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Chapter 1

Introduction

Steffen Jost, Kevin Hammond and Hans-Wolfgang Loidl

Abstract

This chapter gives an overview of the amortised analysis approach that we have used for Hume. We
introduce an analogy with carbon emissions, describe amortised analysis in general terms, outline how
we will develop an automatic analysis and introduce the Hume programming language that will be used
as the basis for undertaking our analysis.

1





1.1. PREDICTING SOFTWARE “EMISSIONS” 3

1.1 Predicting Software “Emissions”

Programs often produce undesirable “emissions”, such as littering the memory with garbage1. Our
work is aimed at predicting limits on such emissions in advance of execution. “Emissions” here refer to
any quantifiable resource that is used by the program. In these notes, we will focus on the key resources
of worst-case execution time, heap allocations, and stack usage. Predicting emissions limits is clearly
desirable in general, and can be vital in safety-critical, embedded systems.

Our method can be explained by analogy to an attempted countermeasure to global warming:
some governments are attempting to reduce industrial pollution by issuing tradable carbon credits.
The law then dictates that each CO2 emission must be offset by expending an appropriate number
of carbon credits. It follows that the total amount of emissions is a priori bounded by the number
of carbon credits that have been previously issued by the authorities. Following this analogy, we will
similarly issue credits for computer programs. The “emissions” of each program operation must then
be immediately justified by spending a corresponding number of credits. The use of “carbon credits”
for software analysis does, however, have several advantages over the political situation: i) we can
prove that each and every emission that occurs is legitimate and that it has been properly paid for
by spending credits; ii) we have zero bureaucratic overhead, since we use an efficient compile-time
analysis, there need be no modifications whatever to the original program, and we therefore do not
change actual execution costs; and iii) we provide an automatic static analysis that, when successful,
provides a guaranteed upper bound on the number of credits that must be issued initially to ensure
that a program can run to completion, rather than using a heuristic to determine the requirements.
The amount of credits a program is allowed to spend is specified as part of its type. This allows the
absolute number of credits to vary in relation to the actual input, as shown below.

Example: Tree Processing. Consider a tree-processing function mill , whose argument has been
determined by our analysis to have type tree(Node〈7〉 | Leaf〈0.5〉). Given this type, we can determine
that processing the first tree below requires at most 23 = b23.5c credits: 7 credits per node and 0.5
credits for each leaf reference2; and that processing either of the other trees requires at most b15.5c
credits, regardless of aliasing.
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In fact, the type given by our analysis allows us to easily determine an upper bound on the cost of mill
for any input tree. For example, for a tree of 27 nodes and 75 leaves, we can compute the credit quota
from the type as 7 · 27 + 0.5 · 75 = 226.5, without needing to consider the actual node or leaf values.
The crucial point is that while we are analysing mill , our analysis only needs to keep track of this single
number. Indeed, the entire dynamic state of the program at any time during its execution could be
abstracted into such a number, representing the total unspent credits at that point in its execution.
Because the number of credits must always be non-negative, this then establishes an upper bound on
the total future execution costs (time or space, etc.) of the program. Note that since this includes the
cost incurred by all subsequent function calls, recursive or otherwise, it follows that our analysis will
also deal with outsourced emissions.

1Some material in this section, including this analogy, previously appeared in [55]
2Note while only whole credits may be spent, fractional credits can be accumulated.



4 CHAPTER 1. INTRODUCTION

1.2 Automatic Analysis Approach for Resource Consumption

We aim to automate the process of determining a bound on the number of credits that are needed to
enforce emissions limits. The automatic analysis that we will develop in Chapter 8 is a variation of
the amortised cost analysis approach that was first described by Tarjan [143]. Amortised cost analysis
is a manual technique, which works as follows: Using ingenuity, we devise a mapping from all possible
machine memory states to a non-negative rational number, henceforth referred to as the potential of
that state. The map must be constructed in such a way that the actual cost of each machine operation
is amortised by the difference in the state potentials before and after the execution of each operation.
For example, for heap space, an operation allocating n memory units always leads to states whose
potential is decreased by n when compared to the state before that operation. Therefore the cost of
each operation, including entire loops or recursive calls, becomes zero, and the overall execution cost
is then equal to the potential of the initial state.

Devising a useful mapping from machine states to the number representing potential is, unfortu-
nately, quite a difficult task in general. Okasaki notes in his excellent book [118] that

“As we have seen, amortized data structures are often tremendously effective in practice.
Unfortunately, traditonal methods of amortization break in presence of persistence.”

Our type-based variant of amortised analysis solves both of these issues at once: We can automatically
determine the abstraction through efficient linear programming techniques and deal with the persistent
data structures that are commonly found in a functional setting by assigning potential on a per-reference
basis rather than resorting to a lazy-evaluation strategy as Okasaki does. The price is that our method
is currently limited to linear cost formulas, a restriction which is not inherent to amortised cost analysis.
However, we believe that an efficient automatic analysis at the press of a button is a major advantage
over a complex, cumbersome, error-prone manual analysis. Note that in practice, our method can be
quite simple to implement: It does does not involve reference counting, we only need to determine the
points at which aliases are introduced. Furthermore, the automatically inferred potential mappings
always allow easy determination of the initial potential for large classes of inputs, and can thus be
transformed to simple closed cost formulas.

1.3 Hume: A New Box-Based Notation for Embedded Systems

We apply our work in the context of the Hume language. Since late 2000, we have been exploring a
new cost-driven, transformational approach to software construction from certified components which is
highly suited to dynamic, reconfigurable embedded systems [47, 48, 49, 50, 105]. This approach builds
on the modern layered programming language Hume [13, 52, 54, 56, 59, 60, 61, 62, 63, 64, 82, 106],
whose strengths lie in the explicit separation of coordination and control concerns. Hume is based
on autonomous boxes linked by wires and controlled by generalised transitions. Boxes and wires are
defined in the finite state coordination layer with transitions defined in the purely functional expression
layer through pattern matching and associated recursive actions. Both coordination and expression
layers share a rich polymorphic type system, comparable to contemporary functional languages like
Haskell [39] and Standard ML [107].

Finite State Automata. Finite state automata provide a basis for constructing simple state-changing
systems. They may also be used to give a natural model of concurrency. Finite state automata com-
prise a set of linked states, with transitions showing the changes from one state to another based on
the inputs that are received. Because pure finite state automata are so simple, there is a natural fit
between finite state automata and hardware, and it is easy to show that such automata have bounded
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time and space costs. Some low-level programming languages, such as Esterel [16] also use an essen-
tially pure finite state approach, and mechanistic systems such as lexers and parsers are also commonly
automaton-based. The primary deficiencies of finite state approaches are:

• there may be a huge number of states for even fairly simple programs;

• it may be necessary to decompose programming problems into very low-level abstractions;

• there are theoretical limitations on the classes of problems that can be solved using finite state
automata.

While each state may be simple in itself, the explosion in the number of states means even small, simple
programs can be too complex to understand easily. Moreover, it can be cumbersome to write simple
functions and other operations as automata. Hume attempts to systematically address these objections
as follows:

• finite state automata are used to structure concurrency only – computations are written using
conventional programming notations;

• high-level programming notations are used to collapse complex sets into a few manageable au-
tomata;

• combining high-level programming notations with automata greatly extends the classes of prob-
lems that can be solved to cover all computable problems.

In Hume, programs are formed from concurrent boxes, which respond to inputs and produce outputs
on one or more wires. Computations within boxes are described using normal high-level programming
notations rather than as automata. While there is a broad analogy with the use of high-level objects as
concurrent agents, and object-based designs can thus be exploited at the high-level, the analogy should
not be stretched too far – boxes are much more structured than objects, in particular in restricting
communication patterns, in relating inputs directly to outputs, and in providing a static rather than
dynamic process network. This discipline allows us to automate testing, to demonstrate deadlock-
freedom using an automatic analysis, and to enforce strong bounds on program costs.

Functional Programming. Purely functional programming provides a good basis for constructing
software with excellent formal properties. Because functional programs are both declarative and de-
terministic, they are much easier to reason about using mathematically-derived techniques than either
object-based or imperative approaches [75]. In fact, many advanced compiler optimisations work on an
internal representation that is purely functional, and compilers can go to great lengths to isolate parts
that are not purely functional, so that they can take advantage of these techniques.

However, to obtain these advantages:

a) programmers must be trained to exploit high-level functional abstractions, which some program-
mers find difficult;

b) there may be a poor match between program and machine implementation, making it difficult to
construct software that must access low-level features; and

c) performance can be significantly worse than with the best imperative implementations (though
performance may be better than, say, with C++ or even Fortran in some cases [131]).

Hume attempts to systematically address these objections as follows:
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Figure 1.1: Hume Design Space

a) finite state automata are a natural way to decompose concurrent programs, and provide analogies
to the higher levels of object-based program decomposition, without the structures of overly low-
level objects;

b) state changes are made explicit through finite state automata, and explicit operating system
interactions;

c) it is possible to provide a straightforward translation from Hume source to the corresponding
machine code, whether direct or through an intermediate abstract machine; and

While we have not yet fully optimised our implementations, Hume has been designed to allow
good compiler optimisations to be exploited. In particular, although the Hume model exposes explicit
wires and boxes to the programmer, many of these may be compiled to simple memory accesses, or even
compiled away. Currently, time performance of Hume programs without optimisation is roughly 10 times
faster than that for Sun’s embedded KVM Java Virtual Machine or about half the speed of optimised
C++, while dynamic space usage is only a fraction of that required by either Java or C++, and is
guaranteed to be bounded. For example, we have constructed a complete implementation for a Renesas
M32C bare development board using less than 16KB RAM, including all run-time, operating system,
user code and library support. The combination of finite state automata with functional programming
therefore gives a powerful programming basis without sacrificing crucial low-level capabilities.

Levels of Expressivity. Hume offers programmers different programming levels where expressivity
is balanced against accuracy of behavioural modelling (Figure 1.1). Full-Hume is a general purpose,
Turing-complete language with undecidable correctness, termination and resource bounds. PR-Hume
restricts Full-Hume expressions to primitive recursive constructs, enabling decidable termination and
bounded resource prediction. Template-Hume further restricts expressions to higher-order functions
with precise cost models, enabling stronger resource prediction. In FSM-Hume, types are restricted to
those of fixed size and expressions to conditions over base operations, enabling highly accurate resource
bounds. Finally, HW-Hume is a basic finite state language over tuples of bits, offering decidable cor-
rectness and termination, and exact resource analysis. However, rather than requiring programmers
to choose a level from the outset, we have elaborated an iterative methodology based on cost-driven
transformation. An initial Hume program, designed to meet its specification, is then analysed to estab-
lish resource bounds. Where established bounds are unacceptable, the offending program constructs
are transformed, usually to lower levels, and the program is again analysed, with the cycle continuing
until the required analytic precision is reached. Furthermore, this approach is applicable where Hume
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programs are partially or fully built from unitary components of known bounds guaranteed by certifi-
cate, where components can be written in any certifiable language: whether Hume, C, or some other
notation.

1.4 Structure of these Notes

In this document, we will develop all the theoretical underpinnings that are required to produce an
amortised resource analysis for Hume. We consider Full Hume programs, but produce cost information
only where a program has cost that is linear in the sizes of its input values. We will focus on worst-case
execution time, since this involves significant care, both in determining correct cost points in the analy-
sis, in developing a good operational semantics, and in obtaining detailed and accurate measurements.
In Chapter 2, we will survey approaches to cost modelling and analysis, covering type-based systems,
including recent sized type approaches as well as our previous work on amortised analysis. We will
also consider approaches based on automatic complexity analysis, as well as recent work on worst-case
execution time analysis. In Chapter 3, we describe the structure and operation of the Hume Abstract
Machine. In Chapter 4, we describe how Hume programs can be compiled to Hume Abstract Machine
(HAM) instructions, including a formal description of the compilation process. Chapter 5 develops
a high-level cost model for Hume that is used in Chapter 6 to develop a resource-aware operational
semantics for the Hume Abstract Machine. Chapter 7 develops the Schopenhauer and Core-Hume
intermediate notations that will simplify the specification of our amortised analysis, and provides a
generic framework for a type-based amortised analysis. Chapter 8 develops the amortised analysis for
worst-case execution time. Finally, Chapter ?? evaluates our amortised analysis against a number of
significant examples, for both worst-case execution time, stack-space and heap-space metrics.
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Chapter 2

Cost Modelling and Analysis

Pedro Vasconcelos, Kevin Hammond and Steffen Jost

Abstract

This chapter describes previous approaches to cost modelling and analysis. The material is largely
taken from Vasconcelos’ thesis. We first review some basic principles of two frameworks of program
analysis, namely, type and effect systems and abstract interpretation that form the basis of our cost
analysis. We then present a comparative review of the most relevant work on determining bounds for
time or space usage.

9
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2.1 Overview

Program analysis concerns the study of automatic techniques for obtaining predictive information about
the dynamic behaviour of programs. The usual requirement is that program analysis should obtain
sound information with respect to the program semantics, that is, obtain approximations that hold for
all executions. This means that any approximation must be conservative, i.e. err by over-estimation of
the dynamic behaviour.

The traditional motivation for program analysis is to gather information for enabling optimisations
in compilers. More recently, program analysis has been applied for verifying that software respect
both safety properties (“something bad will not happen”) and liveness properties (“something good
will happen”) [119]. Applications of program analysis in this context include aiding detecting errors,
validating software received from sub-contractors, allowing execution of foreign code in an untrusted
environment and aiding in transformations of data formats (e.g. the Y2K problem).

A complete survey of program analysis is beyond the scope of this document; we refer the reader
to the textbook of Nielson, Nielson, and Hankin [114] for a comprehensive presentation of the area. In
the remaining of this chapter we will focus on the basic principles of the two approaches used in our
work, namely, type and effect systems and abstract interpretation.

2.2 Type and effect systems

Type and effect systems are program analysis that extend types with annotations describing properties
of values or evaluations [112]. Analyses based on effects were first introduced to control the combination
of imperative features with functional languages [97, 98, 140]; in this setting, effects are abstract
descriptions of impure side-effects occurring during evaluation, e.g. accesses to imperative references or
input-output actions. Other uses of type and effects analysis include exception tracking, inferring region
annotations [139, 146], analysing communication in concurrent systems [2] and predicting execution
costs [38, 73, 127]; the latter will be reviewed in detail in Section 2.4 onwards.

2.2.1 A simply-typed language

For concreteness we will consider an analysis for tracking exceptions raised during evaluation of a
simple applicative language; our presentation is based on [114]. The syntax of terms is the simply-
typed lambda-calculus extended with constants, conditionals and exception raising and handling:

e ::= c | x | λx. e | (@e1e2)
| if then e else 0 then e1 else e2 | raise ε | handle ε as e1 in e2 (2.2.1)

Exceptions are identified by tokens ε taken from some finite set; they can be raised by the evaluation of
a raise expression and trapped by the expression ‘handle ε as e1 in e2’; the latter evaluates to e2 unless
the exception ε is raised, in which case it evaluates to e1. For simplicity we have omitted primitive
operations and recursive definitions; extending the exception analysis for these is straightforward.

The semantics of expressions is given in Table 2.1 by a call-by-value big-step evaluation relation
` e −→ v meaning that expression e evaluates to the value v; values are a proper subset of expressions,
namely: constants, (closed) lambda-abstractions or raised exceptions.

v ::= c | λx. e | raise ε (2.2.2)

We use the notation e[x 7→e′] to substitute a variable x for e′ in an expression e. It will be the case that
e′ is a closed expression (i.e. without free variables) whenever we use substitutions so that we need not
concern with the possibility of variable capture.
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` c −→ c

` λx. e −→ λx. e

` raise ε −→ raise ε

` e1 −→ raise ε

` (@e1e2) −→ raise ε

` e1 −→ λx. e′ ` e2 −→ raise ε

` (@e1e2) −→ raise ε

` e1 −→ λx. e′ ` e2 −→ v2 ` e′[x 7→v2] −→ v

` (@e1e2) −→ v
v2 6= raise ε

` e0 −→ raise ε

` if then e else 0 then e1 else e2 −→ raise ε

` e0 −→ true ` e1 −→ v1

` if then e else 0 then e1 else e2 −→ v1

` e0 −→ false ` e2 −→ v2

` if then e else 0 then e1 else e2 −→ v2

` e2 −→ raise ε ` e1 −→ v

` handle ε as e1 in e2 −→ v

` e2 −→ v

` handle ε as e1 in e2 −→ v
v 6= raise ε

Table 2.1: Big-step semantics for exceptions.
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Γ ` c : τc

Γ ∪ {x : τ} ` x : τ

Γ ` raise ε : τ

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if then e else 1 then e2 else e3 : τ

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` (e1 e2) : τ

Γ ∪ {x : τ ′} ` e : τ

Γ ` λx. e : τ ′ → τ

Γ ` e1 : τ Γ ` e2 : τ

Γ ` handle ε as e1 in e2 : τ

Table 2.2: Underlying type system rules.

The objective of the exception analysis is to approximate what exceptions (if any) may the evaluation
of an expression yield.

2.2.2 Underlying type system

The type and effect analysis will extend a standard type system with annotations. This underlying
type system includes types of integers, booleans and and functions:

τ ::= int | bool | τ1 → τ2

The typing relation is presented as judgements Γ ` e : τ where Γ is a set of assumptions for free
variables (i.e. pairs x : τ). We use τc for the type of a constant c (an integer or boolean). The typing
rules are presented in Table 2.2.

2.2.3 Effects and annotated types

The key idea of type and effect systems is to annotate function types with an effect ϕ that delimits
side-effects that may be triggered during the evaluation of the function. For the exception analysis,
effects represent sets of exception tokens:

ϕ ::= ∅ | {ε} | ϕ1 ∪ ϕ2 (2.2.3)

Equality of effects is taken modulo axioms for commutativity, associativity and idempotency of ∪
and with null element ∅. We will therefore abuse notation and sometime write effects as finite sets
{ε1, . . . , εn}.

The syntax of annotated types is

τ ::= int | bool | τ1
ϕ−→ τ2 (2.2.4)
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where int and bool are the types of constants and τ1
ϕ−→ τ2 is the type of a function that may raise

exceptions only in ϕ. For example, the integer division operation can be given the annotated type

int
∅−→ int

{div0}−−−−→ int meaning that it might raise a division-by-zero exception.1 By contrast, the addition
operation can be given the type int

∅−→ int
∅−→ int manifesting that it cannot raise exceptions

2.2.4 Subeffecting and subtyping

Effects can be ordered by a subeffecting relation ⊆. Informally, ϕ ⊆ ϕ′ means that ϕ can be safely
approximated by ϕ′. For the simple example of exception analysis, the subeffecting relation is just
set-containment.

Subeffecting can be used to ensure that a type and effect system is a “conservative extension” of
the underlying type system, i.e. to be able to derive an analysis for any expression that is typeable in
the underlying type system. Consider, for example, the expression

λy. if then y else > 0 then (λx. if then x else > 0 then raise pos else x)
else (λx. if then x else < 0 then raise neg else x)

(2.2.5)

The two x-abstractions may raise distinct exceptions and so admit different annotated types:

(λx. if then x else > 0 then raise pos else x) : int
{pos}−−−→ int

(λx. if then x else < 0 then raise neg else x) : int
{neg}−−−→ int

Without subeffecting expression (2.2.5) would not admit an effect annotated type even though it is
admits a type the underlying type system. Subeffecting will allow us to “enlarge” the effects of both
abstractions to

(λx. if then x else > 0 then raise pos else x) : int
{neg, pos}−−−−−−→ int

(λx. if then x else < 0 then raise neg else x) : int
{neg, pos}−−−−−−→ int

and obtain the type

int
∅−→ int

{neg, pos}−−−−−−→ int

for the whole expression (2.2.5).

Since types are annotated with effects, subeffecting induces a subtyping relation 6 on annotated
types. Informally, τ 6 τ ′ means that τ can be safely approximated by τ ′. The subtyping relation is
formally defined by rules (2.2.6):

τ 6 τ
τ ′1 6 τ1 τ2 6 τ ′2 ϕ ⊆ ϕ′

τ1
ϕ−→ τ2 6 τ ′1

ϕ′−→ τ ′2

(2.2.6)

Note that subtyping is shape conformant (or structural) i.e. if τ 6 τ ′ then τ and τ ′ have the same
underlying type but possibly distinct annotations; this is unlike more general kinds of subtyping that
relate types with distinct constructors (e.g. a relation such as int 6 float modelling coercion between
numeric types).

Also note that the definition (2.2.6) is covariant on the right of the arrow but contravariant on
the left, i.e. the ordering is reversed on the domains of functions. This is indeed the correct definition

1 Note that currying allows distinguishing the effect of partial application (which can not raise exceptions) from the
full application which can.
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Γ ` c : τc & ∅ (2.2.7)

Γ ∪ {x : τ} ` x : τ & ∅ (2.2.8)

Γ ` raise ε : τ & {ε} (2.2.9)

Γ ` e1 : bool & ϕ1 Γ ` e2 : τ & ϕ2 Γ ` e3 : τ & ϕ3

Γ ` if then e else 1 then e2 else e3 : τ & ϕ1 ∪ ϕ2 ∪ ϕ3

(2.2.10)

Γ ` e1 : τ ′
ϕ0−→ τ & ϕ1 Γ ` e2 : τ ′ & ϕ2

Γ ` (e1 e2) : τ & ϕ0 ∪ ϕ1 ∪ ϕ2

(2.2.11)

Γ ∪ {x : τ ′} ` e : τ & ϕ

Γ ` λx. e : τ ′
ϕ−→ τ & ∅

(2.2.12)

Γ ` e1 : τ & ϕ1 Γ ` e2 : τ & ϕ2

Γ ` handle ε as e1 in e2 : τ & ϕ1 ∪ (ϕ2 \ {ε})
(2.2.13)

Γ ` e : τ & ϕ

Γ ` e : τ & ϕ′
if ϕ ⊆ ϕ′ (2.2.14)

Table 2.3: Type and effect rules for exception analysis.

regardless of the precise semantics of side-effects; the intuition for this is that A
ϕ−→ B is interpreted as

an implication A =⇒ (B ∧ ϕ) and 6 as logical consequence.
Finally, we remark that subeffecting alone is sufficient to ensure that the exception analysis is a

conservative extension of the underlying type system; this is because the only type annotations are
effects, unlike more complex type-based analysis [2, 73, 127]. However, adding subtyping can still
be useful to improve precision: while subeffecting requires enlarging effects at the point of definition,
subtyping allows enlarging types at the points of use, thus limiting any precision loss to specific contexts.

2.2.5 Type and effect rules

The type and effect analysis is formulated in Table 2.3 as a set of typing rules that derive judgements
with the form

Γ ` e : τ & ϕ

where Γ is a set of type assumptions for free identifiers, e is an expression, τ is an annotated type and
ϕ is the effect associated with e. We describe each rule informally:

• Rules (2.2.7) and (2.2.8) specify the type and an empty effect ∅ for constants and identifiers:
under a call-by-value semantics evaluation of these expressions cannot raise exceptions.

• Rule (2.2.9) specifies the most precise effect for an explicit raise, namely, the singleton exception
raised; note that the result type τ is arbitrary.

• Rule (2.2.10) overestimates the effect of a conditional as the union of the effects of all sub-
expressions.
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• Rule (2.2.11) specifies the combination of effects for an application: the result is a union of the
effects ϕ1, ϕ2 for evaluating both sub-expressions plus the “latent effect” ϕ0 for the function itself.

• Conversely, rule (2.2.12) transposes the effect ϕ of an expression e into the annotation in the
arrow type for the abstraction λx. e. The evaluation the lambda-abstraction has an empty effect;
this is because the effects of the function are delayed until the point of application.

• Rule (2.2.13) specifies the type and effect of the handle construct: an exception ε raised in e2 is
caught and therefore the result effect masks it using an “effect-difference” operation ϕ2 \ {ε} (the
definition is straightforward and we omit it). Note that exceptions other than ε raised in e2 or
those raised by e1 are propagated to the outer scope.

• Rule (2.2.14) allows subeffecting only; it would be possible to allow subtyping as well [as in 114]:

Γ ` e : τ & ϕ

Γ ` e : τ ′ & ϕ′
if τ 6 τ ′ and ϕ ⊆ ϕ′

We do not consider the extended rule here to avoid the treatment of subtyping in the inference
algorithm. In any case, subtyping would only improve precision; subeffecting alone is sufficient
to ensure that the exception analysis is a conservative extension of the underlying type system.

2.2.6 Semantic correctness

The correctness of the type and effect analysis can be formulated as a “subject reduction” property: if
a type and effect can is inferred for an expression, it is also admissible for the result of evaluation.

For the particular exception analysis, this is formulated in the following theorem.

Theorem 2.1. If ∅ ` e : τ & ϕ and ` e −→ v, then ∅ ` v : τ & ϕ.

In particular, if ∅ ` e : τ & ϕ and ` e −→ raise ε, then applying the above theorem we obtain
∅ ` raise ε : τ & ϕ. By inspection of Table 2.3 we can see that the only type rules that could be
applied to raise are (2.2.9) and (2.2.14). We conclude that {ε} ⊆ ϕ, i.e. the analysis obtains an upper-
approximation of the exceptions raised.

The proof of Theorem 2.1 is by induction on the big-step reduction ` e −→ v together with a
standard “substitution lemma” to allow replacing variables with expressions of the correct type. We
omit the proof which is similar to the one presented in Nielson et al. [114, pages 295–297].

2.2.7 Type and effect polymorphism

For simplicity the language and type rules considered so far did not include polymorphic definitions.
We will now add let-bound polymorphism by extending terms with an expression ‘let = x in = e1 in e2’
and a type rule that allows quantified types for x in e2. Moreover, it is possible to use polymorphism
to obtain a more precise analysis by quantifying over effects as well as types. The extended syntax of
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Γ ` e1 : σ1 & ϕ1 Γ ∪ {x : σ1} ` e2 : τ2 & ϕ2

Γ ` let = x in = e1 in e2 : τ2 & ϕ1 ∪ ϕ2

(2.2.15)

Γ ` e : σ & ϕ

Γ ` e : ∀γ. σ & ϕ
if γ does not occur free in Γ and ϕ (2.2.16)

Γ ` e : ∀α. σ & ϕ

Γ ` e : σ[α 7→ τ ′] & ϕ
(2.2.17)

Γ ` e : ∀β. σ & ϕ

Γ ` e : σ[β 7→ ϕ′] & ϕ
(2.2.18)

Table 2.4: Extensions for type and effect polymorphism.

terms and types is

e ::= · · · | let = x in = e1 in e2

ϕ ::= β | ∅ | {ε} | ϕ1 ∪ ϕ2

τ ::= α | int | bool | τ1
ϕ−→ τ2

σ ::= τ | ∀γ. σ

γ ::= α | β

α ::= a | b | c | . . .

β ::= ′0 | ′1 | ′2 | . . .

where α are type variables, β are effect variables and σ are quantified types (i.e. type schemes).
Table 2.4 lists the new type rules for the let-expression 2.2.15 and for introduction and elimination

of type quantifiers (2.2.16), (2.2.17), (2.2.18); the rules of Table 2.3 remain unchanged.

Example 2.2 Consider a program that starts with the definition of a higher-order composition func-
tion,

let = in compose = λf. λg. λx. f (g x) in e

where the expression e is the remaining of the program. Using type and effect polymorphism, we can
derive a quantified type for compose

∀a∀b∀c ∀′0∀′1. (b
′0−→ c) ∅−→ (a

′1−→ b) ∅−→ a
′0∪′1−−−→ c

which specifies the “most general” annotated type with instances such as

(int
∅−→ int) ∅−→ (int

∅−→ int) ∅−→ int
∅−→ int

and
(int

{neg}−−−→ bool) ∅−→ (int
{pos}−−−→ int) ∅−→ int

{neg, neg}−−−−−−→ bool .

Note that with type but not effect polymorphism we would only be able to derive a type for compose
annotated with the effects of all uses; this would lead to an over-estimation where each use shares the
effects of all others.
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By contrast, quantification on effects allows the analysis of polymorphic functions to be polyvariant :
each application is given a range of effects specific to its arguments; this is particularly important for
generic functions such as higher-order combinators that are typically used in very different contexts.

Note also that effect polymorphism allows expressing the analysis of compose without advance
knowledge of its uses. This means that the analysis is compositional : it does require that the whole
program be present and can be applied to separately-compiled modules or libraries.

We remark that the addition of polymorphism to the exception analysis is uncharacteristically sim-
ple. In general, the combination of polymorphism and imperative side-effects (e.g. references) requires
restrictions on the use of the generalisation rule to retain soundness of type inference [145, 162].

