ as a frame painmnust push the
previous value first.

4. The callee may then access its parameters relative to’:HBE doubleword at
‘[EBPY’ holds the previous value of ‘EBP’ as it was pushede thext double-
word, at ‘[EBP+4]’, holds the return address, pushed inityidy ‘CALL’. The
parameters start after that, at ‘[EBP+8]’. The leftmostpagter of the function,
since it was pushed last, is accessible at this offset frdd#*’Ethe others follow,
at successively greater offsets. Thus, in a function sucpragf’ which takes
a variable number of parameters, the pushing of the parasiatesverse order
means that the function knows where to find its first paramefeich tells it the
number and type of the remaining ones.

5. The callee may also wish to decrease ‘ESP’ further, so alfttate space on the
stack for local variables, which will then be accessible edative offsets from
‘EBP’.

6. The callee, if it wishes to return a value to the caller,udtideave the value in
‘AL, ‘AX’ or ‘EAX’ depending on the size of the value. Floatig-point results
are typically returned in ‘'STO'.

7. Once the callee has finished processing, it restores ‘ESR ‘EBP’ if it had
allocated local stack space, then pops the previous valtEB#’, and returns
via ‘RET’.

8. When the caller regains control from the callee, the fiomgbarameters are still
on the stack, so it typically adds an immediate constant&Ho remove them
(instead of executing a number of slow ‘POP’ instructiorid)us, if a function
is accidentally called with the wrong number of parameters t a prototype
mismatch, the stack will still be returned to a sensibleestatce the caller, which
_knows_ how many parameters it pushed, does the removing.
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consider the Pascal code:

var zotrecord x,y:integer; z:double; end;
function foo( x,y:integer; z:double):integer;begin foo: =x+y end;
procedure bar;
var X, yinteger;
z:double ;

begin

x:=foo(1,2,3.0);
end

The memory allocation, if nested functions did not exist as€al, could be imple-
mented as shown in figure 5.1.

Note that the addresses of parameters and variables cartiéesprelative either to
a special register called the frame pointer or to the stadkt@o If your code does
not dynamically push things onto the stack or if your compieeps track of the stack
position, then the SP register may be prefered. In VectocdPdmwever, as is con-
ventional with most other Pascal compilers we use the Fraoimed? register to access
parameters and variables.

Key points:

1. If you address via the frame pointer (EBP on a Pentium) therparameters
have +ve addresses and the locals have -ve addresses.

2. If you address using the stack pointer they all have +veesses.

3. If you use the SP (ESP on a Pentium) the compiler has to takeaccount
temporaries that are pushed on the stack.

5.2.3 Var Params

We have been assuming value parameters.

If we have var parameters ( parameters which, when assignetiange the value
of the actual parameter ) then the address of the paraméter than the value of the
parameter has to be passed on the stack. The compiler theesad extra level of
indirection onto the addressing of the parameter.

5.2.4 Nested Functions

The existence of nesting of functions and procedures gegecamplexities that force
us to use a more elaborate calling method than C. Considésltbeing Pascal exam-
ple where we allow function nesting.
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stack before a call

struct zot to foo
base addr stack
of zot 0 X pntr 0 X
4 y 4 y
8 8
z z

stack on entry to bar
stack

pntr 0 X -12
stack on entry to foo
4 y -8
stack
8 pntr locals
z of foo
0
frame base frame base
d link register n | dlink register

ret add n+4 | retadd
n+8 X 8

n+12 y 12

n+16| 16

Figure 5.1: Stacks and records

type vecl = array[1..10] of integer;
scalar = integer;
function sum(var v:vecl);scalar;
function total( i:scalar):scalar;
begin
total:=if i<1 then 0 else vii]+total(i-1);
end
total(length(v))

Total recurses on i, but each invocation accesses the sgetuo.
Can we use the d-link to access v?
No

Consider the following:
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first invocation of total

SP,FP
dlink
frame of
ret add total
i
L, dlink
frame of
ret add sum
vV 2 vector on
heap
3
7
sum([3,7])

At this point we can access v at mem[dlink+8], but what hagpamnthe next re-
cursion?

next invocation of total
SP,FP

dlink second
frame of
ret add total
i
dlink
— first frame of
ret add total
i
L, dlink
frame of
ret add sum
vV 2 vector on
heap
3
7
sum([3,7])

if we use mem|[dlink+8] we get the previous version of i, v iswed mem[mem][dlink]+8]
We need an alternative approach. There are 3 practicahattees:

e Displays
e Static Links

e Lambda Lifting

We have chosen to use displays since Intel hardware prosiggsort for these. They
do place slight restrictions on function parametehsit it was felt that the simplicity
of display implementation, and the ability to use the samkngamechanism as C
outweighed this.

Displays

These can use the Intel Enter instruction defined as:

1A functions f may not be an actual parameter to procedure or fungfidithe scope ofy outer to that
of f
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enter storage,level
push ebp
temp:=esp
if level>0
then

repeat (level-

1) times

ebp:=ebp-4

push dwor
end repeat
push temp
fi
ebp:=temp
esp:=esp - storage

d[ebp]

For machines other than the Intel family, you, as a compiledifier, have to generate
sequences of simpler instructions to emulate the Intelrins¢ruction.

