Context-oriented Programming

Pascal-Gostanza
Vrje Universitert:brussel:-Belgium

Context?

everything computationally accessible

location

subscription

time of day

temperature

connectivity Pt battery level

Introduction to OOP.

class Rectangle {
Nt x, vy, width, height;
void draw() { ...}

}

class Person {
String name; address; City, Zip;
void display() { ... }

}

Context-independent behavior.

class Person {

String name;

void display: () {
printin(name);

}

}

Context-dependent behavior.

class Person {

String name, address; zip, City;

void display: (... printAdaress, prntGity-...) {
orintin(name);

if (printAdadress) { printin(address); }
if(printGityEprantinzipf-prntin(city);

Model-View-Controller.

Increased Complexity.

Increased Complexity.

Person
Attributes
Attributes

g

Role
Attributes
Attributes

Employee
Attributes
Attributes

Manager
Attributes
Attributes

Increased Complexity.

Component

Attributes

Observer

Attributes

Attributes

—_

Attributes

e

View

Attributes

Person

Attributes

i

Attributes

PersonView

Attributes

Attributes

e

Role

Attributes
Attributes

Employee

Attributes

Attributes

EmplView

Attributes

Attributes

N

Manager

Attributes
Attributes

Attributes

ManagerView

Attributes
Attributes

Manual Context Orientation.

x Context-dependent behavior
spread over several classes!

x Secondary classes required just for plumbing!

x Basic notion of OOP: broken:
Objects don’t know how to behave!

Context-oriented Programming.

ThisClass
void doThis (Context ctx) {
if (ctx == foo) {
doThisIinFooStyle(...)
} else if (ctx == bar) {
doThisInBarStyle(...)
...

}

ThatClass
void doThat (Context ctx) {
if (ctx == foo) {
doThatinFooStyle(...)
} else if (ctx == bar) {
doThatinBarStyle(...)
} ..

}

Context-oriented Programming.

Context-oriented Programming.

x Several language extensions...
(Contextl, Contexts,; ContextR,; ContextPy, Contextd, ...)

® Here: Contextl, based on the
Common Lisp Object System (CLOS).

-

: R b b b b B b b b b b b b 2
41444444414444444444444444
OO0 OO0
;‘//444JJJJJJJJJ/JJJ/44///.;/;“

T o L

YY) J/IJJJ414,J
,,4,44 ™YY JJJJJ J

44._444‘44,44

X
::JJJJJJ ,/ﬂ J/ﬂ ,JJJJJ::J,

\ -

root layer
employment layer

(deflayer employment)
(def, ., .. .
((define-layered-class employer :in-layer employment ()
((hame :Initarg :name
layered-accessor employer-name)))
(def,
(define-layered-class person :in-layer employment ()
((employer :initarg :employer

(def
layered-accessor person-employer)))

(e
(define-layered-method display

INn-layer employment :after ((object person))
(display (person-employer object)))

root layer
employment layer

defl; INfo layer
{de (deflayer info) y

(def . .
(defii . [-1ay. .
({ (n (define-layered-class info-mixin :in-layer info ()
((@ddress :initarg :address
layered-accessor address)))

(def . .
(defii .
e (define-layered-method display
(det in-layer info :after ((object info-mixin))
(e (print (address object)))
(defii . . . -
i (define-layered-class person :in-layer info (Info-mixin)
)
((define-layered-class employer :in-layer info (info-mixin)
0)

Example Classes.

Root Layer

Employment Layer

Person

Name

Employer

\

Employer

Name

Info Layer

Info

Address

Layer Activation.

L_L?;

i (with-active-layers (...)
. (display q))
|

Layer Activation.

: (with-active-layers (...) :
(Msg p)) '
i

I

(display q)

I
>
I

Bl=lagler

Essential Concepts.

x Behavioral Variations: hew: or modified lboehavior.
x | ayers: group related behavioral variations.
x Activation: dynamic activation/deactivation of layers.

x Context: any computationally accessible information.

x Scoping: explicit control of effect of layer activation.

Success Stories.

x Project for Hungarian government

Gathering data from communes for budget planning
+ Requires context-dependencies in the welb GUI

+ Started in ' July ‘07, in active use since November ‘07
+ Apache + Steel Bank- Common Lisp + PostgreSQL

+ 4000 registered users
+ Average 300 online, more than 500 at peak times

Success Stories.

x | isp on Lines
+ Web application framework (similar to Ruby on Rails)
+ Used for commercial website

x Ordina Belgium

Competence Center for

Advanced Planning & Scheduling

+ Context-aware Security Guard Assistant

I he Figure Editor Example.

x Hierarchy of simple and composite graphical objects.

x Changing positions of graphical objects
triggers updates on the screen.

x [Used to motivate aspect-oriented programming.
(“jlumping aspects’)

(define-layered-class
((x :Initarg :X :layereo

root layer
ooint (figure-element)

-aCCessor point-x)

(y :initarg :y :layered

-aCcCcessor point-y)))

(define-layered-method move ((elm point) dx dy)
(Incf (point-x elm) dx)
(incf (point-y elm) dy))

(define-layered-class line (figure-element)

(o1 :initarg :p1 :laye

red-accessor line-p1)

(02 :initarg :p2 :layered-accessor line-p2)))

(define-layered-method move ((elm line) dx dy)
(move (line-p1 elm) dx dy)
(move (line-p2 elm) dx dy))

(de

(? (deflayer display-layer)
Y
(define-layered-method move
(@€ in-layer display-layer :after
" ((elm figure-element) dx dy)
(Ir (update display elm))

[@€ (define-layered-method set-point-x
(E"in-layer display-layer :after
(" ((elm point) new-x)
(update display elm))

root layer
display layer

(7. same for set-point-y, set-line-p1, set-line-p2 ...

