
REVISED NOTES –
PLEASE USE INSTEAD OF

ORIGINAL HANDOUT

Sieve Partitioning
System for Cell

Linux
A Practical Introduction

Alastair F. Donaldson

Codeplay Software Ltd.

ally@codeplay.com

Laboratory session

International Summer School on
Advances in Programming Languages,

Heriot-Watt University, Edinburgh

27th August 2009

Introduction
In this lab session you will use the Codeplay Sieve Partitioning System to offload parts of C++ applications to
run on the SPE (Synergistic Processor Element) cores of the Cell Broadband Engine processor.

Since we do not have a lab-full of Cell BE processors, you will use the IBM Full System Simulator to execute
compiled code. Unfortunately this means that you will not be able to assess the performance improvements
gained by code offloading, since the fast mode of the simulator is functionally accurate but not cycle
accurate. (Cycle accurate mode is extremely slow, taking around 10 minutes to simulate a simple “Hello,
world!” program!)

The main focus of the lab will be on understanding the language extensions proposed by Codeplay, and how
they can be used to incrementally offload and optimize code.

Bug reporting
If you come across any bugs in the system during the lab then please log them: make a new folder, copy all
relevant files for the bug into this folder, and record the compiler command you used to reproduce the bug.
Then talk to Alastair Donaldson after (or during) the session, or email him an archive of the bug folder
(ally@codeplay.com) – this kind of feedback is extremely valuable.

Additionally, any suggestions for improvements to the system (related to functionality or usability) are very
welcome!

Overview
The lab session is structured as follows:

Setup [estimated time: 10 minutes]

Before starting the lab proper, you will download and install the Sieve Partitioning System, and check that
your machine is appropriately set up by running a simple program using the Cell Simulator.

Part 1 – Offloading image filters [estimated time: 50 minutes]

This is the bulk of the lab session, and will: illustrate the process of offloading code using sievethread blocks,
demonstrate the way function pointers and multiple compilation units are handled by the language
extensions, and show how offloaded code can be incrementally optimized for a particular target.

Part 2 – Exploring overloading and type inference [estimated time: 20 minutes]

Don't worry if you run out of time during Part 1. If you complete Part 1 in good time then Part 2 will illustrate
the way outer pointers can be used for function overloading, and will also show how a limited form of type
inference is used to help automate method duplication.

Part 3 – Experiment further! [any time remaining]

If you complete the lab work particuarly fast you may wish to spend some time experimenting further with the
Sieve Partitioning System, either based on experience from the rest of the lab session, or by looking at
further features described in the documentation included with the lab session materials.

Acknowledgements
A massive thank you to Iain McCrone for undertaking the mammoth effort of getting the various components
required for this lab session working and installed on the lab machines. Thanks to Philipp Ruemmer for
technical advice, Athanasios Konstantinidis for an introduction to the Cell Simulator, and Mustafa Aswad for
giving the session a dry run before the Summer School. Finally, thanks to the Codeplay Sieve team (Pete
Cooper, Uwe Dolinsky, Andrew Richards, Colin Riley and George Russell) for making the Sieve Partitioning
System available for use, and advising on various issues which arose during the preparation of these notes.

Setup
IMPORTANT: please work in your home directory unless the instructions state otherwise. The examples
supplied with the lab materials assume this.

Logging into lxpara1

The software required for the lab is on a particular machine, lxpara1. Use your guest username and
password to log into this machine via SSH, using the -X option:

-bash-3.2$ ssh -X guestXX@lxpara1.macs.hw.ac.uk
guestXX@lxpara1.macs.hw.ac.uk's password:
[type password]

Getting materials for the lab session

Download an archive of materials from the session:

-bash-3.2$ wget http://allydonaldson.co.uk/SummerSchoolLabSession.tar.gz

Decompress:

-bash-3.2$ gunzip SummerSchoolLabSession.tar.gz

Extract:

-bash-3.2$ tar -xvf SummerSchoolLabSession.tar

Installing the Sieve Partitioning System

Use wine (Windows emulator) to run the Sieve Partitioning System installer executable:

-bash-3.2$ wine SummerSchoolLabSession/SievePartitioningSystemCellLinuxv1.4.4.alpha\
@20090429.exe

You will be taken through a sequence of installation screens – see next page for a diagram and instructions
for how to navigate through the installer.

To configure the installation to suit the Heriot-Watt lab settings, run a small batch file:

-bash-3.2$ source SummerSchoolLabSession/setupenvironment

NOTE: Before you leave the lab, even if you leave early, please uninstall the Sieve Partitioning System by
running:

-bash-3.2$ wine uninstall

and then clicking Uninstall.

Compiling “Hello, world!” using the Sieve Partitioning System and GNU tools

Before using the Sieve Partitioning System for code offloading, we shall compile and execute a simple
program to check that the Sieve Partitioning System, Cell SDK and Cell Simulator are working properly.