Up to now we have assumed procedures use

enter xxx,0

Consider the effect of using enter 0,1 for sum and enter 0,®fal :

SP

dlink

ret add

| _diink

ret add

2 T
dlink

retadd]| |

sum([3,7])

2 | P display
of 2nd call
11 of total
FP J

second
frame of
total

112 R display
of 1st call
1 of total

first frame of
total

K j display of sum

frame of
sum

vector on
heap

All variables are now addressed as a pair (lexlevel,offadtre an outer level function
is lexical level 1, the first nested function is lexical le@ettc.
A parameter can now be addressed as

mem[ display[lexlevel

|+offset]
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dynamic link

FP _

I

display

local variables

SP \ other saved registers

Figure 5.2: Full stack frame layout

The display is an array in memory at the start of the curremh&. Using this notation,
parameter i is always addressed as

mem][display[2]+8]= mem[ mem[fp-8]+8]
and v is always at
mem[display[1]+8]
hh
Optimisations FP always points to the current lexical level so at lexicatle we
have

mem][display[2]+8]
mem[ mem[fp-8]+8]
mem[fp+8]

Likewise we can chose to cache other display values in egisb avoiding repeated
dereferencing of the display on stack.

Other registers sometimes have to be saved because of thitidefof the ABI of
the processor. If this is the case then they are saved atieedms been reserved for
local variables as shown in Figurg][

5.2.5 Detail of calling method used on the Pentium

Procedure parameters are passed using a modified C callivgrtiion to facilitate
calls to external C procedures. Parameters are pushed & ttack from right to
left. Value parameters are pushed entire onto the staclparameters are pushed as
addresses.
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Example

program callconv;
type tl= record a,b:integer end;
var
Xy:tl;
procedure foo(var a:tl; b:tl; cinteger);
begin
end;

function bar:tl;
begin bar:=y;end;

begin
X:=bar;
foo(x,y,3);
end.

This would generate the following code for the procedure foo

; procedure generated by code generator class ilcg.tree.Pe

label114b8f429f3a:;0
; foo;0
; entering a procedure at lexical level 1,0

enter spaceforfool1-4*1,1;  create display and variable sp
push ebx; save registers as demanded by Linux ABI

push esi;
push edi;

— Code for Foo would go here if

jmmm e it were not a null procedure

spaceforfooll equ 4; declare space needed this is done here
X because the code generation may cause
: new temporary vars to be needed so
; we dont know the space required to here

foollexit:;2

pop edi; restore saved registers

pop esi;0

pop ebx;0

leave; restore old stack frame

ret 0; pop return address into PC

and the calling code is

push DWORD 3 right most parameter 3
lea esp,[ esp+ -8]; create space for y on stack

movq MM4, [ PmainBase+ -16]; fetch y

73
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movq [ esp],MM4; store on the stack

push DWORD  PmainBase+ -8; push the address of x
EMMS ; clear mmx status flags
call label114b8f429f3a; call the procedure

add esp, 16; restore the stack

Function results

Function results are returned in registers for scalarsviofig the C calling convention
for the operating system on which the compiler is implemeéniecords, strings and
sets are returned by the caller passing an implicit paransetgaining the address of
a temporary buffer in the calling environment into which tiesult can be assigned.
Given the following program

The call ofbar in the previous example would generate

push DWORD  PmainBase+ -24, pass the address of a result buffe
call label114b8f429f712; call the function

add esp, 4, restore the stack

movg MM4, [ PmainBase+ -24); get the result buffer in MM4

movqg [ PmainBase+ -8],MM4; store in X

5.3 Array representation

The maximum number of array dimensions supported in the demgp 5.

A static array is represented simply by the number of bytgsired to store the
array being allocated in the global segment or on the stack.

A dynamic array is always represented on the heap. Sincaritsis known to the
compiler what needs to be stored at run time are the boundhamdeans to access it.
For simplicity we make the format of dynamic and conformanays the same. Thus
for schema

s(a,b,c,d:integer)= array[a..b,c..d] of integer

whose run time bounds are evaluated to be 2..4,3..7 we wawid the following
structure:

| address  field | value
X base of datg address of first integer in the array
X+4 a 2
X+8 b 4
X+12 step 20
x+16 c 3
x+20 d 7

The base address for a schematic array on the heap, will giding first byte after
the array header show. For a conformant array, it will poirihe first data byte of the
array or array range being passed as a parameter. The stegpieglifies the length of
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an element of the second dimension in bytes. It is includedioov for the case where
we have a conformant array formal parameter

x:array[a..:integer,c..d:integer] of integer

to which we pass as actual parameter the range

p[2..4,3..7]

as actual parameter, whararray[1..10,1..10] of integer

In this case the base address would point at @p[2,3] andébensiuld be 40 - the
length of 10 integers.

