
Principles and Applications of

Refinement Types
Andrew D. Gordon (MSR)

ISS AiPL Summer School, August 2009

A Type of Positive Numbers: Why Not?

• Q: No currently popular or hip language has these – why not?

• A: The typechecker would need to know
and computers don’t do arithmetic reasoning, do they?

• This is an example refinement type

• Known since the 1980s, but typechecking impractical, because
automated reasoning is hard, inefficient, and unreliable

fun MyFun (x:pos, y:pos): pos = if x>y then x-y else 42

x. y. x>y  x-y>0

Integer where value>0

Objectives
• This lecture is a primer on refinement types

• I’m assuming you know about types in standard languages like
C, Java, C#, etc, but not that you’re a type theory geek

• Why learn about refinement types?

• What’s on offer in this lecture?

• How do I find out more?

• Q: How did the typechecker decide ?

• A: It didn’t. It didn’t even try. It asked an SMT solver.

x. y. x>y  x-y>0

• Dramatic advances in theorem proving this decade

– Contenders include Simplify (HPL), Yices (SRI), Z3 (MSR)

Annual competitions, standard formats for logical goals – a platform

An Opportunity: Logic as a Platform
“Satisfiability Modulo Theory (SMT) solvers decide logical satisfiability
(or dually, validity) with respect to a background theory expressed in
classical first-order logic with equality. These theories include: real or
integer arithmetic, and theories of program or hardware structures
such as bitvectors, arrays, and recursive datatypes.”

http://research.microsoft.com/en-us/um/redmond/projects/z3/

REFINEMENT TYPES AND M

How typechecking based on an external solver makes type-safe systems
modeling practical, and helps extend the Microsoft platform

Based on joint work with Gavin Bierman and David Langworthy

<?xml version="1.0" encoding="utf-8"?>

<policies xmlns="http://schemas.microsoft.com/wse/2005/06/policy">

<policy name="policy-CAM-42">

<mutualCertificate10Security

establishSecurityContext="false"

messageProtectionOrder="EncryptBeforeSign">

</mutualCertificate10Security>

</policy>

</policies>

The Oslo Modeling Language

• Server stacks (eg .NET) allow post-deployment configuration
– But as server farms scale, manual configuration becomes problematic

– Better to drive server configurations from a central repository

• M is a new modeling language for such configuration data
– Ad hoc modeling languages remarkably successful in Unix/Linux world

– M is in development (first CTP at PDC’08, most recent May 2009)

– Next, Oslo in their own words...

MyApp.exe

MyApp.exe.
config

http://msdn.microsoft.com/oslo

http://schemas.microsoft.com/wse/2005/06/policy

The Core of the M Language
• A value may be a general value (integer, text, boolean, null)

• Or a collection (an unordered list of values),

• Or an entity (a finite map from string labels to values)

• The expression

has the type

and evaluates to

• Semantic domain of values (in F# syntax)

(from n in { 5, 4, 0, 9, 6, 7, 10}
where n < 5
select {Num=>n, Flag=>(n>0)})

{{Num=>4,Flag=>true},
{Num=>0, Flag=>false}}

{Num:Integer; Flag:Logical;}*

type General = G_Integer of int | G_Logical of bool | G_Text of string | G_Null
type Value = G of General | C of Value list | E of (string * Value) list

Interdependent Types and Expressions

• A refinement type T where e consists of the values of type T
such that boolean expression e holds

• A typecase expression e in T returns a boolean to indicate
whether the value of e belongs to type T

– returns true (due to subtyping)

• A type ascription e : T requires that e have type T

– Verify statically if possible

– Compile to if necessary

e in T

T where e

{x=>1, y=>2} in {x:Any;}

e : T

(e in T) ? e : throw "type error"

Some Examples in M
• Example: type-safe unions

• Demo: comparison of M/MiniM

• Case study: how static typing may help Dynamic IT

Some Derived Types
• Empty type

• Singleton type

• Null type

• Union type

• Nullable type

{e}  Any where value==e

Empty  Any where false

Null  {null}

T | U  Any where
(value in T || value in U)