Make a file called hello.cpp and use your favourite editor (e.g. emacs) to enter a simple “Hello, world!”
program:

-bash-3.2$ touch hello.cpp
-bash-3.2$ emacs hello.cpp

#include <stdio.h>

int main()
{
 printf("Hello, world!\n");
 return 0;
}

Use CellSieveCPP, the Sieve Partitioning System compiler, to compile this file:

Installation walkthrough for Sieve Partitioning System

Next

I Agree

Next

Install

Next

Un-tick “Show Readme”, Finish

OK (then
wait a few
seconds)

Just close this window

-bash-3.2$ wine CellSieveCPP hello.cpp
CellSieveCPP (1.4.4 CELL on 20090429) Copyright (C) 2002-2009 Codeplay Technology Limited
and Codeplay Software Limited. All rights reserved.

hello.cpp (CellSieveCPP) - 0 errors, 0 seconds, 9968 lines

TROUBLESHOOTING: Did you get this error?

Your licence for CellSieveCPP is not valid.
You will need to obtain a valid licence with the 'Licence Manager' program.
Go to:
http://www.codeplay.com/licence.shtml?co=44390C1044E2FB39443B003944391344391339
to get an evaluation licence. If you have a CD Key, type in:
 vectorc86 /licencecode cd-key

Then you probably didn't do

-bash-3.2$ source SummerSchoolLabSession/setupenvironment

above. Do this and try again.

This will create a folder called outputc which contains machine-generated ANSI-C files corresponding to
the source program. These are compile for Cell using the ppu-gcc and spu-gcc compilers, which are part of
the IBM Cell SDK. CellSieveCPP generates a makefile to automate this process.

Navigate to the outputc folder, and type make:

-bash-3.2$ cd outputc/
-bash-3.2$ make
ppu32-gcc -std=c99 -W -Wall -Wuninitialized -Wcomment -Wchar-subscripts -Wdeprecated-
declarations -Wendif-labels -Wformat-extra-args -Wimplicit -Wimport -Winline -Wmissing-
...
-DBIG_ENDIAN_MACHINE -D __USE_SWCACHE *.o -lspe2 -lsieve -lm -o main

This should succeed without errors, and result in a file called main. Although this file has execute
permissions, you can't execute it as it is a binary for the Cell BE processor and will not work on your x86
machine:

-bash-3.2$./main
-bash: ./main: cannot execute binary file

Executing “Hello, world!” using the Cell Simulator

Open a new terminal window, and once again SSH into lxpara1:

-bash-3.2$ ssh -X guestXX@lxpara1.macs.hw.ac.uk
guestXX@lxpara1.macs.hw.ac.uk's password:
[type password]

then do:

-bash-3.2$ source SummerSchoolLabSession/setupsimulator

In this new terminal window, launch the IBM Full System Simulator in GUI mode by typing systemsim -g:

-bash-3.2$ systemsim -g
==
THIS CELL BROADBAND ENGINE SYSTEM SIMULATOR, TOGETHER WITH ALL PERFORMANCE
DATA RESULTING THEREFROM, IS PROVIDED BY IBM AND RECEIVED BY YOU ON AN "AS-IS"
BASIS, WITHOUT WARRANTY OF ANY KIND. SEE THE APPLICABLE LICENSE FOR ADDITIONAL
TERMS AND CONDITIONS.
==
GUI Enabled
Licensed Materials - Property of IBM.
(C) Copyright IBM Corporation 2001, 2009
All Rights Reserved.
Using initial run script /opt/ibm/systemsim-cell/lib/cell/systemsim.tcl

After some seconds' delay, this will open two new windows, entitled systemsim-cell and mysim:

The terminal from which you launched the simulator should show this:

…
LOAD : ELF startup: PC=0x0000000001000000, msr=0x1000000000000000
LOAD : gpr[1]=0x000000000FFFFF90, gpr[2]=0x0000000000000000
systemsim %

Click MODE in the systemsim-cell GUI to produce a simmode dialogue box. Click on Fast Mode – the
simulator mode should change from SIMPLE to LOOSE:

Close the simmode dialogue box. Now click SPU Modes in the systemsim-cell GUI to produce an
spumodes dialogue box. Click the Fast box in the bottom right hand corner, to change the mode of each
simulated SPU to Fast:

Close the spumodes dialogue box.

Now click GO in the systemsim-cell GUI. This will cause the mysim window to boot the Fedora 9
operating system on the simulated Cell processor, ending with this output:

Click “Fast Mode”

Click here

 Welcome to Fedora Fedora release 9 (Sulphur)
 Press 'I' to enter interactive startup.
eth0: bogus network driver initialization
No IRQ retreived
Starting login process
[root@(none) ~]#

This may take a couple of minutes. Meanwhile, the terminal window from which you started the simulator
will proceed to spout garbage along the lines of:

 while execu..."
error in background error handler:
out of stack space (infinite loop?)
 while executing
"::tcl::Bgerror {out of stack space (infinite loop?)} {-code 1 -level 0 -errorcode NONE -errorinfo
{out of stack space (infinite loop?)
 while execu..."
35263820000000: [0:0:0]: (PC:0xC00000000005C838) : 10.8 Mega-Inst/Sec : 550.3 Giga-Cycles/Sec
35263820000000: [0:0:1]: (PC:0xC00000000005C838) : 9.4 Mega-Inst/Sec

Do not worry about this – this window will continue to display such output in an infinite loop. Minimize the
window and ignore it for the rest of the session.

To get a binary to run in the simulator, you use a program called callthru to copy the binary to the simulated
workspace. In the simulator terminal window (mysim), do:

[root@(none) ~]# callthru source /u1/others/guestXX/outputc/main > main
[root@(none) ~]# chmod +x main
[root@(none) ~]# ./main
Hello, world!

where XX is your guest login number.