5.3.1 Range checking

When arrays are indexed, the compiler plants run time chiecgse if the indices are
within bounds. In many cases the optimiser is able to remuess checks, but in those
cases where it is unable to do so, some performance degmadath occur. Range
checks can be disabled or enabled by the compiler directives

{$r-} { disable range checks }

{$r+} { enable range checks }

Performance can be further enhanced by the practice ofrileglarrays to have
lower bounds of zero. The optimiser is generally able to geteemore efficient code
for zero based arrays.
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Chapter 6

Compiler porting tools

Vector Pascal is an open-source project. It aims to createduptive an efficient pro-
gram development environment for SIMD programming. In otdevalidate the con-
cepts it has been developed initially for the Intel familyppbcessors running Linux
and Microsoft Windows. However it has been intended fromahtset that the tech-
nology should be portable to other families of CPUs. Thigtbaaddresses some of
the issues involved in porting the compiler to new systems.

6.1 Dependencies

The Vector Pascal compiler tool-set can be divided alongaweas as shown in figure
6.1.

1. Tools can be divided into (a) those provided as part of éhease , versus (b)
tools provided as part of the operating environment.

(a) These are mainly written in Java, the exceptions beingnalgun-time
library in C, a Pascal System unit, and several machine igiieers.

(b) These are all available as standard under Linux, and SMisdrersions are
freely downloadable from the web.

2. Tools can further divided into (a) those required for pemg preparation and
documentation, (b) code translation tools, and (c) codeigdar preparation
tools.

(a) The program preparation tools are the VIPER IDE desdiitb€haptef??,
along with the standardTgXdocument prepartion system, DVI viewers,
and the TTH tool to prepare web enabled versions of Vectardb@sogram
descriptions.

(b) The program translation tools are:

77
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Program Preparation tools | Code translation tools | Code Generator Preparation
| tools
VIPER ilcg.Pascal ILCG CodeGenerator
| java package | Generator

VP\TeX | / \

| Pentium.java | Machine

Provided as part of | java package |
the Vector Pascal

System

Ké.java  etc files

Pentium.m4
| | MMX.m4
K6.m4 etc

ilcg.tree

Provided as part of

the operating
environment

Latex

| Java system | m4 macro processor

| Assembler e.g., NASM | Sable compiler
generator

DVlviewer

| C compiler e.g. GCC |

TTH

ULex lexical analyser

Vi.

Vii.

| generator * |

Figure 6.1: Vector Pascal toolset

. Theilcg.pascal Java package which contains the Pascal compiler

itself and classes to support Pascal type declarations. CHuiies out
the first stage of code translation, from Pascal to an ILCE[1/@.

ii. A setof machine generated code generators for CPUs sutteden-

tium, the K6 etc. These carry out the second phase of codgldtam
- into an assembler file.

The ilcg.tree Java package which supports the internal representa-
tion of ILCG trees (see section 6.3).

. The Java system which is need to run all of the above.
. An assembler, which is necessary to carry out the thirdg@loé code

translation, from an assembler file to a relocatable objkect fi

A C compiler and linkage system is needed to compile tharGtime
library and to link the relocatable object files into final extables.

In addition if one wants to alter the reserved words ofdd& Pascal or
make other lexical changes one needs the JLex lexical arajgser-
ator.



6.2. COMPILER STRUCTURE 79

1.HLL program

2.ILCG compliant In this case PascalCompiler.class

front end

3.ILCG program

5.ILCG semantics

4 transformations

6.0ptimisation rules

detajls of available
pardllelism
7.transformed ILCG program 8.ILCG for CPU

(For example Pentium.ilc)

10.code generatot 9.code generator-
generator

11.machine code for CPU

Figure 6.2: The translation of Vector Pascal to assembler.

6.2 Compiler Structure

The structure of the Vector Pascal translation system i&/shio figure 6.2. The main
program class of the compildécg.Pascal.PascalCompiler.java translates the
source code of the program into an internal structure calledLCG tree [10]. A
machine generated code generator then translates thassgémbler code. An example
would be the classilcg.tree.lA32. An assembler and lingec#ied in descendent class
of the code generator then translate the assembler codarirerecutable file.

Consider first the path followed from a source file, the phéisasit goes through
are

e i. The source file (1) is parsed by a java class PascalCongbéss (2) a hand
written, recursive descent parsgr[and results in a Java data structure (3), an
ILCG tree, which is basically a semantic tree for the program

e ii. The resulting tree is transformed (4) from sequentiap&rallel form and
machine independent optimisations are performed. Sin€&llrees are java
objects, they can contain methods to self-optimise. Eaa$satontains for in-
stance a methoglal which attempts to evaluate a tree at compile time. Another
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{ var i

for i=1 to 9 step 1 do {
}.Vl[“i]:= +H(M(V2[MN]),MVBM]));
} ;

Figure 6.3: Sequential form of array assignment

methodsimplify ~ applies generic machine independent transpormationsto th
code. Thus theimplify = method of the clasBor can perform loop unrolling,
removal of redundant loops etc. Other methods allow tre&evalto apply con-
text specific transformations.

e iii. The resulting ilcg tree (7) is walked over by a class teatapsulates the
semantics of the target machine’s instructionset (10)ekample Pentium.class.
During code generation the tree is futher transformed, ahina specific regis-
ter optimisations are performed. The output of this process assembler file
(11).

e iv. This is then fed through an appropriate assembler ak@ijrassumed to be
externally provided to generate an executable program.