2.2.8 Inference algorithms

Tables 2.3 and 2.4 present the type and effect analysis as proof systems that require guessing suitable
types for sub-expressions; to obtain an automatic analysis we need an algorithm for type and effect
reconstruction.

A first problem is the presence of non-structural type rules such as those for subeffecting (2.2.14),
subtyping, generalisation (2.2.16) and instantiation (2.2.17), (2.2.18): these rules can occur in arbitrary
points of a derivation and therefore some “canonical” choice has to be made; this is usually done by
showing a proof normalisation result i.e. that uses of non-structural rules can be restricted to specific
syntax points without a incurring a loss of typeability.

Let-bound polymorphism is a suitable choice for normalising the uses of generalisation and in-
stantiation: generalise all suitable type and effect variables of let-bound identifiers2 and instantiate
all quantified variables just after the use of a variable. Subeffecting can be normalised by allowing
over-approximation of effects in all rules i.e. by adding an arbitrary effect . . . ∪ ϕ′ to the conclusions
of (2.2.7), (2.2.8), (2.2.9) and (2.2.12).

Type inference for type and effect systems with subeffecting but not subtyping can be implemented
as an extension of the well-known algorithm W of Damas [35]. The key hindsight is to restrict types
to the subset of simple types τ̂ whose annotations must be variables:

τ̂ ::= α | int | bool | τ̂1
β−→ τ̂2

To allow expressing complex effects (i.e. non-variables) the algorithm collects separate lower-bound
constraints C over effect variables:

C ::= ∅ | {β ⊇ ϕ} | C1 ∪ C2

ϕ ::= ∅ | β | {ε} | ϕ1 ∪ ϕ2

The reason for restricting the algorithm to simple types is that these form a free algebra in which
equality constraints can be solved by first-order unification [128] just as in ordinary Damas-Milner type
inference. By contrast, the algebra of effects is non-free (e.g. ∪ is associative, commutative and has a
empty element ∅). By segregating effects to separate constraints, it becomes possible to use the simple
unification to solve type equalities and deal with the non-free algebra of effects in a separate constraint
solver.

Table 2.6 presents an excerpt of the reconstruction algorithm as judgements

Γ̂ `RA e : (τ̂ , ϕ, C, [)/

] where Γ̂ is a set of (simple) type assumptions, e is an expression and the output is a 4-tuple of: a
simple type τ̂ , an effect ϕ, a set of lower-bound constraints C and a substitution [/.] For simplicity, we
include only the rules for constants, abstraction and application; the omitted cases (conditionals and
exception handling) are straightforward but tedious.

2That is, those that do not occur free in the type assumption or effect.
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U(int, int) = id

U(bool, bool) = id

U(τ̂1
β−→ τ̂2, τ̂

′
1

β′−→ τ̂ ′2) = let [/0] = [β 7→β′]
[/1] = U([/0]τ̂1, [/0]τ̂ ′1)
[/2] = U([/1][/0]τ̂2, [/1][/0]τ̂ ′2)

in [/2] ◦ [/1] ◦ [/0]

U(α, τ̂) = U(τ̂ , α) =
{

[α 7→ τ̂ ] if α does not occur in τ̂
fails otherwise

U(τ̂ , τ̂ ′) fails in all other cases

Table 2.5: Unification of simple types.

Γ̂ `RA c : (τc, ∅, ∅, id)

Γ̂ ∪ {x : τ̂} `RA x : (τ̂ , ∅, ∅, id)

Γ̂ `RA raise ε : (α, {ε}, ∅, id)

Γ̂ ∪ {x : α} `RA e : (τ̂ , ϕ, C, [)/

]Γ̂ `RA λx. e : ([α/
]−→ βτ̂ , ∅, {β ⊇ ϕ} ∪ C, [)/

] α, β are fresh variables

Γ̂ `RA e1 : (τ̂1, ϕ1, C1, [/1]) [/1]Γ̂ `RA e2 : (τ̂2, ϕ2, C2, [/2])

[/3] = U(τ̂2
β−→ α, [/2]τ̂1)

Γ̂ `RA (@e1e2) : ([/3]α, [/3][/2]ϕ1 ∪ [/3]ϕ2 ∪ {[/3]β}, [/3][/2]C1 ∪ [/3]C2, [/3] ◦ [/2] ◦ [/1])

Table 2.6: Algorithmic typing judgements for exception analysis (excerpt).
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The main difference between the proof systems of Table 2.3 and Table 2.6 is that the latter does not
require guessing types of sub-expressions; instead, it uses “fresh” variables for both types and effects
and uses unification to impose equality constraints between (simple) types.

The unification algorithm U in Table 2.5 takes two simple types τ̂ , τ̂ ′ and yields the “smallest”
substitution [/s]uch that [/̂τ ] ≡ [/̂τ ]′ (or fails, if no such substitution exists). Note that substitutions
bind both type and effect variables and therefore are applied to types, effects and constraints.

Each rule of Table 2.6 is applicable to a single expression syntax node; thus, the rules can be read
as an algorithm for reconstructing the type and effect of an expression.

Extending the inference algorithm with let-bound polymorphism is straightforward: quantification
of variables is done at the let =a in nd instantiation is done at the use of variables by introducing fresh
type and effect variables. The type and effect system for region inference of Talpin and Jouvelot [139]
combines polymorphism and effects (but not subtyping).

Type reconstruction algorithms for subtyping usually require extending the proof system with ex-
plicit type inequality constraints [43, 108]; this is needed to obtain syntactic completeness i.e. an
algorithm that computes a principal solution from which any valid typing can be derived. This ap-
proach is followed in Nielson et al. [113, 115] although completeness of the algorithm is left as an open
problem. For shape conformant subtyping typical of type and effect systems it is possible to employ a
simpler two-stage approach: first the underlying types are inferred and then the subtyping inequalities
are translated to constraints on the annotations [127]; such an algorithm will not be complete, i.e. it
may compute a type and effect that is not minimal.

2.2.9 Concluding remarks

The type and effect discipline has some strengths compared to the other main approaches for program
analysis (e.g. based on data-flow or abstract interpretation): it deals naturally with higher-order func-
tions by means of annotations on arrow types; it allows separate analysis of modules by communicating
information via extended type signatures; the latter also provide a natural mechanism for reporting the
results of analysis to the user.

Effect systems where initially developed to deal the problems caused by implicit side-effects in
functional languages with call-by-value semantics (e.g. in the LISP and ML families). As such, the type
and effect framework does not naturally fit languages with lazy evaluation; this can be witnessed in the
type rule (2.2.11) for application:

Γ ` e1 : τ ′
ϕ0−→ τ & ϕ1 Γ ` e2 : τ ′ & ϕ2

Γ ` (e1 e2) : τ & ϕ0 ∪ ϕ1 ∪ ϕ2

The cumulative effect ϕ0 ∪ ϕ1 ∪ ϕ2 always includes the argument effect ϕ2, thus modelling a strict
application.

Moreover, lazy languages do not typically employ implicit side effects since the order of evaluation is
driven by demand. Side effects must then be controlled explicitly e.g. using monads [9, 157]. However,
the two approaches are not completely apart: Wadler [158] has shown that monads can be parameterised
by effects and that the inference rules and algorithms of type and effect systems carry over to the
monadic translation.

2.3 Abstract interpretation

Abstract interpretation [28, 29] is a framework for program analysis based on approximating com-
putations on concrete values by computations on abstract properties of values. The key idea is to
approximate the concrete domain of values by a more coarse domain of abstract properties and lift the
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concrete operations to sound abstract approximations. The static analysis is constructed by interpreting
the program in the non-standard abstract domain.

2.3.1 Concrete and abstract domains

The theory abstract interpretation is concerned with establishing sound approximations independently
of the syntactical characteristics of the programming language (or, more generally, model of compu-
tation). It is therefore usual to start by defining sets P\ of concrete properties and P] of abstract
properties.

The concrete properties are derived from some semantic description of the language (e.g. they can
be sets of values, states or given by a “collecting” semantics); the requirement for P\ is that is a
complete proof method for the intended properties under analysis; therefore elements of P\ are usually
not machine representable. Contrariwise, the abstract properties P] will be typically be both finitely
representable and computable.

The sets of concrete and abstract properties are then instrumented with partial orders representing
the relative precision of descriptions; a common scenario is to consider properties to be lattices (P, v
, ⊥, >, t, u). The convention is that precision is lost when moving upwards in the lattice: if p, p′ ∈ P

satisfy p v p′ then any value described by p is also described by p′, i.e. p entails p′. The bottom element
⊥ represents the most precise property (i.e. divergent or non-reachable computations); the top element
> represent the least precise property (absence of information). Note that it is possible for properties
to be incomparable i.e. when neither p v p′ nor p′ v p holds.

2.3.2 Correspondence between concrete and abstract properties

The correspondence between concrete and abstract properties c ∈ P\ and a ∈ P] can be established in
many ways; one of the most common scenarios is to require the existence of two monotone functions
α : P\ → P] and γ : P] → P\ called abstraction and concretisation, respectively. Informally, α(c) should
be the “smallest” abstract representative of a concrete property c; dually, γ(a) should be the “largest”
concrete property described by an abstraction a.

The classical Galois connection framework requires that the abstraction and concretisation functions
satisfy (2.3.1) and (2.3.2):

∀c ∈ P\ c v\ γ(α(c)) (2.3.1)

∀a ∈ P] α(γ(a)) v] a (2.3.2)

Condition (2.3.1) states that we may loose precision moving from concrete to abstract lattice and back
again (though we do not loose safety); condition (2.3.2) states that we do not loose precision in the
inverse direction.

In the presence of a Galois connection we can state the soundness relation between a concrete
and abstract property using either the concrete or abstract orders. More precisely, a ∈ P] is a sound
approximation of c ∈ P\ if either (2.3.3) or (2.3.4) holds:

c v\ γ(a) (2.3.3)

α(c) v] a (2.3.4)

However, we shall consider the slightly more general setting where not every concrete value has a
“best” abstraction e.g. when the domain of abstract properties is an incomplete lattice [30, 32]. In
that situation we can do without the abstraction function and define the soundness relation using
condition (2.3.3).
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2.3.3 Approximation of fixed points

We now introduce a further assumption that the lattice P\ of concrete properties is complete so that
we can define the invariant properties of recursive or iterative computations as fixed points.

Assume then that the semantics of a “basic block” of computation (e.g. a state transition or the
body of a loop or recursive computation) is given by a continuous function f : P\ → P\ on concrete
properties. The semantics of an iterative computation can then be obtained as the limit of an ascending
chain of concrete iterates {(cn)n∈N}:

c0 := ⊥\ cn+1 := f(cn) (2.3.5)

By completeness of P\ the limit
⊔
{(cn)n∈N} exists; by continuity of f we have

⊔
{(cn)n∈N} =

⊔
n≥0 f

n(⊥\) =
fix (f).

It will usually be the case that the least fixed point fix (f) is incomputable and so we are interested
in obtaining a computable approximation using a monotone abstract semantics function f ] : P] → P]

describing a transition in abstract properties. Note that the requirement for monotonicity is quite
natural for program analysis: it merely amounts to saying that f ] cannot yield more precise results
from less precise initial approximations. Note also that we do not assume that the lattice P] is complete
nor that f ] is continuous.

The soundness relation between f and f ] can specified using a Galois connection, i.e. an abstraction
and concretisation functions. In that case f ] is completely determined by f , α and γ:

f ] = α ◦ f ◦ γ (2.3.6)

Informally, condition (2.3.6) says that computing with f ] should yield the same result as first using γ
to project into the concrete domain, computing with f and then using α to get back to the abstract
domain.

In the absence of a Galois connection, it is possible to employ the concretisation function alone to
specify the soundness relation using (2.3.3) in a pointwise manner:

∀a ∈ P] f(γ(a)) v\ γ(f ](a)) (2.3.7)

Condition (2.3.7) says that computing with f ] and then projecting into the concrete domain must yield
a upper-approximation of first projecting into the concrete domain and then computing with f .

Consider now the sequence of abstract iterates {(an)n∈N} generated by f ]:

a0 := ⊥] an+1 := f ](an) (2.3.8)

It is immediate that {(an)n∈N} is an ascending chain in P] by the monotonicity of f ]. In the simple
situation where the abstract lattice of properties P] is finite the iteration (2.3.8) will converge to the
least fixed point in a finite number of iterations.

However, this is not the case for lattices that capture numerical properties e.g. the lattices of integer
intervals or convex polyhedra [32]. If the abstract lattice is incomplete or does not satisfy the finite
ascending chain condition (see [152]) then the limit of (2.3.8) might not exist or the iteration might not
converge finitely; in either case the abstract iteration does not give an effective computational method
for obtaining a sound abstraction.

The solution is to replace (2.3.8) by another iteration that is an upper bound of the original and
does stabilise in a finite number of steps; this can be done using a widening operator.

Widening operators

When the lattice of abstract values does not satisfy the ascending chain condition, we need some
heuristic for extrapolating fixed point iterations. This is designated a widening operator.3

3There is some flexibility in the definition of widening operators; we use the formulation of [114].
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Definition 2.3.1. A total function ∇ : P × P → P on a partially ordered set (P, v) is a widening
operator if and only if:

a) For all x, y ∈ P we have x v x∇y and y v x∇y;

b) If for all n, xn ∈ P and xn v xn+1, then the sequence yn ∈ P defined by

y0 := x0 yn+1 := yn∇xn+1

eventually stabilises, i.e. there exists k ≥ 0 such that for all n, n ≥ k implies yn = yk.

The first condition of this definition requires that ∇ is an upper bound operator (though not
necessarily the least upper bound); the second condition requires that∇ transforms ascending iterations
into finitely stabilising iterations.

Assume we have a widening operator ∇ for the lattice of abstract properties P]; then the following
iteration

a0 = ⊥]

an+1 = an if f ](an) v] an

an+1 = an∇f ](an) otherwise
(2.3.9)

eventually stabilises [114, pages 227–228]. Therefore, we can compute successive iterates a0, a1, . . .
until the condition f ](ak) v] ak is satisfied; by the properties of the widening, this is guaranteed to
happen in a finite number of iterations; then

f ](ak) v] ak by the termination condition

=⇒ γ(f ](ak)) v\ γ(ak) by monotonicity of γ

=⇒ f(γ(ak)) v\ γ(ak) by hypothesis (2.3.7)

=⇒ fix (f) v\ γ(ak) by the fixed point theorem

The last line says that the abstract property ak obtained from (2.3.9) is a sound approximation of
fix (f) as required.

2.3.4 Abstract interpretation of numerical properties

We shall now review some well-known lattices used in abstract interpretation of numerical properties.
Such analysis approximate sets of integer vectors, i.e. elements of ℘(Zn) (or equivalently, predicates
over integer tuples).

The two lattices considered are the intervals of integers [27] and convex polyhedra [32]. Unlike
elements of ℘(Zn), both intervals and polyhedra are machine representable and the required operations
on them are computable.

2.3.5 Lattice of intervals

The set of integer intervals is defined by

Interval = {⊥} ∪ { [z1, z2] : z1 ∈ Z ∪ {−∞}, z1 ∈ Z ∪ {+∞}, z1 ≤ z2 }

where the order on the integers is extended to −∞ and +∞ by −∞ ≤ z, z ≤ +∞ and −∞ ≤ +∞ for
all z ∈ Z; ⊥ represents the empty interval and [z1, z2] represents the interval from z1 to z2 including
the endpoints if they are in Z. The partial order v of interval containment is defined by

int1 v int2
def⇐⇒ inf int2 ≤ inf int1 ∧ sup int1 ≤ sup int2
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where
inf ⊥ = +∞ sup⊥ = −∞

inf [z1, z2] = z1 sup [z1, z2] = z2 .

Then (Interval, v, ⊥, [−∞, +∞], t, u) is a complete lattice [114, pages 221–222], where the join t
and meet u are defined by

[z1, z2] t [z′1, z
′
2] := [min(z1, z′1), max(z2, z′2)]

⊥ t int := int t ⊥ := int

[z1, z2] u [z′1, z
′
2] :=

{
[max(z1, z′1), min(z2, z′2)] , if max(z1, z′1) ≤ min(z2, z′2)
⊥ otherwise

⊥ u int := int u ⊥ := ⊥

and min and max extend to −∞ and +∞.

Operations on intervals

The best approximation of a non-empty set X ⊆ Z of integers is the interval [infX, supX]; dually, an
interval [l, r] represents the set {n ∈ Z : l ≤ n ≤ r}; the interval ⊥ represents the empty set. More
generally, we define the abstraction and concretisation functions as follows:

α : ℘(Z) → Interval
α(∅) := ⊥

α(X) := [infX, supX] (X 6= ∅)

γ : Interval → ℘(Z)
γ(⊥) := ∅

γ([l, r]) := {n ∈ Z : l ≤ n ≤ r}

It is straightforward to verify that α, γ form a Galois connection. This allows lifting operations to
intervals in a pointwise-manner; for example, the addition operation can be approximated by:

⊥+ int = int +⊥ = ⊥
[l1, r1] + [l2, r2] = [l1 + l2, r1 + r2]

Similar approximations can be derived for other arithmetic operations.

Widening operators for intervals

Since the interval lattice has chains of infinite height we need a widening operator to ensure the
termination of fixed point iterations.

Widening operators for intervals go back to one of the first publications on abstract interpretation;
the widening operator ∇ proposed by Cousot and Cousot [27] was:

⊥∇int := int∇⊥ := int
[z1, z2]∇[z′1, z

′
2] := [l, u]

where l =
{
z1 if z1 ≤ z′1
−∞ otherwise

u =
{
z2 if z′2 ≤ z2
+∞ otherwise
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Example 2.3 Consider the simple imperative program (where read performs input yielding a boolean
result):

i := 0; c := true
while c do

i := i+ 2
read(c)

(2.3.10)

We employ abstract interpretation on the lattice of intervals to approximate the range of values of the
variable i inside the loop (2.3.10). The concrete transition function f : ℘(Z) → ℘(Z) associated with
one iteration of the loop is

f(X) = {0} ∪ {n+ 2 : n ∈ X}

and the concrete semantics is fix (f) =
⋃

n≥0 f
n(∅) = {0, 2, 4, . . .} = 2N.

The abstract transition function f ] : Interval → Interval is

f ](int) = [0, 0] t (int + [2, 2])

where + is the addition of intervals. The abstract iteration with widening a0 := ⊥ and an+1 :=
an∇f ](an) yields the following approximations:

a0 = ⊥
a1 = ⊥∇f ](a0) = ⊥∇[0, 0] = [0, 0]

a2 = [0, 0]∇f ](a1) = [0, 0]∇[0, 2] = [0, +∞]

This stabilises after two iterations because f ](a2) = [0, +∞] = a2; the limit
⊔

n≥0 an = a2 = [0, +∞]
is a sound (albeit imprecise) approximation of the range of values of i.

2.3.6 Lattice of convex polyhedra

Intervals approximate elements of ℘(Z), i.e. sets of integers. To obtain an analysis for multiple compo-
nents (e.g. ranges of two or more variables) it is possible to use products of intervals; this is designated
an independent attribute combination because it does capture any interplay between components [114,
pages 249–250].

Example 2.4 Consider the following imperative program:

i := 0; j := 1; c := true
while c do

i := i+ 1
j := j + 2
read(c)

The abstract interpretation of the ranges of i and j using the abstract domain Interval × Interval
will obtain the ranges i ∈ [0, +∞] and j ∈ [1, +∞] but no relation between i and j.

To obtain relational information we need to approximate elements of ℘(Zn), i.e. sets of tuples of
integers. One of the most successful abstract domains for capturing linear numerical relations is the
lattice of convex polyhedra [32]; this forms the basis for many verification tools and program analysis
in use today.

A closed convex polyhedron, or simply a polyhedron, is the solution-set P ⊆ Rn of a system of linear
inequations [132]

P = {x ∈ Rn : Ax ≤ b } (2.3.11)
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where A ∈ Qm×n is a matrix of coefficients and b ∈ Qm is a vector of constants.4 The set CPn of convex
polyhedra of dimension n ordered by ⊆ is a lattice:

• the intersection P ∩Q of two polyhedra P, Q is a polyhedron (the conjunction of the two systems
of constraints);

• the union of two convex polyhedra is not necessarily convex, so the least upper bound of P, Q is
not P ∪Q; instead it is the convex hull P ]Q, i.e. the smallest polyhedron that contains both P
and Q. In general P ∪Q ⊆ P ]Q (and the inclusion is strict when P ∪Q is not a convex set).

• the empty set ∅ and the universe Rn are, respectively, the bottom and top elements of CPn.

We remark that CPn is not a complete lattice: for example, the sphere is not a polyhedron but can be
obtained as the limit of an infinite sequence of polyhedra.

The dual description method

We say that (A, b) of equation (2.3.11) is a system of constraints for P . A polyhedron can alternatively
be characterised by a system of generators (V,R) as the sum of a convex combination of vertices
V = {vi ∈ Qn} with a positive combination of rays R = {rj ∈ Qn},

P =


|V |∑
i=1

λivi +
|R|∑
j=1

µjrj : λi ≥ 0, µj ≥ 0,
|V |∑
i=1

λi = 1

 (2.3.12)

The two descriptions (2.3.11) and (2.3.12) are dual of each other in the sense that either one represents
the polyhedron and that a single algorithm can switch between representations [22, 110, 155].

The dual description method represents polyhedra both by constraints and generators. This is
justified because some operations are more efficient on the constraints while others are more efficient
on the generators; others still benefit from both representations. Another important property is that
the duality allows keeping the representations minimal, i.e. free of redundant constraints or generators.
Efficient implementations of polyhedra computations are based on the dual description method, taking
special care to avoid unnecessary conversions [8, 160].

Operations on polyhedra

We briefly describe the more common computations on polyhedra, mainly to fix notation. For a
thorough description we point the reader to [8]. Let P and Q be two polyhedra of n dimensions
x1, . . . , xn. The following operations are all computationally effective:

Containment test: P ⊆ Q holds if and only if the system of generators of P satisfies the constraints
of Q.

Intersection: the system of constraints for P ∩ Q is obtained as the union of the constraints for P
with those for Q.

Convex hull: the system of generators of P ]Q is obtained as the union of the generators of P with
those of Q.

Variable elimination: ELIM(xi, P ) is the polyhedron resultant from eliminating the dimension xi

from P by Fourier elimination [21]; the system generators of ELIM(xi, P ) is obtained by adding
two rays {xi,−xi} to the system of generators of P .

4 Note that we intentionally restrict coefficients to rational rather than real numbers to ensure that these are machine
representable.
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Widening: if P ⊆ Q then P∇Q is the widening of P and Q. The standard widening for convex
polyhedra is due to Halbwachs [51]; more recently, Bagnara et al. [7] proposed a more precise
widening operator.

Widening operators for convex polyhedra

Since the lattice of convex polyhedra is incomplete, we need to employ a widening operator to guarantee
termination of fixed point approximation (see Section 2.3.3).

The first widening operator for convex polyhedra was proposed by Cousot and Halbwachs [32] for
synthesising loop invariants of imperative programs and later formalised by Halbwachs [51] in his PhD
thesis. Informally, P∇Q is the set of constraints of P that are still satisfied by Q. This is an upper
bound operator because P∇Q is defined by a subset of the constraints of both polyhedra. It is a
widening because the system of constraints of P is finite, therefore it is not possible to keep removing
constraints indefinitely.5

Example 2.5 Consider again the imperative program:

i := 0; j := 1; c := true
while c do

i := i+ 1
j := j + 2
read(c)

We will perform abstract interpretation using CP2 to determine loop invariants as linear inequalities in
two dimensions. For readability, we represent elements of CP2 by systems of linear inequations using
the same variable names i, j as the program.

The abstract semantic function f ] : CP2 → CP2 is

f ](P ) = {i = 0, j = 1} ] {(i+ 1, j + 2) : (i, j) ∈ P}

The abstract iteration with widening yields

a0 = ∅
a1 = f ](a0) = {i = 0, j = 1} ] ∅

= {i = 0, j = 1}
a2 = f ](a1) = {i = 0, j = 1} ] {i = 1, j = 3}

= {0 ≤ i ≤ 1, j = 1 + 2i}
f ](a2) = {i = 0, j = 1} ] {1 ≤ i ≤ 2, j = 1 + 2i}

= {0 ≤ i ≤ 2, j = 1 + 2i}
a3 = a2∇f ](a2) = {0 ≤ i ≤ 1, j = 1 + 2i}∇{0 ≤ i ≤ 2, j = 1 + 2i}

= {0 ≤ i, j = 1 + 2i}

The widening operator caused the unstable constraint i ≤ 1 to be discarded; the result a3 is already a
sound loop invariant because f ](a3) = {i = 0, j = 1} ] {1 ≤ i, j = 1 + 2i} = {0 ≤ i, j = 1 + 2i} = a3.
In general, the iteration might not stabilise after a single application of the widening; the process must
be repeated until a post fixed point is reached (this must happen in a finite number of steps by the
properties of the widening).

5 The formal definition is slightly more elaborate to make the widening well-defined for equivalent but syntactically-
distinct constraint systems; see [7, 51] for the details.
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We obtained not just a lower bound for i but also a linear relation j = 1 + 2i between the two
variables. Note also that the lower bound 1 ≤ j for j is a consequence of the two linear constraints and
therefore not explicitly stated in a minimal constraint system.

Halbwachs’ widening has been used in most analysis tools employing convex polyhedra and has
received the designation of the standard widening for convex polyhedra. However, this widening is
sometimes too coarse, loosing many constraints before stabilising.

Several techniques have been proposed in the abstract interpretation literature to improve the
precision of iteration with widening. One approach is simply to not use the widening of the first
k iterations, where k is some fixed small constant. This is in fact what we did in Example 2.5:
the widening was not applied until the third iteration. Delaying the application of widening allows
accumulating more information during the first iterations; convergence is still ensured from the k-th
iteration onwards.

A more precise variant is the “widening with tokens” of Bagnara et al. [7]. The iteration starts
with a fixed number of tokens; one token is consumed each time the widening would cause a loss of
precision and the exact least upper bound is used instead; the standard widening is used when there
are no tokens left. The advantage of this technique is that the number of initial tokens specify the
delaying of actual rather than potential losses of precision.

A final approach is to choose a more precise widening operator; this is highly dependent on the
lattice of abstract properties and little can be said about how to proceed in general. Halbwachs’
widening was the sole proposal for abstract interpretation using convex polyhedra from its inset in the
late 1970s for over 20 years. More recently, Bagnara et al. [7] proposed a new widening operator for
convex polyhedra which they proved to be no less precise than Halbwachs’ widening in the worst-case
and more precise in some cases.

2.4 Automatic complexity analysis

Early works in automatic cost analysis follow the methodology for hand analysis of algorithms e.g. as
in the seminal textbook by Knuth [86]: first derive recurrence equations expressing the program cost
(e.g. number of arithmetic or other primitive operations) in terms of some input metric (e.g. data size)
and then solve the recurrences (maybe using approximation) to obtain a closed equation.

The earliest work following this methodology is Wegbreit’s METRIC system [159]. METRIC derived
complexity equations for list functions written in a first-order subset of LISP with recursive procedures
but no side-effects or imperative features. The system obtained metrics such as time, length or size
as a 4-tuple 〈min, max, avg, var〉 of lower bound, upper bound, average and standard deviation; the
first two are best and worst-case bounds; the last two measures are derived under the assumption of
statistical independence of dynamic tests. The performance measures are expressed symbolically as
functions of input size or length and the costs of primitive operations.

METRIC first transformed a recursive function into a step-counting version, i.e. a function with the
same domain and whose value is the cost metric (here “cost” can be length, size or time, i.e. number
of reduction steps). As an example, consider a function appending two lists:6

APPEND(X,Y ) = if NULL(X) then Y
else CONS(CAR(X), APPEND(CDR(L), Y ))

6 In this example we use LISP constructors names: CONS is the pair constructor; CAR and CDR project the first and
second element of a pair; NIL is a constant; and NULL tests equality to the NIL constant.
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The step counting function for APPEND under the time metric produced the symbolic cost function

time(APPEND(X,Y )) = if NULL(L) then null + 2vref
else null + 4vref + cdr + car + cons+

time(APPEND(CDR(L), Y ))

where null, car, cdr and cons are symbolic constants for the costs for the primitive list operations and
vref is the cost for accessing a variable.