So far so good – you have compiled a simple program for the Cell BE processor using the Sieve Partitioning
System, and executed it in the simulator!

Obviously this example is trivial – it does not use the Cell SPE processors, or any of the Sieve Thread
language extensions. This will be the subject of the rest of the lab.

IMPORTANT: Do not close the simulator – you will need it for the remainder of this session.

Part 1 – Offloading image filters
We are going to explore the Sieve language extensions by taking two simple image processing filters, and
offloading them to run across all the cores of the Cell processor.

Checking out Lena
We shall apply our image processing filters to the industry-standard cropped image of Swedish model Lena
Söderberg. A 128x128 pixel image of Lena is provided: SummerSchoolLabSession/lena.ppm (we use a
small image because the Cell simulator is rather slow, even in FAST mode). Open this image using GIMP,
and leave GIMP open:

-bash-3.2$ gimp SummerSchoolLabSession/lena.ppm &

GIMP takes a while to start, and you may need to go through some installation screens to get the tool to start
for the first time. We shall use GIMP throughout the lab session to view image results, which is why it's best
to leave it open.

Emboss filter on PPE only
The first image processing filter we shall consider performs embossing, producing the following effect:

Copy the following files into your home directory:

SummerSchoolLabSession/image/image.h
SummerSchoolLabSession/image/image.cpp
SummerSchoolLabSession/emboss_ppe/emboss.cpp

Have a quick look at emboss.cpp – it is a simple piece of C++ code which takes an input image, and
produces an output image by applying a kernel to each input pixel. The details are not important for us,
except that it is clear that the order in which pixels are processed is irrelevant and thus the filter is a good
candidate for parallelisation.

IMPORTANT: Use rm -rf outputc to remove the existing outputc directory. You must do this every
time you recompile, otherwise you will get strange link errors.

Compile emboss.cpp and image.cpp with CellSieveCPP:

-bash-3.2$ wine CellSieveCPP emboss.cpp image.cpp

(Ignore the warnings the compiler generates when it processes the Linux header files.)

Select the mysim window, use the callthru utility to copy both main and lena.ppm into the simulated
workspace, and run main:

[root@(none) ~]# callthru source /u1/others/guestXX/outputc/main > main
[root@(none) ~]# callthru source /u1/others/guestXX/SummerSchoolLabSession/lena.ppm > lena.ppm
[root@(none) ~]# ./main
Usage: ./main input-ppm-file output-ppm-file
[root@(none) ~]# ./main lena.ppm output.ppm

Running emboss filter on input file lena.ppm
Writing results to output file output.ppm

(Note that you don't need to add execute permissions to main this time, since you are overwriting an existing
executable file called main.)

To view the output image, we use callthru again to copy output.ppm back to /u1/others/guestXX:

[root@(none) ~]# callthru sink /u1/others/guestXX/output.ppm < output.ppm

Now you should be able to open /u1/others/guestXX/output.ppm using GIMP, and you should see
the the embossed version of Lena as shown above.

Offloading emboss filter to a single SPE
Now we want to get the emboss filter running on the Cell SPEs. For starters, let's offload the whole filter to
run on a single SPE.

Open emboss.cpp, and look at the body of the emboss function.

Enclose the whole of the body in a sievethread block:

void emboss(…)
{
 int handle = sievethread
 {
 const int start = ...

 };
}

Emboss

NOTE: The closing brace of your sievethread block must be followed by a semicolon, since the block is
actually a single statement from the point of view of its enclosing scope.

A sievethread block executes asynchronously as an SPE thread, which is why the block returns a handle.
Before the end of the function, but after the end of the sievethread block, add a call to sieveThreadJoin to
wait for the sievethread to complete:

sieveThreadJoin(handle);

While sievethread is a new keyword, sieveThreadJoin is a library function, and requires a header file,
libsieve, to be included in emboss.cpp. Add this line to the top of the file:

#include <libsieve>

Now compile emboss.cpp and image.cpp with CellSieveCPP.

This should lead to the following error:

*** ERROR: (Sieve4103) Cannot access outer stack variable 'output' from inside
sievethread block without a parameter.

The problem is that the sievethread block refers to input and output. These are parameters to emboss,
therefore they are located on the stack. Because sievethread blocks run asynchronously it is possible, in
general (and often usual), for the calling function to return before the sievethread completes, or for the calling
function to modify variables on which the sievethread depends.

To work around this, we list the variables which the sievethread requires from the enclosing scope as
sievethread parameters:

int handle = sievethread (intput, output) …

This causes a copy of these variables to be passed to the sievethread on creation, avoiding problems with
the original variables changing or going out of scope.

As evidence that this version of the filter really does launch an SPE thread, add:

printf("SPE thread started\n");

and

printf("SPE thread finished\n");

to the start and end of the sievethread block, and

printf("PPE thread waiting for SPE thread\n");

just before sieveThreadJoin.

(If you're having trouble, look at SummerSchoolLabSession/emboss_basic_offload for a model
solution.)

Now do the “compile-run” process: compile the application with CellSieveCPP, run make, and in the mysim
window use callthru to copy main from /u1/others/guestXX/outputc.