Nullable T  T | {null}

• Given source

our typechecker calls the solver as follows:

Example: Type-Safe Union Types

type NullableInt : Integer | {null}
from x in ({1, null, 42, null } : NullableInt*)
where x!=null
select (x:Integer)

(x!=null), x:NullableInt |- x in Integer
===
Asked Z3:
(BG_PUSH (FORALL (x) (IFF ($NullableInt x) (OR (In_Integer x) (EQ x (v_null))))))
(IMPLIES (AND (NOT (EQ $x (v_null))) ($NullableInt $x)) (In_Integer $x))

Z3 said : True

Interlude: Implementation Notes
• Expressions typed by “bidirectional rules” as in eg C#

– But no constraint inference

• Subtyping decided semantically, by external solver

– Term T(e) for each expression e, formula F(T)(x) for each type T

– Subtyping is implication: T <: U iff x. F(T)(x)  F(U)(x)

[42] <: (Integer where value < 100) iff x. (x=42)  (x<100)

F([42])(x) = (x=42)
F(Integer where value < 100)(x) = (x<100)

DEMO

Comparing the MiniM typechecker with the May CTP M typechecker;

MiniM focuses on types, lacks significant features like extents

module M {
F() : Integer32 where value == 2 { 3 }

}

module Constraints
{

type Person : { Name:Text; Age:Integer32; };
type EligiblePerson : Person where value.Age > 17;
type Marriage : { SpouseA: EligiblePerson; SpouseB: EligiblePerson; };

PatChris(): Marriage
{

{SpouseA => {Name => "Pat", Age => 24},
SpouseB => {Name => "Chris", Age => 32}}

}

BillySam(): Marriage
{

{SpouseA => {Name => "Billy", Age => 4},
SpouseB => {Name => "Sam", Age => 5}}

}
}

module TaggedUnions
{

type T1 : {tag: {42}; bar: Integer32;};
type T2 : {tag: {43}; foo: Text;};
type U : T1 | T2;

// this fails to typecheck, because it makes insufficient checks
// Test1(xs:U*) : Text* { from x in xs select x.foo }

Test2(xs : U*) : Text*
{

from x in xs select (x.tag==42 ? "Hello" : x.foo)
}

Test3(xs : U*) : Text*
{

from x in xs where (x.tag==43) select x.foo
}

}

module MinimTests
{

type Operator : Text where
value=="plus" || value=="minus" ||
value=="times" || value=="div";

type Expression :
{kind:{"variable"}; name: Text;} |
{kind:{"integer"}; val: Integer32;} |
{kind:{"binary app"}; operator: Operator;arg1: Expression; arg2: Expression;};

type Statement :
{kind:{"assignment"}; var: Text; rhs: Expression;} |
{kind:{"while"}; test:Expression; body:Statement;} |
{kind:{"if"}; test:Expression; tt:Statement; ff:Statement;} |
{kind:{"seq"}; s1:Statement; s2:Statement;} |
{kind:{"skip"};};

FirstExp(E:Expression) : Text
{

(E.kind=="variable") ? E.name : (
(E.kind=="integer") ? "integer" :
E.operator)

}

FirstStatement(S:Statement) : Expression
{

(S.kind=="assignment") ? S.rhs : (
(S.kind=="while" || S.kind=="if") ? S.test :
{kind=>"integer", val=>42})

}

//Test(S:Statement) : Expression { S.rhs } // this correctly fails to typecheck
}

//typeful
module Points
{
type Nat : Integer32 where value==0 || value>0;
type Byte : Nat where value<256;
type Color : {Red:Byte; Green:Byte; Blue:Byte;};
type Point : {X: Integer32; Y:Integer32;};
type ColorPoint : Point & {Color:Color;};
type Points : Point*;
type ColorPoints : ColorPoint*;

f(x:Point) : ColorPoint { x }
}

Better Dynamic IT by Typing
• Many systems errors arise from misconfigurations

– Formats often too flexible; operators make mistakes

• Numerous ad hoc tools advise on config “safety”