6.2.1 \Vectorisation

The parser initially generates serial code for all cong#rudt then interogates the
current code generator class to determine the degree dfghara possible for the
types of operations performed in a loop, and if these arggré@an one, it vectorises
the code.

Given the declaration

var v1,v2,v3:array[1..9] of integer;

then the statement

v1:=v2+v3;

would first be translated to the ILCG sequence shown in figuBdréthe example
above variable names suchwdsandi have been used for clarity. In realitywould
be an addressing expression like:

(ref int32)mem(+("((ref int32)ebp), -1860)) ,

which encodes both the type and the address of the variabie.cdde generator
is queried as to the parallelism available on the tyf82 and, since it is a Pentium
with MMX, returns 2. The loop is then split into two, a portitimat can be executed
in parallel and a residual sequential component, resuiltitige ILCG shown in figure
6.4. In the parallel part of the code, the array subscrigtioave been replaced by
explictly cast memory addresses. This coerces the lofiom their original types
to the type required by the vectorisation. Applying #ireplify  method of the For
class the following generic transformations are performed

1. The second loop is replaced by a single statement.



6.2. COMPILER STRUCTURE 81

{ var i;
for i= 1 to 8 step 2 do {
(ref int32 vector ( 2 ))mem(+(@v1,*(-(",1),4))):=
+(™((ref Int32 vector ( 2 ))mem(+(@v2,*(-("i,1),4)))),
M(ref int32 vector ( 2 ))mem(+(@v3,*(-(",1),4)));

3

for i= 9 to 9 step 1 do {

\ VAPNL= +(M(V2[N])A(v3[M));

Figure 6.4: Parallelised loop

2. The parallel loop is unrolled twofold.
3. The For class is replaced by a sequence of statementsxpiihiegotos.

The result is shown in figure 6.5. When ttval method is invoked, constant folding
causes the loop test condition to be evaluated to
if >("i,8) thengoto leb4afllb47f

6.2.2 Porting strategy

To port the compiler to a new machine, say a G5, it is necesesary

1. Write a new machine descripti@b.iic in ILCG source code.

2. Compile this to a code generator in java with the ilcg cdergjenerator using a
command of the form

(a) java ilcg.ILCG cpus/G5.ilc ilcg/tree/G5.java G5

3. Write an interface claskg/tree/G5CG which is a subclass d@&5 and which
invokes the assembler and linker. The linker and assembéat will depend on
the machine but one can assume that at legst aassembler and linker will be
available. The clas&€5CGmust take responsibility to handle the translation of
procedure calls from the abstract form provided in ILCG te toncrete form
required by the G5 processor.

4. The clas$5CGshould also export the methgektparallelism which specifies
to the vectoriser the degree of parallelism available foegidata types. An
example for a P4 is given in figure 6.7. Note that although asRdotentially
capable of performing 16 way parallelism on 8 bit operandstieasured speed
when doing this on is less than that measured for 8 way péasafle This is
due to the restriction placed on un-aligned loads of 16 bysmntjties in the P4
architecture. Forimage processing operations alignegsses are the exception.
Thus when specifying the degree of parallelism for a pramesse should not
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{ var i
=1
lebdafl1b47e:
if >( 2, 0) thenif >("i,8) thengoto leb4afl1b47f
else null
fi
else if <(", 8) thengoto leb4afllb47f
else null
fi
fi;
(ref int32 vector ( 2 ))mem(+(@v1,*(-("i,1),4))):=
+(™((ref Int32 vector ( 2 ))mem(+(@v2,*(-("i,1),4)))),
N(ref int32 vector ( 2 ))mem(+(@v3,*(-("i,1),4)))));
i=+(",2);
(ref int32 vector ( 2 ))mem(+(@v1,*(-("i,1),4))):=
+(™((ref Int32 vector ( 2 ))mem(+(@v2,*(-("i,1),4)))),
M(ref int32 vector ( 2 ))mem(+(@v3,*(-(",1),4)));

i=+(",2);

goto leb4afl1b47e;

leb4af11b47f:

i= 9;

vIPl= +(N(V2[N]),MVBPMND);
}

Figure 6.5: After applyingimplify  to the tree

mov DWORD ecx, 1
leb4b08729615:

cmp DWORD ecx, 8

jg near leb4b08729616

lea edi,[ ecx-( 1)]; substituting in edi with 3 occurences
movg MM1, [ ebp+edi* 4+ -1620]

paddd MM1, [ ebp+edi* 4+ -1640]

movq [ ebpt+edi* 4+ -1600],MM1

lea ecx,] ecx+ 2]

lea edi,[ ecx-( 1)]; substituting in edi with 3 occurences
movg MM1, [ ebp+edi* 4+ -1620]

paddd MM1, [ ebp+edi* 4+ -1640]

movq [ ebpt+edi* 4+ -1600],MM1

lea ecx,] ecx+ 2]

jmp  leb4b08729615
leb4h08729616:

Figure 6.6: The result of matching the parallelised loofr@gjdhe Pentium instruction
set
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public int getParallelism(String elementType)

{ if(elementType.equals(Node.int32)) return 2;
if(elementType.equals(Node.int16)) return 4;
if(elementType.equals(Node.int8)) return 8;
if(elementType.equals(Node.uint32)) return 2;
if(elementType.equals(Node.uint16)) return 4;
if(elementType.equals(Node.uint8)) return 8;
if(elementType.equals(Node.ieee32))return 4;
if(elementType.equals(Node.ieeeb4))return 1;
return 1;

Figure 6.7: The method getParallelism for a P4 processor.

simply give the maximal degree supported by the architectdrhe maximal
level of parallelism is not necessarily the fastest.