Run the application to produce the following output:

Running emboss filter on input file lena.ppm
PPE thread waiting for SPE thread
SPE thread started
SPE thread finished
Writing results to output file output.ppm

(Remember that since we are running the simulator in FAST mode, the time taken for execution is,
unfortunately meaningless.)

Finally, use:

[root@(none) ~]# callthru sink /u1/others/guestXX/output.ppm < output.ppm

to copy the output image back, and check that it looks correct in GIMP.

We have shown that, with very few changes, the Sieve Partitioning System can get code to run on a Cell
SPE. We didn't need to change the core code for the emboss filter at all. The system has automatically
generated code to move data from main memory to and from the SPE local store.

Also notice that we didn't have to declare any __outer pointers – even though input is an __outer
pointer (since it is declared outside the sievethread block) the compiler uses method duplication to
automatically compile a version of compute_pixel which accepts an __outer pointer argument.

Parallelising emboss filter over 2 SPEs
Offloading to a single SPE can be a goal in itself: this frees the PPE processor so that other PPE threads can
do useful work. However, for a parallelisable application such as our image filter, we can offload to multiple
SPEs in parallel.

Let's start with two SPEs.

• Split the “for(int y=start; y<end; y++)” loop in half, and put each half in its own
sievethread block (changing start and end appropriately).

• Use two handles, handle1 and handle2, and have the PPE wait on each of these handles in turn
at the end of the emboss function.

• Make the first sievethread block print “SPE thread 1 started” and “SPE thread 1
finished”, and do similarly for the second sievethread block.

• Make the PPE print “PPE thread waiting for SPE thread 1” and “PPE thread waiting
for SPE thread 2” before the respective calls to sieveThreadJoin.

If you have trouble, look at the model solution in SummerSchoolLabSession/emboss_pair_offload.

Compile and run this version of the application, to produce output like the following (the precise order of
output may vary depending on the order in which the concurrent threads execute their print statements):

Running emboss filter on input file lena.ppm
PPE thread waiting for SPE thread 1
SPE thread 1 started
SPE thread 2 started
SPE thread 1 finished
SPE thread 2 finished
PPE thread waiting for SPE thread 2
Writing results to output file output.ppm

Check that the output image looks right (you may not always want to bother with this check).

Parallelising emboss filter over 8 SPEs + PPE
A major feature of the Sieve Partitioning System is that separate source code for offloaded threads and host
threads is not required. To illustrate this, let us offload the emboss filter to run across all 8 SPEs and the
PPE.

Let's record the fact that we have 8 SPEs, and say that we want the PPE to process 20 or so rows of our
image:

#define NUM_SPES 8
#define PPE_PORTION 20

Now, in the body of emboss, we shall use a loop to launch NUM_SPES sievethread blocks, storing the
associated handles in an array (note that i is added to the list of sievethread parameters):

int handles[NUM_SPES];

for(int i=0; i<NUM_SPES; i++)
{
 handles[i] = sievethread(input, output, i)
 {
 const int start = ...;
 const int end = ...;

 printf("SPE thread %d started\n", i);
 for(int y=start; y<end; y++)

 {
 /* As before */
 }
 printf("SPE thread %d finished\n", i);
 };
 printf("Launched SPE thread %d\n", i);
}

Figuring out the correct values for start and end is a little tricky – have a go! The above code also
includes PPE messages to indicate that it has launched each SPE thread.

Now, after this sievethread creation loop, let's get the PPE to do some work:

printf("PPE about to process part of image\n");

const int start = ...;
const int end = ...;

for(int y=start; y<end; y++)
{
 /* As before */
}

printf("PPE processing complete\n");

Again, try to figure out the correct values for start and end (you'll find that due to rounding issues the PPE
will process a few more than PPE_PORTION rows).

Then use a loop so that the PPE waits for each SPE thread to complete:

for(int i=0; i<NUM_SPES; i++)
{
 printf("PPE thread waiting for SPE thread %d\n", i);
 sieveThreadJoin(handles[i]);
}

Compile and run this example – you should see output along these lines:

Running emboss filter on input file lena.ppm
Launched SPE thread 0
Launched SPE thread 1
Launched SPE thread 2
Launched SPE thread 3
Launched SPE thread 4
Launched SPE thread 5
Launched SPE thread 6
Launched SPE thread 7
PPE about to process part of image
SPE thread 0 started
SPE thread 4 started
SPE thread 3 started
SPE thread 5 started
SPE thread 1 started
SPE thread 6 started
SPE thread 2 started
SPE thread 7 started
SPE thread 0 finished
PPE processing complete
PPE thread waiting for SPE thread 0
PPE thread waiting for SPE thread 1
SPE thread 4 finished
SPE thread 5 finished
SPE thread 1 finished
SPE thread 3 finished
SPE thread 6 finished
SPE thread 2 finished
PPE thread waiting for SPE thread 2
SPE thread 7 finished
PPE thread waiting for SPE thread 3
PPE thread waiting for SPE thread 4
PPE thread waiting for SPE thread 5
PPE thread waiting for SPE thread 6

PPE thread waiting for SPE thread 7
Writing results to output file output.ppm

(Notice the non-deterministic order in which the threads start and finish.)

If you have got start and end wrong then the output image won't look correct – it will probably have chunks
of white in it. If you have trouble then look at the model solution in SummerSchoolLabSession/emboss_
full_offload.

