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Hume Research Objectives
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of
St Andrews

* Virtual Testbed for Space/Time/Power Cost Modelling
— targetting Embedded Systems

* Real-Time, Bounded Space High-Level Programming
— Based on Combining Functional Programming and Finite Automata

« Concurrent Multithreaded Design

— Asynchronous threading
nthe near future, we will view software

— suitable for multicore
without formal resource bounds

~_ —
; in the same way as we regard untyped é
programs today
>~

_— Greg Morriset, Harvard University

T
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Hume Design Objectives
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« Reliability and Predictability
— Highly reliable software: correctness by construction
— High degree of determinacy: scheduling, communication, functionality, behaviour, ...

« Expressibility and Controllability
— High-level language features: automatic memory management, recursion, ...
— Low-level interfacing: interrupts, scheduling, fifos, ports, memory-mapped l/O, ...

» Costability

— Accurate cost predictions: space, time, power, concurrency
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What is Resource Analysis?
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« We are trying to determine a-priori costs for the use of countable resources

— time, dynamic memory, stack, power, ...

 We need to provide guaranteed bounds on these costs
— essential to avoid exhausting scarce resources
» e.g. memory, file handles, real-time
— valuable when taking runtime decisions based on resource usage

« We want to give good bounds
— avoid wasting resources
— improve usefulness

« We want an efficient analysis
— analysis should be cheap enough to be part of normal compilation

« We want wide coverage
— as many programs as possible

Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
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Amortisation Example
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We use amortisation. The amortised cost of an operation is its total cost, plus
the difference in potential before/after the operation

[+] [+]

a= H H H

H = = a:

0| X 0| X O] ]

A | B A|B Al|B A|B

Potential | 3 | O 4 10 410 00

Operation enqu([) dequ( ) = dequ() = O

Actual Cost 1 1 5
Change of Potential 1 0 —4
Amortised Cost 2 1 1

Example: Simulating a queue by using two stacks, A for enqueue,

B for dequeue; if B is empty, content of A is moved to B
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Resource costs as types
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 We can capture costs for each kind of constructor as an annotation. So given a
function mill :: Tree -> Result, the costs for using mill on different trees are as

follows
/ i" \ Tree (Node<7> | Leaf <0.5>) Tree (Node<0.5> | Leaf <7>)
NN
. ' , s 3x7+5x0.5= |23.5] 3x0.5+5x7= |36.5]
/”’\
b /”\ 2x7+3x05= [15.5] 2x05+3x7= [22]
d e
a\
(C) 2x7+3x0.5= |15.5] 2x05+3x7= |22]
[
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Costs and Potential
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 The costs for mill represent the potential for the state
— when analysing mill, we only need to keep track of this number

* The potential does not account for sharing

— this is sensible, since we may need to apply an operation for each node,
shared or not!

 The potential can never be negative
— establishes an upper bound on execution cost
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Automating Amortised Analysis
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 Type-based approach
— first translate into cost-equivalent intermediate form, Schopenhauer
— one rule per construct
— plus subsftructural rules for weakening, subtyping etc.
— potential threaded through execution path
— constraints exposed on potential variables
— constraints then solved using a standard linear solver (e.g. Ip-solve)
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Schopenhauer
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* Intermediate form, simplified version of Hume for analysis
— let-normal form - arguments lifted into let-bound variables
— two forms of let: LET is cost-neutral
— functions take a fixed number of arguments
— casel! is destructive match
— lambda-expressions introduced
— explicit recursion: let rec

(varid, , ... , varid,) n>0
const | varid | varid vars | conid vars

Avarid . expr

if varid then expr, else expr,

case varid of conid vars —> expr, | expr,

case! varid of conid vars —> expr, | expr,

let varid = expr, in expr,
LET varid = expr, IN expr,
varid, = expry;

vars ::
expr ::

let rec in expr n>1

varid, = expr,,
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Operational Semantics Rules
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« Each operational semantics rule is of the form:

V. HET e~ 8,3

where
— e is the expression to be evaluated
— V is a variable environment mapping variables to values
— H, H’ is the heap before after evaluation the expression
— | is the location of the result in the new heap
— n, n’ are the associated costs before/after evaluation

 So each rule alters the heap in the context of the environment V,
producing a result in the new heap, and yielding specific costs

[ 3 units are enough to evaluate e ’