Layer Activation.

i (with-active-layers (...) |
r (movep...)) '
=

|

(set-point-x g ...)

>
|

When to update’?

i (with-active-layers (...) |
r (movep...)) l
=

|

(set-point-x g ...

) -

>UPaAate
Upaate
Upgate
Upaate

update

When to update’?

i (with-active-layers (...) |
 (movep...))

|
=
|

(set-point-x g ...)

>
|

bpdafe

When to update?

31

only top-level moves

DisplayUpdating v4

aspect DisplayUpdating {

pointcut move (FigureElement fe):
target (fe) &&
(call (void FigureElement.moveBy (int, int))
call (void Line.setPl (Point))
call (void Line.setP2 (Point))
call (void Point.setX(int))
call (void Point.setY¥Y (int)));

pointcut topLevelMove (FigureElement fe):
move (fe) && !'cflowbelow (move (FigureElement)) ;

after (FigureElement fe) returning: topLevelMove (fe) {

Display.update (fe) ;
}

Update depends on context!

E (with-active-layers (...) :
r (movep...))

deac’nva’m layer

(set-point-x g ..

reac’nva’re layer
update

e

root layer

(dy display layer
(x(deflayer display-layer)

(define-layered-method move
(de .In-layer display-layer :around
ir ((elm figure-element) dx dy)
(ir (with-inactive-layers (display-layer)
(call-next-method))
(de (update display elm))

... Same for set-point-x, set-point-y, set-line-p1, set-line-p2 ...

root layer

(de display layer
(((deflayer display-layer)

(defun call-and-update (change-function object)
(de (with-inactive-layers (display-layer)
(ir (funcall change-function))))
(ir (update display object))

(de (define-layered-method move
c In-layer display-layer :around
(((elm figure-element) dx dy)
(call-and-update (function call-next-method) elm))
(de
((define-layered-method layered-slot-set
(n .In-layer display-layer :around
((elm figure-element) writer)
(call-and-update writer elm))

...out can this be
implemented efficiently?

| ayers as classes.

| ayers as classes.

active layers primary
thread A \ layers

RootLayer

Layer1+3*

| ayers as classes.

active layers
thread A

primary
layers

RootLayer

active layers
thread B

Layer1+3*

Layer1+2*

| ayers passed via
another iImplicit argument.

x 0].MSsyg(X, Y, z) => obj.msg(object, X, V, 2)

x (move elm xy) => (move layers elm xy)

x \ethods are dispatched on layers,
and possibly on further arguments.

Key Ingreaients.

x | ayer combinations via multiple inheritance.

x | ayered dispatch via multiple dispatch.

x Efficient caches for layers (in: GontextL).

x Efficient method dispatch (in CLOS).

Benchmark results.

Implementation

Platform

Without Layers

With Layers

Overhead

Allegro CL 7.0

Mac OS X

2.292 secs

2.540 secs

10.82% slower

CMUCL 19b

Mac OS X

0.7812 secs

0.7361 secs

6.13% faster

LispWorks 4.4

Mac OS X

3.0928 secs

3.1768 secs

2.72% slower

MCL 5.1

Mac OS X

2.3506 secs

2.6412 secs

12.36% slower

OpenMCL 0.14.3

Mac OS X

2.2448 secs

2.5066 secs

11.66% slower

SBCL 0.9.4

Mac OS X

0.8363 secs

0.7795 secs

7.29% faster

CMUCL 19a

Linux x86

0.76 secs

0.836 secs

10% slower

SBCL 0.9.4

Linux x86

0.50684 secs

0.638 secs

12.24% slower

| ayer dependencies.

x (deflayer phone-tariff)

(define-layered-method start-phone-call
In-layer phone-tariff :after (numlber)
... record start time ...)

(define-layered-method end-phone-call
IN-layer phone-tariff :after ()
... record end time & determine cost ...)

x \\hat if there are several alternative phone tariffs?

| ayer Inheritance.

x (deflayer phone-tariff)

(define-layered-method start-phone-call
In-layer phone-tariff :after (numlber)
... record start time ...)

x (deflayer phone-tariff-a (phone-tariff))
(deflayer phone-tariff-b (phone-tariff))

x _.allows sharing of common behavior.
But this is not enough:
Tariff a and b should be mutually exclusive!

| ayers as metaobjects.

x Reflection =
Introspection ana intercession.

x Vetaobject protocols =
OOP-style organization of the reflective API.