The attractive feature here is that the functionality for the emboss filter did not have to be duplicated to get
the filter to run on both types of processor. We have introduced a bit of duplication as the loop which applies
the kernel to each pixel appears separately inside and outside the sievethread block. This can be avoided
by making a function which takes start and end as parameters and encapsulates the loop – feel free to have
a go at this.

Adding a sharpen filter
We now consider a larger application with an additional filter, which performs image sharpening (a more
subtle effect than embossing):

Delete emboss.cpp, and copy SummerSchoolLabSession/emboss_or_sharpen/emboss_or_shar
pen.cpp to your home directory:

-bash-3.2$ rm emboss.cpp
-bash-3.2$ cp SummerSchoolLabSession/emboss_or_sharpen/emboss_or_sharpen.cpp .

Have a look at emboss_or_sharpen.cpp. There are two effects – embossing, implemented as
emboss_pixel, and sharpening, implemented as sharpen_pixel. Function apply_effect takes a
numeric parameter specifying which effect to apply (0 for embossing, 1 for sharpening), and uses the SPEs
and PPEs to apply the effect.

The apply_effect_to_image_slice function uses the conditional operator to decide whether to call
emboss_pixel or sharpen_pixel based on the value of the effect parameter.

If you have plenty of time left, compile and run this example as is: compile emboss_or_sharpen.cpp and
image.cpp together using CellSieveCPP, then do the familiar make/simulate process. Use the simulator to
produce both sharpened and embossed Lena images, and use callthru to copy these back to be verified
visually in GIMP.

Using a function pointer to select between filters at run-time
Although using a conditional to select between methods works OK when there are just two filters, this
approach would not scale. It would be more desirable to use an array of function pointers.

Let's adapt the example to use such function pointers. First, near the top of emboss_or_sharpen.cpp,
declare a type for pointers to functions like emboss_pixel and sharpen_pixel:

typedef rgb (*pixel_effect_t) (const rgb*, int, int);

Then modify apply_effect and apply_effect_to_image_slice, so that that parameter effect has
type pixel_effect_t.

In apply_effect_to_image_slice, change the line which applies the effect function from:

Sharpen

output[y*WIDTH+x] = effect == EMBOSS ? emboss_pixel(input, y, x) : sharpen_pixel(input,
y, x);

to use the function pointer parameter:

output[y*WIDTH+x] = effect(input, y, x);

Just before main, declare an array of effect functions, populated appropriately:

pixel_effect_t pixel_effects[2] = { emboss_pixel, sharpen_pixel };

In the body of main, change:

apply_effect(inputPixels, outputPixels, effect);

to:

apply_effect(inputPixels, outputPixels, pixel_effects[effect]);

If you get stuck, look at SummerSchoolLabSession/emboss_or_sharpen_fp.

Now compile and make the application – this should work. But when you try to run the application in the
simulator you should get errors:

Running emboss filter on input file lena.ppm
Launched SPE thread 0
Launched SPE thread 1
Launched SPE thread 2
Launched SPE thread 3
Launched SPE thread 4
Launched SPE thread 5
Launched SPE thread 6
Launched SPE thread 7
PPE about to process part of image
Sieve SPU RT Error: 0, 0x10001cd8
SPE STOP AND SIGNAL
Sieve SPU RT Error: 0, 0x10001cd8
SPE STOP AND SIGNAL
Sieve SPU RT Error: 0, 0x10001cd8
Sieve SPU RT Error: 0, 0x10001cd8
SPE STOP AND SIGNAL
Sieve SPU RT Error: 0, 0x10001cd8
etc.

(If you do not see these errors then you probably did not delete the outputc folder since you compiled the
previous version – do so and try again.)

The problem is that because the calls to emboss_pixel and sharpen_pixel happen indirectly via a
function pointer, the compiler does not know that it needs to duplicate these methods to run on the SPEs. At
runtime, the SPE tries to resolve the call, and finds that it has no matching function.

We remedy this by equipping the sievethread block with a domain, listing the functions we require by name.

As a first approximation, change the declaration of the sievethread block to include a domain as follows:

sievethread [emboss_pixel, sharpen_pixel] (input, output, i, effect) { … }

This tells the compiler: “any call via a function pointer must call either emboss_pixel or sharpen_pixel,
so compile them for the SPEs”.

However, this is not quite enough. The trouble is that the emboss_pixel and sharpen_pixel functions
have not been declared with an __outer pointer for parameter input. So far, it has been possible for the
compiler to deduce this automatically. In this scenario, we need to tell the compiler to duplicate versions of
these methods which take an outer pointer.

To do this, we declare another function pointer type:

typedef rgb (*pixel_effect_outer_t) (const __outer rgb*, int, int);

and cast the members of the domain to this type:

sievethread [(pixel_effect_outer_t)emboss_pixel, (pixel_effect_outer_t)sharpen_pixel]
(input, output, i, effect) { … }

Try this – you should find that the example compiles and executes as usual. Have a look at
SummerSchoolLabSession/emboss_or_sharpen_fp_with_domains if you get stuck.

Note that this is the first time we have had to use the __outer keyword!

Separating filters into multiple compilation units
In our examples so far, all the code called from within a sievethread block (apart from printf) has been
located in one source file. This makes compilation of the sievethread block straightforward, but this
approach is not feasible for large applications.