The system now projects the step-counting function into a recurrence equation over the integers,
using either a measure of the size (total number of nodes) or length (number of nodes along the cdr -
direction) of arguments. For this example, the recursion involves only the cdr of the first argument, so
METRIC chooses the length measure and expresses

time(APPEND(X,Y )) = T (length(X))
T (0) = null + 2vref

T (n+ 1) = null + 4vref + cdr + car + cons + T (n)

The system then attempts to solve the recurrence equation to obtain a closed-form expression. The
solution for the example is:

time(APPEND(X,Y )) =null + 2vref +
(null + 4vref + cdr + car + cons)× length(X)

Note that this example is uncharacteristically simple: in general to analyse a function under one
measure, METRIC might have to perform sub-analysis under other measures (e.g. length or size of
sub-expressions). Solving recurrence equations with more alternatives also requires more sophisticated
techniques e.g. generating functions.

METRIC was able to obtain closed forms for simple LISP programs e.g. list reverse, flattening,
membership test and union. The analysis could be used to predict heap allocation (e.g. the number
of cons-cells allocated) by setting the costs of other primitives to zero. However, it could not be used
to predict for maximum stack depth because of the underlying assumption that the cost metric is
cumulative:

time(F (G(X))) = time(G(X)) + time(F (Y )) , where Y = G(X)

While the above assumption holds for time7 it does not hold for space e.g. stack. The combination of
stack costs should be (ignoring the overheads for function applications)

stack(F (G(X)) = max(stack(G(X)), stack(F (Y )) , where Y = G(X)

i.e. the stack depth for the composition is the maximum of the stack depths for the sub-expression
and outer call. While in theory it suffices to synthesise recurrences with maximums instead of sums,
in practice such recurrences are much harder to solve automatically because the maximum is not an
analytic function.

METRIC was also limited to list processing: the complexity bound are derived with respect to
either the length or the size of S-expressions; the system chooses one of the two measures using an
heuristic based on the use of arguments in recursive calls. There is no way to use specialised measures
as would be desirable e.g. for user-defined data types.

Le Mtayer’s ACE system also performed complexity analysis by deriving a recursive step-counting
function from each recursive function [90]. However, a first departure from the work by Wegbreit is that

7But is accurate only under call-by-value reduction strategy; see [156] for a formalisation of the corresponding assump-
tion for call-by-need strategy i.e. lazy evaluation.
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the costs measure considered is worst-case only and asymptotic; this means that individual primitive
operations are not accounted, only the number of recursive calls.

Second, unlike Wegbreit’s approach of projecting the cost function on the integers and solving
recurrence equations, ACE obtained closed-form solutions by a series of meaning-preserving program
transformations within a functional calculus (a subset of the FP language). The transformations
are based on an algebra of applicative program transformations together with McCarthy’s recursion
induction principle: two functions satisfying the same recurrence equation are equal.8

For example, the factorial function can be expressed in FP as follows:

fact = eq0 → “1”; ∗o[id, fact o sub1]

The definition is in point-free style: f → g;h is a conditional with test f and true and false branches
g and h; eq0 tests the argument for zero; id is the identity function; o is function composition; “k” is
the constant k-valued function; sub1 is the integer predecessor function; [f1, . . . , fk] builds a sequence
by applying fi to an argument; ∗ and + are arithmetic operators which operate on sequences of two
values.

The step-counting function Cfact mimics the recursion structure of fact but adds one unit of cost
for each call and zero for constants and primitives:

Cfact =eq0 → +o[“0”, ”0”];
+ o[“0”, +o[“0” + o[“0”,+o[plus1 oCfact o sub1, “0”]]]]

To obtain a closed-form solution for the recursive Cfact, ACE employs a number of program transfor-
mations expressed as rewrite rules. For example, using the rules +o[“0”, f ] = +o[f ”0”] = f (i.e. zero
is the neutral element for sum) the definition of Cfact can be simplified to:

Cfact = eq0 → “0”; plus1 oCfact o sub1

Using the recursion induction principle, the above definition is matched against a library to find

Cfact = id

i.e. the complexity of factorial is linear in the argument value.
Le Mtayer reports success in analysing numerical programs, sorting algorithms and a parser. How-

ever, no indication is given as to the quality of results. Moreover, the quality results appear to be
very sensitive to the set of rewrite rules provided: the implementation is said to use over 1,000 rules of
various kinds. The extent to which these match specific programs or general programming patterns is
not discussed.

The system deals with time in a very abstract manner (since only function calls are accounted) and
not heap space or stack depth. The same limitations regarding cumulative cost measure that apply to
Wegbreit’s METRIC hold here. Asymptotic results would, in any case, be insufficient for bounding time
or space in high integrity systems because the lower order terms might dominate the actual worst-case.

Another severe limitation for domains where high integrity is required is that a single incorrect rule
in the database compromises the soundness of the results. This is even more problematic if the user is
allowed to extend the system with new axioms and rules for specific programs.

Le Mtayer points out that the complexity functions resulting from ACE can sometimes be several
lines long; such a result would be unintelligible for a human reader and possibly unusable by a compiler.
Finally, the ACE system is very tightly coupled with a particular language: algorithms that are not
naturally expressed in FP are very difficult to analyse in ACE.

8On the domain of the least solution of the recurrence.



2.5. TYPE AND EFFECT SYSTEMS FOR TIME 31

Rosendahl [129] describes a semantic-based method for deriving the step-counting version of re-
cursive first-order functions. The main contribution is the use of abstract interpretation to define a
time-bound function whose inputs are partial representations of the original program inputs and whose
output is an upper-bound on the original program time. No attempt is made to obtain closed cost
expressions.

Liu and Gomez [94] have also presented an automatic time analysis for a first-order subset of Lisp
based on obtaining a time-bound function on partial representation of inputs. Instead of trying to obtain
closed-form solutions, they use the time-bound function to compute upper bounds. For example, to
obtain a bound for sorting a list of n values, they symbolically execute the time-bound function with
a list of n “unknown” LISP atoms. Unnikrishnan, Stoller, and Liu [150] have applied this technique to
obtain bounds on stack and heap costs.

The limitation of this approach is that it does not yield a closed cost expression: if the original
function is recursive, so is the time-bound function. Moreover, symbolic execution of the time-bound
program with a partial input will not terminate if the recursion involves an unknown term. To ensure
termination the input must be of fixed size (e.g. a list of 10 unknown values); the time-bound function
then returns the cost for that specific size. Thus, this approach is closer to profiling than static analysis.

Furthermore, the time-bound function can be exponentially more expensive to compute than the
original program, since it has to execute both branches of conditionals that depend on unknowns. This
leads to performance problems with even moderate size inputs: Unnikrishnan et al. report a running
time exceeding 2 hours to obtain upper bounds for merge sort of 30 elements and were unable to obtain
bounds for 1,000 elements.

All works in complexity analysis described so far [90, 129, 159] assumed a cumulative measure of
time cost. This is a very coarse overestimate under lazy evaluation, since the arguments may be only
partially evaluated. The problem of compositional time analysis for lazy evaluation is that the time
cost for an expression depends on the context, i.e. the amount of the input that is “needed” by each
function.

Wadler [156] proposed a formalism for time analysis for first-order lazy evaluation using projection
transformers to capture the “neediness” of each function. This work presents a formalism for expressing
the step-counting equations but not an algorithm for approximating them.

Bjerner and Holmstrm [12] also proposed a time analysis for first-order lazy functional programs.
This approach is based on an abstract representation of demand in result values; they then perform
a backwards demand analysis to find out how much of the input is required to produce the required
output. One limitation is that the representation of a demand requires knowing in advance much
information about the output value.

2.5 Type and effect systems for time

Dornic, Jouvelot, and Gifford [38] presented a polymorphic “time system” for deriving time costs for
higher-order call-by-value functional language. This system is an instance of a type and effect analysis
where an underlying type system is extended with “effects” that approximate some intentional property
of evaluation [84, 139, 140]. In the time system, effects approximate the number of computation steps
needed to reduce an expression to normal form.

The starting point is the simply typed lambda-calculus with a strict (i.e. call-by-value) semantics.9

A type judgement Γ ` e : τ , where Γ is a typing context, e is a term and τ is a type, is augmented with

9 To simplify the presentation, we use the lambda-calculus rather than the CT language of [38].
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an effect n:
Γ ` e : τ $ n (2.5.1)

The effect n is either a natural number representing an upper-bound on the number of reduction
steps for e or a distinguished element long representing a potentially unbounded reduction. Thus, the
augmented judgement (2.5.1) reads: under assumptions Γ, e has type τ and cost n.

As in other type and effect systems, functional types in Dornic’s time system are annotated with a
“latent effect” (designated latent cost in this system) that expresses the cost of function evaluation. The
latent cost mechanism allows capturing the cost of application of higher-order functions quite naturally,
as can be seen in the type rule for application:

Γ ` e0 : τ ′ l−→ τ $ m Γ ` e1 : τ ′ $ n

Γ ` (e0 e1) : τ $ m+ n+ l + 1
(2.5.2)

The type rule expresses the cost of an application (e0 e1) as a sum of: the cost m of reducing e0 to
some lambda-abstraction λx. e′; the cost n of reducing the argument e1 to a normal form v; the latent
cost l of reducing the β-reduct [x 7→v] e′; and one extra unit to account for the application itself.

The dual rule for lambda-abstraction transposes the actual cost of a function body into a latent
one:

Γ, x : τ ′ ` e : τ $ m

Γ ` (λx. e) : τ ′ m−→ τ $ 1
(2.5.3)

Rules (2.5.2) and (2.5.3) reflect the chosen cost model: each application, lambda-abstraction and
variable access cost one unit. Different choices could easily be accommodated by choosing different
constants in the type rules.

Using these rules we can derive a “timed” type for the higher-order term twice ≡ λf. λx. f (f x) as
follows:

f : τ l−→ τ, x : τ ` x : τ $ 1 {hypothesis}

f : τ l−→ τ, x : τ ` f : τ l−→ τ $ 1 {hypothesis}

f : τ l−→ τ, x : τ ` (f x) : τ $ 3 + l {application, arithmetic}

f : τ l−→ τ, x : τ ` (f (f x)) : τ $ 5 + 2l {application, arithmetic}

f : τ l−→ τ ` λx. (f (f x)) : τ 5+2l−−−→ τ $ 1 {abstraction}

` λf. λx. (f (f x)) : (τ l−→ τ) 1−→ τ
5+2l−−−→ τ $ 1 {abstraction}

The latent cost in the result type captures the cost duplication of the argument function (plus a constant
overhead for twice itself) because the function is applied twice. The cost of twice is therefore parametric
on the cost of its argument.

The full power of the time system is only obtained when the language is extended with poly-
morphism. Dornic et al. introduce polymorphism via a “polymorphic lambda”; we will do so using
let-bound polymorphism. In an expression

let = in twice = λf. λx. f (f x) in . . .

the identifier twice can be given a type quantified over type and cost variables:

∀a.∀l. (a l−→ a) 1−→ a
5+2l−−−→ a

Note that the latent cost l is a quantified time variable; this means that distinct uses of twice in the
remaining program can be typed with different costs. Moreover, the analysis does not require the whole
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program: the quantified type of twice captures all information needed for future uses, so it is possible
to perform separate analysis of libraries and modules.

However, the time system has some important limitations: first, recursive functions are always
assigned the unbounded cost long. This is because the cost of a recursive function depends on the sizes
of arguments which are not captured in the time system. The absence of size information also severely
limits the precision of the analysis of higher-order functions, since the costs cannot depend on the sizes
of arguments.

Second, the type system does not allow subeffecting i.e. subsuming a cost by a larger one; this is
needed e.g. to be able to type a conditional with different costs in each branch; the extension (adding
a maximum function to the cost algebra) is proposed as further work.

Finally, Dornic et al. considered only checking timed types, i.e. all time information must be
prescribed as type annotations; the problem of reconstructing timed types was address in the subsequent
work by Reistad and Gifford [127].

Reistad and Gifford extended the time system of Dornic et al. with annotations representing sizes
of naturals, lists and vector types and with an algorithm to reconstruct sizes and times based on
algebraic reconstruction of effects [84]. This system has been applied to aid dynamically scheduling in
a parallelising implementation of the µFX language.

The size annotations represent upper bounds on the dynamic sizes of values. For example, the
values of a type Nat n are the naturals less-than or equal to n. More interestingly, annotations in
function types describe size changes e.g. the type for the successor function is

succ : ∀n.Nat n
1−→ Nat (n+ 1)

assuming a cost of one unit for the operation. The algebra for sizes and costs includes a value long
to represent a potentially unbounded sizes, and operations of addition, maximum and multiplication.
This sized timed type system allows subsuming sizes: for example, the typing rule for natural constants
is

nat ≤ n

Γ ` nat : Nat n $ Cnum

where Cnum is cost associated with naturals. Thus, the natural 1 admits any type Nat n for 1 ≤ n
(including long). Without this flexibility a conditional expression like “if then . . . else then 1 else 2”
would not admit a type because Nat 1 6= Nat 2. The ordering relation ≤ on sizes induces a structural
subtyping relation 6 on the annotated types [108].

Adding size information to types allows specifying more precise costs for e.g. the higher-order map
that applies an argument function to each element in a list:

map : ∀{a, b, c, l}. (a c−→ b)× List a l
k0+l×(k1+c)−−−−−−−−→ List b l

Note that the type for map expresses not just that the result list has the same length l as the input,
but also the cost of map as a function of the argument cost c and list length l.10 Such dependency was
not possible in the time system of Dornic et al. because of the absence of size information.

The main limitation of this work is the absence of a treatment of recursion. As in the time system
of Dornic et al. recursive functions can only be typed with a long cost. To mitigate this, Reistad and
Gifford use a fixed set of higher-order functions (such as map above) to express primitive recursion
schemes.

A minor limitation of the size semantics is that sizes of non-increasing functions must be overesti-
mated. For example, a subtraction operator on the naturals must be given the type

sub : Nat n× Nat m
Csub−−−→ Nat n

10 Constants k0 and k1 must be chosen to reflect the overheads associated with a particular implementation.
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because we only know that the second argument is at most m (in particular, it could be zero). One
solution to this problem would be to extend the size semantics to include lower bounds as well as upper
bounds, i.e. intervals.

Another limitation of the system of Reistad and Gifford is an overestimation of sizes caused by
insufficient polymorphism in higher-order functions. Consider the following sized timed types11 for the
higher-order function twice and the natural successor:

twice : ∀a.∀b.∀l. 〈(a l−→ b) 1−→ a
5+2l−−−→ b, b 6 a〉

succ : ∀n.Nat n
1−→ Nat (n+ 1)

To type the application (twice succ) we must solve the subtyping constraints:

Nat n
1−→ Nat (n+ 1) 6 a

l−→ b

b 6 a

Decomposing the subtyping constraints we get (note the contravariance on the left-side of the arrow):

a 6 Nat n

Nat (n+ 1) 6 b

b 6 a

1 ≤ l

Since the subtyping is shape conformant, we can now substitute a ≡ Nat i and b ≡ Nat j for some sizes
variables i, j and obtain the size inequations i ≤ n ∧ n+ 1 ≤ j ∧ 1 ≤ l ∧ j ≤ i. It is straightforward
to check that the only solution is n = i = j = long and 7 ≤ l. Thus, the application must be typed as

twice succ : Nat long
7−→ Nat long

i.e. although the latent cost for the result function is accurate, no size information is known.
This problem was designated size aliasing in [124] and is caused by the use of a monomorphic

type at two distinct sizes. One solution is to extend the type system with discrete polymorphism i.e.
intersection types [136]. In such a system twice admits types of the form

twice : (τ l−→ τ ′ ∧ τ ′ l′−→ τ ′′) 1−→ τ
5+l+l′−−−−→ τ ′′

By instantiation, succ admits the types

succ : Nat n
1−→ Nat (n+ 1)

succ : Nat (n+ 1) 1−→ Nat (n+ 2)

and therefore
succ : (Nat n

1−→ Nat (n+ 1)) ∧ (Nat (n+ 1) 1−→ Nat (n+ 2))

Finally, @twicesucc can be typed as

twice succ : Nat n
7−→ Nat (n+ 1)

11We present the type scheme for twice in a more general form than that of Reistad and Gifford by allowing subtyping
constraints in quantified types [43, 108]. This is done in order to stress that the problem is due to insufficient polymorphism
rather than insufficient subtyping.
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which accurately expresses both the size and time of the application.

Loidl [95] proposed a type analysis with size and time information for aiding the scheduling of tasks
in a parallel implementation of functional languages by providing static granularity information. He
proposes extending the size and time analysis of Reistad and Gifford [127] to recursive functions by
synthesising recurrence equations; these can then be solved to obtain closed-form cost equations either
manually or with the aid of a computer algebra system. To make the analysis automatic, Loidl proposes
building a library of known recurrence forms, as was done by Rosendahl [129].

This size and cost analysis was further developed by Vasconcelos and Hammond [154], which also
presented results from a prototype implementation. The difficulties that apply to other approaches
based on synthesising recurrences [90, 159] hold here: obtaining approximate solutions to recurrence
equations automatically is difficult; the use of a library of recurrences mitigates this problem to some
extent, but for practical use this must contain a large number of distinct but similar recurrences;
furthermore, a single incorrect assumption in this library invalidates the soundness of the analysis,
which is particularly relevant for our intended application domain of embedded and real-time systems.12

A further limitation is the loss of precision with irregular divide-and-conquer recursions e.g. as in
the quicksort algorithm. This is shared by other type analysis where the sizes of data components are
independently approximated and will discussed in more detail in the next section.

2.6 Sized types

Some researchers have presented type based analysis for size information alone; this can be useful for
proving termination, enabling optimisations in compilers (e.g. eliminating array bounds checks) or for
enabling program transformations (e.g. partial evaluation).

Hughes, Pareto, and Sabry [74] presented a type system extended with size information for proving
liveness properties of reactive systems, namely termination and productivity.

The term language is purely-functional, non-strict and higher-order with let-bound polymorphism,
general recursion and algebraic data types. The type system syntactically distinguishes inductive data
(e.g. naturals or finite lists) from co-inductive data (e.g. infinite lists). The notion of “size” is purely
denotational: it is an upper bound on the number of constructors of an inductive data value (and
dually, a lower bound for co-inductive data). For example, given the declarations for naturals, finite
lists and infinite lists (streams),

idata Nat = Zero | Succ Nat

idata List a = Nil | Cons a (List a)
codata Stream a = Mk a (Stream a)

the corresponding sized types for constructors are:

Zero : Nat1

Succ : ∀i.Nati → Nati+1

Nil : ∀a. List1 a

Cons : ∀i.∀a. a→ Listi a→ Listi+1 a

Mk : ∀i.∀a. a→ Streami a→ Streami+1 a

The data types are annotated with a subscript or superscript size annotation (for inductive or co-
inductive data, respectively). Sizes expressions are built up using naturals, variables and additions;

12 It is worth remarking that soundness of cost approximations is not critical for the granularity analysis of Loidl, since
erroneous cost information could reduce performance but not cause failure.
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more complex size relations are disallowed (e.g. multiplication); these restricted forms allow for size
checking using a Presburger constraint solver such as the Omega Calculator [125].

The types for Succ, Cons and Mk express size relations: the result has one more constructor than
the argument. Note that Zero and Nil have size one (not zero) because the size is the number of
constructors of the value.

Sized data types can be seen as infinite families of approximations indexed by the number of
constructors e.g. Nat0 ⊆ Nat1 ⊆ Nat2 ⊆ . . .. A special annotation ω is used to denote the “limit” of
these approximations, e.g. Natω is the type of all naturals.13 As in the system of Reistad and Gifford,
the size ordering induces a structural subtyping relation on sized types. Subtyping is necessary e.g. to
be able to assign a sized type to a conditional expression returning values of different sizes.

The novelty of the type system of Hughes et al. is a typing rule for recursive functions that embodies
a principle of induction on sizes and that guarantees termination for recursive function (and dually,
productivity for co-recursive functions). Omitting type variable generalisations for simplicity, the rule
is:

all(τ [0])
Γ ` λx.M : ∀i. τ [i] → τ [i+ 1]

Γ ∪ {x : ∀i. τ [i]} ` N : τ ′
i /∈ FV (Γ)

Γ ` letrec x = M in N : τ ′

(2.6.1)

The first two hypotheses express the induction on a size variable i that occurs in a type τ [i] (we use
square brackets for a context):

a) τ [0] must be a universal type, i.e. one that includes the totally undefined value ⊥;14

b) progress must be made at each recursive call i.e. we must be able to derive τ [i+ 1] assuming τ [i].

To see how rule (2.6.1) rejects non-terminating functions, consider the following (erroneous) list length
function:

wronglen xs = case xs of Nil → Zero | Cons x xs′ → Succ (wronglen xs)

This function diverges for non-empty lists because the recursive call is on xs rather than xs′. Type
checking against the type

wronglen : ∀i.∀a. Listi a→ Nati

gives rise to the proof obligation

{wronglen : Listi a→ Nati, xs : Listi+1 a, . . . } ` Succ (wronglen xs) : Listi+1 a

But typing the application (wronglen xs) requires solving the subtyping constraint Listi+1 a 6 Listi a
which is impossible because i+ 1 6≤ i; the erroneous function is therefore rejected.

The correctness of rule (2.6.1) was proved using a non-standard type semantics that allows types
to exclude ⊥ (i.e. non-termination/non-productivity). A sketch of the proof was presented in [74]; the
complete proof together with type checking algorithm was presented by Pareto [120]. The algorithm
requires let-bound identifiers (in particular, recursive functions) to be annotated with sizes but infers
those of intermediate expressions. The type checker rejects programs whose termination/productivity
is not ensured by the sized type annotations provided by the user. By the undecidability of the halting
problem, such a decision procedure must reject some terminating/productive programs as well.

13 Note that ω is not a size but rather a separate annotation, unlike long in the system of Reistad and Gifford. The
distinction is important e.g. when instantiating a quantified size variable with ω, which is not always sound in Hughes
and Pareto’s system.

14 The semantics for sized types of Hughes et al. is based on upwards-closed sets rather than the standard semantics
based on ideals [101], so that sized types can exclude ⊥.
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The sized type system allows primitive recursive definitions over naturals and lists (e.g. append,
map and filter). Functions with an accumulating parameter (e.g. reverse) can also be accepted by
extending the type rule for recursion with size polymorphism (but not type polymorphism, thus retain-
ing decidability of type checking). More complex recursions can sometimes be re-written so that the
type checker will accept them (e.g. the system rejects the usual first-order definition of the Ackermann
function, but accepts the higher-order primitive recursive one).

However, the system has limitations with irregular recursion patterns e.g. divide-and-conquer al-
gorithms where the data size does not reduce uniformly in recursive calls. Consider the quicksort
algorithm for lists, using an auxiliary function split by that breaks up a list into two sub-lists of the
smaller and greater elements with respect to a pivot15:

qsort : List t→ List t
qsort [ ] = [ ]
qsort (x : xs) = case split by x xs of

(l, r) → qsort l ++ [x] ++ qsort r

split by : t→ List t→ List t× List t
split by pivot [ ] = ([ ], [ ])
split by pivot (x : xs) = case split by pivot xs of

(l, r) → if then x else ≤ pivot then (x : l, h) else (l, x : h)

To typecheck split by in the system of Hughes et al., we must choose some size i as induction variable;
the natural choice is the size of the list argument (since split by is defined by primitive recursion in
that argument). The result depends on a dynamic test, so we can only derive a sized type with upper
bounds (which are admissible by subtyping):

split by : ∀i. t→ Listi t→ Listi t× Listi t (2.6.2)

Note that sizes of the result are overestimated. We would like to express a more precise relation, namely
that the sum of the sizes of the two result lists equals the size of the argument. However, a type such
as

∀i j. t→ Listi+j t→ Listi t× Listj t

is not admissible by rule (2.6.1), since we cannot do induction on i + j. Using (2.6.2) as assumption
for split by, the type system still accepts quicksort with the type

qsort : ∀i. Listi t→ Listω t

which does not give an upper-bound for the size of the sorted list. Note, however, that due to the
non-standard type semantics, the above sized type still ensures the termination of qsort.

Similarly, the sized type system is not well suited for algorithms over non-linear data structures
such as trees (even though the theory of sized types is developed for generic algebraic data types).
This is because the notion of size is always the depth of constructors and size relations must be linear;
for example: a tree traversal algorithm exhibits complexity that is linear on the number of nodes but
exponential on the tree depth and therefore would not be expressible. These limitations suggest that
the sized type system, while guaranteeing very strong properties (termination/productivity), is also
very restrictive in practice.

The original sized type system of Hughes et al. deals with a purely denotational notion of size, but
not space or time costs. In a later work, Hughes and Pareto [73] extended the size type system with
effects approximating stack and heap costs for a prototype language called Embedded ML.

15For simplicity, we use in this example a Haskell-style syntax for list operations. We also avoid issues of ad-hoc
polymorphism by assuming some monomorphic type t with a total order ≤.
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Embedded ML is first-order and with a strict semantics. The model of stack and heap costs is given
by an abstract machine based on the SECD [87]. Dynamic heap allocation and deallocation is done
using regions. The standard region system of Tofte and Talpin [147] introduces an allocation primitive

letregion ρ in e

where ρ is region variable that can used for allocations in e. After evaluation of e, region ρ is deallocated.
The type and effect system of Tofte and Talpin guarantees that well-typed programs dot not access
regions after deallocation.

The combination of sized types and regions allows sized of regions to be specified at the point
of allocation; overflow is prevented at compile-time by the type system. Thus, the region allocation
becomes

letregion ρ#e′ in e

where e′ is an expression that specifies the size of region ρ. The type judgements

Γ ` e : τ ! δ; p;φ

are extended with effects δ, p and φ: δ is the stack effect, p is the put effect and and φ is the store
effect. The stack and store effect are natural numbers and approximate the maximum stack depth and
heap allocations during evaluation of e. The put effect tracks allocations done in regions in the current
scope.

Type checking can now ensure at compile-time the absence of space overflow. Consider a function
that constructs a list of naturals16:

nats n r = Cons n (case n of

0 → Nil r

| m+ 1 → nats m r) r

The type checker accepts nats with type

nats : ∀k r.Natk × r → Listk+1 (Natk) r with δ = 5k; r+= 3k + 1

which specifies both stack and heap allocation as functions of the size k. The stack effect accounts for
5 stack words at each recursive invocation: one word for each bound variable n, r, m, the intermediate
result and the return address. The put effect specifies that region r can grow by (at most) 3k + 1
heap cells (the constants are derived from the particular operational semantics). We now see that the
application

letregion r#13 in length (nats 4 r)

is rejected by the type system because the local region r is too small for the computation of nats: the
size k of the list is 5 (not 4) so at least 3 × 5 + 1 = 16 heap cells are required. To fix the program,
it suffices to specify a larger size for region r. The correctness of the type system with respect to an
abstract machine is presented in detail in Pareto [121].

One first limitation of this work is that the let-region allocation is not sufficient to obtain bounded
space behaviour in reactive systems because region lifetimes have to be nested. To deallocate values
but re-use regions, Hughes and Pareto propose extending their system with region resetting [11]. Fur-
thermore, Embedded ML has no language mechanism for specifying reactive or infinite computations.
Streams cannot be implemented as ordinary data types because the language has a strict semantics
and is first-order.

16 Like the system of Tofte and Talpin, constructors such as Nil and Cons take an extra region argument to specify
where values are to be allocated.
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Limitations regarding the expressive power of the recursion rule that applied to the size system
alone also hold here.

Another drawback of Hughes and Pareto’s approach is that it requires user annotations of both sizes
and costs. While sizes are denotational properties that programmers can reason about in a high-level
language, stack and heap costs are dependent on implementation details. Requiring the user to specify
costs in type annotations (even if these are checkable by the compiler) lowers the level of software
development. Even if fully automatic inference is not feasible, it would be preferable to have the user
write size annotations and have the system infer costs automatically; this was left as future work in [73]
and not addressed in [121].

Chin and Khoo [23] addressed the problem of inferring rather than just checking sized types.
This system extends the prior work in two regards: first, they allow sizes to be expressed as general
Presburger constraints (first-order logic formulae with linear arithmetic over the integers)17 and second,
by presenting an algorithm that computes a size formulae for a recursive function using an operation
of “transitive closure” on constraints [85].

For example, the analysis of Chin and Khoo infers the following size information for the standard
list append function:

append : Listm t→ Listn t→ Listl t

s.t. size m ≥ 0 ∧ n ≥ 0 ∧ l = m+ n

inv 0 ≤ m+ < m ∧ n+ = n

The size constraint expresses the dependency between input and output list sizes, while the invariance
constraint expresses properties that hold for all recursive calls (where n+ and m+ are the sizes of argu-
ments in recursive calls). Invariants such as these are useful in termination analysis or in programming
transformations such as partial evaluation. We will focus here on inference of size relations, since similar
techniques are used for inference of invariants.