– Find misconfigurations in firewalls, routers, protocol stacks, etc;
check that adequate security patches have been applied

– Tools package specialist expertise; more accessible than best
practice papers; easy to update as new issues arise

• M is a general purpose platform for systems modeling

– User-defined types can express advisories, subsuming ad hoc tools

– Let’s look at a concrete example: WSE Policy Advisor

MyApp.exe

MyApp.exe.
config

15

A Typical Config-Based Advisor

Risks and advice for an
endpoint policy & config

Web Services Enhancements
(WSE) endpoint configuration,

rendered by Policy Advisor XSLT
style sheet in Internet Explorer

Aftermath:
Servers and Tools customers love this sort of tool
Promoted by the Patterns and Practices group
But, no good platform for writing such tools,
and XSLT not a great programming experience

1: Representing XML Data
<?xml version="1.0" encoding="utf-8"?>

<policies xmlns="http://schemas.microsoft.com/wse/2005/06/policy">

<policy name="policy-CAM-42">

<mutualCertificate10Security

establishSecurityContext="false"

messageProtectionOrder="EncryptBeforeSign">

</mutualCertificate10Security>

</policy>

</policies>

{tag="policies",
xmlns="http://schemas.microsoft.com/wse/2005/06/policy",
body={{tag=>"policy",

name=>"policy-CAM-42",
body={{tag=>"mutualCertificate10Security",

establishSecurityContext=>"false",
messageProtectionOrder=>"EncryptBeforeSign" }}}}}

http://schemas.microsoft.com/wse/2005/06/policy

2: Types for Schema-Correct Configs
type bool : {"true"} | {"false"};
type messageProtectionOrder : {"EncryptBeforeSign"}|{"SignBeforeEncrypt"};
type mutualCertificate10Security :

{tag:{"mutualCertificate10Security"};
establishSecurityContext:bool;
messageProtectionOrder:messageProtectionOrder; } ;

Policy = mutualCertificate10Security | ...
Config = {tag:{"policies"}; body:{tag:{"policy"}; body:Policy*; }*; } ;

<?xml version="1.0" encoding="utf-8"?>

<policies xmlns="http://schemas.microsoft.com/wse/2005/06/policy">

<policy name="policy-CAM-42">

<mutualCertificate10Security

establishSecurityContext="false"

messageProtectionOrder="EncryptBeforeSign">

</mutualCertificate10Security>

</policy>

</policies>

has type Config

http://schemas.microsoft.com/wse/2005/06/policy

3: Types for Safe Configs

type SafePolicy : Policy & (!Advisory)
type SafeConfig : {tag:{"policies"}; body:{tag:{"policy"}; body:SafePolicy*; }*; } ;

type q_credit_taking_attack_10 :
(mutualCertificate10Security

where value.messageProtectionOrder == "EncryptBeforeSign") ;
type Advisory = q_credit_taking_attack_10 | ...

<?xml version="1.0" encoding="utf-8"?>

<policies xmlns="http://schemas.microsoft.com/wse/2005/06/policy">

<policy name="policy-CAM-42">

<mutualCertificate10Security

establishSecurityContext="false"

messageProtectionOrder="EncryptBeforeSign">

</mutualCertificate10Security>

</policy>

</policies>

has type Config
but not type SafeConfig

http://schemas.microsoft.com/wse/2005/06/policy

Refinement Typecase Subtyping

1983 Nordström/Petersson Subset types {x:A | B(x)} no no
1986 Rushby/Owre/Shankar Predicate subtyping predicate subtype no limited

1989 Cardelli et al Modula-3 Report no on references structural
1991 Pfenning/Freeman Refinement types refined sorts no no

1993 Aiken and Wimmers Type inclusion... no no semantic
1999 Pfenning/Xi DML {x: General | e} no no

1999 Buneman/Pierce Unions for SSD no yes, as pattern structural

2000 Hosoya/Pierce XDuce no yes, as pattern semantic, ad hoc
2006 Flanagan et al SAGE {x: T | e} no (but has cast) structural, SMT