With a little more user annotation it is possible for the extent of a sievethread block to span multiple
compilation units.

We will illustrate this by considering a version of our image filter where the functions for embossing and
sharpening are encapsulated in their own respective .cpp files.

Delete emboss_or_sharpen.cpp, and copy the contents of SummerSchoolLabSession/emboss_or_
sharpen_multi_compilation_units to your home directory:

-bash-3.2$ rm emboss_or_sharpen.cpp
-bash-3.2$ cp SummerSchoolLabSession/emboss_or_sharpen_multi_compilation_units/* .

This consists of a .cpp and .h file for each of the filter functions, and a main.cpp file which attempts to
offload image filtering using a sievethread block and function pointers, as we have already seen. Have a
quick look at the files to understand what's going on.

Now, after deleting the outputc directory from your previous build, compile everything:

-bash-3.2$ wine CellSieveCPP main.cpp emboss_pixel.cpp sharpen_pixel.cpp image.cpp

Then navigate to the outputc directory and type make. You should get two link errors:

/tmp/ccwkJ09u.o:(.data+0x10): undefined reference to
`_Z12emboss_pixelPU7__outerK3rgbiiEU3_SL1'
/tmp/ccwkJ09u.o:(.data+0x1c): undefined reference to
`_Z13sharpen_pixelPU7__outerK3rgbiiEU3_SL1'

The Cell linker is complaining that it can't find the functions emboss_pixel or sharpen_pixel for the
SPEs (the error message displays the mangled names for these functions – notice that __outer forms part
of the mangled name).

The trouble is that, since the compiler process each compilation unit in isolation, it does not have access to
the source code for emboss_pixel or sharpen_pixel when it compiles main.cpp, which refers to these
functions.1

The solution is to mark the prototypes of these functions with an attribute to specify that they should be
duplicated with a particular outer pointer signature. In emboss_pixel.h, add:

__attribute__((__duplicate (rgb (const __outer rgb *, int, int))))

after the prototype for function emboss_pixel, before the semicolon which terminates the prototype. This
attribute says to the compiler: “duplicate emboss_pixel as if it had been declared as rgb
emboss_pixel(const __outer rgb* pixels, int i , int j);”. Do the same in
sharpen_pixel.h. You should now find that the application compiles, links and runs without any
problems.

NOTE: in this version of the filters, emboss_pixel calls an auxiliary function, greyscale, which computes
the floating point greyscale value for a pixel. Although we had to mark emboss_pixel with a duplication
attribute, it was not necessary to also mark the greyscale function with this attribute: the compiler knows to
duplicate emboss_pixel with pixels as an outer pointer, therefore when pixels is passed as the first
parameter to greyscale the compiler knows it must duplicate greyscale with this parameter as an outer
pointer. Thus it is only necessary to annotate the interface between compilation units with duplication
attributes.

1 In this case, you might think that since we have passed all our .cpp files to the compiler at once, it should
be able to find the relevant functions. This could be implemented as a special case, but in general we would
like to be able to compile these files completely separately, using a makefile.

Optimising the sharpen filter with vector instructions
To finish our work with the image filter functions, we will see how a) generic Alti-Vec vector instructions can
be used to optimise the sharpen filter for both PPE and SPE, and b) SPE-specific vector instructions can be
used to further optimise the filter on SPEs.

Generic Alti-Vec vector instructions

Delete all .cpp and .h files except image.cpp and image.h from your home directory. Copy
SummerSchoolLabSession/emboss_or_sharpen_vectorized/emboss_or_sharpen_vectorized
.cpp to your home directory, and open this file.

For simplicity, we have gone back to a version of the filters which uses one compilation unit and does not use
function pointers.

You will see that the sharpen_pixel function now declares two vector constants, minus1 and five.
Instead of multiplying each colour component of a pixel by either -1 or 5, the filter now interprets each pixel
as a vector, and multiplies a whole pixel by either minus1 or five. This potentially optimises the code since
a vector multiply can be performed as a single instruction (we say potentially since the compiler may be
clever enough to automatically perform this vectorization).

The last line of sharpen_pixel uses a “nasty cast” to turn dest, a vector float, back into something
with type rgb. This relies on the fact that the rgb data type consists of four float values, thus has the
same memory layout as a vector float.

The vector float type is part of the Alti-Vec language extensions, which also overloads the multiplication
operator to work on vectors. These language extensions are supported for both the PPE and SPE, so this
single version of sharpen_pixel works for both processors.

If you have time, compile and run this example to check that it still performs the sharpen filter correctly.

Using SPE-specific vector instructions

There is room for further improvement – the statements:

dest[0] = dest[0] > 1.0f ? 1.0f : (dest[0] < 0.0f ? 0.0f : dest[0]);
dest[1] = dest[1] > 1.0f ? 1.0f : (dest[1] < 0.0f ? 0.0f : dest[1]);
dest[2] = dest[2] > 1.0f ? 1.0f : (dest[2] < 0.0f ? 0.0f : dest[2]);

have the effect of “clamping” the result pixel so that each colour component is in the range [0, 1]. This
clamping is done separately for each colour component, and can be vectorized to work on all components
simultaneously.