Sample machine descriptions are given on the Vector Pasalalsite to help those
wishing to port the compiler. These are given in the ILCG nigetdescription lan-
guage, an outline of which follows.

6.3 ILCG

The purpose of ILCG (Intermediate Language for Code Geioergis to mediate be-
tween CPU instruction sets and high level language progrétrpsth provides a rep-
resentation to which compilers can translate a variety af@® level programming
languages and also a notation for defining the semantics Ofi@Rructions.

Its purpose is to act as an input to two types of programs:

1. ILCG structures produced by a HLL compiler are input to atoeatically con-
structed code generator, working on the syntax matchingiplies described in
[12]. This then generates equivalent sequences of assestdiements.

2. Machine descriptions written as ILCG source files are iripicode-generator-
generators which produce java programs which perform fangi.) above.

So far one HLL compiler producing ILCG structures as outpusts: the Vector Pas-
cal compiler. There also exists one code-generator-gemesdiich produces code
generators that use a top-down pattern matching techniggalegous to Prolog unifi-
cation. ILCG is intended to be flexible enough to describe dewiariety of machine
architectures. In particular it can specify both SISD andBlinstructions and either
stack-based or register-based machines. However, it dses@ certain things about
the machine: that certain basic types are supported andhthatachine is addressed
at the byte level.
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In ILCG all type conversions, dereferences etc have to beerabdolutely explicit.
In what follows we will designate terminals of the languagebpld thusoctet and
nonterminal in sloping font thusord8

6.4 Supported types

6.4.1 Data formats

The data in a memory can be distinguished initially in terrhshe number of bits
in the individually addressable chunks. The addressahlelchare assumed to be the
powers of two from 3 to 7, so we thus have as allowed formatsd8, word16, word32,
word64, word128These are treated as non terminals in the grammar of ILCG.
When data is being explicitly operated on without regardddyipe, we have termi-
nals which stand for these formatsctet, halfword, word, doubleword, quadword.

6.4.2 Typed formats

Each of these underlying formats can contain informatiomliéierent types, either
signed or unsigned integers, floats etc. ILCG allows theofalhg integer types as
terminals int8, uint8, int16, uintl6, int32, uint32, int64, uint64 to stand for signed
and unsigned integers of the appropriate lengths.

The integers are logically grouped idignedandunsigned As non-terminal types
they are represented agte, short, integer, longndubyte, ushort, uinteger, ulong

Floating point numbers are either assumed to be 32 bit ortB4ithi 32 bit num-
bers given the nonterminal symbdisat,double If we wish to specify a particular
representation of floats of doubles we can use the termieed32, ieee64

6.4.3 Reftypes

ILCG uses a simplified version of the Algol-68 reference gpmodel. A value can
be a reference to another type. Thus an integer when used addaess of a 64 bit
floating point number would be r@f ieee64. Ref types include registers. An integer
register would be &ef int32 when holding an integer,raf ref int32 when holding the
address of an integer etc.

6.5 Supported operations
6.5.1 Type casts

The syntax for the type casts is C style so we have for exa(geks82) int32 to
represent a desire to treat a 32 bit integer as a 32 bit realseltype casts act only as
constraints on the pattern matcher during code generalibay do not indicate that
the underlying hardware will perform any data transforomatiThey are inserted into
machine descritions to constrain the types of the arguntleatsvill be matched for an
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instruction. They are also used by compilers to decoratéalt@es in order both to
enforce, and to allow limited breaking of, the type rules.

6.5.2 Arithmetic

The allowed dyadic arithmetic operations are additioryrsded addition, multiplica-
tion, saturated multiplication, subtraction, saturatebtsaction, division and remain-
der with operator symboles +:, *, *:, -, -:, div, mod ..

The concrete syntax is prefix with bracketing. Thus the infieration 3+ 5+ 7
would be represented a$3 div (5 7)).

6.5.3 Memory

Memory is explicitly represented. All accesses to memogyrapresented by array
operations on a predefined arragm. Thus location 100 in memory is represented as
mem(100) The type of such an expressioragdressit can be cast to a reference type
of a given format. Thus we could hagef int32)mem(100)

6.5.4 Assignment

We have a set of storage operators corresponding to the agthis supported. These
have the form of infix operators. The size of the store beinfpp@ed depends on the
size of the right hand side. A valid storage statement migh{tdf octet)mem( 299)
:=(int8) 99

The first argument is always a reference and the second argumelue of the
appropriate format.

If the left hand side is a format the right hand side must bdw@evaf the appropriate
size. If the left hand side is an explicit type rather than anfat, the right hand side
must have the same type.