®x Here: Layers are instances of layer metaobject classes.

INntercession of
layer activation.

x (defclass tariff-base-layer-class (standard-layer-class)

0)

(deflayer phone-tariff-() ()
(:metaclass tariff-base-layer-class))

INtercession of
layer activation.

(with-active-layers (phone-tariff)
(start-phone-call ...))

e e
~

x |nternally calls
(adjoin-layer-using-class <phone-tariff> ...)

INtercession of
layer activation.

x (defclass tariff-base-layer-class (standard-layer-class)

0)

(deflayer phone-tariff ()-()
(:metaclass tariff-base-layer-class))

x (define-layered-method adjoin-layer-using-class
(layer tariff-base-layer-class) active-layers)
(if (layer-active-p ‘phone-tariff active-layers)
active-layers
(let ((tariff (ask-user “Select tariff ...")))
(adjoin-layer tariff active-layers))))

| ayer dependencies.

x Conditional or unconditional-blocking
of layer activations.

x |nclusion depenadencies:
Activation of a layer requires activation of another.

x Exclusion dependencies:
Activation of a layer requires deactivation of another.

x Also: dependencies on layer deactivation.

Efficiency.

x Goal: Only incur a cost when necessary.

x (define-layered-method adjoin-layer-using-class
IN-layer block-managed-layers
(layer managed-layer-class) active-layers)
(values active-layers t))

Benchmark results.

x \Without reflective layer activation (JMLG:006).

Implementation

Platform

Without Layers

With Layers

Overhead

Allegro CL 7.0

Mac OS X

2.292 secs

2.540 secs

10.82% slower

CMUCL 19b

Mac OS X

0.7812 secs

0.7361 secs

6.13% faster

LispWorks 4.4

Mac OS X

3.0928 secs

3.1768 secs

2.72% slower

MCL 5.1

Mac OS X

2.35006 secs

2.6412 secs

12.36% slower

OpenMCL 0.14.3

Mac OS X

2.2448 secs

2.5066 secs

11.66% slower

SBCL 0.9.4

Mac OS X

0.8363 secs

0.7795 secs

7.29% faster

CMUCL 19a

Linux x86

0.76 secs

0.836 secs

10% slower

SBCL 0.9.4

Linux x86

0.5684 secs

0.638 secs

12.24% slower

Benchmark results.

x \Vith reflective layer activation (SAG PSC 07).

Implementation

Without Layers

With Layers

Overhead

Allegro CL 8.0

2.544 secs

2.650 secs

4.17% slower

CMUCL 19c

0.77 secs

0.744 secs

3.49% faster

LispWorks 4.4.6

3.128 secs

3.2374 secs

3.50% slower

MCL 5.1

2.187 secs

2.4358 secs

11.38% slower

OpenMCL 1.0

2.3788 secs

2.5938 secs

9.04% slower

SBCL 0.9.16

0.9138 secs

0.8708 secs

4.94% faster

~eature Diagrams
{0 the rescue.

Internet-tariff

@

phone-tariff-b | | phone-tariff-c flat-raté)-option

/A\

flat-rate-1| | flat-rate-2

Summary.

x Context-oriented Programming: provides

+ layers with partial-classes and methods

+ that can be freely: selected and combinead
+ without interfering with-other contexts.

Summary.

x COP Is independent of source code organization.
+ Essential contribution is layer -activation at runtime.
+ Beneficial to activate/deactivate layers anywhere.

x COP is compatible with'a
higher-order reflective programming style.

Contextl.

x Available for 6 major Common Lisp implementations.
x |mplemented using the CLOS MOP.

x Apparently no serious runtime overhead!

x Source code with-MIT/BSD-style license at
http://common-lisp.net/project/closer/

http://common-lisp.net/project/closer/
http://common-lisp.net/project/closer/

\Vlajor achievements so far...

= Language Construct for Context-oriented Programming - An Overview of ContextL
Dynamic Languages Sympaosium 2005 (with Robert Hirschfeld)

= Efficient Layer Activation for Switching Context-dependent Behavior
Joint Modular Languages Conference 2006 (with-Robert Hirschfeld & Woligang De Meuter)

= Reflective Layer Activation in ContextL
ACM Symposium on-Applied Computing- 2007 (with' Robert Hirschield)

= Context-Oriented Domain Analysis
International and Interdisciplinary- Conference on Modeling and Using Context 2007 (Brecht Desmet et al.)

= Context-oriented Programming
Journal of Object Technology, March/April 2008 (with: Robert Hirschfeld & Oscar Nierstrasz)

= Filtered Dispatch
Dynamic LLanguages Symposium 2008 (with Charlotte Herzeel, Jorge Vallejos, Theo D’Hondlt)

= Context-oriented Software Transactional Memory in Common Lisp
Dynamic Languages Symposium 2009 (with Charlotte Herzeel & Theo D’Hondt)

COP Future Themes.

x Feature Diagrams

x Context-oriented Domain Analysis

x Distributed Context-oriented Programming
x Ambient Context-oriented Programming

x Hltered Dispatch / Predicate Dispatch

» Parallel Programming

Thank youl!

