
1/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Automatic Amortised Resource Analysis for Hume

Kevin Hammond, Steffen Jost and Hans-Wolfgang Loidl
University of St Andrews, Scotland

http://www.embounded.org

International Summer School on Advances in Programming Languages, Heriot-Watt University, Edinburgh, August 25th-28th 2009

2/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Hume Research Objectives

• Virtual Testbed for Space/Time/Power Cost Modelling
– targetting Embedded Systems

• Real-Time, Bounded Space High-Level Programming
– Based on Combining Functional Programming and Finite Automata

• Concurrent Multithreaded Design
– Asynchronous threading
– suitable for multicore

In the near future, we will view software
without formal resource bounds

in the same way as we regard untyped
programs today

Greg Morriset, Harvard University

3/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Hume Design Objectives

• Reliability and Predictability
– Highly reliable software: correctness by construction
– High degree of determinacy: scheduling, communication, functionality, behaviour, …

• Expressibility and Controllability
– High-level language features: automatic memory management, recursion, …
– Low-level interfacing: interrupts, scheduling, fifos, ports, memory-mapped I/O, …

• Costability
– Accurate cost predictions: space, time, power, concurrency

4/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

What is Resource Analysis?

• We are trying to determine a-priori costs for the use of countable resources
– time, dynamic memory, stack, power, …

• We need to provide guaranteed bounds on these costs
– essential to avoid exhausting scarce resources

» e.g. memory, file handles, real-time
– valuable when taking runtime decisions based on resource usage

• We want to give good bounds
– avoid wasting resources
– improve usefulness

• We want an efficient analysis
– analysis should be cheap enough to be part of normal compilation

• We want wide coverage
– as many programs as possible

5/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Amortisation Example

We use amortisation. The amortised cost of an operation is its total cost, plus
the difference in potential before/after the operation

Example: Simulating a queue by using two stacks, A for enqueue,
B for dequeue; if B is empty, content of A is moved to B

6/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Resource costs as types

• We can capture costs for each kind of constructor as an annotation. So given a
function mill :: Tree -> Result, the costs for using mill on different trees are as
follows

Tree (Node<7> | Leaf <0.5>)

3 × 7 + 5 × 0.5 = 23.5

2 × 7 + 3 × 0.5 = 15.5

2 × 7 + 3 × 0.5 = 15.5

Tree (Node<0.5> | Leaf <7>)

3 × 0.5 + 5 × 7 = 36.5

2 × 0.5 + 3 × 7 = 22

2 × 0.5 + 3 × 7 = 22

7/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Costs and Potential

• The costs for mill represent the potential for the state
– when analysing mill, we only need to keep track of this number

• The potential does not account for sharing
– this is sensible, since we may need to apply an operation for each node,

shared or not!

• The potential can never be negative
– establishes an upper bound on execution cost

8/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Automating Amortised Analysis

• Type-based approach
– first translate into cost-equivalent intermediate form, Schopenhauer
– one rule per construct
– plus substructural rules for weakening, subtyping etc.
– potential threaded through execution path
– constraints exposed on potential variables
– constraints then solved using a standard linear solver (e.g. lp-solve)

9/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Schopenhauer

• Intermediate form, simplified version of Hume for analysis
– let-normal form - arguments lifted into let-bound variables
– two forms of let: LET is cost-neutral
– functions take a fixed number of arguments
– case! is destructive match
– lambda-expressions introduced
– explicit recursion: let rec

10/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Operational Semantics Rules

• Each operational semantics rule is of the form:

where
– e is the expression to be evaluated
– V is a variable environment mapping variables to values
– H, H’ is the heap before after evaluation the expression
– l is the location of the result in the new heap
– n, n’ are the associated costs before/after evaluation

• So each rule alters the heap in the context of the environment V,
producing a result in the new heap, and yielding specific costs

3 units are enough to evaluate e

exactly 1 unit is unused after evaluating e

11/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Schopenhauer Operational Semantics (1)

12/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Schopenhauer Operational Semantics (2)

13/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Schopenhauer Operational Semantics (3)

14/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Schopenhauer Operational Semantics (4)

15/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Amortised Analysis Type Rules

• Let Γ be a typing context mapping identifiers to annotated Schopenhauer
types. Then

means that for all valuations v that satisfy the constraints in Φ, expression
e has type v(A) under context v(Γ). Evaluating e in environment V
requires a potential of at most v(q) + Φv

H(V: Γ) and leaves a potential of at
least v(q) + Φv

H(V: Γ) available.