3
V.HIT e~ £,H

\‘iactly 1 unit is unused after evaluating e ’
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Schopenhauer Operational Semantics (1)

University
of
St Andrews

n € Z £ ¢ dom(H)

- (OP CONST INT)
v, 5 | . o n~» £, H[€— (int,n)]

w = (bool, tt /ff) £ ¢ dom(H)

L g + KmkBool

V,H I " true/false ~» £, H[{ — w]

(OP ConsT BOOL)

V(z) = £
v, g¢ 4 Keushlar S o 3
V* = Mevie)e k= |V*| w= (Az.e, V*) £ ¢ dom(H)

! k
v,ﬂf% Az~ £, H[C — w]

(OP VAR)

(OP ABS)
H(V(y)) = (Az.e, V*)
g — Kapp
V* [z — V(zo)], H T e~ 0, H
g+ Rapp (OP App)

V, 5 y 2o~ £, 3¢
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Schopenhauer Operational Semantics (2)
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H(V(z)) = (bool, tt) V, 3 F o

g + kg €t~ &,

V., H |_3T if x then e; elsees ~ £, H'
(OP CONDITIONAL TRUE)

H(V(z)) = (bool, ) V,H Mo e e~ £/, 3

g + KifF' ©f

V., H I_gr_ if x then e; elsee; ~ £, H'
(OP CONDITIONAL FALSE)
k>0 ce&Constrs £¢dom(Hg) w= (constre,V(z1),...,V(zx))

C
v, gc FEECms(el ) o £, ] )

Q‘
(OP CONSTRUCTOR)
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Schopenhauer Operational Semantics (3)
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g — KCaseF|(c)
H(V(z)) # (constre,K1,...,Kx) V, H | o'+ KCaseF' (c) €2~ £, H

\?,ﬂ'fi_gr_ casez of ¢ (Y1,...,Yg) —> €1leg ~ £, H
(OP CASE FAIL)

H(K) = (constre, K1, ..., Kx)

Lg — KCaseT(c)
v[yl L i].: cvsy Y ’Q..Fi.‘]:“-}{: ! q*_'_ KC&SBTFEE:] €1 ™~ E:j_{f

Vz t{],fol_gT case £ of ¢ (Y1,...,Uk) ~> €e1lez ~ £, H
(OP CASE SUCCEED)
j{{ﬁ.) = (ﬁﬂnstr{_«_, ’{.]: Peoey ik)

V* = V[k — Bad,y; — K1,..., Uk — K]

| g — KCaseT(c) 4+ KCons(c) ,
VeI q’ + KCaseT (c) er ~ £, J

V|x — ﬂ,ﬂfi_{!;T caselzof ¢ (y1,...,Yr) ~> e1lea ~ £, H
(OP CASE! SUCCEED)
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Schopenhauer Operational Semantics (4)
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v, 1 = e o 01,30 Vi = Vg — 4]

q'15'1,3‘{71| ' 1 KLet3 €2~ £2,3H>

1 (OP LET)
”ﬁ?,ﬂ{}_g'r" let £ = e7 ineg ~ £5, Hs
N I Tl o P,
! ! ! q + KRec4 !

Vie {1,...,n}. V", 3, P02 g

qit1

KRecl
"‘L?,ﬂ{g| g < letrec {1 = €1;...;Tn =en}ine~ £, H
(OP REC)
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Amortised Analysis Type Rules
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 Let I be atyping context mapping identifiers to annotated Schopenhauer
types. Then

rEre: A ¢

q

means that for all valuations v that satisfy the constraints in ®, expression
e has type v(A) under context v(I'). Evaluating e in environment V
requires a potential of at most v(q) + ®",(V: I') and leaves a potential of at
least v(q) + ®v,,(V: I') available.
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Valid Schopenhauer Types

StAndrews
/|/ type variable j
int | bool | «

T = ___} .
pa.q cy: (ql,.Tl) | leri(gr, Tk ) }
Vrey.T 7 T"
Vi 7,b T data type:
ci are constructors,

gi are potentials for those constructors

quantified (polymporphic) type

function type:
r are resource variables
1y are constraints on the rs

p/p’ are potential captured by the function

EmBounded

International Summer School on Advances in Progamming Languages, 16/34

Kevin Hammond, University of St Andrews
Heriot-Watt University, Edinburgh, August 25th-28th 2009