2006 Fisher et al PADS {x:T | e} no structural
2007 Frisch/Castagna CDuce no e in T semantic, ad hoc

2007 Sozeau Russell {x:T | e} no structural
2008 Bhargavan/Fournet/G F7/RCF {x: T | C} (formula C) no structural, SMT

2008 Rondon/Jhala Liquid Types {x: General | e} no structural, SMT
2009 Bierman/G/Langworthy M/MiniM {x: T | e} e in T semantic, SMT

Related Work

Refinement Types and M
• The interdependence between typecase expressions and

refinement types in M is a novel source of great expressivity

• Relying on an external solver achieves type safety for union
and dependent types without complex, arbitrary rules

• Security and error checking expressible within M type system

– Helps M extend the Microsoft platform

• Our Z3-based typechecker Minim was jointly developed with
the Oslo team in parallel with the mainline typechecker

– We hope to merge the code-bases this year

REFINEMENT TYPES AND F7

Applying refinement types to the verification of cryptographic protocols
and APIs

Based on joint work with Karthikeyan Bhargavan and Cédric Fournet

Crypto
Library

fsc

Typed Interface

Protocol

Typed Interface

Network
Library

Application

Computational
Crypto

Poly-time
Adversary

fs2cv

Concrete runs
and interop tests

over .NET Runtime

Computational
crypto proof

using CryptoVerif

f7

Symbolic
Crypto
Active

Adversary

Symbolic proof
by typing
using Z3

fs2pv

Symbolic
proof

or attack
trace
using

ProVerif

Verification Tools for F#
• Statically verify

security assertions
• Different techniques,

cryptographic models

Crypto Verification Kit

CASE STUDIES

WS-Security
1750 lines

fs2pv *MSRC’06+

CardSpace
1420 lines

fs2pv *MSRC’08+

TLS 1.0
2940 lines

fs2pv, fs2cv
[MSR-INRIA’08+

Multi-party
Sessions

2180 lines

f7 [MSR-INRIA’08+

Our goal is a toolkit to verify
reference implementations of

standardized and custom
cryptographic protocols

CRYPTOGRAPHIC VERIFICATION KIT

K BHARGAVAN, C FOURNET, AD GORDON (MSR CAMBRIDGE), R CORIN, P-M DENIÉLOU, JJ LEIFER, E ZALINESCU (MSR-INRIA)

F7: Refinements for Security
Check out our site http://research.microsoft.com/cvk

http://research.microsoft.com/cvk

A Good Year for Refinements

Automatic inference
for refinement types

Access control,
crypto protocols

OO refinements,
array bounds

Systems
models

Platform

Ideas to Take Away
• Remember the riddle

– Q: How did the typechecker decide ?

– A: It didn’t. It didn’t even try. It asked an SMT solver.

• Remember that boundaries are blurring
– Between types, predicates, policies, patterns, schemas

– Between typechecking and verification

• Still, SMT solvers are incomplete, often amazingly so
– So dealing with typing errors remains a challenge

x. y. x>y  x-y>0

http://research.microsoft.com/en-us/people/adg/part.aspx

Resources
• The Microsoft Research SMT solver, Z3

http://research.microsoft.com/en-us/um/redmond/projects/z3/

• Oslo and its modeling language, M
http://msdn.microsoft.com/oslo

• Refinement types for security in F#
http://research.microsoft.com/f7

• Liquid types (including online demo)
http://pho.ucsd.edu/liquid/

• This lecture
http://research.microsoft.com/en-us/people/adg/part.aspx

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://msdn.microsoft.com/oslo
http://research.microsoft.com/f7
http://pho.ucsd.edu/liquid/
http://research.microsoft.com/en-us/people/adg/part.aspx
http://research.microsoft.com/en-us/people/adg/part.aspx
http://research.microsoft.com/en-us/people/adg/part.aspx

THE END