16/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Valid Schopenhauer Types

data type:
ci are constructors,

qi are potentials for those constructors

function type:
r are resource variables
ψ are constraints on the rs

p/p’ are potential captured by the function

quantified (polymporphic) type

type variable

17/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Type Rules: Basic Expressions

KpushVar etc. are symbolic values for costs in the Hume abstract machine (HAM)
This allows us to vary the costs for different kinds of resources (resource polymorphism)
For simple expressions, we always return 0 potential.

18/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Type Rules: LET-bindings

The LET rule threads cost through the two expressions e1 and e2.

19/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Type Rules: Functions

Potential is carried through the function type. We use a sharing rule in ABS to
ensure that we allow for repeated applications of the function.

20/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Type Rules: Algebraic Datatypes

In building a constructor using CONSTR we acquire potential p, as defined by the
type for that constructor. This potential is released in a CASE rule, which must deal
with either successful or unsuccessful matches.

21/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Type Rules: Polymorphism

• We use standard Hindley-Milner typing rules for polymorphism

22/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Substructural Type Rules

• The RELAX rule allows us to increase costs when needed for analysis

• The SHARE rule captures sharing information

This allows us to split z into two variables x and y. Each resource
variable in A has equal cost to the sum of its counterparts in A1/A2

23/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Soundness Theorem

24/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

List-processing example: reverse append

type num = int 16;
data num_list = Nil
 | Cons num num_list;

revApp :: num_list -> num_list -> num_list;
revApp acc Nil = acc;
revApp acc (Cons x xs) = revApp (Cons x acc) xs;

reverse :: num_list -> num_list;
reverse xs = revApp Nil xs;

expression reverse;

25/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Costs for reverse

ARTHUR3 typing for HumeHeapBoxed:

0, (num_list[Nil|Cons<4>:int,#]) -(2/0)-> num_list[Nil|Cons:int,#] ,0

Worst-case Heap-units required in relation to input
2 + 4*X1
where X1 = number of "Cons" nodes at 1. position

We first convert the Hume program to a Schopenhauer program:
phamc-an -H -r ra16.hume > ra16.art3

We then analyse the heap consumption:
art3 -H --speak ra16.art3

Total heap consumption is linear in the input size: 4 x length input + 2

26/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Example: Vending Machine

control
keypad

vend

value

coin
button

cash
holder

dispense

return

tea/coffee

refund

nickel/
dime

27/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

The control box in Hume

data Coins = Nickel | Dime;
data Drinks = Coffee | Tea;
data Buttons = BCoffee | BTea | BCancel;

-- vending machine controller box
box control
in (coin :: Coins, button :: Buttons, value :: Int)
out (dispense :: Drinks, value’ :: Int, return :: Int)
match
 (Nickel, *, v) -> (*, v + 5, *)
| (Dime, *, v) -> (*, v + 10, *)
| (*, BCoffee, v) -> vend Coffee 10 v
| (*, BTea, v) -> vend Tea 5 v
| (*, BCancel, v) -> (*, 0, v);

vend drink cost v = if v >= cost then (drink, v-cost, *)
 else (*, v, *);

“*” means ignore input
or don’t produce output

28/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Costs for the Control Box

ARTHUR3 typing for HumeHeapBoxed:

@BOX control:
 control.coin:
 wire[W:coins[Nickel|Dime]|NOVAL]
 control.button:
 wire[W<4>:buttons[BCoffee|BTea|BCancel]|NOVAL]
 control.value:
 wire[W<4>:int|NOVAL]
 ---0/0--->
 control.drink:
 wire[W:drinks[Coffee|Tea]|NOVAL]
 control.value':
 wire[W:int|NOVAL]
 control.return:
 wire[W<6>:int|NOVAL]

Worst-case Heap-units required to compute box control once in relation to its input:
 4*X1 + 4*X2
 where
 X1 = one if 2. wire is live, zero if the wire is void
 X2 = one if 3. wire is live, zero if the wire is void