Type Rules: Basic Expressions
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(VAR)
KpushV
z:A | pusﬂ =~ z:A |0
n e 4z

Koklnt (INT)
o mn:int |0

e € {true, false

Ltru ' Boow)

| KmkBool
A9 e:A|0

KpushVar etc. are symbolic values for costs in the Hume abstract machine (HAM)
This allows us to vary the costs for different kinds of resources (resource polymorphism)
For simple expressions, we always return 0 potential.
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Type Rules: LET-bindings
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| gdi

2
F'q2+KLet2 e : A | 1 A, z:A; |_gﬂ_ ez : A» | (I
1 g1 + KLetl .
F:ﬁlq;g—KLetS letz =e;ines : As | o U b Uabe

(LET)

The LET rule threads cost through the two expressions e1 and e2.
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Type Rules: Functions

dom(l') =FV(e)\e B=A7"C ¢UYP=>E
NaAbye:C € 6= Uperanm Y(D|D, D)
¢ FVo(I')UFV,(9)

(ABS)
I
p PRl o e Vicw.B | 4
o : 7 — CV a substitution to fresh resource variables
q
o(BY=A-—"C
(B) d (APP)

. g + Kapp
x:A, y:vNrey.B qu —Kapp YT C | o)

Potential is carried through the function type. We use a sharing rule in ABS to
ensure that we allow for repeated applications of the function.
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Type Rules: Algebraic Datatypes
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¢ € Constrs C=upuXA{le:(p,(B1,...,Bg))|---}
E=BEV(A@=OABE=X)(]?OI'E=1,,]C)

| p + KCons
$1:A1,...,£Ek:Akl 0 C(ﬂ?l,...,ﬂ:k):Ol@

(CONSTR)

c € Constrs A=pXA{-lc:(p,(B1,...,Bg))|---}
1 ¢ + p — KCaseT(c)

F:«yl:Bl [A/X]a e ayk:Bk [A/X] l q’ + KCaseT’(c) e1:C ‘ ‘;b
g — KCaseF(c)
I2:A | q’ + KCaseF’(c) €2 - C |y
F,m:A}_g,T casexz of ¢ (y1,...Yyx) > e1les: C | oUW
(CASE)

In building a constructor using CONSTR we acquire potential p, as defined by the

type for that constructor. This potential is released in a CASE rule, which must deal

with either successful or unsuccessful matches.
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Type Rules: Polymorphism
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 We use standard Hindley-Milner typing rules for polymorphism

d¢dom(l') da¢yv Thye:C|lypus
[ 7 e:Vae.C | 4

(GENERALISE)

Thre:VatC | ¢ ¢=>¢UE[B/dl

rhre:C[B/d]|¢

(SPECIALISE)
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Substructural Type Rules
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« The RELAX rule allows us to increase costs when needed for analysis

PhEre:Al¢

Fﬁf_euﬁl | ¢U{g>p,q—p>q —p'}

(RELAX)

« The SHARE rule captures sharing information

T,z:ALy:As Fre:C | ¢
I, zA by elz/z,2/y): C | $UV(A|AL A2)

(SHARE)

This allows us to split z into two variables x and y. Each resource
variable in A has equal cost to the sum of its counterparts in A1/A2
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Soundness Theorem
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Theorem 1 (Soundness). Fix a well-typed Schopenhauer program.
Letr € Q7 be fixed, but arbitrary. If the following statements hold

D hreA|d (1.A)
V.HFe~ £,H (1.B)

H £y Vio(D) (1.C)

v . a valuation satisfying v(¢) (1.D)

then for all m € N such that

m > v(q) + % (V :v([‘)) +r (LE)
there exists m' € N satisfying
V,H b7 e~s 8,3 (1.D)
m' > v(g) + &% (E:w(A)) +r (1ID)
H' E, £:v(A) (1.II0)
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List-processing example: reverse append

University
of
St Andrews

type num = int 16;

data num list = Nil
| Cons num num list;

revApp :: num list -> num list -> num list;
revApp acc Nil = acc;

revApp acc (Cons x xs) = revApp (Cons x acc) Xxs;

reverse :: num list -> num list;

reverse xs = revApp Nil xs;

expression reverse,

EmBounded
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Costs for reverse
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We first convert the Hume program to a Schopenhauer program:
phamc-an -H -r ra16.hume > ra16.art3