Note that the size information on the list length is more precise than what could be expressed in the
system of Hughes et al.: rather than just an upper bound, the equality constraint expresses the exact
result size. In general, it is possible to express lower bounds, upper bounds or equalities (simultaneous
lower and upper bound).

The term language is a strict, higher-order functional notation with integers, booleans and lists.
Data types are annotated with size variables and all size information is expressed by separate size
constraints. Thus typing judgements take the form

Γ ` e :: (τ, φ)

where e is an expression, τ an annotated type and φ a constraint on the annotations of τ expressing
the size of e.

The notion of size is specific to each data type: the size of a list is its length; the size of an integer
is its value (negative sizes for negative integers); boolean values False and True have sizes 0 and 1,
respectively. Assigning sizes to booleans (and other enumerated types) allows expressing control flow
information in size constraints. For example, consider the function testing a list for emptiness:

null xs = case xs of [ ] → True | x : xs′ → False

The sized type inferred for null is

null :: (Listna→ Boolc, (n = 0 ∧ c = 1) ∨ (n > 0 ∧ c = 0))
17 By contrast, type annotations in the system of Hughes and Pareto are restricted to linear size expressions. The type

checking algorithm, however, generates a set of Presburger constraints for verifying the admissibility of typing.
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where the size c of the boolean result encodes which branch of the conditional was taken.
Unlike the system of Hughes and Pareto, the typing rule for recursive functions in Chin and Khoo’s

system does not impose a well-founded order on sizes. Again omitting type generalisation for simplicity,
the type rule is:

Γ ∪ {x :: (τ1, φ1)} ` e1 :: (τ1, φ1) Γ ∪ {x :: (τ1, φ1)} ` e2 :: (τ2, φ2)

Γ ` letrec x = e1 in e2 :: (τ2, φ2)
(2.6.3)

Re-visiting our erroneous length function example, rule (2.6.3) allows us to type it as

wronglen :: (Listia→ Intj , i ≥ 0 ∧ j ≥ 0)

which expresses approximate information about the function semantics (namely, that both the argument
and result must have non-negative sizes). A more precise information about wronglen is expressed by
the sized type

wronglen :: (Listia→ Intj , i = 0 ∧ j = 0)

that is, wronglen is only defined for the empty list. Both sized types are admissible by rule (2.6.3).
The treatment of recursion in the system of Chin and Khoo corresponds to a distinct objective

to that of Hughes and Pareto: rule (2.6.1) guarantees a liveness property (termination/productivity)
whereas rule (2.6.3) guarantees a safety property (approximation of the dynamic sizes of values).

The type rules for expressions and non-recursive functions in Chin and Khoo’s system are syntax
directed, so that size type inference can be done by synthesising constraints from sub-expressions.
However, rule (2.6.3) for letrec is not syntax directed since the size constraint for the result appears in
the hypothesis. To compute a size constraint for

letrec f = λx.M in N

Chin and Khoo first compute a constraint for the non-recursive term

λf. λx.M

i.e. a constraint expressing the size-change relation between two successive recursive iterations; then they
employ an algorithm to approximate the transitive closure of a Presburger constraint [85]. One difficulty
is that the transitive closure might not be expressible as a Presburger formula and the algorithm
sometimes yields lower-bound approximations. This is inadequate for the type rule (2.6.3), so some
post-processing steps are employed to obtain a safe upper bound. These computations are implemented
using the Omega Calculator [125].

Chin and Khoo formulate the soundness of their size analysis with respect a standard higher-order
denotational semantics. The proof, however, has one important technical flaw: it relies the existence
of a constraint S(v :: τ) describing the exact size of a value v of annotated type τ . While this is valid
for zero-order values, it fails to hold for functional values because of the lattice of constraints is an
incomplete partial order.

List constructors have specialised typing rules instead of being treated as constants as in the sized
type systems [74, 127]; this is required to derive a type for lists where the head has different size than
the tail.

Γ ` e1 :: (τ1, φ1) Γ ` e2 :: (Listmτ2, φ2)

Γ ` (e1 : e2) :: (Listnτ, n = m+ 1 ∧ φ1 ∧ φ2 ∧ (τ = τ1 ∨ τ = τ2))
(2.6.4)

In rule (2.6.4) the type τ is constrained to be identical to τ1 and τ2 except for “fresh” size annotations;
the equations τ = τ1 and τ = τ2 specify the equality constraints between size annotations in two types;
the size constraint for the application specifies the length of the result list and size elements.
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One limitation of the type system is that while rule (2.6.4) can be used to infer size relations on the
list lengths, it often fails to infer sizes of values inside lists. Consider for example, the tail function on
a list of integers:

tail

ListnInti︷ ︸︸ ︷
( x︸︷︷︸

Intk

: xs︸︷︷︸
ListmIntj

) =
ListmIntj︷︸︸︷
xs

Rule (2.6.4) generates the size constraint

n = m+ 1 ∧ (Inti = Intk ∨ Inti = Intj) ⇐⇒ n = m+ 1 ∧ (i = k ∨ i = j)

where m, k and j are “fresh” size variables; to obtain the type for the function, the constraint is
simplified by existentially quantifying variable k that does not occur in the argument or result type;
this yields the sized type

tail :: (ListnInti → ListmIntj , n = 1 +m)

where no size information is obtained for elements inside the list.
In a subsequent work Chin et al. [24] propose an extension to the sized type system with collection

constraints to address this problem. However, the extended constraints fall outside the capabilities of
a Presburger solver; the cited paper does not address the issue of solving these combined constraints.

Another limitation is that the type system is not type polymorphic since no size information is
captured for type variables. The system is still able to obtain good size information for monomorphic
instances. For example, the first tuple projection can be typed fst : (Inti × Intj → Intk, k = i) but no
size information is obtained for the polymorphic version fst : (∀a∀b. a× b→ b, True).

The size type system of Chin and Khoo allows higher-order functions, but no size relations are
inferred from uses of functional arguments. For example, no sizes are inferred for the usual compose
function λf. λg. λx.@f(@gx). Moreover, since the type system does not capture sizes for polymorphic
functions, there is no analogue of a “principal size type” to be inferred in such cases.

2.7 Dependent types

The defining characteristic of dependent type systems is the possibility of parameterising types over
values. Dependent type systems generalise the function type A→ B to the dependent product Πx : A.B
where the type B of the co-domain is allowed to vary with x; the simple function type is obtained as
an instance where x does not occur in B.

Restricted forms of type dependency have long been used informally in programming languages.
For example, the Pascal array type depends on its size; and the types of arguments of the C-language
printf depend on its first argument (the format string). Dependent type systems are formal basis for
reasoning about such notions.

By the Curry-Howard correspondence dependent types allow expressing both propositions and com-
putational (data) types in a single framework; therefore dependent type theories form the basis of proof
assistants e.g. Coq [76] and program verifiers e.g. Lego [99].

More recently, there has been an increase of research in functional programming languages incor-
porating dependent types e.g. Dependent ML [163], Cayenne [5], Agda [25] and Epigram [103]. This is
motivated by the desire to express more refined program properties using types than is possible with the
standard polymorphic type systems. In fact, some extensions of the Haskell type system implemented
in GHC e.g. type classes with functional dependencies [77] and generalised algebraic data types [78]
allow simulating some of the expressive power of dependent types [3, 102].

Dependent ML (DML) is a conservative extension of the ML language with dependent types [163,
164]. The motivation for DML was to extend a realistic programming language with dependent types
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whist retaining both decidability of type checking and a low overhead of type annotations. This is
achieved by separating arbitrary ML terms (where general recursion is allowed and whose equivalence
is therefore undecidable) from the indices allowed in types (taken from some decidable constraint
domain).

Computation on DML type indices is restricted to constraint normalisation; this allows reducing
the type checking of DML programs to constraint solving in the underlying domain. The constraint
domain of natural indices with addition allows capturing size invariants of data structures; deciding
the equivalence of the DML types with such indices can then be reduced to checking equivalence of
Presburger constraints e.g. using the Omega calculator [125]. Xi [163] presented applications of DML
types with natural indices to program error detection and optimisations e.g. array bounds check and
dead-code elimination.

Dependent types in DML are introduced by refining a standard data type declaration. For example,
a canonical declaration for a list data type

datatype ’a = nil | cons of ’a * a’ list

can be refined with a natural length measure by the declaration:

typeref ’a list of nat with
nil <| ’a list(0)

| cons <| {n:nat} ’a * ’a list(n) -> ’a list(n+1)

This refinement assigns a type with length zero for nil and a type for cons that increases the length
by one; the notation {n:nat} is the concrete syntax for introducing a dependent product Πn : nat. Size
properties regarding lists can then be expressed by dependent type annotations; for example, the size
relation for the list append function is expressed by the type

append <| {m:nat}{n:nat} ’a list(m) * ’a list(n) -> ’a list(m+n)

and the DML type checker can verify that this size relation holds for the canonical recursive definition
of append.

For size relations that cannot be expressed exactly, DML allows the use of dependent sum types. For
example, the higher-order filter function computes a sub-list of elements verifying some predicate; since
the length of result depends on the predicate it cannot be specified exactly; however, an upper-bound
can be specified by the type

filter <| (’a -> bool) * {n:nat} ’a list(n)
-> [m:nat | m<=n] ’a list(m)

where [m:nat | m<=n] is a dependent sum that constraints the result list length m to be at most the
length n of the original.

DML with integer indices allows expressing properties similar to the sized type systems [23, 74, 127].
The main distinctions between the two approaches are: DML indices are user-definable for each data
type whereas the notion of “size” in the sized type systems above is rigid; there is no implicit subtyping
relation for size coercion in DML (instead, relevant functions must be annotated with dependent sum
types); and finally, the DML type checker can verify user-annotated size relations but not infer them
as in [23, 127].

Grobauer [46] presented a method for automatically deriving cost recurrences from first-order DML
programs. The main contribution is the use of indices in DML types as data sizes for expressing the
recurrences. This allows the user to specify more precise size measures for data e.g. nested lists or trees.
The cost model is asymptotic (e.g. the number of function calls or some other primitive operation).
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This work focuses on extracting cost recurrences but not on obtaining solutions to the cost equations.
Except in very simple cases, obtaining closed form solutions requires human intervention. For example,
a function merging two lists in order (part of a merge sort example)

fun merge l = case l of
(nil, l2) => l2
(l1, nil) => l1
(cons(h1,t1),cons(h2,t2)) =>

if h1<h2 then cons(h1, merge(t1,l2))
else cons(h2, merge(l1,t2))

with merge <| {n1:nat}{n2:nat} list(n1)*list(n2) -> list(n1+n2)

yields the following cost recurrence (braces represent possibly-guarded maximum between alternatives):

mergec n1 n2 =


n1 = 0 7→ 0
n2 = 0 7→ 0

n1 > 0 ∧ n2 > 0 7→ 1 +
{

mergec (n1 − 1) n2

mergec n1 (n2 − 1)

(2.7.1)

It is immediate that the cost recurrence mimics the recursive structure of the original function. Even
using computer algebra systems such as Maple or Mathematica, some human intervention is required
to convert a recurrence such as (2.7.1) into the closed form expression mergec n1 n2 = min(n1, n2).

Crary and Weirich [33] used a system based on proof-carrying code [111] to perform verification
of resources bounds. This system is based on a intermediate compiler language called LXres that
allows expressing resource properties in types by exposing a “virtual clock” representing some available
resource (e.g. time). Resource properties can then verified by the type checker. To deal with variable-
time procedures, they employ a technique of encoding static type-level representations of data using
using sum and inductive kinds; this simulates type dependency while allowing a simpler theory and
type checker.

Costs can be expressed as primitive-recursive functions over the static data representations (so that
type checking remains decidable). These must be provided by the user: the system allows verifying
resource bounds, but makes no attempt to infer them.

Brady and Hammond [17] employed a dependently-typed language similar to Epigram to encode
and verify size properties of functional programs. Their approach generalises the previous examples of
sized lists in DML by introducing a dependent type Size that pairs a type indexed by a natural size
and a predicate (itself represented as an dependent type). A term size v p : Size A P pairs a value v of
indexed type A n and a proof p that v respects a size property P .

Brady and Hammond applied this framework to express size relations of functions on lists, including
an example similar to the split by function of Section 2.6. They also extend the technique to capture
size relations for higher-order functions by associating size predicates and functions with higher-order
arguments. The authors illustrate the technique with the higher-order functions such twice, map and
fold.

A first limitation of this work is that it considers only verifying sizes expressed as dependent types.
The elaboration of a simply typed program in Haskell or ML into a dependently typed version with size
annotations is left to the user (particularly guessing size relations of functions). The extent to which
this step can be automated is not addressed.

Secondly, this work shows the use of dependent types for expressing size information but not time
or space costs. Although the authors mention that the technique is extendible to other metrics such as
heap, stack or time usage, we remark that there is a fundamental distinction the denotational property
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such as size and an intentional property such as cost; the former is a property of values while the latter
is a property of computations.

Danielsson [36] has also used a dependently-typed language for expressing complexity analysis of
functional programs. This work focuses on expressing costs rather than sizes by encapsulating values
in a cost monad [157] parameterised by the number of computation steps: Thunk n a is the type of a
computation that evaluates to an a in n steps. The unit and bind operations for the thunk monad are:

return : a→ Thunk 0 a
>>= : Thunk m a→ (a→ Thunk n b) → Thunk (m+ n) b

The monadic unit injects a value into the cost monad with zero cost while the bind combines costs
from two computations. Any atomic costs must be explicitly introduced using “tick” annotations in
the program; each tick adds one unit of cost:

tick : Thunk n a→ Thunk (1 + n) a

Note that the Thunk type is dependent on the natural n and that both the monadic operations and
tick have dependent types.

These basic combinators form library implemented in the dependently typed language Agda and
allow a programmer to specify machine-checkable complexity proofs; for example, assuming a dependent
type for lists annotated with the length, and assigning a unit cost to each lambda-abstraction, we can
typecheck a list concatenation function annotated with a linear cost on the first argument:

(++ ) : List m a→ List n a→ Thunk (1 + 2 ∗m) (List (m+ n) a)
[ ] ++ ys = tick (return ys)

(x : xs) ++ ys = tick (xs++ ys >>= λt→ tick (return (x : t)))

The cost monad is quite expressive e.g. it can be used to reason about the complexity of lazy
evaluation by explicitly embedding Thunk types into data structures.

One limitation of this work is that it requires insightful annotations by the user and a considerable
knowledge of dependent type systems. For example, to type check the concatenation example above
requires providing a lemma for the arithmetic equality 1+((1+2∗m)+(1+0)) = 1+2∗ (m+1). Non-
trivial programs also require the introduction of auxiliary operators e.g. to “waste” costs and ensure
that the two branches of a conditional admit the same type18.

The cost model used is quite abstract: it counts number of “steps” specified by the number of ticks
annotated in the code. Presumably the technique could be extended to a model of cost based on an
abstract machine e.g. as in [73].

Finally, the system allows only checking cost bounds but does not aid in obtaining the cost bounds
in the first place.

2.8 Amortised cost analysis

Amortised complexity analysis aims at obtaining bounds for the cost of a sequence of operations [118,
143]; it is sometimes possible to obtain better worst-case bounds by amortisation than by reasoning
about the costs of individual operations. For example, it might be possible to obtain a worst-case
bound of O(n) for a sequence of n operations even if some of the individual operations cost more than
O(1).

18This is analogous to the subeffecting allowed in effects systems for time [127] expect that the latter is implicit.
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The “physicist method” for deriving amortised bounds starts by assigning a non-negative potential
function to data. The amortised cost of an operation is then defined as the sum of the actual cost
(e.g. time cost or heap cells allocated) plus the difference in potential incurred by the operation. The
key idea is to choose the potential functions so as to facilitate computing the amortised cost e.g. in
such a way as to make the amortised costs constant. Provided the potential is always non-negative
and initially zero, the accumulated amortised costs will be an upper-bound on the accumulated actual
costs [118].

Hofmann and Jost [67] proposed a type-based analysis for heap space usage using amortisation.
Instead of extending type judgements with effects as in [38, 73, 127], the analysis of Hoffman and Jost
is based on annotating data types with weights representing the relative contribution of parts of a data
structure to the overall heap usage (the potential associated with the data structure).

The language under analysis is a first order functional notation with a strict semantics and algebraic
data types including sums, products, booleans and lists. There are two kinds of pattern-matching
deconstructors for heap-allocated values: a deallocating match and non-deallocating match′. The heap
cost is defined by a big-step operational semantics instrumented with the size of a free list of heap cells;
the free list reduces at each constructor application and grows at each match (but not at match′).

The augmented typing judgements take the form Γ, k ` e : A, k′ where Γ are the type assumptions,
e is an expression, A is an annotated type and k, k′ are non-negative rational numbers representing
the available potential before and after the evaluation of e. The annotations in A together with k and
k′ give both an upper bound on the initial heap space for evaluation of e and a lower bound on the
available heap space after evaluation. For example, the judgement

x : L(L(B, 1), 2), 3 ` e : L(B, 4), 5

informally says that if x is a list of lists of booleans then e is a list of booleans; furthermore, if
x = [l1, . . . , ln] then a free list of size 3 + 2n+ 1

∑
i |li| is sufficient to evaluate e; and if e evaluates to

a list [b1, . . . , bm] of length m, the resulting free list will have size at least 5 + 4m.
From this example we can see that type annotations play a very different role here than in the sized

type systems: in the system of Hoffman and Jost an annotation represents not a size, but the coefficient
of the heap cost incurred by a part of a data structure. The upper bound on the initial free list is a
function of the (unknown) sizes of the input. Note also that the lower bound on the final free list size
is a function of the (unknown) size of the output and that no input/output size relation is obtained.

The type system of Hofmann and Jost performs an amortised analysis of the size of the free list:
the coefficients in types represent the potential associated with the data structures; the typing rules
constrain the annotations so that the amortised costs for each expression are properly accounted. For
example, the typing rules for constructing and deconstructing a list node are:19

n ≥ SIZE(A⊗ L(A, k)) + k + n′

Γ, xh : A, xt : L(A, k), n ` cons(xh, xt) : L(A, k), n′
(2.8.1)

Γ, n ` e1 : C, n′

Γ, xh : A, xt : L(A, k), n+ SIZE(A⊗ L(A, k)) + k ` e2 : C, n′

Γ, x : L(A, k), n ` match x with |nil ⇒ e1
|cons(xh, xt) ⇒ e2

: C, n′
(2.8.2)

Rule (2.8.1) specifies that the available potential n must be at least the amortised cost of cons, that
is, the actual heap cells used (given by the SIZE function) plus the potential k associated with the list

19 Following Hofmann and Jost [67] and without loss of generality, we present the type rules for expressions in let normal
form.
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elements (because the list length is increased by one). Dually, rule (2.8.2) specifies that the available
potential at the cons alternative increases by the amortised cost (because match does deallocation).

Hofmann and Jost presented an algorithm that automatically infers the type annotations. Their
technique associates each program P with a system of linear inequalities L(P ) such that the valid
annotated type derivations for P correspond to the admissible solutions of L(P ); these solutions can
be obtained by a standard linear programming solvers.

The worst-case theoretical complexity for solving linear programs is polynomial; the variants of
the simplex algorithm used in solver implementations, although exponential in the worst-case, is quite
efficient in practice. This compares favourably with the sized type systems [23, 73, 74] where type
checking alone requires checking validity of Presburger constraints with doubly-exponential worst-case
time.

Since annotations represent coefficients of the potential function, the system can only derive heap
bounds that are linear on the sizes of data structures. However, since the language implements deal-
location using destructive matching, it is still expressive enough to obtain heap costs for many list
processing functions, including insertion algorithms such as insertion sort and quicksort.20 Unlike the
sized type analysis of Hughes and Pareto [73], the amortised analysis deals with the irregular divide-
and-conquer recursions by “splitting” the potentials between the two recursive calls. Hofmann and Jost
also present good results for a binary tree traversal and report successfully analysis of other textbook
examples.

One limitation of the analysis of Hofmann and Jost is that the inferred type annotations are some-
times not sufficiently polymorphic because every use of a function shares the same potentials. Consider
the identity function f : L(B) → L(B) on a list of booleans; if a particular use requires the annotation
f : L(B, 5), 3 → L(B, 5), 3 then it not possible to apply f to an argument of type L(B, 0). The authors
suggest that this can be relaxed by conducting separate analysis for each use of f . However, this implies
that is not possible to analyse functions separately from their use, i.e. the analysis is not fully modular.

Hofmann and Jost have considered heap usage but not time or stack usage. Time could, in principle,
be treated similarly to heap, by simply recording the number of execution steps instead of the size of
a free list. The only difference is the absence of a deallocation mechanism for time costs.

Extending the amortised analysis for stack usage is less straightforward. One technical problem
is that a realistic model for stack must employ a small-step rather than a big-step semantics as used
in [67]. Another concern is that the bounds expressible by the amortised analysis are linear on the size
of data structures (the total number of elements). While this is generally a good match for obtaining
heap bounds, for example, it will yield coarse stack bounds for a tree search algorithm whose worst-
case complexity is linear on the depth of the tree. A recently submitted PhD thesis investigates the
extension of amortised analysis to stack costs; the definition of potential is modified to account the
depth of data structures [19].

2.9 Other related work

Hofmann [65] has proposed the use of a linear typing discipline for ensuring that data structures are
used in a single-threaded way and can therefore be update in-place. Hofmann further shows that first-
order functional programs that admit a linear type in this system can be translated into C-language
programs with bounded space behaviour by construction: there are no uses of malloc() because all
data structures are updated in-place; thus dynamic memory requirements are bounded by the usage of
initial data. Of course, this guarantee applies to heap but not to stack.

20 The sorting algorithms exhibit linear space or even constant bounds by reusing the heap associated with the input
list for constructing the sorted list—i.e. they destroy the original list.
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Some early works on complexity theory have studied complexity bounds of Turing-incomplete lan-
guages. Meyer and Ritchie [104] studied the complexity of bounded loop programs; such programs
cannot implement all computable functions but can implement to the first-order primitive-recursive
functions on naturals [91, chapter 5]. The complexity bounds are expressed using a family of primitive-
recursive functions indexed by the depth of loop nesting and the number of instructions in the program.
However, the bounds are rather coarse e.g. a program with a single loop is bounded by a linear function
but a program with two nested loops is bounded by an exponential.

Turner [148, 149] proposed a discipline for strong functional programming, that is, where program
termination is guaranteed by construction. The principal objective is the simpler equational theory
resulting from the absence of a “bottom” value associated with partiality. Unlike approaches based
e.g. on constructive type theory, Turner proposes an elementary discipline that could be used at an
introductory programming level; he restricts a pure functional language such Miranda or Haskell by:

a) requiring all case-analysis definitions to be exhaustive;

b) extending all built-in operations to be total (e.g. arithmetic);

c) requiring arguments of recursive calls to be structural sub-components of the formal parameters;

d) requiring recursive data types to be covariant (that is, recursion on the left of the arrow type
constructor is disallowed).

The resulting programming language is not Turing-complete, but is expressive enough to encode higher-
order primitive recursive functions over naturals and other inductive types. To express non-terminating
interactions (e.g. an operating system), Turner proposes separating the recursive data types which
must be finite (e.g. naturals and lists) from co-recursive ones which are infinite (e.g. streams). Co-
recursive definitions must be guarded by co-constructors; this is sufficient to ensure that co-values are
productive.21

Turner argues that the restriction to primitive recursive definitions captures most useful computable
functions. However, algorithms must sometimes be re-written with worse time or space complexity than
an equivalent general-recursive formulation; this is undesirable for resource-constrained systems. In any
case, we remark that the restriction to a total programming language does not, by itself, guarantee
resource bounds, except in a näıve extensional sense.

A prerequisite for all cost analysis is to choose a model of costs. Most of the previous works [12, 38,
90, 127, 129, 154, 156] chose to count the number of function calls (or the corresponding formal notion
of β-reductions in the lambda-calculus). This metric has the advantage of being easily understood by
relation with a naive equation rewrite semantics for an applicative language. However, it bears little
relation with the time or space costs of a real implementation.

On the theoretical side, Dal Lago and Martini [34] have argued against using the number of β-
reductions as a cost model for the lambda-calculus. They proposed a model where the cost of a
reduction M → N is proportional to the difference |N |− |M | between the sizes of redex and reduct and
prove that it satisfies a polynomial-invariance result, i.e. that it can be simulated by a Turing machine
within a polynomial-time bound overhead and vice-versa (unlike the cost model based on β-reductions).

Hope and Hutton [72] proposed counting the reduction steps of an abstract machine. Such a model
stands half-way between the very abstract measure (number of β-reduction) and measuring real-time

21 This is similar to the size type system of Hughes et al. [74]; the latter, however, ensures termination and productivity
by a semantic properties of sizes rather than syntactical restrictions.
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of a concrete implementation. Hope and Hutton follow the methodology of Ager et al. [1] and Danvy
[37]: starting from a denotational evaluator for the language, they apply a sequence of meaning-
preserving program transformations to obtain an abstract machine interpreter; this interpreter is then
straightforwardly extended with a step-counter; finally, the program transformations are reversed to get
back a cost-instrumented denotational evaluator. The principal strength of this approach is that the
program transformations are calculated, thus giving a constructive methodology for reasoning about
costs of an implementation at the source level.

Bonenfant et al. [14] conducted worst-case execution time (WCET) analysis to obtain bounds on
real-time costs for a subset of the abstract machine instructions of Hume, a functionally-inspired re-
search language for resource-sensitive systems. Their approach is to translate the abstract machine
instructions into C and use a C compiler to obtain machine code; they then employ aiT, a commercial
tool for static WCET analysis of machine code blocks [41, 42]. Unlike approaches based on experimental
tests, the aiT tool uses abstract interpretation to model cache and pipeline states of specific micropro-
cessors and is capable of obtaining guaranteed worst-case time bounds. Bonenfant et al. applied this
tool to derive WCET costs of compiled code for a Renesas M32C/85 micro-controller, compared the
results with experimental timings and report a close match with the analysis bounds.

2.10 Worst-case Execution Time Analysis

Worst-case execution time (WCET) analysis is required for a variety of embedded systems applications,
especially those with safety- or mission-critical aspects. Common examples include avionics software
and autonomous vehicle control systems [137]. Our work aims to construct fully automatic source-
level static WCET analyses, that are correlated to actual execution costs. Since we must provide
formal, automatically-produced guarantees on WCET bounds, we base our work on a high-quality
abstract interpretation approach (AbsInt GmbH’s aiT tool [45]), to give low-level timing information
for bytecode instructions. We combine this with an equally formal, type-based approach that lifts this
information to higher-level language constructs so that it can be applied to source programs. The
problem is to maintain the strong WCET guarantees we need, while giving good quality information.
Our approach to constructing WCET analyses is based on the idea of amortisation [142]. This represents
the first attempt of which we are aware to provide an automatic amortised WCET analysis. We have
produced a prototype implementation using our approach, and we report here on some preliminary
results obtained using this analysis tool.

Amortised cost approaches [26] allow costs to be averaged according to use. The basic intuition
is that by amortising over the time costs incurred by common usage patterns (e.g. that for a stack,
every pop is balanced by a push), we can construct timings that reflect more accurately real worst-case
times. Typically, amortised analysis is performed by hand to determine the complexity of programs
that involve complex data structures [117]. We have previously, however, applied the approach to give
automatically derived, and provably correct, upper bounds on space costs for heap allocations [66]. In
both cases, since alternative program execution paths may have very different costs, by amortising over
common patterns we can avoid the needless over-estimation that would otherwise occur.

2.10.1 WCET Analyses for Conventional Programming Languages

Typical WCET analyses, such as aiT or bound-T work at the low level, operating on relatively simple
C or assembler code fragments rather than the high level sources we have shown here. In finding WCET
solutions for concrete programs, it is usually necessary for the programmer to provide additional detailed
information in the form of specific program annotations, and this make require significant effort in some
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cases. For example, it may be necessary to indicate the range of values that a loop variable may take
if the associated iteration is not bounded by a literal value.

As described above, our work is based on an automatic analysis that exploits amortisation over
data structures [116] to provide linear cost bounds [68] for programs involving boxes, recursion, higher-
order functions and the other high-level language features that we exploit in the domain-specific Hume
design. When using general-purpose programming notations for embedded systems, however, it is not
yet possible to use such technically advanced analyses, and manual resource analysis based on profiling
and/or manual code inspection has therefore long formed the state-of-the-art in embedded systems.