As before, we first convert the Hume program to a Schopenhauer program:
phamc-an -H -r vending.hume > vending.art3
We then analyse the heap consumption:
art3 -H --shrtcon --speak vending.art3

NB:
- total heap cost is fixed: doesn’t depend on input size;
- return wire has value 6 - reduces bound to 2 from 8

29/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Conclusions

• New approach to determining upper bounds on execution costs
– formally guaranteed bounds (upper and/or lower)
– “resource polymorphic”: heap, stack and execution time
– uses amortisation approach
– shown here for Hume, but not restricted to pure strict functional languages

» extensions to memory cell reuse, assignment, classes, lazy evaluation

30/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Other Approaches

• Sized Types (Vasconcelos and Hammond, IFL 2003)
– analyse size of data structures, each type annotated with size
– costs can then be determined by multiplying sizes by operation costs
– can be combined with amortised analysis

• Symbolic Evaluation
– convert program to equivalent costed form
– analysis cost proportional to execution cost (problematic for recursion/iteration)
– data-dependent, does not give guaranteed bounds

• Abstract interpretation (Cousot, 1977)
– similar to symbolic evaluation, but can resolve fixpoints

» cost not proportional to execution cost
– can find guaranteed bounds, independent of input sizes
– main difference to type-based approaches is that a specialist analysis engine is used

» more powerful, but more complex implementation and proof
• Profiling

– run program and measure execution costs
– often very high performance overhead
– costs are usually approximate
– data-dependent, does not give guaranteed bounds

31/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Ongoing/Future Work

• Lazy Evaluation
– new idea of lazy potential to suspend payment of potential

• Non-Linear Bounds/Wider range of applications
– combine amortised analysis and sized types
– investigate negative potentials
– incorporate Campbell’s give-back annotations for stacks

• Garbage Collection
– Adapt region-based approach to give countable costs
– Lifetime/Pointer Safety Analysis

» An issue if regions are seen as a programmer level notation
» Not really an issue if the mechanisms are to be handled automatically/for experimental testbed

purposes

32/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

Some Recent Papers

“Carbon Credits” for Resource-Bounded Computations using Amortised Analysis
Steffen Jost, Hans-Wolfgang Loidl, Kevin Hammond, Norman Scaife, and Martin Hofmann
Proc. 2009 Conf. on Formal Methods (FM 2009), Eindhoven, The Netherlands, November 2009.

Worst-Case Execution Time Analysis through Types
Steffen Jost, Hans-Wolfgang Loidl, Norman Scaife, Kevin Hammond, Greg Michaelson, and Martin

Hofmann
Proc. 2009 EuroMicro Conf. on Real-Time Systems (Work in Progress Session), Dublin, Ireland, July

2009.
Towards Resource-Certified Software: A Formal Cost Model for Time and its Application to an Image-

Processing Example
Armelle Bonenfant, Zezhi Chen, Kevin Hammond, Greg Michaelson, Andy Wallace and Iain Wallace
ACM Symposium on Applied Computing 2007.

A Verified Staged Interpreter is a Verified Compiler: Multi Stage Programming with Dependent Types
Edwin Brady and Kevin Hammond
ACM Conf. on Generative Programming and Component Engineering, October 2006.

Inferring Costs for Recursive, Polymorphic and Higher-Order Functional Programs
Pedro Vasconcelos and Kevin Hammond
Proc. 2003 Intl. Workshop on Implementation of Functional Languages (IFL ‘03), Edinburgh,
Springer-Verlag LNCS, 2004. Winner of the Peter Landin Prize for best paper

Predictable Space Behaviour in FSM-Hume,
Kevin Hammond and Greg Michaelson,
Proc. 2002 Intl. Workshop on Implementation of Functional Languages (IFL ‘02), Madrid, Spain, Sept. 2002,
Springer-Verlag LNCS 2670, ISBN 3-540-40190-3, 2003, pp. 1-16

33/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

http://www.hume-lang.org

34/34Kevin Hammond, University of St Andrews International Summer School on Advances in Progamming Languages,
Heriot-Watt University, Edinburgh, August 25th-28th 2009

SICSA THREADSS Blog

http://www-fp.cs.st-and.ac.uk/threadssblog