To implement this optimization, we will use two SPE instructions, spu_cmpgt (compare greater than) and
spu_sel (select). Here is a description of each:

• spu_cmpgt(vector1, vector2) – compares vector1 and vector2 element-wise, and returns
a boolean vector, with position i set to true if and only if vector1[i] > vector2[i]

• spu_sel(bool_vector, false_result, true_result) – returns a vector with position i set
to false_result[i] if and only if bool_vector[i] is false, and position i set to true_
result[i] otherwise.

Example: let v = (1, 2, 3, 4) and w = (4, 3, 2, 1). Then if b is set to spu_cmpgt(v, w) we have b = (F, F, T, T).
Then if we set u to spu_sel(b, w, v) we have u = (4, 3, 3, 4).

Copy and paste the code for sharpen_pixel to make a duplicate of this function. Change the function
signature to:

sievethread rgb sharpen_pixel(const __outer rgb * pixels, int i, int j)

By marking the duplicated function with sievethread, and adding the __outer qualifier to pixels, we
ensure that this version of the function is compiled only for the SPEs, to be called with a PPE pointer as the
first parameter.

Now modify the body of the function to use the spu_cmpgt and spu_sel instructions to perform pixel
clamping more efficiently. It's not too hard, but if you get stuck then look at SummerSchoolLabSession/
emboss_or_sharpen_vectorized_spe/emboss_or_sharpen_vectorized_spe.cpp.

Compile and run your program to check that the sharpen filter still produces the correct result.

The drawback to this optimization is that we have made the code less portable. However, at least we could
apply the optimization incrementally, first offloading a general version of the image sharpening filter to SPEs,
then gradually modifying it to produce an SPE-optimized version.

Part 2 – Overloading and type inference
Although we haven't seen too many uses of the __outer keyword (which is a good thing!), outer pointers
are at the heart of the Sieve Threads approach, whether declared explicitly or inferred. We'll now take a look
at some issues with overloading and type inference related to outer pointers.

Overloading: intersecting circles
Copy SummerSchoolLabSession/circles/circles.cpp to your home directory. This file includes a
method which takes two references to circles (consisting of x and y coordinates and a radius), and
determines whether they intersect using a standard formula.

The main method in circles.cpp expects 12 command-line arguments – the centres and radii for four
circles. Intersection is then checked for a selection of these circles, both inside and outside a sievethread
block.

This example illustrates the fact that __outer applies to references (declared via & in C++) as well as
pointers, and shows method duplication in action – each call to show_intersection requires a different
variant of the method to be compiled:

show_intersection(c1, c2); // Use version compiled for PPE

sievethread
{
 Circle c3 = { x3, y3, r3 };
 Circle c4 = { x4, y4, r4 };
 show_intersection(c1, c2); // Compile for SPE: bool (__outer Circle&, __outer Circle&)
 show_intersection(c3, c4); // Compile for SPE: bool (Circle&, Circle&)
 show_intersection(c3, c1); // Compile for SPE: bool (Circle&, __outer Circle&)
 show_intersection(c2, c4); // Compile for SPE: bool (__outer Circle&, Circle&)
};

Method duplication works well – an example run of the program shows that an appropriately compiled
version of show_intersection is called each time, try it out:

[root@(none) ~]# ./main 10 10 10 9 9 10 100 100 3 20 20 7000
Circles [inner/outer?](centre=(10, 10), radius=10) and [inner/outer?](centre=(9, 9),
radius=10) intersect
Circles [inner/outer?](centre=(10, 10), radius=10) and [inner/outer?](centre=(9, 9),
radius=10) intersect
Circles [inner/outer?](centre=(100, 100), radius=3) and [inner/outer?](centre=(20, 20),
radius=7000) intersect
Circles [inner/outer?](centre=(100, 100), radius=3) and [inner/outer?](centre=(10, 10),
radius=10) do not intersect
Circles [inner/outer?](centre=(9, 9), radius=10) and [inner/outer?](centre=(20, 20),
radius=7000) intersect

The printed annotation [inner/outer?] indicates that the called method does not know whether the
particular Circle resides on the SPE or PPE.

It can sometimes be useful (for purposes of optimization) to specialise behaviour of a method depending on
the configuration of outer pointers/references with which it is called. Thus the Sieve Partitioning System
supports overloading on __outer.

To illustrate this, let us make duplicate versions of the show_intersection method which print message
indicating the “outerness” of the Circle reference arguments.

Add the following method to circles.cpp:

sievethread void show_intersection(Circle& c1, Circle& c2)
{

 printf("Circles [inner](centre=(%d, %d), radius=%d) and [inner](centre=(%d, %d),
radius=%d) ", c1.x, c1.y, c1.radius, c2.x, c2.y, c2.radius);
 // As before
 ...
};

The differences from the original show_intersection method are: the inclusion of the sievethread
keyword, which specifies that the method should be compiled only for the SPE and theferore that the
reference parameters point to SPE local memory as they don't have the __outer qualifier, and the printf
statement which replaces [inner/outer?] with [inner].