6.5.5 Dereferencing

Dereferencing is done explicitly when a value other thaneadl is required. There is
a dereference operator, which converts a reference intealloe that it references. A
valid load expression might béoctet)T ( (ref octet)mem(99))

The argument to the load operator must be a reference.

6.6 Machine description

llcg can be used to describe the semantics of machine itistngc A machine descrip-
tion typically consists of a set of register declarationfeed by a set of instruction
formats and a set of operations. This approach works wejl with machines that
have an orthogonal instruction set, ie, those that allowesking modes and operators
to be combined in an independent manner.
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6.6.1 Registers

When entering machine descriptions in ilcg registers caddmared along with their
type henceegister word EBX assembles['ebx’] ;

reserved register word ESP assembles['esp’];

would declar€EBX to be of typeref word.

Aliasing

A register can be declared to be a sub-field of another registace we could write
alias register octet AL = EAX(0:7) assembles['al];

alias register octet BL = EBX(0:7) assembles['bl'];

to indicate thaBL occupies the bottom 8 bits of registeBX. In this notation
bit zero is taken to be the least significant bit of a value. rélee assumed to be
two pregiven registerSP, GPthat are used by compilers to point to areas of memory.
These can be aliased to a particular real registgister word EBP assembles['ebp’]

alias register word FP = EBP(0:31) assembles ['ebp’];

Additional registers may be reserved, indicating that théecgenerator must not
use them to hold temporary values:

reserved register word ESP assembles['esp’];

6.6.2 Register sets

A set of registers that are used in the same way by the inginsett can be defined.
pattern reg means EBPEEBX|ESI[EDI|[ECX|[EAX|[EDX|ESH;

pattern breg meansAL|AH|BL|BH|CL|CH|DL|DH];

All registers in an register set should be of the same length.

6.6.3 Register Arrays

Some machine designs have regular arrays of registerseRatin have these exhaus-
tively enumerated it is convenient to have a means of progidin array of registers.
This can be declared as:

register vector(8)doubleword MM assembles['MM'i] ;

This declares the symbol MMX to stand for the entire MMX regisset. It im-
plicitly defines how the register names are to be printed énatssembly language by
defining an indexing variable i that is used in the assemlnigyage definition.

We also need a syntax for explicitly identifying individuabisters in the set. This
is done by using the dyadic subscript operasubscript(MM,2)

which would be of typeef doubleword.

6.6.4 Register Stacks

Whilst some machines have registers organised as an an@tea class of machines,
those oriented around postfix instructionsets, have egssacks.
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The ilcg syntax allows register stacks to be declared:
register stack (8)ieee64 FP assembles[’ '] ;
Two access operations are supported on stacks:

PUSH is a void dyadic operator taking a stack of typetrefs first argument and a
value of typet as the second argument. Thus we might h&@SH(FP,;mem(20))

POP isamonadic operator returnibgn stacks of type So we might havenem(20):=POP(FP)
In addition there are two predicates on stacks that can lkingattern pre-conditions.

FULL is a monadic boolean operator on stacks.

EMPTY is a monadic boolean operator on stacks.

6.6.5 Instruction formats

An instruction format is an abstraction over a class of cetginstructions. It abstracts
over particular operations and types thereof whilst sgeuif how arguments can be
combinedinstruction pattern

RR( operator op, anyreg rl, anyreg r2, int t)

means[rl:=(t) op(T((reft) r1), T((reft) r2))]

assembles[op '’ rl’, r2];

In the above example, we specify a register to registerinson format that uses
the first register as a source and a destination whilst thenskregister is only a desti-
nation. The result is returned in register r1.

We might however wish to have a more powerful abstractiorichvivas capable
of taking more abstract apecifications for its arguments.ekample, many machines
allow arguments to instructions to be addressing modestrabe either registers or
memory references. For us to be able to specify this in anuicsbn format we need
to be able to provide grammer non-terminals as argument®tmstruction formats.

For example we might want to be able to say

instruction pattern

RRM(operator op, reg rl, maddrmode rm, int t)

means [r1:=(t) op(T((ref t)rl), T((reft) rm))]

assemblesfop’’'r1')rm];

This implies that addrmode and reg must be non terminalgeShe non terminals
required by different machines will vary, there must be amsez declaring such non-
terminals in ilcg.

An example would bepattern regindirf(reg r)

means[ (r) ] assembles[r];

pattern baseplusoffsetf(reg r, signed s)

means[+(7(r) ,const s)] assembles[r '+’ s ];

pattern addrform means[baseplusoffsetfregindirf];

pattern maddrmode(addrform f)

means[mem(f) ] assembles[ T '] ];
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This gives us a way of including non terminals as parametepatterns.

6.7 Grammar of ILCG

The following grammar is given in Sable [34] compatible formihe Sable parser
generator is used to generate a parser for ILCG from this gr@mThe ILCG parser
then translates a CPU specification into a tree structuretwisi then walked by an
ILCG-tree-walk-generator to produce an ILCG-tree-walikalalass specific to that
CPU.