Recently, static program analyses for certain resource properties have matured to encompass some
industrial applications. For example, stack consumption of non-recursive programs is now well un-
derstood (e.g. [126, 151]), and has been industrially applied in the form of AbsInt’s StackAnalyzer
tool22. A variety of both commercial and academic tools also exist for calculating guaranteed bounds on
worst-case execution time [161], including aiT [45], bound-T [71], SWEET [93, 133], Chronos [109],
Heptane and OTAWA. Such tools typically work on machine-code fragments, yielding analyses for
specific input cases. Of these tools, AbsInt’s aiT achieves both the best coverage and the best quality,
being able to produce WCET bounds that are within 7-8% of the measured WCET for the standard
WCET benchmark suite [141] (somewhat tighter than the 22% we have measured as an average dis-
crepancy on our [perhaps more complicated] test cases). In comparison, Synchron gives results that are
80%-90% of the measured WCET for the same benchmark suite. Qualitative results are not available
for the other WCET systems.

22http://www.absint.com/stackanalyzer

http://www.absint.com/stackanalyzer




Chapter 3

The Hume Abstract Machine

Kevin Hammond and Hans-Wolfgang Loidl

Abstract

This chapter provides a formal specification of the Hume Abstract Machine (HAM) semantics. The
specification contains instructions to support higher-order functions and exceptions, but no explicit
support for timeouts.
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3.1 Introduction

For the execution of Hume [58] programs we define an abstract machine, the Hume Abstract Machine
(HAM). This definition is an extension of the initial design, described in [53], by constructs for higher-
order functions and exceptions. Additionally, we formally specify the components of the machine and its
behaviour in the form of a 2-level, small-step, operational semantics and give a reference implementation
of the instructions of the HAM. The operational semantics uses the approach of resource algebras, which
we have developed in a previous project [4], to collect information on the resource consumption during
execution. The resource algebras are designed in a modular way and can be instantiated without
modifying the rules of the operational semantics. We define the cost model for the HAM by giving
resource algebras for stack space, heap space and time consumption. The values for stack and heap
space are independent of the underlying processor. For obtaining tight bounds on execution time we
have used the aiT tool [45] of the AbsInt project partner.

Together with the Hume formal semantics (Chapter 6), and the formal description of the translation
of Hume to HAM (Chapter 4), it gives a description about the costs for executing Hume and HAM
programs. This is in turn a prerequisite for developing static analyses of resource consumption. This
formal specification is also the basis for ongoing work on the certification of the resource consumption
of Hume code.

3.2 Hume Abstract Machine Design and Reference Implementation

name interpretation
S stack
H heap
sp stack pointer
hp heap pointer
fp frame pointer
slp function frame pointer
mp match pointer
inp input pointer
rs current ruleset
base base ruleset

name interpretation
pc program counter
pcr restart program counter
blocked box blocked
blockedon output on which blocked
INITPC initial program counter

ins input buffers
outs output buffers
nIns number of inputs
nOuts number of outputs

Figure 3.1: Box-specific registers, constants and memory areas — the box state record

name interpretation
rules array of rule entry points
nRules number of rules
rp current rule pointer

Figure 3.2: Ruleset-specific registers and constants

The goal of the Hume Abstract Machine (HAM) design is to provide a credible basis for research
into bounded time and space computation, allowing formal cost models to be verified against a realistic
implementation. Absolute space- and time-performance (while an important long-term objective for
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...
arg 0

return address

arg m

sp

stack item 0
...
top of stack

...

prev ruleset

Previous Stack Frame

local n

....
local 0

prev fp
prev slp

fp

higher addresses

Figure 3.3: Stack frame layout in the Hume Abstract Machine

Hume) is thus less important in this initial design than predictability, simplicity and ease of implemen-
tation.

The Hume Abstract Machine is loosely based on the design of the classical G-Machine [6] or SECD-
Machine [88]. with extensions to manage concurrency and asynchronicity. Each Hume box is imple-
mented as a thread with its own dynamic stack (S) and heap (H) and associated stack and heap
pointers (sp and hp). These and the other items that form part of the individual state record are shown
in Figure 3.1. Each function and box has an associated ruleset (Figure 3.2). The ruleset is used for two
purposes: it gives the address of the next rule to try if matching fails; and it is used to reorder rules
if fair matching is specified. The box ruleset is specified as the base field of the state record. Function
rulesets are set as part of a function call.

Separate stacks are needed to maintain independent state records. Separate heaps allow a simple
model of garbage collection where the entire heap becomes garbage each time a box completes. Small
pointer ranges can be used in both cases (8-bit stack and heap pointers are possible for a number of
applications). This helps conserve space. The corresponding disadvantage of this design is the need to
communicate arguments and results between boxes rather than using a physically or virtually shared
heap. This is achieved in the HAM reference implementation by copying such values between heaps
at the beginning and end of the box execution. There is an analogy with the working copies of global
variables that may be obtained by implementations of the JVM [92]. However, variable accesses in the
JVM may occur at any point during thread execution, not only at the beginning/end as in the HAM.
Moreover, unlike the HAM, which is stateless, the JVM maintains a virtually shared heap containing
master copies of each variable. Our design is thus closer to that of Eden [18]: a reactive functional
language based on Haskell.

The layout of a typical stack frame is shown in Figure 3.3. The abstract machine design uses a pure
stack calling convention. Function arguments are followed by a four-item frame-header containing the
return address, a pointer to the previous ruleset, the static link pointer and the previous frame pointer.
In this description, the size of this subframe is given by the constant Sframe. The local frame pointer
fp points immediately after the frame-header, to the address of the first local variable. The function
frame pointer slp points to the beginning of the nearest frame representing a function (note that let
etc instructions in Hume also allocate frames). For consistency, the same layout is used at the outer
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for i = 1 to nBoxes do
runnable := false;
for j = 1 to box[i].base.nRules do

if ¬ runnable then
runnable := true;
for k = 1 to box[i].nIns do

runnable & = box[i].required[j, k] ⇒ box[i].ins[k].available
endfor

endif
endfor
if runnable then schedule (box[i]) endif

endfor

Figure 3.4: Scheduling Algorithm

box level. In this case, the box inputs are stored in the argument position, and the return address
item is redundant. Note that all values on the stack other than the saved return address, ruleset and
frame pointer are pointers to the local heap (i.e. they are boxed [123]): in the current design there
is no separate basic value stack to handle scalar values as in some versions of the G-Machine [123],
STG-Machine [122] etc. nor are scalars and heap objects mixed on the stack as in the JVM [92] or
recent versions of the STG-Machine.

3.2.1 Box Scheduling

The implementation maintains a vector of boxes, each with its own state record. Boxes are connected
through wires, which are shared communication buffers each connecting an in of one box to an out of
another (or the same) box. Each wire comprises a pair of a value (value) and a flag indicating that the
value is valid (available), used to ensure correct locking.

Boxes are scheduled under the control of a built-in scheduler. The exact scheduling order is not
fixed by the HAM semantics. Implementations are free to realise any order that satisfies the conditions
stated in Section 6.1.4. A box is deemed to be runnable if all the required inputs are available for any

merge

in1 in2

c’c’

c c

x x

in1 in2

o

output

Figure 3.5: Hume example program as a network of boxes
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constant value (words)
HInt 2
HFloat 2
HBool 2
HChar 2
HStr 2
Ssaved 4

constant value (words)
HConstr 2
HTuple 2
Hf 4
HChain 4
HVec 2
HExn 2

Table 3.1: Sizes of headers for heap objects in the prototype Hume Abstract Machine

of its rules to be executed (Figure 3.4). A compiler-specified matrix is used to determine whether an
input is needed: for some box t, box[t].required[r, i] is true if input i is required to run rule r of that
box. A single execution cycle comprises the following (all realised via explicit HAM instructions):

a) initialise stack- and heap-pointers and the base ruleset;

b) check input availability against possible matches;

c) copy data from input wires into the local heap for matching;

d) match available inputs against rules;

e) consume those inputs that have been matched and which are not ignored in the selected rule;

f) create a stack frame to hold local variables;

g) bind variables to input values;

h) evaluate the RHS of the selected rule;

i) check that outputs can be written to all output wires;

j) write non-ignored outputs to the corresponding wires;

k) reorder match rules according to the fairness criteria.

Note that all wires are single-buffered. A box will therefore block when writing to a wire which contains
an output that has not yet been consumed. In order to ensure a consistent semantics, a single check is
performed on all output wires just before any output is written. The check ignores * output positions.
The box suspends if any of the needed output wires is occupied.

3.2.2 Heap Representations

In the prototype design, all heap cells are boxed with tags distinguishing different kinds of objects
(see Figure 3.6. Furthermore, tuple (Tuple), constructor (Constr) and exception structures (Exn) require
size fields. In the case of constructors the constructor tag field (c) is encoded together with Constr tag
itself. Function closures (f) contain a pointer to an instruction sequence, the number of needed (m) and
of already provided (p) arguments, and a list of pointers to those provided arguments. All data objects
in a structure are referenced by pointer. There is one special representation: strings are represented as
a tagged sequence of bytes. Clearly, heap usage could be reduced using a more compact representation
such as that used by modern high-performance implementations such as SML-NJ [100] or the STG-
Machine [122]. A variant of the HAM, using an unboxed representation, has been produced since
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i

Tuple n ... ...nConstr c

...Fun pm

Char c Bool bfInt Float

Exception x

n ...

n ...

...pm

Str

Chain

Vector

Figure 3.6: Heap representations in the Hume Abstract Machine

project start. For now, we are, however, primarily concerned with bounding and predicting memory
usage and therefore use the boxed data representation.
Heap and Stack Sizes.

The sizes of the stack and heap spaces associated with each box are fixed at compile-time using a static
size analysis to compute the upper bound of stack and heap usage [57]. This size analysis is defined
for flat Hume programs containing no recursion (FSM-Hume), and is currently being extended to more
general cases [153]. This size analysis has been integrated into our prototype compiler (phamc), and
results are being used in the back-end. As described in Chapter 8, we have also produced analyses for
space and time consumption of Hume programs, based on the principle of amortised costs [83], and
developed prototype implementations of these analyses.

Exceptions.

Two forms of exceptions can occur during the execution of HAM code: synchronous and asynchronous
exception. While synchronous exceptions are related to the execution of a particular piece of HAM
code (e.g. division-by-zero), asynchronous exceptions can occur at any point and need to be checked
by an external system.

The most important synchronous exceptions are stack- and heap-overflow. Before each (block of)
instruction, that involves an increase of the stack- or heap-pointer, a stack- or heap-check is necessary,
which makes sure that enough stack- or heap space is available, and if not raises an exception. For the
pseudo-code in the reference implementation we assume that such stack- and heap-checks are added
for any HAM instruction.

The most important asynchronous exception is a timeout. We assume that the HAM is embedded
into a system that provides facilities for setting a timer and for checking when such a timer expires. In
this case, the handler code for timeouts in the current box must be executed.

3.2.3 The Abstract Machine Instructions

The abstract machine instructions implement the abstract machine design described above. These
instructions are shown in Figures 3.7–3.11. They are classified into stack, heap and control-flow oper-
ations, which are fairly standard, and matching and scheduling operations, which reflect the specific
nature of the Hume design. The description of the instructions uses two auxiliary functions: maxVars
calculates the maximum number of variables in a list of patterns; and labels generates new labels for a
set of function/box rules. Where labels lt , ln etc. are used, these are assumed to be unique.
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MkBool b H[hp] = Bool b; S[sp] := hp; + +sp; hp := hp+ HBool; + +pc

MkChar c H[hp] = Char c; S[sp] := hp; + +sp; hp := hp+ HChar; + +pc

MkInt i H[hp] = Int i; S[sp] := hp; + +sp; hp := hp+ HInt; + +pc

MkFloat f H[hp] = Float f ; S[sp] := hp; + +sp; hp := hp+ HFloat; + +pc
MkString s H[hp] = Str s; S[sp] := hp; + +sp; hp := hp+ HStr + ssize(s); + +pc

MkNone H[hp] = None; S[sp] := hp; + +sp; hp := hp+ HNone; + +pc

MkCon c n H[hp] = Constr c n (S[sp− 1]) . . . (S[sp− n− 1]); sp := sp− n;
S[sp] := hp; + +sp; hp := hp+ HConstr + n; + +pc

MkTuple n H[hp] = Tuple n (S[sp− 1]) . . . (S[sp− n− 1]); sp := sp− n;
S[sp] := hp; + +sp; hp := hp+ HTuple + n; + +pc

MkFun l m p H[hp] = f l m p (S[sp− 1]) . . . (S[sp− p− 1]);
sp := sp− p; S[sp] := hp; + +sp; hp := hp+ Hf + p; + +pc

Figure 3.7: Abstract Machine Instructions: Heap operations

Push n sp := sp+ n; + +pc
Pop n sp := sp− n; + +pc

Slide n

SlideVar v

SlideVarF d v


 m := n;

m := H[S[fp+ v] + 1];
fp′ := fp;while d 6= 0 do fp′ := S[fp′ − 2];−− d endwhile; m := H[S[fp′ + v] + 1]

S[sp−m− 1] := S[sp− 1]; sp := sp−m; + +pc
Copy n S[sp] := S[sp− n− 1]; + +sp; + +pc
CopyArg n S[sp] := S[fp− Ssaved − n− 1]; + +sp; + +pc

CreateFrame n S[sp] := fp; fp := sp+ Ssaved ; sp := sp+ Ssaved + n; lp := sp; + +pc

PushVar v S[sp] := S[fp+ v]; + +sp; + +pc

PushVarF d v fp′ := fp; while d 6= 0 do fp′ := S[fp′ − 2]; −−d endwhile;
S[sp] := S[fp′ + v]; + +sp; + +pc

MakeVar v S[fp+ v] := S[sp− 1]; −−sp; + +pc

Figure 3.8: Abstract Machine Instructions: Stack operations
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Heap Object Creation (Fig 3.7).

Tagged objects are created in the heap, and pointers to the new object stored on the top of the stack.
For scalar values (booleans, characters, integers, floats and strings) the actual value is taken directly
from the instruction stream (in the case of a string, this is a pointer into the global string table). The
corresponding constructor instructions are MkBool, MkChar, MkInt*, MkFloat* and MkString.
The instruction MkNone creates a special None value in the heap. This is used to prevent the writing
of a particular output under dynamic programmer control.

Finally, two instructions build structured values. MkCon takes two arguments from the instruction
stream, a constructor tag and a number of arguments, and builds the corresponding constructor in the
heap using the relevant number of arguments from the stack. MkTuple is similar except that it has
no constructor tag parameter, and builds a tuple rather than a constructor. MkFun takes the top p
elements from the stack and builds a function closure in the heap. The construction of an exception
closure is encoded in the Raise instruction, together with the transfer of control to the exception
handler of the current box.

Stack Operations (Fig 3.8).

The abstract machine uses a number of simple stack manipulation operations. Push increments the
stack pointer by a constant. This is used to create fixed space on the stack. Pop decrements the stack
pointer. Slide pops the stack by a fixed amount, and ensures that the top of stack after the stack is the
same as before the pop. SlideVar and SlideVarF perform the same operation but read the amount
for the slide from a local or non-local variable, respectively. This is used, for example, to remove the
arguments to a function when it returns. Copy duplicates the contents of a stack location relative to
the current top of stack. Finally, CopyArg copies the specified box or function argument to the top
of stack.

Three operations are provided on variables. PushVar copies the specified variable to the top of
stack. PushVarF does the same, but from a non-local target stack frame (specified as the depth d in
the frame list and the relative offset v, both given in the instruction). MakeVar assigns the value on
the top of the stack to the corresponding local variable v.

Control-flow Operations (Fig 3.9).

The abstract machine control instructions are conventional. Goto sets the pc to the appropriate
instruction. If does the same conditionally on the value on the top of the stack. Call calls the specified
function, saving the current ruleset on the stack for future use. The new ruleset and program counter
are derived from the label for the function that is called. CallVar and CallVarF call the function
which is pointed to by the a local or non-local variable, respectively. This variable must point to a f
closure in the heap, which contains a pointer to the code to be executed, as well as a list of already
provided arguments. Ap calls the function pointed to by the top-of-stack element. CallPrim1 and
CallPrim2 call primitive functions with one or two arguments, respectively.

Matching Operations (Fig 3.10).

Matching is initiated by the StartMatches instruction, which sets the program counter to the first
rule in the base rule set.

The same matching operations are used both for box inputs and for function arguments. The oper-
ations are divided into three sets: the MatchRule operation, which initialises the matching for a rule,
and matches with a closing MatchedRule indicating the end of a matching block; the MatchAvail-
able and MatchNone operations which check box input availability; and the value matching operations
such as MatchBool etc.
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Goto l pc := l

If l if S[sp− 1] := true then pc := l else + +pc endif; −−sp

Call f S[sp+ +] := pc+ 1; S[sp+ +] := fn; S[sp+ +] := slp;
slp := sp+ 1; fn := f.ruleset; fn.rp := 0; pc := fn.rules[0]

TailCall f n d sz while d 6= 0 do fp := S[fp− 2]; −−d endwhile;
for i in 1..n do S[fp− Ssaved − i] := S[sp− i] endfor
sp := fp+ sz; lp := sp; fn := f.ruleset; fn.rp := 0; pc := fn.rules[0]

CallVarF d v n

CallVar v n
Ap n




while d 6= 0 do fp := S[fp− 2]; −−d endwhile; c := S[fp+ v] if CallVarF
c := S[fp+ v] if CallVar
c := S[sp] if Ap

f := H[c+ 1]; m := H[c+ 2]; p := H[c+ 3]
if (n+ p ≥ m) then
for i in p− 1..0 do S[sp+ +] := H[c+ 4 + i] endfor;
S[sp+ +] := pc; S[sp+ +] := fn; S[sp+ +] := slp; fn.rp := 0; pc := H[c+ 1];

else H[hp] := f f m (p+ n) H[c+ 4] . . . H[c+ 4 + (p− 1)] S[sp− 1] . . . S[sp− n− 1];
hp := hp+ p+ n+ 4; endif;

Return fp := S[fp− 1]; slp := S[fp− 2]; fn := S[fp− 3]; pc := S[fp− 4]; sp′ := fp− Ssaved;
S[sp′] := S[sp− 1]; sp := sp′ + 1

CallPrim1 p S[sp− 1] := p (S[sp]) (S[sp− 1]); + +pc

CallPrim2 p S[sp− 2] := p (S[sp]) (S[sp− 1]) (S[sp− 2]); −−sp; + +pc

Raise x H[hp] := Exn x S[sp]; −−sp; sp := fp := slp := 0;
S[sp+ +] := hp; hp := hp+ HExn + 1; sp := sp+ Ssaved;
pc := fn.rules[fn.handler ]

Figure 3.9: Abstract Machine Instructions: Control-flow
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MatchRule mp := fp− Ssaved + 1; inp := 0; pc := fn.rules[fn.rp]; + +fn.rp; sp := lp

MatchedRule sp := lp

MatchNone −−mp; + +inp; + +pc

MatchAvailable if ins[inp].available then + +pc else pc := fn.rules[fn.rp] endif; inp := inp+ 1

MatchBool b −−mp; if H[S[mp]] 6= Bool b then pc := fn.rules[fn.rp] endif

MatchChar c −−mp; if H[S[mp]] 6= Char c then pc := fn.rules[fn.rp] endif
MatchString s −−mp; if H[S[mp]] 6= Str s then pc := fn.rules[fn.rp] endif

MatchInt i −−mp; if H[S[mp]] 6= Int i then pc := fn.rules[fn.rp] endif

MatchFloat f −−mp; if H[S[mp]] 6= Float f then pc := fn.rules[fn.rp] endif

MatchCon c n −−mp; if H[S[mp]] 6= Constr c n xs then pc := fn.rules[fn.rp] endif
MatchTuple n −−mp; if H[S[mp]] 6= Tuple n xs then pc := fn.rules[fn.rp] endif

MatchExn x −−mp; if H[S[mp]] 6= Exn x xs then pc := fn.rules[fn.rp] endif

Unpack −− sp; if H[S[sp]] = Tuple n xs then offset := 2
else if H[S[sp]] = Constr c n xs then offset := 3;
else if H[S[sp]] = f f m n then offset := 4; endif;

for i := 0 to n− 1 do S[sp] := H[S[sp] + offset + i]; + +sp;
endfor; + +pc

StartMatches pc := base.rules[0]

Reorder n := fn.nrules− 1; r := fn.rules[fn.rp];
for i := fn.rp to n do fn.rules[i] := fn.rules[i+ 1] endfor;
fn.rules[n] := r; + +pc

Figure 3.10: Abstract Machine Instructions: Rule matching
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CopyInput n S[sp] := copy (ins[n]); + +sp; + +pc

Consume n ins[n].available := false; + + pc

MaybeConsume n if ins[n].available then ins[n].available := false endif; + + pc

CheckOutputs for i := 0 to nouts do
if H[S[sp− i− 1]] 6= None and ¬ outs[i].available then
blocked := true; bon := i; pcr := pc; reschedule;

endif;
endfor; + +pc

Write n −− sp;
if H[S[sp]] 6= None then outs[n] := copy(H[S[sp]]);
endif; + +pc

Input H[hp] := Char getchar ; S[sp] := hp; + +sp;
hp := hp+ Hchar; + +pc

Output putvalue(S[sp− 1]); −−sp; + +pc

Within h t fn.rules[fn.within handler ] := h;S[sp] := lo(t); ;S[sp+ 1] := hi(t); sp := sp+ 2
WithinStackSpace h p fn.rules[fn.withinspace handler ] := h;S[sp+ 1] := splim; splim := sp+ p; sp := sp+ 1

WithinHeapSpace h p fn.rules[fn.withinspace handler ] := h;S[sp+ 1] := hplim; hplim := hp+ p; sp := sp+ 1

DoneWithin unsetTimer()

RaiseWithin h t setTimer(S[sp], S[sp− 1])
DoneWithinStackSpace h splim := S[sp− 1];S[sp− 1] := S[sp]; sp := sp− 1

DoneWithinHeapSpace h hplim := S[sp− 1];S[sp− 1] := S[sp]; sp := sp− 1

Schedule reschedule

Figure 3.11: Abstract Machine Instructions: Scheduling and Wire I/O

Matching takes place against a special stack pointer, the match pointer mp, which records the
current match position. This is initialised in MatchRule to be just above the first argument to the
box or function. The input pointer inp is also initialised to support input availability checking. Finally,
the program counter is initialised to the start of the next rule.

The availability checking operations are used only for box inputs. MatchAvailable checks whether
the next box input is available. If not, then the entire rule match fails, and the next rule is tried.
Otherwise the input pointer inp is incremented. MatchNone simply increments inp without checking
input availability. This is used to implement * and * in patterns.

The match operations match the heap value pointed to by mp against the specified value. Failure
means the next rule is tried. Otherwise the next match position is checked. Constructors and tuple
matches are applied only to the outer level. Nested matching is achieved by unpacking the arguments
to the constructor or tuple onto the stack using the Unpack instruction.

Finally, after successful matching, rules may be reordered by Reorder if fair matching is required.
This is ensured by moving the successful rule to the end of the ruleset. As a consequence, a least
recently used policy is implemented.

Scheduling, input and output operations (Fig 3.11).

Box input and output is handled by two sets of operations. The CopyInput copies the specified input
from the input wire into the heap and places it on the top of the stack prior to matching. If matching
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Label l l labels the next instruction
Function f l1 . . . ln Function f has rules at labels l1 . . . ln

Box b h s i o r Box b has heap h , stack s, i inputs, o outputs and r rules
Rule b l1 . . . ln Box b has rules at labels l1 . . . ln

Require b x1 . . . xn Box b requires inputs x1 . . . xn

Stream s In/Out h s Stream h has heap h and stack s

Wire wi i wo o h Wire input wi.i to output wo.o with heap h

Figure 3.12: Abstract Machine Pseudo-Instructions

is successful, input is consumed using the Consume operation, which resets the availability semaphore
for the appropriate input wire, thereby permitting new write operations on that wire.

Output is handled by two similar operations. The Write operation writes the value on the top of
the stack to the specified output wire. Before this can be done, the CheckOutputs operation is used
to ensure that all required Write operations will succeed. This is achieved by checking that all output
wire buffers are empty (as indicated by the wire’s availability semaphore). If not, then the box blocks
until the value on the wire has been consumed, and the availability semaphore has been cleared. If
the heap value is None (corresponding to * on the output), then the Write will not actually write
anything to the output wire, and the availability semaphore is ignored by CheckOutputs.

Two operations are provided to manage stream input/output. A special box is attached to each
stream input and output device. Executing the Input operation blocks the box if no input is available.
Otherwise the input is read into the box’s heap, and can then be written to its output wire using normal
abstract machine operations. The Output operation simply writes the value on the top of stack to the
appropriate device.

Control is returned to the scheduler either when a box blocks as a consequence of being unable
to write some output during the CheckOutputs operation, or explicitly when a box terminates as a
consequence of exiting the Schedule operation. In either case, the scheduler will select a new runnable
box to execute. If there is no runnable box, then in the concurrent implementation the system will
terminate. In a distributed system, it would be necessary to check for global termination, including
outstanding communications that could awaken some box.

Box initialisation (Fig 3.13).

When a box is scheduled, its registers are initialised as shown in Figure 3.13. The initialisation during
the wire input initialisation phase is similar except that different base and INITPC values are used,
corresponding to the init code for the box. Registers other than blocked and pc are not initialised if
the box is restarted after it is blocked. In this case, blocked is set to false and pc is set to pcr. The
registers splim and hplim hold the upper bounds for the stack and the heap areas, initialised with
the constants SPLIM and HPLIM. These registers can be temporarily modified by the family of Within
instructions.
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sp := 0 stack pointer
hp := 0 heap pointer
fp := 0 frame pointer
slp := 0 function frame pointer
inp := 0 in pointer
fn := base code base
pc := INITPC program counter
blocked := false blocker flag
splim := SPLIM end of stack area
hplim := HPLIM end of heap area

Figure 3.13: Box initialisation
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Translation from Hume to HAM

Kevin Hammond, Hans-Wolfgang Loidl and Steffen Jost

Abstract

This chapter gives a formal description of the compilation of Hume programs to Hume Abstract Machine
(HAM) instructions. Input to the translation is Hume with higher-order functions and exceptions, but
without timeouts. Output are sequences of HAM instructions plus special directives to the HAM for
structuring the execution. The translation described here exactly reflects the code-generation part of
the Hume-to-HAM compiler (phamc) and is therefore a suitable basis for mapping computation costs
of Hume to HAM instructions.
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4.1 Introduction

One essential feature of Hume is predictability of computation costs for arbitrary Hume expressions [57].
This is a prerequisite for developing static analyses for heap, stack and time consumption of Hume
programs, which will be one major task in the project. As a basis for such an analysis this document
formally describes the translation process from high-level Hume code down to instructions on the
Hume Abstract Machine (HAM). This translation models those optimisations performed by the phamc
prototype Hume compiler, which intentionally refrains from more aggressive optimisations in order to
maintain predictability.

In the remainder of the chapter we first present the abstract syntax of Hume; give a series of
translation rules for the components of the Hume language, producing sequences of HAM instructions
as output; and present examples of compiling Hume to HAM, taken from the phamc compiler.

4.2 Hume Language Structure and Syntax

Hume [58] is a functionally-based research language aimed at applications requiring bounded time and
space behaviour, such as real-time embedded systems. The challenge to be met by the Hume design is
to preserve the essential properties of costability and low-level interfacing that are required by real-time
embedded systems whilst providing as high-level a programming environment as possible.

Figure 4.1 shows the Hume abstract syntax. The language uses a rule-based approach, with a
purely functional expression notation embedded in an asynchronous process model. This simplifies
both correctness proofs and the construction of cost models at the expression level. Process abstrac-
tions (“boxes”) specify an asynchronous and stateless mapping of inputs to outputs, which are scheduled
whenever required inputs become available. Boxes can be seen as stateless objects with a rigid commu-
nication structure, which both assists process/communication costing and simplifies the construction of
deadlock/termination proofs. They are wired explicitly into a static process network (again simplifying
both correctness and costing) using a single-buffer approach. Single-buffering allows tight controls over
buffer sizes based on the types of values that are communicated, gives a simple and easily implemented
semantics, and can be extended to multiple buffering stages by simply introducing additional interme-
diary boxes. Boxes are activated whenever required inputs become available, write the outputs they
produce to the corresponding buffers, and then suspend. In this way, we achieve time- or event-triggered
process activation, as well as repetition at the box level.