We then analyse the heap consumption:
art3 -H --speak ra16.art3

ARTHUR3 typing for HumeHeapBoxed:
O, (num_list[Nil|Cons<4>:int,#]) -(2/0)-> num_list[Nil|Cons:int,#] ,0

Worst-case Heap-units required in relation to input
2 + 4*X1
where X1 = number of "Cons" nodes at 1. position

Total heap consumption is Jinear in the input size: 4 x length input + 2
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Example: Vending Machine

Univefrsity
St An(drews
value
¢ >  keypad
—> N L5 control vend
utcton
> dispense% tea/coffee
nickel/ coin ¢
ame | eash
holder refund
4
return
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The control box in Hume
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data Coins = Nickel | Dime;
data Drinks = Coffee | Tea;
data Buttons = BCoffee | BTea | BCancel;

-- vending machine controller box
box control
in ( coin :: Coins, button :: Buttons, value :: Int )

out ( dispense :: Drinks, value’ :: Int, return :: Int )

match
( Nickel, *, v) -> (* v+5, *)
| ( Dime, *, v) => (%, v+ 10, ¥ )OO D “*” means ignore input
| ( *, BCoffee, v ) -> vend Coffee 10 v or don’t produce outp
|  *, BTea, v ) -> vend Tea 5 v
|  *, BCancel, v ) -=> ( *, 0, v );

vend drink cost v = if v >= cost then ( drink, v-cost, * )
else ( *, v, * )i
_ o EmBounded
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Costs for the Control Box
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As before, we first convert the Hume program to a Schopenhauer program:
phamc-an -H -r vending.hume > vending.art3
We then analyse the heap consumption:
art3 -H --shrtcon --speak vending.art3
ARTHUR3 typing for HumeHeapBoxed:
@BOX control:
control.coin:
wire[W:coins[Nickel |Dime] | NOVAL]
control.button:
wire[W<4>:buttons[BCoffee|BTea|BCancel] | NOVAL]
control.value:
wire[W<4>:int|NOVAL]
-—-0/0--->
control.drink: N B
wire[W:drinks[Coffee|Tea] | NOVAL] . o _ _
control.value': - total heap cost is fixed: doesn’t depend on input size;
wire[W:int | NOVAL] - return wire has value 6 - reduces bound to 2 from 8
control.return:

wire[W<6>:int | NOVAL]

Worst-case Heap-units required to compute box control once in relation to its input:
4*X1 + 4*X2

where
X1 = one if 2. wire is live, zero if the wire is void
X2 = one if 3. wire is live, zero if the wire is void

_ o EmBounded
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Conclusions
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 New approach to determining upper bounds on execution costs
— formally guaranteed bounds (upper and/or lower)
— “resource polymorphic”: heap, stack and execution time
— uses amortisation approach
— shown here for Hume, but not restricted to pure strict functional languages
» extensions to memory cell reuse, assignment, classes, lazy evaluation
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Other Approaches
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« Sized Types (Vasconcelos and Hammond, IFL 2003)

analyse size of data structures, each type annotated with size
costs can then be determined by multiplying sizes by operation costs
can be combined with amortised analysis

« Symbolic Evaluation

convert program to equivalent costed form
analysis cost proportional to execution cost (problematic for recursion/iteration)
data-dependent, does not give guaranteed bounds

« Abstract interpretation (Cousot, 1977)

similar to symbolic evaluation, but can resolve fixpoints
» cost not proportional to execution cost

can find guaranteed bounds, independent of input sizes

main difference to type-based approaches is that a specialist analysis engine is used
» more powerful, but more complex implementation and proof

* Profiling

run program and measure execution costs

often very high performance overhead

costs are usually approximate

data-dependent, does not give guaranteed bounds
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Ongoing/Future Work
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« Lazy Evaluation
— new idea of /azy potential to suspend payment of potential

 Non-Linear Bounds/Wider range of applications
— combine amortised analysis and sized types
— investigate negative potentials
— incorporate Campbell’s give-back annotations for stacks

« Garbage Collection
— Adapt region-based approach to give countable costs
— Lifetime/Pointer Safety Analysis
» An issue if regions are seen as a programmer level notation

» Not really an issue if the mechanisms are to be handled automatically/for experimental testbed
purposes
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