If the ILCG grammar is extended, for example to allow newhemiétic operators,
then the ILCG-tree-walk-generator must itself be modifeedenerate translation rules

for the new operators.
/*

6.8 ILCG grammar

This is a definition of the grammer of ILCG using the Sable graanspecification lanaguage. It
is input to Sable to generate a parser for machine desaripiivilcg

*

Package ilcg;

/*

6.8.1 Helpers

Helpers are regular expressions macros used in the defimititerminal symbols of the gram-
matr.

*
Helpers
letter = [[A..'Z7+['a..'2]];
digit = [0°.."97;
alphanum = [letter+['0".."9]];
cr = 13;
If = 10;
tab = 9;
digit_sequence = digit+;
fractional_constant = digit_sequence? '." digit_sequenc e | digit_sequence .;
sign = "+ | -
exponent_part = ('e’ | 'E’) sign? digit_sequence;
floating_suffix = 'f | 'F | I | 'L}
eol =crIf | cr | If; II' This takes care of different platforms
not_cr_If = [[32..127] - [cr + If]];
exponent = (e'|E’);
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quote = ",
all =[0..127];

schar = [all-"];

not_star = [all - ™;
not_star_slash = [not_star - '/;

89

/*

6.8.2 Tokens

The tokens section defines the terminal symbols of the gramma
*/

Tokens

floating_constant = fractional_constant exponent_part?
digit_sequence exponent_part floating_suffix?;
/*

terminals specifying data formats

*

void ='void’;

octet = 'octet’; int8 = 'int8’; uint8 = 'uint8’;

halfword = ’halfword’; intl6 = 'intl6’ ; uintl6 = 'uintl6’
word = 'word’; int32 = 'int32" ;

uint32 = 'uint32’ ; ieee32 = 'ieee3?2’;

doubleword = 'doubleword’; int64 = 'int64’ ;

uinté4 = 'uint64’; ieee64 = 'ieeebd’;

quadword = 'quadword’;

/*

terminals describing reserved words

*

function= 'function’;
flag = 'flag’;
location = ’loc’;

procedure='instruction’;
returns ='returns’;
label = label’;
goto="goto’;

fail ='interrupt’;

for =for’;

to="to’;

step="step’;

do ='do’;

ref="ref’;

const="const’;

reg= 'register’;
operation = 'operation’;
alias = 'alias’;
instruction = ’instruction’;

floating_suffix? |
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address = 'address’;
vector ='vector’;

stack = ’'stack’;
sideeffect="sideeffect’;

if ='if";

reserved="reserved’;
precondition ='precondition’;

instructionset="instructionset’;
/*

terminals for describing new patterns

*

pattern = ’pattern’;
means = 'means’;
assembles = 'assembles’;

/*
terminals specifying operators

*

colon = '
semicolon= ";';
comma ="
dot = ' ;
bra =(;

ket =)',

plus = '+,
satplus = '+
satminus = -,
satmult ="*";
¥ map="->"*
map="map’,
equals = =
le = <=,
ge:’>:’;
ne='<>"
shi="<<’,
shr=">>"
It="<’;

gt=">"

minus = '-;
times = '*;
exponentiate = "**';
divide = 'div’;
replicate = 'rep’;
and = 'AND’;

or = 'OR’ ;

CHAPTER 6. COMPILER PORTING TOOLS
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xor = 'XOR’;

not = 'NOT’;
sin="SIN’;
cos="COS’;
abs="ABS’;
tan="TAN’;

In="LN’;

min="MIN’;
max="MAX’;
sqrt="SQRT";
trunc="TRUNCATE’;
round="ROUND";
float="FLOAT’";
remainder = 'MOD’;
extend= 'EXTEND’;
store = "=

deref = 'V;

push =’PUSH’;
pop ='POP’,
call="APPLY";
full="FULL";
empty="EMPTY’,
subscript="SUBSCRIPT’,

intlit = digit+;

vbar = [’;

sket="T;

sbra="T;

end="end’;

typetoken="type’;
mem="mem’;

string = quote schar+ quote;
/*

identifiers come after reserved words in the grammar

*

identifier = letter alphanum?;

blank = (* ’|cr]lftab)+;

comment = /¥ not_star* '+ (not_star_slash not_star* ™*

Ignored Tokens
blank,comment;
/*

6.8.3 Non terminal symbols

*/
Productions
program = statementlist instructionlist;

y+)* 1/1;
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instructionlist =instructionset sbra alternatives sket;
/*

non terminals specifying data formats

*/
format = {octet} octet|
{halfword} halfword |
{word} word |
{doubleword} doubleword |
{quadword} quadword;

/*
non terminals corresponding to type descriptions

*/

reference = ref type ;

array = vector bra number ket;
aggregate ={stack} stack bra number ket |
{vectorlarray |

{non};

predeclaredtype=  {format} format|{tformat}tformat ;
typeprim = {typeid} typeid|
{predeclaredtype}predeclaredtype;

type = {predeclaredtype}predeclaredtype|
{typeid} typeid|
{array}typeprim array|

{cartesian}sbra type cartesian* sket|
{reftype}reference|
{map}bra [arg]:type map [result]:type ket;
cartesian =  comma type;

tformat = {signed} signed|
{unsigned}unsigned|
{ieee32}ieee3?)
{ieee63lieeebs;
signed = int32 |
{int8} int8 |