The expression layer of Hume provides several levels of increasing expressive power to program the
behaviour of a box. In this document we use higher-order Hume, including exceptions. Therefore,
functions can be passed to other functions, be stored in variables and partial application is permitted.
Exceptions are permitted to transfer control to the exception handler attached to the current box.
However, at present we do not model timeouts, which are still subject to minor changes in the design.

For example, we can define a Hume program to continuously poll standard input, recording the
input status:

-- check for input within given time

stream input from "std_in";
stream output to "std_out";

data STATUS = WAITING | RECEIVED;

box getinput
in (i::char)
out (o::char,handshake::STATUS)
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program ::= decl1 ; . . . ; decln n ≥ 1
decl ::= box | id = expr | id 〈 match1 | · · · | matchn 〉 n ≥ 1

box ::= box id ins outs fair/unfair bmatches [ handle cmatches ]
ins/outs ::= 〈 id1, . . . , idn 〉 n ≥ 0

bmatches ::= expr | 〈 bmatch1 | · · · | bmatchn 〉 n ≥ 1
cmatches ::= exnexpr | 〈 cmatch1 | · · · | cmatchn 〉 n ≥ 1

bmatch ::= 〈 bpat1 , . . . , bpatn 〉 -> expr n ≥ 1
cmatch ::= cpat -> exnexpr
match ::= 〈 pat1 , . . . , patn 〉 -> expr n ≥ 1
exnmatch ::= 〈 pat1 , . . . , patn 〉 -> exnexpr n ≥ 1

expr ::= int | float | char | bool | string | *
| var expr1 · · · exprn n ≥ 0
| id expr1 · · · exprn n ≥ 0
| con expr1 · · · exprn n ≥ 0
| ( expr1 , . . . , exprn ) n ≥ 2
| if expr1 then expr2 else expr3

| case expr of 〈 match1 | · · · | matchn 〉 n ≥ 1
| let 〈 vdecl1 , . . . , vdecln 〉 in expr n ≥ 1
| expr within int time raise exn()
| expr within int stack raise exn()
| expr within int heap raise exn()
| raiseexpr

raiseexpr ::= raise exn(exnexpr)
exnexpr ::= int | float | char | bool | string | * | var

| con exnexpr1 · · · exnexprn n ≥ 0
| ( exnexpr1 , . . . , exnexprn ) n ≥ 2
| if exnexpr1 then exnexpr2 else exnexpr3

| case exnexpr of 〈 exnmatch1 | · · · | exnmatchn 〉 n ≥ 1
| let 〈 exnvdecl1 , . . . , exnvdecln 〉 in exnexpr n ≥ 1

vdecl ::= var = expr
exnvdecl ::= var = exnexpr

bpat ::= pat | * | *
cpat ::= exn pat
pat ::= int | float | char | bool | string | | var

| con pat1 · · · patn n ≥ 0
| ( pat1 , . . . , patn ) n ≥ 2

Figure 4.1: Hume abstract syntax
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match
v -> (v,RECEIVED)

| * -> (*,WAITING);

wire getinput (input) (output,timer.monitor);

4.3 Compilation Rules

Figures 4.2–4.7 give rules for compiling Hume abstract syntax forms into the Hume Abstract Machine
(HAM) instructions, as a formal compilation scheme similar to that for the G-machine [6]. These rules
have been used to construct a compiler (phamc) from Hume source code to the HAM.

The compilation scheme uses a simple sequence notation: 〈 i1, . . . , in 〉 denotes a sequence of n
items. The @ operation concatenates two such sequences. Many rules also use an environment ρ which
maps identifiers to 〈 depth, offset 〉 pairs.

Four auxiliary functions are used, but not defined here: maxVars calculates the maximum number
of variables in a list of patterns; bindDefs augments the environment with bindings for the variable
definitions taken from a declaration sequence — the depth of these new bindings is 0, whilst the depth
of existing variable bindings in the environment is incremented by 1; bindVars does the same for a
sequence of patterns; and labels generates new labels for a set of function/box/exception rules. Note
that where labels lt, ln, lx etc. are used, these are assumed to be unique in the obvious way: there
is at most one Label pseudo-instruction for each label in the translated program. Labels for boxes,
functions and exception blocks are derived in a standard way from the (unique) name of the box or
function.

The rules are structured by abstract syntax class. The rules for translating expressions (CE etc. —
Figure 4.2) are generally straightforward, but note that function frames are created to deal with let-,
case- and raise-expressions, which then exploit the function calling mechanism. In the first two cases,
this allows the creation of local stack frames. For case-expressions and raise-expressions, it allows the
exploitation of the standard pattern matching instructions. It would obviously be possible to eliminate
the function call for let-expressions provided the stack frame was properly set up in order to allow
access to non-local definitions. For exceptions, since the transfer of control is permanent, it would be
possible to replace the entire stack by the exception value and to use a Goto rather than a Call. In
this case, each translated exception rule would finish with a Schedule rather than a Return. This
has been avoided here purely for reasons of complexity.

The rules for translating box and function declarations are shown in Figure 4.3. These rules create
new stack frames for the evaluation of the box or function, label the entry points and introduce appro-
priate pseudo-instructions. In the case of box declarations, it is also necessary to copy inputs to the
stack using CopyInput instructions and to deal with fair matching and the exception handlers.

Box bodies are compiled using CR/CR′ (Figure 4.5). These rules compile matches for the outer
level patterns using CP , then compile inner pattern matches using CA, before introducing Consume
instructions for non-* input positions, including *. The right hand side can now be compiled. If more
than one result is to be produced, the tuple of outputs is unpacked onto the stack. A CheckOutputs
is inserted to verify that the outputs can be written using appropriate Write instructions. Finally,
a Reorder is inserted if needed to deal with fair matching, and a Schedule returns control to the
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expr

CE ρ (b) = 〈 MkBool b 〉
CE ρ (c) = 〈 MkChar c 〉
CE ρ (s) = 〈 MkString s 〉
CE ρ (i) = 〈 MkInt i 〉
CE ρ (f) = 〈 MkFloat f 〉
CE ρ (∗) = 〈 MkNone 〉
CE ρ ( e1, . . . , en ) = CE ρ en @ . . . @ CE ρ e1 @ 〈 MkTuple n 〉
CE ρ con e1, . . . , en = CE ρ en @ . . . @ CE ρ e1 @ 〈 MkCon con n 〉

CE ρ (v) = let 〈 d,m 〉 = ρ v in
if d = 0 then 〈 PushVar m 〉
else 〈 PushVarF d m 〉 endif

CE ρ (p e1 . . . en) = CE ρ en @ . . . @ CE ρ e1 @ 〈 CallPrimn p 〉
CE ρ (f e1 . . . en) = CE ρ en @ . . . @ CE ρ e1 @

let m = arity f in
if n = m then 〈 Call f,Slide n 〉
else if n < m then 〈 MkFun f m n 〉
else 〈 Call f,Slide n 〉 @ 〈 Ap 1, Slide 2 〉︸ ︷︷ ︸

m−n

endif

CE ρ (v e1 . . . en) = CE ρ en @ . . . @ CE ρ e1 @ CE ρ v @
let 〈 d,m 〉 = ρ v in
if d = 0 then 〈CallVar m n, SlideVar m 〉
else 〈CallVarF d m n, SlideVarF d m 〉 endif

CE ρ (if c then t else f) = CE ρ c @ 〈 If lt 〉 @ CE ρ f @
〈 Goto ln, Label lt 〉 @ CE ρ t @
〈 Label ln 〉

CE ρ (case e of ms) = CE ρ e @ 〈 Call lc,Slide 1,Goto ln,Label lc 〉 @
CCase ρ ms @
〈 Label ln,Function lc (labels lc) 〉

CE ρ (let d1 . . . dn in e) = let ρ′ = bindDefs 〈 d1, . . . , dn 〉 ρ in
〈 Call ll,Goto ln,Label ll,CreateFrame n 〉 @
CLet ρ 0 d1 @ . . . @ CLet ρ (n− 1) dn @
CE ρ′ e @ 〈 Return,Label ln 〉 @
〈 Function ll 〈〉 〉

CE ρ (raise x e) = CE ρ e @ 〈 Raise x〉

CE ρ (e within t time raise x) = 〈 Within lx t 〉 @ CE ρ e @
〈 Goto ln,Label lx,RaiseWithin, MkTuple 0, Raise Timeout x, Label ln, DoneWithin 〉

CE ρ (e within p stack raise x) = 〈 WithinStackSpace x p 〉 @ CE ρ e @ 〈 DoneWithinStackSpace x 〉
CE ρ (e within p heap raise x) = 〈 WithinHeapSpace x p 〉 @ CE ρ e @ 〈 DoneWithinHeapSpace x 〉

CCase ρ 〈 r1, . . . , rm 〉 = let n = maxVars 〈 r1, . . . , rm 〉 in
〈 CreateFrame n 〉 @
CF ρ 〈 r1, . . . , rm 〉

CLet ρ n ( id = e ) = CE ρ e @ 〈 MakeVar n 〉

Figure 4.2: Compilation Rules for Expressions
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decl

CD ρ (box v ins outs fair rs handle xs) = CB ρ true b ins outs rs xs
CD ρ (box b ins outs unfair rs handle xs) = CB ρ false b ins outs rs xs

CD ρ (v = 〈 p1 → e1 . . . pn → en 〉 ) =
let n = maxVars 〈 p1, . . . , pn 〉 in
〈 Label f,CreateFrame n 〉 @
CF ρ 〈 〈 p1 〉 → e1, . . . , 〈 pn 〉 → en 〉 @
〈 Function f (labels f) 〉

Figure 4.3: Compilation Rules for Declarations

box

CB ρ f b (in1, . . . , ini) (out1, . . . , outm) rs xs =
let n = maxVars 〈 p1, . . . , pn 〉 in
〈 Label b 〉 @
〈 CopyInput (i− 1), . . . , CopyInput 0 〉 @
〈 Push 2,CreateFrame n 〉 @
(if f then 〈 StartMatches 〉 else 〈 〉) @ CR ρ f m rs @
CH ρ xs @
〈 Box b . . . 〉

exnmatches

CX ρ 〈 〈 x1 p1 〉 → e1, . . . , 〈 xn pn 〉 → en 〉 =
let n = maxVars 〈 p1, . . . , pn 〉 in
〈 Label lx,CreateFrame n 〉 @
CF ρ 〈 〈 x1 p1 〉 → e1 . . . 〈 xn pn 〉 → en 〉 @
〈 Function lx (labels lx) 〉

Figure 4.4: Compilation Rules for Declarations, Box Bodies and Exception Handlers
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bmatches

CR ρ f m 〈 r1, . . . , rn 〉 = CR′ ρ f m r1 @ . . . @ CR′ ρ f m rn

CR′ ρ f m ( 〈 p1, . . . , pn〉 → e ) = 〈 Label lr,MatchRule 〉 @
CP p1 @ . . . @ CP pn @
CA p1 @ . . . @ CA pn @
CC 0 p1 @ . . . @ CC (n− 1) pn @
CE ρ e @
(if m > 1 then 〈 Unpack 〉 else 〈 〉) @
〈 CheckOutputs 〉 @
〈 Write (n− 1) . . . Write 0 〉 @
(if f then 〈 Reorder 〉 else 〈 〉) @
〈 Schedule 〉

matches

CF ρ 〈 r1, . . . , rn 〉 = CF ′ ρ r1 @ . . . @ CF ′ ρ rn
CF ′ ρ ( 〈 p1, . . . , pn 〉 → e ) = let ρ′ = bindVars 〈 p1 , . . . , pn 〉ρ in

〈 Label lf,MatchRule 〉 @
CP ′ p1 @ . . . @ CP ′ pn @
CA p1 @ . . . @ CA pn @
CE ρ′ e @
〈 Return 〉

CC n (*) = 〈 〉
CC n ( *) = 〈 MaybeConsume n 〉
CC n (p) = 〈 Consume n 〉

Figure 4.5: Compilation Rules for Rule Matches, Functions and Exception Handlers
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bpat

CP (*) = 〈 MatchNone 〉
CP ( *) = 〈 MatchNone 〉
CP (p) = 〈 MatchAvailable 〉 @ CP ′ p

pat

CP ′ (b) = 〈 MatchBool b 〉
CP ′ (i) = 〈 MatchInt i 〉
CP ′ (f) = 〈 MatchFloat f 〉
CP ′ (c) = 〈 MatchChar c 〉
CP ′ (s) = 〈 MatchString s 〉
CP ′ (c p1 . . . pn) = 〈 MatchCon c n 〉
CP ′ (x p) = 〈 MatchExn x 〉
CP ′ ( p1, . . . , pn ) = 〈 MatchTuple n 〉
CP ′ (v) = 〈 MatchVar v 〉
CP ′ = 〈 MatchAny 〉

Figure 4.6: Compilation Rules for Patterns

Argument passing

CA (c p1 . . . pn) = CA′ 〈 p1, . . . , pn 〉
CA ( p1, . . . , pn ) = CA′ 〈 p1, . . . , pn 〉
CA (x p) = CA′ 〈 p 〉
CA p = 〈 〉

CA′ m 〈 p1, . . . , pn 〉 = 〈 CopyArg m ,Unpack 〉 @
CP ′ p1 @ . . . @ CP ′ pn @
CN 0 p1 @ . . . @ CN n− 1 pn @ 〈 Pop n 〉

Nested Patterns

CN m 〈 p1, . . . , pn 〉 = 〈 Copy m ,Unpack 〉 @
CP ′ p1 @ . . . @ CP ′ pn @
CN 0 p1 @ . . . @ CN n− 1 pn @ 〈 Pop n 〉

Figure 4.7: Compilation Rules for Argument Passing

scheduler. The compilation of function/handler bodies using CF /CF ′ is similar, except that CP ′ is used
rather than CP , there is no need to deal with box inputs/outputs or fair matching, and a Return
rather than Schedule is inserted at the end of each compiled rule.

Finally patterns are compiled using CP /CP ′ , where CP inserts the MatchNone/ MatchAvailable
instructions that are needed at the box level, and CP ′ compiles simple patterns. Constructed values
are matched in two stages: firstly the outer part (the constructor, tuple or exception) is matched, and
then if the match is successful, the matched object is deconstructed on the stack to allow its inner
components to be matched against the inner patterns. These nested patterns are compiled using CA

and CN . CA inserts CopyArg and Unpack instructions to decompose function/box arguments, where
CN deals with the general nested case using Copy instructions to replicate items that are in the local
stack frame.
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Figure 4.8: Even/odd example

4.4 Example code

This section presents example Hume programs and the HAM code generated by the phamc compiler.

4.4.1 Even/Odd

The following simple example program implements a counter, which feeds into an evenodd box, that
outputs even numbers to the left and odd numbers to the right output wire (see Figure 4.8).

Hume code

program

stream outputE to "std_out";
stream outputO to "std_out";

type integer = int 32;

even s = s mod 2 == 0;

box kount
in (x::integer)
out (z::integer, z1::integer)
match
(x) -> (x,x+1);

box evenodd
in (s :: integer)
out (e :: integer, o :: integer)
match
(x) -> if (even x)

then (x,*)
else (*,x) ;

box outE
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in (x :: integer)
out (z :: string)
match
(x) -> ("EVEN " ++ x as string ++ "\n") ;

box outO
in (x :: integer)
out (z :: string)
match
(x) -> ("ODD " ++ x as string ++ "\n") ;

wire kount (kount.z1 initially 1) (evenodd.s, kount.x);
wire evenodd (kount.z) (outE.x, outO.x);
wire outE (evenodd.e) (outputE);
wire outO (evenodd.o) (outputO);

HAM code

Label "kount"
CopyInput 0
Push 3
CreateFrame 1

Label "kount_0"
MatchRule
MatchAvailable
MatchVar 0
Consume 0
MatchedRule
MkInt 1
PushVar 0
CallPrim "+"
PushVar 0
MkTuple 2
Unpack
CheckOutputs
Write 0
Write 1
Schedule

Label "evenodd"
CopyInput 0
Push 3
CreateFrame 1

Label "evenodd_0"
MatchRule
MatchAvailable
MatchVar 0
Consume 0
MatchedRule
PushVar 0
Call "f_even"
Slide 1
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If "t_evenodd_0_0"
PushVar 0
MkNone
MkTuple 2
Goto "n_evenodd_0_0"

Label "t_evenodd_0_0"
MkNone
PushVar 0
MkTuple 2

Label "n_evenodd_0_0"
Unpack
CheckOutputs
Write 0
Write 1
Schedule

Label "outE"
CopyInput 0
Push 3
CreateFrame 1

Label "outE_0"
MatchRule
MatchAvailable
MatchVar 0
Consume 0
MatchedRule
MkString "\n"
PushVar 0
CallPrim "show"
CallPrim "++"
MkString "EVEN "
CallPrim "++"
CheckOutputs
Write 0
Schedule

Label "outO"
CopyInput 0
Push 3
CreateFrame 1

Label "outO_0"
MatchRule
MatchAvailable
MatchVar 0
Consume 0
MatchedRule
MkString "\n"
PushVar 0
CallPrim "show"
CallPrim "++"
MkString "ODD "
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CallPrim "++"
CheckOutputs
Write 0
Schedule

Label "f_even"
CreateFrame 1

Label "f_even_0"
MatchRule
MatchVar 0
MatchedRule
MkInt 0
MkInt 2
PushVar 0
CallPrim "mod"
CallPrim "=="
Return
Function "f_even" "f_even_0"

Box "kount" "kount" 10 8 1 2 1 "kount_init" "kount_handler" NullT
Rule "kount" "kount_0"
Require "kount" True

Box "evenodd" "evenodd" 15 17 1 2 1 "evenodd_init" "evenodd_handler" NullT
Rule "evenodd" "evenodd_0"
Require "evenodd" True

Box "outE" "outE" 26 8 1 1 1 "outE_init" "outE_handler" NullT
Rule "outE" "outE_0"
Require "outE" True

Box "outO" "outO" 26 8 1 1 1 "outO_init" "outO_handler" NullT
Rule "outO" "outO_0"
Require "outO" True

Label "evenodd_init"
Schedule

Label "kount_init"
MkInt 1
Write 1
Schedule

Label "outE_init"
Schedule

Label "outO_init"
Schedule
Stream "outputE" Out "s_write" "std_out" 50 1 0 NullT
Stream "outputO" Out "s_write" "std_out" 50 1 0 NullT
Wire "outputE" 0 "outputE" 0 50 0 NullT
Wire "outputO" 0 "outputO" 0 50 0 NullT

Label "s_read"
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Figure 4.9: Wiring threads

Input
Write 0
Schedule

Label "s_write"
CopyInput 0
Consume 0
Output
Schedule

Label "s_timeout"
MkTuple 0
Raise "Timeout"

Label "s_soverflow"
MkTuple 0
Raise "StackOverflow"

Label "s_hoverflow"
MkTuple 0
Raise "HeapOverflow"
Wire "kount" 0 "kount" 1 2 0 NullT
Wire "evenodd" 0 "kount" 0 2 0 NullT
Wire "outE" 0 "evenodd" 0 2 0 NullT
Wire "outputE" 0 "outE" 0 2 0 NullT
Wire "outO" 0 "evenodd" 1 2 0 NullT
Wire "outputO" 0 "outO" 0 2 0 NullT

4.4.2 Fair Merge

This example realises a fair merge operation on two input streams, as depicted in Figure 4.9.

Hume code

program

stream output to "std_out";
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type integer = int 32;

box k1
in (x::integer)
out (z::integer, z1::integer)
match
(x) -> (x,x);

box k2
in (x::integer)
out (z::integer, z1::integer)
match
(x) -> (x,x);

box merge
in (i1, i2 :: integer)
out (o :: integer)
fair
(x,*) -> x

| (*,y) -> y;

wire k1 (k1.z1 initially 1) (merge.i1, k1.x);
wire k2 (k2.z1 initially 2) (merge.i2, k2.x);
wire merge (k1.z, k2.z) (output);

HAM code

Label "k1"
CopyInput 0
Push 3
CreateFrame 1

Label "k1_0"
MatchRule
MatchAvailable
MatchVar 0
Consume 0
MatchedRule
PushVar 0
PushVar 0
MkTuple 2
Unpack
CheckOutputs
Write 0
Write 1
Schedule

Label "k2"
CopyInput 0
Push 3
CreateFrame 1

Label "k2_0"
MatchRule
MatchAvailable
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MatchVar 0
Consume 0
MatchedRule
PushVar 0
PushVar 0
MkTuple 2
Unpack
CheckOutputs
Write 0
Write 1
Schedule

Label "merge"
CopyInput 1
CopyInput 0
Push 3
CreateFrame 1
StartMatches

Label "merge_0"
MatchRule
MatchAvailable
MatchVar 0
MatchNone
Consume 0
MatchedRule
PushVar 0
CheckOutputs
Write 0
Reorder
Schedule

Label "merge_1"
MatchRule
MatchNone
MatchAvailable
MatchVar 0
Consume 1
MatchedRule
PushVar 0
CheckOutputs
Write 0
Reorder
Schedule

Box "k1" "k1" 6 8 1 2 1 "k1_init" "k1_handler" NullT
Rule "k1" "k1_0"
Require "k1" True

Box "k2" "k2" 6 8 1 2 1 "k2_init" "k2_handler" NullT
Rule "k2" "k2_0"
Require "k2" True

Box "merge" "merge" 5 8 2 1 2 "merge_init" "merge_handler" NullT
Rule "merge" "merge_0" "merge_1"
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Require "merge" True False
Require "merge" False True

Label "k1_init"
MkInt 1
Write 1
Schedule

Label "k2_init"
MkInt 2
Write 1
Schedule

Label "merge_init"
Schedule
Stream "output" Out "s_write" "std_out" 2 1 0 NullT
Wire "output" 0 "output" 0 2 0 NullT

Label "s_read"
Input
Write 0
Schedule

Label "s_write"
CopyInput 0
Consume 0
Output
Schedule

Label "s_timeout"
MkTuple 0
Raise "Timeout"

Label "s_soverflow"
MkTuple 0
Raise "StackOverflow"

Label "s_hoverflow"
MkTuple 0
Raise "HeapOverflow"
Wire "k1" 0 "k1" 1 2 0 NullT
Wire "k2" 0 "k2" 1 2 0 NullT
Wire "merge" 0 "k1" 0 2 0 NullT
Wire "merge" 1 "k2" 0 2 0 NullT
Wire "output" 0 "merge" 0 2 0 NullT





Chapter 5

High-Level Cost Model for Hume
Programs

Kevin Hammond and Hans-Wolfgang Loidl

Abstract

This chapter gives a cost model for execution time, stack and heap space consumption for Hume. The
cost models are described as resource algebras that can be freely added to the HAM specification. The
latter is encoded as a 2-level, small step operational semantics.
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5.1 Introduction

In Chapter 3, we gave a formal defininition of the Hume Abstract Machine (HAM) for executing Hume
programs. This definition is an extension of the initial design, described in [53], by constructs for higher-
order functions and exceptions. We define the cost model for the HAM by giving resource algebras for
stack space, heap space and time consumption. The values for stack and heap space are independent of
the underlying processor. For obtaining tight bounds on execution time we have used the aiT tool [45]
of the AbsInt project partner.

The structure of this document is as follows. Section 3.2 describes the HAM design in general, the
data structures used and the behaviour of the machine by presenting a reference implementation of the
HAM instructions in pseudo-C. Section 5.2 describes the concept of a resource algebra and instantiates
it for stack space, heap space and time consumption. Section 6.1 provides a formal specification of the
HAM as a 2-level, small-step operational semantics. Finally, Section 6.2 summarises.

5.2 Cost Modelling via Resource Algebras

As the basis for reasoning about resource consumption in Hume programs, we now present cost models
of the HAM for heap space, stack space and time consumption. One of our main design goals is
to separate the tracking of these resources as far as possible from the description of the functional
behaviour of the abstract machine. We therefore use the concept of resource algebras [4] as introduced
in the MRG project.

A resource algebra R is a partially ordered monoid (R, 0,+,≤), i.e. (R, 0,+) is a monoid and (R,≤)
is a partially ordered set, where 0 is the minimum element, and + is order preserving on both sides.
Moreover, R has constants in R for each expression former of the language. These constants denote the
costs of the corresponding expression. In general, these constants are parameterised with the current
state of the computation, in particular the current stack and heap. These costs are combined by the
rules of the operational semantics in Section 6.1 with the + operator.

5.2.1 A Resource Algebra for Heap Space

In instantiating the concept of a resource algebra with heap costs, we use the natural numbers N as
domain R, with addition as +, the natural number zero as 0 and the less-or-equal relation as≤. Table 5.1
defines the changes in heap size for all instructions in the HAM language. The tables Prim1 s,H,f and
Prim2 s,H,f define the heap costs for unary and binary primitive operations, with the current stack s,
heap H, and the primitive function f as arguments.

The heap consumption of the constructors is defined by the constants in Table 3.1. The notation
| · | represents the number of arguments in a tuple, vector, string etc. The total heap consumption
for tuples, constructors, exceptions and function closures, is this number of arguments added with
its header size. In the case of an exception this is always 1. Note that the native code generator of
the Hume compiler pre-allocates constants, and therefore Mk... operations are compiled to the new
GETCONST instruction, which just loads a pointer. Naturally, the stack operations do not consume
any heap space. Matching operations only compare values, and therefore consume neither heap nor
stack space. An input operation allocates a new character in the heap and therefore consumes one
character cell. Raising an exception involves first the construction of an exception closure. The 1
reserves space for the runtime value passed via the exception.

Special attention has to be paid for the function call instructions. A standard Call and a TailCall
do not consume any heap. When calling a function variable via CallVar or CallVarF we have to
distinguish between a saturated application, where enough arguments are supplied to execute the
function, and an un-saturated application, where fewer arguments are supplied. In the former case,
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RMkBool b
s,H =HBool

RMkChar x
s,H =HChar

R
MkString x
s,H =HStr+ | x |

RMkInt i
s,H =HInt

RMkFloat f
s,H =HFloat

R
MkTuple n
s,H =HTuple + n

RMkCon c n
s,H =HConstr + n

RMkVector n
s,H =HVec + n

R
MkFun f m p
s,H =Hf + p

RMkNone
s,H =0

RPush i
s,H =0

R
Pop i
s,H =0

RSlide i
s,H =0

RSlideVar i
s,H =0

RSlideVarF i
s,H =0

R
Copy i
s,H =0

R
CopyArg i
s,H =0

RCreateFrame i
s,H =0

RPushVar i
s,H =0

RPushVarF d i
s,H =0

RMakeVar i
s,H =0

RGoto lbl
s,H =0

RIf lbl
s,H =0

RCall f
s,H =0

RStartMatches
s,H =0

RMatchRule
s,H =0

RMatchedRule
s,H =0

RMatchNone
s,H =0

RMatchAvailable
s,H =0

RAVAILSET
s,H =0

R
MatchAny
s,H =0

RMatchBool b
s,H =0

RMatchChar x
s,H =0

R
MatchString x
s,H =0

RMatchInt i
s,H =0

RMatchFloat i
s,H =0

R
MatchTuple i
s,H =0

R
MatchCon i j
s,H =0

RMatchExn x
s,H =0

RReorder
s,H =0

R
CheckOutputs
s,H =0

R
CopyInput i
s,H =0

RCOPYALLINPUTS
s,H =0

RConsume i
s,H =0

R
MaybeConsume i
s,H =0

RCONSUMESET
s,H =0

RWrite i
s,H =0

R
Input
s,H =HChar

R
Output
s,H =0

RSchedule
s,H =0

RRaise i
s,H =HExn + 1

RTailCall f n d sz
s,H = 0

RCallVar f n
s,H =

{
0 if arity slocalsf ≤ n+ providedArgs slocalsf

HChain + n otherwise

RCallVarF d n
s,H =

{
0 if arity (s− i)localsj ≤ n+ providedArgs (s− i)localsj

HChain + n otherwise
R
Unpack
s,H = 0 RCallPrim1 f

s,H = Prim1 s,H,f s0

RReturn
s,H = 0 RCallPrim2 f

s,H = Prim2 s,H,f s0(s −>0)

Table 5.1: Heap consumption of HAM instructions

the function is executed without any additional heap consumption. In the latter case, a new so-called
“chain” closure is allocated (representing a partial application) and the n arguments supplied to this
call are stored in this closure. The function providedArgs slocalsf represents the number of all arguments
to the partially applied function f in such chain closures in the heap. The notation for manipulating
stacks is explained in Figure 6.1.

For primitive operations we use a table mapping the operation, and its runtime arguments, to the
corresponding heap consumption: Prim1 s,H,f ,Prim2 s,H,f . Usually, this is the same as the size of the
return type, as indicated in the corresponding Mk... operation.