Now when we run the program, the call to show_intersection which take two inner Circle references is
singled out:

[root@(none) ~]# ./main 10 10 10 9 9 10 100 100 3 20 20 7000
Circles [inner/outer?](centre=(10, 10), radius=10) and [inner/outer?](centre=(9, 9),
radius=10) intersect
Circles [inner/outer?](centre=(10, 10), radius=10) and [inner/outer?](centre=(9, 9),
radius=10) intersect
Circles [inner](centre=(100, 100), radius=3) and [inner](centre=(20, 20), radius=7000)
intersect
Circles [inner/outer?](centre=(100, 100), radius=3) and [inner/outer?](centre=(10, 10),
radius=10) do not intersect
Circles [inner/outer?](centre=(9, 9), radius=10) and [inner/outer?](centre=(20, 20),
radius=7000) intersect

Now make three more sievethread duplicates of show_intersection, overloaded with either one or
both arguments as __outer references, such that [outer] or [inner] is printed depending on whether a
Circle reference has the __outer qualifier or not. The output should look like this:

[root@(none) ~]# ./main 10 10 10 9 9 10 100 100 3 20 20 7000
Circles (centre=(10, 10), radius=10) and (centre=(9, 9), radius=10) intersect
Circles [outer](centre=(10, 10), radius=10) and [outer](centre=(9, 9), radius=10)
intersect
Circles [inner](centre=(100, 100), radius=3) and [inner](centre=(20, 20), radius=7000)
intersect
Circles [inner](centre=(100, 100), radius=3) and [outer](centre=(10, 10), radius=10) do
not intersect
Circles [outer](centre=(9, 9), radius=10) and [inner](centre=(20, 20), radius=7000)
intersect

If you get stuck, look at SummerSchoolLabSession/circles_overloaded.

Obviously in this case the overloading is illustrative but otherwise pointless. However, in practice it can be
useful to overload a method to do a target-specific data movement when a particular pointer has the
__outer qualifier.

Type inference: summing a list of type float or double
We shall now look at an example where method duplication fails.

Copy SummerSchoolLabSession/sum_list/sum_list.cpp to your home directory and open it.

This rather contrived program consists of a function which takes a list (as an array) of unknown type, and an
argument specifying whether the elements have type double or float. The code uses pointer arithmetic
and type casts to sum the list, assigning the result to the target of pointer result.

Compile the example with CellSieveCPP. You should get this error message:

*** ERROR: (Sieve1101) Cannot convert source type in assignment from 'char __outer*' into
'char *' while compiling duplicated function 'void sum_unknown_list(void __outer*, void
*, int , int);
'.
--- In file: sum_list.cpp, at line: 15, column: 2

c$urrent = (char*)list;

The problem is that sum_unknown_list is called at line 49 with float_list as its first parameter. Since
float_list is declared globally, it is an outer pointer. Thus the compiler tries to duplicate
sum_unknown_list with signature: void sum_unknown_list(void __outer* , void* , int,
int), as indicated in the error message.

To do this duplication, essentially the compiler pretends that the list parameter of sum_unknown_list had
been declared with type void __outer* (this is similar to template instantiation). In this case, the method
would look like this:

void sum_unknown_list(void* __outer list, void* result, int size, int type)
{

char* current;
current = (char*)list; // ERROR – list is an __outer pointer, current is not

 ...

The compiler rejects the assignment of current to list, since list is an __outer pointer and current
is not. Rejecting such assignments is important, as we do not want to assign PPE memory locations to SPE
pointers.

However, if we modify this code so that current is assigned to list on declaration:

void sum_unknown_list(void* __outer list, void* result, int size, int type)
{
 char* current = (char*)list; // OK – current is given __outer qualifier by inference

then the error message goes away. (This modification is applied in SummerSchoolLabSession/
sum_list_working.) This is because the compiler infers that current must have the __outer qualifier,
as it has been initialised to something which itself has the __outer qualifier.

Running this example should produce the following output:

[root@(none) ~]# ./main
Sum of floats: 55.000000
Sum of doubles: 150.000000

Note also that the example contains various casts of from outer pointers to non-outer pointers. The compiler
uses another simple inference rule to allow these casts to succeed: if an expression has type __outer T *
and is cast to type U * then the compiler replaces the cast type with __outer U *.

These simple examples of type inference mean that it can be very straightforward to offload large portions of
existing code. Typically after enclosing a piece of code in a sievethread block there are some error
messages related to outer pointers, most of which can be easily solved by moving pointer assignments to
initialisers as in the above example.

It seems restrictive and somewhat non-intuitive that

char* current = (char*)list;

works, when

char* current;
current = (char*)list;

does not. Indeed, future versions of the Sieve Partitioning System are expected to include more
sophisticated type inference so that the latter code is also accepted.

Can you think of examples where even sophisticated type inference will not be able to sensibly type a
program due to the way in which inner/outer pointers are used? Also, why is complex type inference
potentially unattractive to users?

Part 3 – Experiment further!
If you have any time remaining then feel free to experiment further with the Sieve Partitioning System. Have
a look at the pdf files in SummerSchoolLabSession/Documentation – these files describe more
features of the system which you might like to try out.

Uninstall the Sieve Partitioning System
Before you leave, please run:

-bash-3.2$ wine uninstall

and click Uninstall to remove the Sieve Partitioning System from your workspace.

	REVISED NOTES – PLEASE USE INSTEAD OF ORIGINAL HANDOUT
	Sieve Partitioning System for Cell Linux
	A Practical Introduction
	Introduction
	Setup
	Part 1 – Offloading image filters
	Part 2 – Overloading and type inference
	Part 3 – Experiment further!
	Uninstall the Sieve Partitioning System