{int16} int16 |

{int64} int64;
unsigned = uint32 |
{uint8} uint8 |
{uint16} uint16 |
{uint64} uint64;

/*

non terminals corresponding to typed values
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*
value = [{refvaljrefval | *
{rhs}rhs|
{loc}loc|
{void}void|
{cartval}cartval|
{dyadic} dyadic bra [left]:value comma [right]:value ket|
{monadic}monadic bra value ket;
/*

value corresponding to a cartesian product type e.g. réoitidisers

*

cartval =sbra value carttail* sket;
carttali = comma value;

/*

conditions used in defining control structures

*/
condition ={dyadic} dyadic bra [left]:condition comma [ri
{monadic}monadic bra condition ket |
{id}identifier|
{number}number;
rhs= {number}number|
{cast}bra type ket value|
{const}const identifier |
{castpop}bra type ket pop [b2]:bra value [k2]:ket|
{deref}deref bra refval ket;

refval = loc|

{refcast} bra type ket loc;

loc = ({id}identifier|
{memory}mem bra value ket ;

*predeclaredregister = {fp}fpl{gp}ap;*/

number = {reallit} optionalsign reallit|
{integer} optionalsign intlit;

optionalsign = [{plus}plus|{minus}minus;

reallit= floating_constant;

/*

operators

*

dyadic = {plus} plus|

{minus} minus |

{identifier} identifier|

{exp}exponentiate|
{times} times |
{divide} divide|

ght]:condition ket
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{replicate} replicate|
{1t
{gtigtl
{call}call|
{le}le|
{gelgel
{eglequals|
{ne}ne|
{min}min[{max}max|
{push}push|
{subscript}subscript|
{satplus}satplus|
{satmult}satmult|
{satminus}satminus|
{shi}shi|
{shr}shr|
{remainder} remainder|
{or}or|
{and}and|
{xor}xor;
monadic = {not}not|
{full}full]
{emptylempty|
I*{pop}pop|*/
{sin}sin|
{trunctrunc|
{round}round|
{float}float]|
{extend}extend|
{cos}cos|
{tan}tan|
{abs}abs|
{sart}sqrt |
{In}in;
/*
register declaration
*
registerdecl = reservation reg aggregate type identifier a
reservation = {reserved}reserved|{unreserved};

aliasdecl = alias reg aggregate type

[child]:identifier equals [parent]:identifier bra [lowb

assembles sbra string sket;

opdecl = operation identifier means operator assembles sbr

operator = {plus}plus|
{minus}minus|
{times}times|

{1t

ssembles shra string sket ;

it]l:intlit colon [highbit]:intlit

a string sket;
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{gthat]
{min}min|
{max}max|
{satplus}satplus|
{satmult}satmult|
{satminus}satminus|
{shi}shl|
{shr}shr]|

{le}le]
{ge}gel
{eglequals|
{ne}ne|
{divide} divide|

{remainder}remainder|

{orlor|
{and}and|
{xor}xor;

/*
pattern declarations

*

assign = refval store value ;
meaning =

{value}value|

{assign}assign|

{goto}goto value|

{fail}fail value|

{iflif bra value ket meaning|

{for} for refval store [start]:value to [stop]:value step [ increment]:value do meaning|
{loc}location value;
patterndecl = pattern identifier paramlist means sbra mean ing sket assemblesto sideeffects precond|
{alternatives} pattern identifier means sbra alternative S sket;

paramlist = bra param paramtail* ket|{nullparam}bra ket;

param = typeid identifier|{typeparam} typetoken identifi erl{label}label identifier;
typeid = identifier;
paramtail = comma param;

alternatives = type alts*;

alts = vbar type;

precond = precondition sbra condition sket|
{unconditional};

asideeffect = sideeffect returnval;
sideeffects = asideeffect*;

assemblesto = assembles sbra assemblypattern sket;
assemblypattern = assemblertoken®;
assemblertoken = {string} string |
{identifier} identifier;

returnval = returns identifier;

/*
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statements

*
statement =
{aliasdecl} aliasdecl|

{registerdecl} registerdecl |
{addressmode} address patterndecl|
{instructionformat}procedure patterndecl|
{opdecl}opdec]|
{flag} flag identifier equals intlit|
{typerename}typetoken predeclaredtype equals identifie r
{patterndecl} patterndecl;
statementlist = statement semicolon statements?;
statements = statement semicolon;

i
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Name
plus
satplus
satminus
satmult
equals
le

ge

ne

shl

shr

It

gt
minus
times
exponentiate
divide
replicate
and

or

xor

not

sin

cos

abs

tan

In

min

max
sqrt
trunc
round
float
remainder
extend
store
deref
push

pop

syntax num args

1%

e
e

div’
rep’
"AND’

'OR’

'XOR’
'NOT’
'SIN’
'COS’
'ABS’
'TAN’

LN’

'MIN’
'MAX’
'SQRT’
"'TRUNCATE’
'ROUND’
'FLOAT’

'MOD’

'EXTEND’

'PUSH
'POP’

comment

Table 6.1: The prefix operations of ILCG
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