5.2.2 A Resource Algebra for Stack Space

For modelling stack space we again use (N,+,≤) as resource algebra. In this case the constants are
defined in Table 5.2.

For all heap operations the stack size increases by 1, since a pointer to the newly allocated heap
object is left on the stack. Pushing adds and popping subtracts 1 from the stack size. The slide
operations reduce the stack size. In the case of Slide the amount is part of the instruction, in the case
of SlideVar and SlideVarF the amount is the value of a local or non-local variable, respectively. For
a non-local variable this means that i stack frames are popped before a variable lookup is made to the
j-th variable in the locals component of the frame. The notation | svals | is used to denote the length of
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RMkBool b
s,H =1

RMkChar x
s,H =1

R
MkString x
s,H =1

RMkInt i
s,H =1

RMkFloat f
s,H =1

RGETCONST
s,H =1

R
MkTuple n
s,H =−n+ 1

RMkCon c n
s,H =−n+ 1

RMkVector n
s,H =−n+ 1

R
MkFun f m p
s,H =−p+ 1

RMkNone
s,H =1

RPush i
s,H = i

RPushVar i
s,H =1

R
Pop i
s,H =−i

RSlide i
s,H =−i

RSlideVar i
s,H =−(H slocalsi )

R
SlideVarF i j
s,H =−((s− i)localsj )

R
Copy i
s,H =1

R
CopyArg i
s,H =1

RCreateFrame i
s,H = i+ 1

RPushVar i
s,H =1

RPushVarF d i
s,H =1

RMakeVar i
s,H =−1

RGoto lbl
s,H =0

RIf lbl
s,H =−1

RCall f
s,H =3

RStartMatches
s,H =0

RMatchRule
s,H =− | svals |

RMatchedRule
s,H =− | svals |

RMatchNone
s,H =0

RMatchAvailable
s,H =0

RAVAILSET
s,H =0

RMatchNone b
s,H =0

RMatchBool b
s,H =0

RMatchChar x
s,H =0

R
MatchString x
s,H =0

RMatchInt i
s,H =0

RMatchFloat i
s,H =0

R
MatchTuple i
s,H =0

R
MatchCon i j
s,H =0

RMatchVector i
s,H =0

RMatchExn x
s,H =0

RReorder
s,H =0

R
CheckOutputs
s,H =0

R
CopyInput i
s,H =1

RCOPYALLINPUTS i
s,H = i

RConsume i
s,H =0

R
MaybeConsume i
s,H =0

RCONSUMESET i
s,H =0

RWrite i
s,H =−1

R
Input
s,H =1

R
Output
s,H =−1

RSchedule
s,H =0

RTailCall f n d sz
s,H = Ssaved + sz − Σ0≤i≤d(Ssaved+ | (s− i)locals | + | (s− i)vals |)

RCallVar f n
s,H =

{
providedArgs slocalsf + 3 if arity slocalsf ≤ n + providedArgs slocalsf

−n+ 1 otherwise

RCallVarF f d n
s,H =

{
providedArgs slocalsf + 3 if arity(s− i)localsj ≤ n+ providedArgs (s− i)localsj

−n+ 1 otherwise

R
Unpack
s,H =


n− 1 if H s0 = Tuple n xs
n− 1 if H s0 = Constr c n xs
−1 otherwise

RCallPrim1 f
s,H = 0

RReturn
s,H = −(Ssaved+ | slocals | + | svals |) + 1 RCallPrim2 f

s,H = −1
RRaise x

s,H = Ssaved + 1− Σ0≤i<∞(Ssaved+ | (s− i)locals | + | (s− i)vals |)

Table 5.2: Stack consumption of HAM instructions

the vals component in the topmost stack frame. In MatchRule and MatchedRule this component
can be discarded, hence the negative value.

Copy operations add a pointer onto the top of the stack. A CreateFrame instruction pushes as
many (dummy) elements onto the stack as prescribed by its argument i. Matching operations only
compare values, and therefore consume neither heap nor stack space. A Write operation writes the
heap elemented, pointed to by the top-of-stack element, to an output stream and then pops the pointer
from the stack.

A TailCall operation removes all frames up to the d-th frame from the stack and then allocates a
new frame of size sz . In the cases of applying a function variable we again have to distinguish between
a saturated and an un-saturated application. In the former case, all arguments found in a chain of
partial application closures are added onto the stack, plus 3 cells for the function frame itself. In the
latter case, n cells are removed from the stack, a new “chain” closure is constructed, and a pointer to
this closure is left on the stack.
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An Unpack operation simply consumes the top-of-stack pointer unless it is a tuple or constructor.
In the latter cases, it thereafter adds all the elements of the tuple or constructor onto the stack. In a
Raise instruction the entire stack is discarded, a new frame is built on the empty stack and a pointer
to an exception closure is pushed onto the stack. Therefore, we have to subtract the entire stack size,
computed as a sum over the sizes of all stack frames, and then add the frame header size plus 1.
A Return operation removes the topmost frame from the stack. The size of the stack frame is the
frame header size plus the number of local variables plus the size of the expression stack. The stack
consumption of a unary primitive operation is 0, because it takes its argument from the stack and
leaves a pointer to the result on the stack. For a binary primitive operation the stack consumption is
−1 because two arguments are taken from the stack and the result value is left on the stack.

5.2.3 A Resource Algebra for Time

RMkBool b
s,H =85

RMkChar x
s,H =84

RMkInt i
s,H =83

RMkFloat f
s,H =91

RGETCONST i
s,H =35

R
MkTuple n
s,H =52n+ 78

RMkCon c n
s,H =54n+ 107

R
MkFun f m p
s,H =60p+ 166

RMkVector n
s,H =52n+ 76

RMkNone
s,H =25

RPush i
s,H =9

R
Pop i
s,H =9

RSlide i
s,H =53

RSlideVar i
s,H =76

RSlideVarF i d
s,H =11d+ 79

R
Copy i
s,H =31

R
CopyArg i
s,H =35

RCreateFrame i
s,H =72

RPushVar i
s,H =39

RPushVarF d i
s,H =11d+ 35

RMakeVar i
s,H =35

RGoto lbl
s,H =3

RCall f
s,H =70

RReturn
s,H =51 + 15f

RStartMatches
s,H =111

RMatchRule
s,H =20

RMatchedRule
s,H =10

RMatchNone
s,H =11

R
MatchAny
s,H =11

RMatchAvailable
s,H =13

RAVAILSET n
s,H =6 + 7n

RMatchBool b
s,H =35

RMatchChar x
s,H =35

R
MatchString x
s,H =35

RMatchInt i
s,H =32

RMatchFloat i
s,H =35

R
MatchTuple i
s,H =11

R
MatchCon i j
s,H =30

RMatchExn x
s,H =30

RMatchVector i
s,H =11

RReorder
s,H =

R
CheckOutputs
s,H =602

R
CopyInput i
s,H =78

RCOPYALLINPUTS n
s,H =4 + 74n

RConsume i
s,H =31

R
MaybeConsume i
s,H =28

RCONSUMESET n
s,H =32n

RWrite i
s,H =

R
Input
s,H =

R
Output
s,H =

RSchedule
s,H =602

RRaise i
s,H =377

RTailCall f n d sz
s,H = 22 + 36d+ 27n

RCallVar n
s,H = 13

RCallVarF d n
s,H = 13d

R
MkString x
s,H = 13 | x | +140

R
Unpack x
s,H = 44 | x | +51 RIf lbl

s,H = 30

R
CopyInput i
s,H =

{
78 if Int
74 | s | +4 if Str

RCallPrim1 f
s,H = Prim1 s,H,f s0

RCallPrim2 f
s,H = Prim2 s,H,f s0(s −>0)

Table 5.3: WCET of HAM instructions on a M32C (in cycles)

For modelling time consumption we use rational numbers as the base domain with the usual addition
and less-or-equal relation (R,+,≤) as resource algebra.

In Table 5.3 we summarise upper bounds for execution time on our target processor, a Renesas
M32C. We have derived these bounds by using AbsInt’s aiT tool [45], which performs machine-code-
level analysis of worst case execution time. Details on these measurements are reported in Chapter 8.
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This tool accounts for low-level architecture issues such as the states of the pipeline and, if present,
of the cache. However, comparisons of the sum of HAM instruction costs with analysing entire basic
blocks have shown that these low-level architecture issues have little influence on the overall costs on
the M32C processor. We therefore don’t model these low-level issues in this resource algebra for time
and compute the costs of a basic block as the sum of the costs of its HAM instructions. In the future,
we might consider a system that uses the aiT tool on basic blocks of the program under consideration.

The current version of the Hume native code-generator pre-allocates constants in the text area
of the compiled code. Therefore, all Mk... instructions in the HAM code are replaced by the new
GETCONST HAM instruction, which only fetches a pointer to the pre-allocated constant. The costs
for the Mk... instructions are reported only for completeness. As expected, the costs of instructions
involving a variable number of arguments are parametric in this number (usually n). All d arguments
represent frame-depth, p represents the number of provided arguments in a MkFun. In the costs
for the Return instruction, f indicates that the current function, from which to return, is the f -
th function in the program. This is due to the fact that the Return on the M32C uses a switch
statement over all possible return points. The HAM instructions AVAILSET, COPYALLINPUTS,
and CONSUMESET n are new HAM instructions for checking the availability of wire values, for
copying wire values and for consuming values (after a successful match), respectively. Each instruction
is parameterised by the number of arguments.

==.c=125
==.n=125
==.w=125
==.i=125
==.f=125
==.s=125
==.e=125
== =125
!=.c=243
!=.n=243
!=.w=243
!=.i=243
!=.f=243
!=.s=243
!=.e=243
!= =243
>=.c=122
>=.n=122
>=.w=122
>=.i=122
>=.f=211
>=.s=211
>= =211

>.c =124
>.n =124
>.w =124
>.i =124
>.f =209
>.s =209
> =209
<=.c=122
<=.n=122
<=.w=122
<=.i=122
<=.f=211
<=.s=211
<= =211
<.c =124
<.n =124
<.w =124
<.i =124
<.f =209
<.s =209
< =209

+.n=116
+.w=116
+.i=116
+.f=1106
+ =1106
-.n=116
-.w=116
-.i=116
-.f=1112
- =1112
*.n=124
*.w=124
*.i=124
*.f=356
* =356

/.n =206
/.w =206
/.i =206
/.f =959
/ =959
mod =1294
mod.n=1294
mod.w=1294
mod.i=1294
% =1294
div.n=206
div.w=206
div.i=206
div =206
&& =153
|| =156
^& =151
^| =151
^ =151
~ =151
not =118

toInt.i =2973
toInt.n =2973
toInt.w =2973
toInt.f =2973
toInt =2973
toFloat.n=699
toFloat.w=699
toFloat.i=699
toFloat.f=699
toFloat =699
toChar =
show =
length =
++ =
++.s =

@ =89
vecdef =
vecmap =
update =
vecmake=
sqrt =
ln =
log10 =
sin =
cos =
tan =
asin =
acos =
atan =
sinh =
cosh =
tanh =
atan2 =14305
** =
exp =

Table 5.4: WCET of primitive operations on a M32C (in cycles)

Table 5.4 summarises the bounds on execution time for primitive functions used in the Hume
compiler. The type is indicated by the suffix in the function name with i for integer, n for natural, w
for word, f for float, and c for character. The polymorphic versions should never be used by the Hume
native code generator and are listed only for completeness. The time bounds in Table 5.4 have been
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derived by using the aiT tool. Work on analysing such primitive operations is ongoing.



Chapter 6

Resource-Aware Operational Semantics
of the Hume Abstract Machine

Kevin Hammond and Hans-Wolfgang Loidl

Abstract

This chapter describes as a 2-level, small step operational semantics for the Hume Abstract Machine.
We formally specify the components of the machine and its behaviour in the form of a 2-level, small-
step, operational semantics and give a reference implementation of the instructions of the HAM. The
operational semantics uses the approach of resource algebras, which we have developed in a previous
project [4], to collect information on the resource consumption during execution. The resource algebras
are designed in a modular way and can be instantiated without modifying the rules of the operational
semantics.
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6.1 Formalisation of the HAM

The goal of this section is to give a formal specification of the HAM semantics, corresponding to the
behaviour of the references implementation in the previous section. This formalisation is the basis of
an HAM operational semantics that is encoded in Isabelle. This encoding is developed alongside this
document and will be the basis for automated certification of Hume code as needed in WP4.

6.1.1 Basic Definitions

As basic types we use Locn as locations into the heap, Ref as references (either a proper location or a
null-pointer Nullref ). Heap values (HVal) are a tagged union of basic types, compound types of tuples
or constructors, exceptions or function closures. We use disjoint name spaces for Label , Function and
box names (BName).

Locn ≡ N
Ref ≡ Nullref | Ref Locn
HVal ≡ Int I | Tuple N (Ref list)

| Bool B | | Constr N N (Ref list)
| Char R | f Function N N (Ref list)
| Str R | Exn N Ref
| R Ref | None

Stack values are references into the heap. A stack is a list of frame records. A frame record (Frame)
contains the return address (ret), the arguments (args), the local variabls (locals) and the expression
stack (vals). By default, stack operations such as push and pop work on the value stack. See Figure 6.1
for the notation used to access and modify stack entries.

The heap is a finite map of locations to heap values, i.e. a function from locations to either the
value None or Some x, where x is an HVal . An IO record collects all state info, not recorded in stack
or heap. These are mainly related to wire input/output and rule matching. In particular, name of the
box (b), a flag whether the box is blocked (blocked), a pointer to the next rule in the rule set of the box
(rp), and pointers to the next wire (inp) and the next stack value (mp) to be checked in a rule match.

SVal ≡ Ref
Frame ≡ (| ret :: Label , args :: SVal list , locals :: SVal list , vals :: SVal list |)
Stack ≡ Frame list
Heap ≡ Locn ;f HVal
Wire ≡ N
IO ≡ (| b :: BName, blocked :: bool , crp :: N, rp :: N, inp :: Wire,mp :: N |)

6.1.2 A Roadmap through the Operational Semantics

The initial set of rules deals with the construction of heap values. The next set encodes basic oper-
ations on the stack components. Note that we abstract over several pointers present in the reference
implementation, by using a structured stack representation as a list of frames.

The main control-flow operations are (conditional) jumps and calls covered in the rules step-
Goto, stepIfTrue, stepIfFalse, stepTailCall, stepCall, stepReturn, stepCallPrim1,
stepCallPrim2 at the end of the list of rules. To determine the target of a (conditional) jump the
table ΣLab , mapping labels to instructions sequences, is used. For function calls a similar table ΣFun

and for exceptions ΣExn is used.
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The rules relevant for higher-order functions are stepCallVarSaturated, stepCallVarUnatu-
rated, stepCallVarFSaturated, stepCallVarFUnsaturated, stepApSaturated, stepApUn-
saturated, stepSlideVar, stepSlideVarF. A higher-order function can be called from a local vari-
able CallVar a non-local variable CallVarF or from the top of the stack Ap. In each case we distinguish
between the case where enough arguments are provided to perform the call, i.e. the call is saturated,
or whether another function closure needs to be allocated. The only rule needed for exceptions is
stepRaise.

The interface between expression level and system level is defined by the rule stepCheckOut-
putsFalse. Note that no rules for a Schedule as first instruction or an empty instruction list exists.
Thus, in this case, no reduction can be done on expression level, which operationally amounts to yielding
control to the scheduler and performing a rule on the system level.

6.1.3 Rules of the Operational Semantics

The following judgement of the small-step semantics on Hume expression level

s,H, io, θ ` cs ⇓m
n (s′, η′, io′, cs′, p) θ′

is read as: with an initial stack s, initial heap H, IO record io and with the wire environment θ, the
HAM instruction sequence (a list) cs evaluates in n−m steps to a final stack s′, final heap η′, a final
IO record io′, using p resources and leaving the code sequence cs′ as continuation. The new wire
environment is θ′. The semantics of resources is intentionally left open in this semantics. It can be
instantiated to every structure corresponding to a resource algebra as discussed in Section 5.2. Being
a small-step semantics, the result of one step will be a state with a continuation code sequence.

While the usage of a stack and heap are standard, the IO record collects additional information on
the state of a box execution, that is primarily needed during box input/output and matching operations.
The pointers mp and inp are indices into the arguments component of the top stack frame (sargs) and
into the set of in-wires for the current box. The MatchBool etc. instructions check whether the current
argument is a boolean value, and if not continue with the next rule. The CopyInput instruction is the
only one that uses the inp pointer in order to copy the value from the current wire into the argument
portion of the stack frame.

The notation used in the rules of the operational semantics are summarised in Figure 6.1. We use #
for list cons, @ for list append, ++ for incrementing an integer variable. The construct (| · |) constructs
a record, r(| x := · |) modifies the record r by updating the field x. We use f x for applying a function
f to argument x, and f(x 7→ ·) for updating the function f with a mapping of x to ·.

Heap operations

The heap operations are fairly standard. They allocate a fresh location, by calling fresh (dom H). It
is guaranteed by definition that fresh S 6∈ S. A pointer to the newly allocated heap object is left on
the stack. In the case of tuples and constructors, the top n elements are taken from the stack and put
into the heap closure.

l = fresh (dom H)
s,H, io, θ ` (MkBool x)#cs ⇓n

n+1 (s+ l,H(l 7→ (Bool x)), io, cs,RMkBool x
s,H ) θ

(stepMkBool)

l = fresh (dom H)
s,H, io, θ ` (MkChar x)#cs ⇓n

n+1 (s+ l,H(l 7→ (Char x)), io, cs,RMkChar x
s,H ) θ

(stepMkChar)

l = fresh (dom H)

s,H, io, θ ` (MkString x)#cs ⇓n
n+1 (s+ l,H(l 7→ (Str x)), io, cs,RMkString x

s,H ) θ
(stepMkString)
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l a reference to location l in the heap
fresh S returns an element x, s.t. x 6∈ S
dom f the domain of a partial function f , i.e. the values x for which f x is defined
s0 get the top-of-stack element from the stack s
s+ v push value v on top of the stack s
s+ xs push all elements in the list xs on top of the stack s
s−> pop the top element from the stack s
s−>n pop the n topmost elements from the stack s
s− i pop the top i frames from the stack s
s+⊥n push n dummy values onto the stack s
s−>n + s0 pop elements 1 to n from the stack but keep the top-of-stack
s0..n−1 get the elements 0 to n-1 from the stack s
slocalsn := s0 assign top-of-stack to n-th local variable
s+ c,f allocate a new frame (for function f) on the stack, with return address c
s− remove the topmost frame from the stack s
f=l = s

i
binds l to the value of field f in the i-th frame on stack s

iof access the value of field f in record io
io(| f := x |) set the value of field f in record io to x
f(x 7→ y) update the function f to map x to y
wireb,m the name of the m-th in-wire of box b
wireb,m the name of the m-th out-wire of box b

Figure 6.1: Notation used in the operational semantics

l = fresh (dom H)
s,H, io, θ ` (MkInt x)#cs ⇓n

n+1 ((s+ l,H(l 7→ (Int x)), io, cs,RMkInt x
s,H ) θ

(stepMkInt)

l = fresh (dom H)
s,H, io, θ ` (MkFloat x)#cs ⇓n

n+1 ((s+ l,H(l 7→ (Float x)), io, cs,RMkFloat x
s,H ) θ

(stepMkFloat)

l = fresh (dom H)

s,H, io, θ ` (MkTuple j)#cs ⇓n
n+1 (s−>j + l,H(l 7→ (Tuple x s0..j−1)), io, cs,R

MkTuple j
s,H ) θ
(stepMkTuple)

l = fresh (dom H)

s,H, io, θ ` (MkCon i j)#cs ⇓n
n+1 (s−>j + l,H(l 7→ (Constri j s0..j−1)), io, cs,R

MkCon i j
s,H ) θ
(stepMkCon)

l = fresh (dom H)

s,H, io, θ ` (MkFun f m p)#cs ⇓n
n+1 (s −>p + l,H(l 7→ (f f m p (s0..p−1))), io, cs,R

MkFun f m p
s,H ) θ
(stepMkFun)

l = fresh (dom H)
s,H, io, θ ` (MkNone)#cs ⇓n

n+1 (s+ l,H(l 7→ None), io, cs,RMkNone
s,H ) θ

(stepMkNone)
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Stack operations

The stack operations usually modify the expression stack, i.e. the vals component of the top stack
frame. Superscripting accesses a particular component of the top stack frame; subscripting such a
component selects an element; e.g. sargsx accesses the argument x of the top stack frame. The notation
s− i is used for popping the top i frames from stack s. For more details on notation see Figure 6.1.

s,H, io, θ ` (Push i)#cs ⇓n
n+1 (s+⊥i,H, io, cs,RPush i

s,H ) θ
(stepPush)

s,H, io, θ ` (Pop i)#cs ⇓n
n+1 (s−>i,H, io, cs,RPop i

s,H ) θ
(stepPop)

s,H, io, θ ` (Slide i)#cs ⇓n
n+1 ((s−>i+1 + s0,H, io, cs,RSlide i

s,H ) θ
(stepSlide)

Int i = H slocalsx

s,H, io, θ ` (SlideVar x)#cs ⇓n
n+1 ((s−>i+1 + s0,H, io, cs,RSlideVar x

s,H ) θ
(stepSlideVar)

Int i = H (s− x)localsy

s,H, io, θ ` (SlideVarF x y)#cs ⇓n
n+1 ((s−>i+1 + s0,H, io, cs,RSlideVarF x y

s,H ) θ
(stepSlideVarF)

s,H, io, θ ` (Copy i)#cs ⇓n
n+1 (s+ si,H, io, cs,RCopy i

s,H ) θ
(stepCopy)

s,H, io, θ ` (CopyArg i)#cs ⇓n
n+1 ((s+ sargsi ,H, io, cs,RCopyArg i

s,H ) θ
(stepCopyArg)

s,H, io, θ ` (CreateFrame i)#cs ⇓n
n+1 (s+ c,f +⊥i,H, io, cs,RCreateFrame i

s,H ) θ
(stepCreateFrame)

s,H, io, θ ` (PushVar i)#cs ⇓n
n+1 (s+ slocalsi ,H, io, cs,RPushVar i

s,H ) θ
(stepPushVar)

s,H, io, θ ` (PushVarF i j)#cs ⇓n
n+1 (s+ (s− i)localsj ,H, io, cs,RPushVarF i j

s,H ) θ
(stepPushVarF)

s,H, io, θ ` (MakeVar i)#cs ⇓n
n+1 ((slocalsi := s0)−>,H, io, cs,RMakeVar i

s,H ) θ
(stepMakeVar)

Control-flow operations

The following set of rules describes the control flow on the expression level of Hume. Here we assume
that the compiler has generated for each box several tables, mapping labels, including function names,
and exceptions to their corresponding instruction sequences: ΣLab ,ΣExn . For convenience we drop the
box name from the table lookup. Note, that the box name is always available as iob .

s,H, io, θ ` (Goto l)#cs ⇓n
n+1 (s,H, io,ΣLab

l ,RGoto l
s,H ) θ

(stepGoto)

l = s0 H l = Bool true
s,H, io, θ ` (If lbl)#cs ⇓n

n+1 (s−>,H, io,ΣLab
lbl ,R

If lbl
s,H ) θ

(stepIfTrue)
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l = s0 H l = Bool false
s,H, io, θ ` (If lbl)#cs ⇓n

n+1 (s−>,H, io, cs,RIf lbl
s,H ) θ

(stepIfFalse)

s,H, io, θ ` (Call f)#(Label c)#cs ⇓n
n+1 (s+ c,f ,H, io,ΣFun

f ,RCall f
s,H ) θ

(stepCall)

s′ = ((s− d) + c,f )args := s0...j−1 +>z

s,H, io, θ ` (TailCall f j d z)#(Label c)#cs ⇓n
n+1 (s′,H, io,ΣFun

f ,R
TailCall f j d z
s,H ) θ

(stepTailCall)

ret=l = s
0

s,H, io, θ ` (Return)#cs ⇓n
n+1 ((s− + s0,H, io,ΣLab

l ,RReturn
s,H ) θ

(stepReturn)

s,H, io, θ ` (CallPrim1 f)#cs ⇓n
n+1 (s−>1 + (f s0),H, io, cs,RCallPrim1 f

s,H ) θ
(stepCallPrim1)

s,H, io, θ ` (CallPrim2 f)#cs ⇓n
n+1 (s−>2 + (f s0 s1),H, io, cs,RCallPrim2 f

s,H ) θ
(stepCallPrim2)

l = fresh (dom H)
s,H, io, θ ` (Raise x)#cs ⇓n

n+1 (∅+ l,H(l 7→ (Exn x s0)), io,ΣExn
x ,RRaise x

s,H ) θ
(stepRaise)

Three HAM instructions can be used for applying a higher-order function to some arguments: CallVar
for a local variable, CallVarF for a non-local variable, and Ap for a function closure pointed to by the
top-of-stack element. Each of these 3 come in a version for unsaturated application, i.e. the number of
arguments provided is smaller than the arity of the function, and in a saturated version. In the former
case a new function closure is built in the heap. In the latter case the function is applied to all its
arguments.

f f m p xs = H slocalsi p+ j ≥ m

s,H, io, θ ` (CallVar i j)#(Label c)#cs ⇓n
n+1 ((s− s0..j−1 + c,f )args := xs@s0..j−1,H, io,ΣFun

f ,R
CallVar i j
s,H ) θ

(stepCallVarSaturated)

f f m p xs = H slocalsi p+ j < m l = fresh H

s,H, io, θ ` (CallVar i j)#(Label c)#cs ⇓n
n+1 (s− s0..j−1,H(l 7→ f f m (p+ j) (xs@s0..j−1)), io, cs,R

CallVar i j
s,H ) θ

(stepCallVarUnsaturated)

f f m p xs = H (s− d)localsi p+ j ≥ m

s,H, io, θ ` (CallVarF d i j)#(Label c)#cs ⇓n
n+1 ((s− s0..j−1 + c,f )args := xs@s0..j−1,H, io,ΣFun

f ,R
CallVarF d i j
s,H ) θ

(stepCallVarFSaturated)

f f m p xs = H (s− d)localsi p+ j < m l = fresh H

s,H, io, θ ` (CallVarF d i j)#(Label c)#cs ⇓n
n+1 (s− s0..j−1,H(l 7→ f f m (p+ j) (xs@s0..j−1)), io, cs,R

CallVarF d i j
s,H ) θ

(stepCallVarFUnsaturated)

f f m p xs = H s0 p+ j ≥ m

s,H, io, θ ` (Ap j)#(Label c)#cs ⇓n
n+1 ((s− s0..j−1 + c,f )args := xs@s0..j−1,H, io,ΣFun

f ,R
Ap j
s,H ) θ

(stepApSaturated)
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f f m p xs = H s0 p+ j < m l = fresh H

s,H, io, θ ` (Ap j)#(Label c)#cs ⇓n
n+1 (s− s0..j−1,H(l 7→ f f m (p+ j) (xs@s0..j−1)), io, cs,R

Ap j
s,H ) θ

(stepApUnsaturated)

Matching, scheduling and I/O operations

The following functions are used to retrieve wire names: wireb,i is the name of the i-th input wire of
box b; wireb,i is the name of the i-th output wire of box b. These can be calculated from the static
information in Box . Note that box name and wire are usually retrieved from the io record. The
function outputable checks whether all needed output wires are free, corresponding to the innermost
loop in Figure 3.4.

The rules for matching always compare the heap cell, pointed to by the top-of-stack element, with
a value encoded in the operation itself. If the expected kind of heap cell is found, evaluation continues
with the next instruction, otherwise the next rule is tried.

In these rules several fields of the IO record are used to perform matching. The field iorp points to
the next rule. If a match fails with the current rule, execution will continue at ΣRuleSet

iorp
, where ΣRuleSet

is the rule-set of the current box. The field ioinp points to the wire that is examined for input. Before
performing matching the HAM code must check availability of a data item on this wire. The field iomp

points to a position on the stack representing the current value. It is copied from the wire to the stack
before a match can be performed.

s,H, io, θ ` (StartMatches)#cs ⇓n
n+1 (s,H, io(| iorp ++ |),ΣRuleSet

iorp
,RStartMatches

s,H ) θ
(stepStartMatches)

s,H, io, θ ` (MatchRule)#cs ⇓n
n+1 (svals := [],H, io(| ioinp := 0, iomp := 0, iorp ++ |),ΣRuleSet

iorp
,RMatchRule

s,H ) θ
(stepMatchRule)

s,H, io, θ ` (MatchedRule)#cs ⇓n
n+1 (svals := [],H, io,ΣRuleSet

iorp
,RMatchedRule

s,H ) θ
(stepMatchedRule)

s,H, io, θ ` (MatchNone)#cs ⇓n
n+1 (s,H, io(| ioinp ++, iomp ++ |), cs,RMatchNone

s,H ) θ
(stepMatchNone)

∃ v. θ wireiob,ioinp = Some v
s,H, io, θ ` (MatchAvailable)#cs ⇓n

n+1 (s,H, io(| ioinp ++ |), cs,RMatchAvailable
s,H ) θ

(stepMatchAvailableTrue)

¬∃ v. θ wireiob,ioinp = Some v
s,H, io, θ ` (MatchAvailable)#cs ⇓n

n+1 (s,H, io(| ioinp ++ |),ΣRuleSet
iorp

,RMatchAvailable
s,H ) θ

(stepMatchAvailableFalse)

H sargsiomp
= Some (Bool b)

s,H, io, θ ` (MatchBool b)#cs ⇓n
n+1 (s,H, io(| iomp ++ |), cs,RMatchBool b

s,H ) θ
(stepMatchBoolTrue)

¬(H sargsiomp
= Some (Bool b))

s,H, io, θ ` (MatchBool b)#cs ⇓n
n+1 (s,H, io(| iomp ++ |),ΣRuleSet

iorp
,RMatchBool b

s,H ) θ
(stepMatchBoolFalse)
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H sargsiomp
= Some (Char c)

s,H, io, θ ` (MatchChar c)#cs ⇓n
n+1 (s,H, io(| iomp ++ |), cs,RMatchChar c

s,H ) θ
(stepMatchCharTrue)

¬(H sargsiomp
= Some (Char c))

s,H, io, θ ` (MatchChar c)#cs ⇓n
n+1 (s,H, io(| iomp ++ |),ΣRuleSet

iorp
,RMatchChar c

s,H ) θ
(stepMatchCharFalse)

H sargsiomp
= Some (Str x)

s,H, io, θ ` (MatchString x)#cs ⇓n
n+1 (s,H, io(| iomp ++ |), cs,RMatchString x

s,H ) θ
(stepMatchStringTrue)

¬(H sargsiomp
= Some (Str x))

s,H, io, θ ` (MatchString x)#cs ⇓n
n+1 (s,H, io(| iomp ++ |),ΣRuleSet

iorp
,R

MatchString x
s,H ) θ

(stepMatchStringFalse)

H sargsiomp
= Some (Int i)

s,H, io, θ ` (MatchInt i)#cs ⇓n
n+1 (s,H, io(| iomp ++ |), cs,RMatchInt i

s,H ) θ
(stepMatchIntTrue)

¬(H sargsiomp
= Some (Int i))

s,H, io, θ ` (MatchInt i)#cs ⇓n
n+1 (s,H, io(| iomp ++ |),ΣRuleSet

iorp
,RMatchInt i

s,H ) θ
(stepMatchIntFalse)

∃ xs. H sargsiomp
= Some(Tuple m xs)

s,H, io, θ ` (MatchTuple m)#cs ⇓n
n+1 (s,H, io(| iomp ++ |), cs,RMatchTuple m

s,H ) θ
(stepMatchTupleTrue)

¬(∃ xs. H sargsiomp
= Some (Tuple m xs))

s,H, io, θ ` (MatchTuple m)#cs ⇓n
n+1 (s,H, io(| iomp ++ |),ΣRuleSet

iorp
,R

MatchTuple m
s,H ) θ

(stepMatchTupleFalse)

∃ xs. H sargsiomp
= Some(Constr i j xs)

s,H, io, θ ` (MatchCon i j)#cs ⇓n
n+1 (s,H, io(| iomp ++ |), cs,RMatchCon i j

s,H ) θ
(stepMatchConTrue)

¬(∃ xs. H sargsiomp
= Some (Constr i j xs))

s,H, io, θ ` (MatchCon i j)#cs ⇓n
n+1 (s,H, io(| iomp ++ |),ΣRuleSet

iorp
,R

MatchCon i j
s,H ) θ

(stepMatchConFalse)

∃ l. H sargsiomp
= Some(Exn x l)

s,H, io, θ ` (MatchExn x)#cs ⇓n
n+1 (s,H, io(| iomp ++ |), cs,RMatchExn x

s,H ) θ
(stepMatchExnTrue)

¬(∃ l. H sargsiomp
= Some (Exn x l))

s,H, io, θ ` (MatchExn x)#cs ⇓n
n+1 (s,H, io(| iomp ++ |),ΣRuleSet

iorp
,RMatchExn x

s,H ) θ
(stepMatchExnFalse)
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The following rules unpack structured data, i.e. they bring the contents of a tuple, constructor or
function closure onto the stack.

∃ l m xs.s0 = l ∧ H l = Some (Tuple m xs) ∧ s′ = (s−>) + xs

s,H, io, θ ` (Unpack)#cs ⇓n
n+1 (s′,H, io, cs,RUnpack

s,H ) θ
(stepUnpackTuple)

∃ l t m xs.s0 = l ∧ H l = Some (Constrt m xs) ∧ s′ = (s−>) + xs

s,H, io, θ ` (Unpack)#cs ⇓n
n+1 (s′,H, io, cs,RUnpack

s,H ) θ
(stepUnpackCon)

∃ l f m p xs.s0 = l ∧ H l = Some (f f m p xs) ∧ s′ = (s−>) + xs

s,H, io, θ ` (Unpack)#cs ⇓n
n+1 (s′,H, io, cs,RUnpack

s,H ) θ
(stepUnpackFun)

The following operations copy box input into the heap, check whether a box can write to its output
wires, and perform the actual write operation. Note that the compiler must ensure that all Write
operations are guarded by CheckOutput operations.

l = fresh (dom H)

s,H, io, θ ` (CopyInput m)#cs ⇓n
n+1 (s+ l,H(l 7→ (θ wire iob ,m)), io, cs, (RCopyInput m

s,H )) θ
(stepCopyInput)

s,H, io, θ ` (Consume m)#cs ⇓n
n+1 (s,H, io, cs,RConsume m

s,H ) θ(wire iob ,m 7→ None)
(stepConsume)

∃ v. θ wire iob ,m = Some v

s,H, io, θ ` (MaybeConsume m)#cs ⇓n
n+1 (s,H, io, cs,RMaybeConsume m

s,H ) θ(wire iob ,m 7→ None)
(stepMaybeConsumeTrue)

¬ ∃ v. θ wire iob ,m = Some v

s,H, io, θ ` (MaybeConsume m)#cs ⇓n
n+1 (s,H, io, cs,RMaybeConsume m

s,H ) θ
(stepMaybeConsumeFalse)

outputable io θ

s,H, io, θ ` (CheckOutputs)#cs ⇓n
n+1 (s,H, io, cs,RCheckOutputs

s,H ) θ
(stepCheckOutputsTrue)

¬ (outputable io θ)

s,H, io, θ ` (CheckOutputs)#cs ⇓n
n+1 (s,H, io(| blocked := true |), (Schedule)#(CheckOutputs)#cs,RCheckOutputs

s,H ) θ
(stepCheckOutputsFalse)

l = s0 H l = Some x
s,H, io, θ ` (Write m)#cs ⇓n

n+1 ((s−>),H, io, cs,RWrite m
s,H ) θ(wire iob ,m 7→ Some x)

(stepWrite)

The operations Input and Output interact with the outside world, enabling character input and out-
put. Since we are mainly interested in the internal behaviour of the system, in particular its resource
consumption, we do not model the exact values and use a dummy character value ⊥ instead. Costs are
still accurately modelled, provided they are constant for all possible character values.

l = fresh (dom H)

s,H, io, θ ` (Input)#cs ⇓n
n+1 (s+ l,H(l 7→ (Char ⊥)), io, cs,RInput

s,H ) θ
(stepInput)
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l = fresh (dom H)

s,H, io, θ ` (Output)#cs ⇓n
n+1 (s−>,H, io, cs,ROutput

s,H ) θ
(stepOutput)

s,H, io, θ ` (WithinStack h p)#cs ⇓n
n+1 (s+ iosplim ,H, io(| splim := | s | +p |), cs,RWithinStack h p

s,H ) θ
(stepWithinStackSpace)

s,H, io, θ ` (WithinHeap h p)#cs ⇓n
n+1 (s+ iohplim ,H, io(| hplim := | dom H | +p |), cs,RWithinHeap h p

s,H ) θ
(stepWithinHeapSpace)

s,H, io, θ ` (DoneWithinStack h)#cs ⇓n
n+1 (s−>,H, io(| splim := s0 |), cs,RDoneWithinStack h

s,H ) θ
(stepDoneWithinStack)

s,H, io, θ ` (DoneWithinHeap h)#cs ⇓n
n+1 (s−>,H, io(| hplim := s0 |), cs,RDoneWithinHeap h

s,H ) θ
(stepDoneWithinHeap)

s,H, io, θ ` (Within h t)#cs ⇓n
n+1 (s+ t, io, cs,RWithin h t

s,H ) θ
(stepWithin)

s,H, io, θ ` (DoneWithin)#cs ⇓n
n+1 (s, unsetTimer io, cs,RDoneWithin

s,H ) θ
(stepDoneWithin)

s,H, io, θ ` (RaiseWithin h t)#cs ⇓n
n+1 (s− s0..2−1, setTimer io s0 s1, cs,RRaiseWithin h t

s,H ) θ
(stepRaiseWithin)

Expression-level semantics

As a small-step semantics the above rules specify one step in the evaluation, depending on the next
element in the instruction list cs. The semantics on expression level is the transitive closure over this
relation in the following sense.

c 6= Schedule s,H, io, θ ` (c#cs) ⇓m
m+1 (s′′, η′′, io′′, cs′′, p′′) θ′′ s′′, η′′, io′′, θ′′ ` cs′′ ;n (s′, η′, io′, cs′, p′) θ′

s,H, io, θ ` (c#cs) ;m+n+1 (s′, η′, io′, cs′, p′′ + p′) θ′

(ssem)

The continuation cs ′ is part of the result, because the computation may block in the CheckOutputs
rule. The costs of the entire computation is the sum of the costs of the components, using the +
operation as defined by the relevant resource algebra. The step counters m,n are only needed for
technical reasons (to enable induction over this step counter) and do not represent resource consumption
in any way. Note that the rule is restricted to the case where the first instruction is different from
Schedule. This assures that in the case of a Schedule control is yielded to the scheduler, which then
picks the next runnable box, removes the initial Schedule and continues with evaluating the box.

Exceptions

The above rule for the expression-level semantics is slightly simplified in the sense that it doesn’t check
for (synchronous) exceptions. Such checks can be added to the rule, provided that the resource algebra
used in the semantics models the resource that might become empty. For example, in the case of heap
space a pre-condition of the form
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| hplim − hp |< Rc
s,H

can be added, if R models heap consumption. If this condition is false, another rule can be added for
raising a heap-overflow exception.

6.1.4 System level

As static information we use for each box a mapping Wiring that maps a wire index to the corresponding
box name and wire index it is connected to. The tables ΣFun , ΣLab and ΣExn are used to map function
names, labels and exceptions to their corresponding instruction sequences. The ΣRuleSet is a partial
mapping from natural numbers to instruction sequences, containing the code for the rules in the box.
Here the domain needs to be a total order to allow reordering. A Box is then represented as a rule-set
(a mapping from natural numbers to instruction sequences) and such a wiring.

ΣRuleSet ≡ N ;f Instr list
ΣFun ≡ Function ⇒ Instr list
ΣLab ≡ Label ⇒ Instr list
ΣExn ≡ Exception ⇒ Instr list
Wiring ≡ Wire ⇒ (BName ×Wire)
Box ≡ (ΣRuleSet × ΣLab × ΣExn ×Wiring)

We model the dynamic state of the entire system as follows. The entire system (System) is a triple
(bs, β, θ), where bs is a collection of box names still to be processed in the current iteration, β is a
(total) mapping of box-names to box states, and θ is a (total) mapping of wire-names to wire states. A
box state (BState) is a quadrupel (s,H, io, cs), where s is the stack , H is the heap, io is the IO record,
and cs is the continuation, i.e. the code still to be processed by the box. The wire state (WState) is
simply an optional heap value, i.e. either a proper heap value (Some x) or an empty flag (None).

WState ≡ HVal option
BState ≡ Stack ×Heap × IO × Instr list
System ≡ BName set × (BName ⇒ BState)× (WName ⇒ WState)

NeededIn maps for each box, each rule in the ruleset to the set of needed inputs, i.e. a set of wires
on which input must be available for the rule to fire. NeededOut maps for each box, each rule in the
ruleset to the set of needed inputs, i.e. a set of wires to which this rule will write. These tables are
filled with the compiler directives shown in Figure 3.12.

NeededIn :: Box ⇒ N ⇒ Wire set
NeededOut :: Box ⇒ N ⇒ Wire set

The global table RuleTab maps a box name to a Box structure, containing its static information.
Here we are only interested in the rule-set component of the box structure and we use the shorthand
RuleTab1 for the first projection on the corresponding rule tab entry.

RuleTab :: BName ⇒ Box
RuleTab1 :: BName ⇒ RuleSet
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We need the following additional definitions to specify the semantics on system level:

outputable :: IO ⇒ (WName ⇒ WState) ⇒ bool
outputable io θ ≡ (∀w. w ∈ (NeededOut (RuleTab iob) iorp) −→

∃ v.θ wireiob,m = Some v)

runnable :: (WName ⇒ WState) ⇒ BState ⇒ bool
runnable θ (s,H, io, cs) ≡ ¬(ioblocked ) ∧

(∃r. r ∈ dom (RuleTab1 iob)∧
(∀w. w ∈ (NeededIn (RuleTab iob) r) −→ ∃ v.θ wire iob ,w = Some v))

restartable :: (WName ⇒ WState) ⇒ BState ⇒ bool
restartable θ (s,H, io, cs) ≡ ioblocked ∧

(∀w. w ∈ (NeededOut (RuleTab iob) iorp) −→ θ wire iob ,w = None)

The transition relation on system level has the form s ⇁ s′ meaning that in one step, the system state
s proceeds to state s′. The transitive closure over the small-step semantics on expression level, written
as ;m, is defined in the previous section. We use ∅ to denote the empty heap, mapping all locations
to None, and the empty stack, an empty list of frames.

The rules defining the HAM semantics on system level are as follows. We use S as a short-hand
for bs, β, θ, p. We distinguish between three cases: if the box, selected from the scheduling queue, is a
runnable box, then the continuation of the box must be empty, and execution continues with the next
rule in the box; note that in this case the box starts with an empty heap and stack; if the box, selected
from the scheduling queue, is a restartable box, then the continuation must start with a Schedule,
which is removed from the code and the remaining code is executed on expression level; if the scheduling
queue is empty, it is re-filled using the US operation. The costs recorded in the last field of the state,
combine the costs of the individual operations on scheduling level referring to constants such as R∈

S as
explained in the following sub-section.

bn ∈bs,β,θ,p bs (s,H, io, []) = β bn runnable θ (s,H, io, [])
cs = RuleTab1 iob iorp ∅, ∅, io, θ ` cs ;m (s′, η′, io′, cs′, p′) θ′

(bs, β, θ, p) ⇁ ((bs	bs,β,θ,p bn)⊕bs,β,θ,p bn, β(bn 7→ (s′, η′, io′, cs′)), θ′, p+ R∈
S + R	

S + p′ + R⊕
S )

(scheduleRunnable)

bn ∈bs,β,θ,p bs (s,H, io, cs′′) = β bn restartable θ (s,H, io, cs′′)
(Schedule#cs) = cs′′ s,H, io, θ ` cs ;m (s′, η′, io′, cs′, p′) θ′

(bs, β, θ, p) ⇁ ((bs	bs,β,θ,p bn)⊕bs,β,θ,p bn, β(bn 7→ (s′, η′, io′, cs′)), θ′, p+ R∈
S + R	

S + p′ + R⊕
S )

(scheduleRestartable)

¬ ∃ bn ∈bs,β,θ,p bs

(bs, β, θ, p) ⇁ (Ubs,β,θ,p,CBβ θ,CWβ θ, p+ RU
S + R

CB
S + R

CW
S )

(scheduleNIL)

Note that this specification of the system level is parameterised by the concrete membership relation
∈S and by the operations for picking the next box to be executed 	S and putting it back into the
system ⊕S . In the case where there is no next box available for scheduling, we assume an operation
for generating a new collection of schedulable boxes, US , an operation for modifying the box mapping,
CB, and an operation for modifying the wire mapping, CW ).

We expect implementations of Hume to use well-known scheduling policies such as round-robin
scheduling based on some total ordering of the boxes derived from the source code (this is what’s
used in the reference implementation of the HAM). However, we leave the concrete realisation of the
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scheduling operations (∈S ,	S ,⊕S) and of the synchronisation operations (US ,CB,CW ) to the imple-
mentor. Naturally, the overall costs of the system will be depend on the scheduling policy. Thus, all
these parametric operations have to come with corresponding cost functions, describing how the costs
coming out of the expression level shall be combined.

The following operations implement round-robin scheduling. We initially sort the boxes by a global
ordering derived from the source code. The membership relation only examines the head of the list.
Picking the next element means taking the head of the list. Putting a box back means adding it to the
end of the list. Since the length of the scheduling queue never decreases no global synchronisation is
needed, and the definition of US ,CB,CW is arbitrary.

D ≡ BName list
b ∈S bs ≡ b = hd bs
	S ≡ λbs b.tl bs
⊕S ≡ λbs b.bs@[b]
US ≡ []
CB β θ ≡ β
CW β θ ≡ θ

Cost modelling on system level

The cost model on the system level is realised similarly to the expression level. We use a resource
algebra (R,+,≤), where R must be the same data structure as on the expression level, but + and ≤
may be different operations. For example, in a parallel implementation of the HAM the overall time
consumption is not necessarily the sum over all the time consumptions of all boxes plus system time.
The constants in the system-level resource algebra must correspond to the basic scheduling operations:
R	

S for getting a box name from the scheduling queue, R⊕
S for putting a box back into the scheduling

queue, R∈
S for testing whether a box name is in the scheduling queue; RU

S for re-filling the scheduling
queue; R

CB
S for synchronising all boxes, and R

CW
S for synchronising all wires. Note, that in general

all these costs depend on the entire system state. In the case of modelling time consumption in a
round-robin scheduler, the last three constants would be 0; R∈

S , R	
S , R	

S would be the costs for testing
for list membership, extracting an element from the list and adding an element to the end of the list.

6.2 Summary

As specification of the HAM behaviour we presented a 2 level, small-step operational semantics as well
as a reference implementation in pseudo C. The former will act as the basis for reasoning about resource
consumption. The latter is more concrete and thus more clearly exhibits the costs involved in executing
HAM instructions. These costs are captured in the operational semantics via operations of a resource
algebra applied to counters that are part of the system state. Since the rules of the semantics only
refer to these abstract operations of the resource algebra, they can be chosen independently from the
rules of the semantics, and we have shown instances for heap space, stack space and time consumption,
thus giving cost models of the HAM for these resources. On top of the small-step semantics we have
defined a system-level semantics, that deals with the scheduling of multiple boxes in Hume. Here
we parameterise the semantics with concrete scheduling operations, accompanied again by a system-
level resource algebra for composing costs on system level. Thus, we arrive at a simple, yet flexible,
formalisation of HAM behaviour and resource consumption on system level.
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Abstract

In this chapter, we describe a generic foundation for constructing static analyses for determining time
and space costs for Schopenhauer programs.
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7.1 Introduction

We describe a generic foundation for constructing static analyses for determining time and space costs
for Schopenhauer programs, as formally defined in Chapter 6 Although we had originally constructed
an analysis that was specific to one of our space metrics, which we then intended to adapt to the
different problems arising in the other situations, we subsequently determined that all three metrics
could be incorporated into the same generic formal rules, with significant advantages for consistency
and future reuse. It follows that the observations made in this section of the report are completely
generic.

We have chosen to use a type-based approach in order to produce a compile-time static analysis.
We improve upon earlier published work (e.g. [69, 70]) by allowing higher-order functions, arbitrary
recursive datatypes and resource polymorphism, as well as expanding from a fairly limited toy language
to the application-oriented Schopenhauer language. Our approach is as follows:

a) We first refine the Schopenhauer language to a theoretically more manageable core version (Sec-
tion 7.1.1). These changes are all non-essential, in the sense of merely removing syntactic sugar.
For example, we replace the special syntax for Tuples and Vectors with that for general datatypes.
In all cases, we take care to ensure that the correct cost for the specialised syntactic forms is still
preserved. For example, in the case of Tuples and Vectors, we introduce general cost parameters
for datatypes that can correctly capture the costs for Tuples, Vectors and user-defined datatypes.

b) We then define a standard type system for this core syntax (Section 7.1.2). This forms a general
basis for our analyses, which we will then augment by the proper Heap-space analysis, allowing a
clear separation between the underlying generic basis and the specifics that are required for the
Heap-space analysis.

c) We then define an augmented type system (Chapter 8), which includes an amortised WCET
analysis. The basic principle of an amortised analysis is described in more detail in Section 8.1.1.
The augmented typing introduces a number of linear numeric constraints. It follows that the
process of deriving such an annotated typing can be simplified by abstracting over all these
numeric values, and then using a standard linear program solver to instantiate these values. This
allows the WCET analysis to be automated. Since the linear programs that we generate do not
present a challenge for current state of the art solvers for linear programs, it follows that they can
be solved very quickly and efficiently, allowing our WCET analysis to be sensibly automated. We
have previously shown [70] that the generated linear programs have good formal properties, such
as being solvable by integers if they are solvable at all (this is known to be an NP-hard problem
in general).

d) Finally, the augmented typings allow us to compute strict upper bounds on the WCET consump-
tion of the typed terms, so completing our WCET analysis.

7.1.1 Core Schopenhauer Syntax

Our core syntax for Schopenhauer is shown in Figure 7.1. We assume four disjoint sets of identifiers:
Var for names of functions, boxes and wires (which we refer to as identifiers), usually ranged over by id ;
Var for variables, usually ranged over by the letter x,y and z; Constrs for constructors, usually ranged
over by the letter c and Exn for exceptions, usually ranged over by exn. For simplicity we sometimes
conveniently assume a further subdivision of Var into three distinct subsets for functions, boxes and
wires, omitting preconditions such as ”id is a wire identifier”, since this is usually clear from the
context anyway.
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program ::= decl1 ; . . . ; decln n ≥ 1
decl ::= box | id = expr | id 〈 match1 | · · · | matchn 〉 n ≥ 1

box ::= box id ins outs fair/unfair bmatches [ handle cmatches ]
ins/outs ::= 〈 id1, . . . , idn 〉 n ≥ 0

bmatches ::= expr | 〈 bmatch1 | · · · | bmatchn 〉 n ≥ 1
cmatches ::= exnexpr | 〈 cmatch1 | · · · | cmatchn 〉 n ≥ 1

bmatch ::= 〈 bpat1 , . . . , bpatn 〉 -> expr n ≥ 1
cmatch ::= cpat -> exnexpr
match ::= 〈 pat1 , . . . , patn 〉 -> expr n ≥ 1
exnmatch ::= 〈 pat1 , . . . , patn 〉 -> exnexpr n ≥ 1

expr ::= int | float | char | bool | string | *
| var expr1 · · · exprn n ≥ 0
| id expr1 · · · exprn n ≥ 0
| con expr1 · · · exprn n ≥ 0
| ( expr1 , . . . , exprn ) n ≥ 2
| if expr1 then expr2 else expr3

| case expr of 〈 match1 | · · · | matchn 〉 n ≥ 1
| let 〈 vdecl1 , . . . , vdecln 〉 in expr n ≥ 1
| expr within int time raise exn()
| expr within int stack raise exn()
| expr within int heap raise exn()
| raiseexpr

raiseexpr ::= raise exn(exnexpr)
exnexpr ::= int | float | char | bool | string | * | var

| con exnexpr1 · · · exnexprn n ≥ 0
| ( exnexpr1 , . . . , exnexprn ) n ≥ 2
| if exnexpr1 then exnexpr2 else exnexpr3

| case exnexpr of 〈 exnmatch1 | · · · | exnmatchn 〉 n ≥ 1
| let 〈 exnvdecl1 , . . . , exnvdecln 〉 in exnexpr n ≥ 1

vdecl ::= var = expr
exnvdecl ::= var = exnexpr

bpat ::= pat | * | *
cpat ::= exn pat
pat ::= int | float | char | bool | string | | var

| con pat1 · · · patn n ≥ 0
| ( pat1 , . . . , patn ) n ≥ 2

Figure 7.1: Schopenhauer Abstract Syntax
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There are two main differences from standard Schopenhauer syntax: i) elimination of syntactic
sugar for specific datatypes; and ii) conversion to let-normal form. These are described in detail in the
following subsections. Both changes are largely superficial, but remove a number of redundancies, which
would otherwise obfuscate the underlying mechanics of the analysis. The Prototype Schopenhauer
Abstract Machine Compiler (phamc) used in the EmBounded project has already been augmented to
automatically transform normal Schopenhauer code into the desired format. Work is also underway to
allow automatic tracing of error messages in the phase to the original Schopenhauer source code, so
that the translation to the core syntax becomes transparent to the Schopenhauer programmer. More
information about the implementation can be found in EmBounded Deliverable D13 [79].

It is important to note that the translation to the core syntax is designed to be completely cost
neutral, so that it never changes either the actual execution costs of Schopenhauer program or those
reported by the analysis. The compilation process to abstract machine code (or concrete machine code)
is still based on the original Schopenhauer source code, since the original Schopenhauer syntax is much
more convenient to a programmer, and the compiler can take advantage of information about source
level constructs.

Arbitrary recursive datatypes

In principle, the treatment of tuples, vectors, lists, trees, etc. should all be identical from the viewpoint
of the analysis. Hence we have decided to eliminate the syntactic sugar provided for certain datatypes
such as vectors and tuples and the special “none” value (*). Instead, we use the normal mechanisms
for arbitrary recursive datatypes, i.e. instead of simply writing (42,true) for a pair of an integer
and a bool, it is necessary to define a specific datatype and associated constructors and to use these
instead, e.g. T2intbool(42,true). The special costs associated with vectors and tuples are preserved
by parameterising the cost that is assigned to all user-defined, possibly recursive datatypes. This
parameterisation also easily allows for future optimisations of some datatypes by simply adjusting the
cost parameters for those types. As a side effect of this transformation, the syntax of top-level pattern
matches become much more simple, since instead of a list of patterns, only a single pattern of tuple
type needs to be matched. Hence all top-level expressions become a single case-instruction. Again, the
differences in cost are handled by a simple parameter, called case-kind, which signals whether we deal
with a box entry-level, function entry-level or an ordinary expression-level matching. It is interesting to
note that this mirrors exactly the treatment within the prototype implementation of the space-analysis.

Let-normal form

Nested expressions quickly become unwieldy in theoretical proof-work. We avoid this problem by using
a program transformation into a “let-normal form”, i.e. an expression such as “f(e1)(e2)” is transformed
into “let x1 = e1 in let x2 = e2 in f(x1, x2)”. While this form has the advantage of conveying the
order of evaluation more explicitly, its main advantage is that the let construct becomes the only
command that models sequential evaluation. For example, if we want to prove something about the term
“if e1 then e2 else e3” then this proof will contain similar steps to “let x = e1 in if x then e2 else e3”,
which are missing if we only need to deal with conditionals of the form “if x then e2 else e3”, i.e. where
the guard expression is always known to be a simple variable. This transformation therefore allows us
to remove many uninteresting repetitions in our theoretical work, allowing us to expose the important
parts in each case that we consider. A third benefit is that the transformation also heavily reduces
the treatment of exceptions, since evaluating a variable cannot throw an exception, e.g. in the above
example, the transformed conditional does not need a specific rule for the case that an exception was
raised during the evaluation of the guarding expression. The further reduces redundancies in the rules.
However, if performed naively, the transformation above would clearly alter the consumption of time,
stack and perhaps other resources, something that would be unacceptable if we are to obtain correct



110 CHAPTER 7. GENERIC FOUNDATION

upper bounds on execution costs. We circumvent this problem by introducing a pseudo-expression that
is not available to Schopenhauer programmers, the ghost-let, written “LET · · · IN ”. The idea is that
the execution of a ghost-let has no operational cost, but behaves otherwise similarly to a normal let
construct. This means that we can achieve a pseudo-transformation into the let-normal form without
altering the actual resource cost of an execution. The simple program transformation % (·) into ghost-
let-normal form then works as follows (any syntactic constructs not mentioned here are unaltered by
the transformation):

Prim Op op e1 · · · ek ; LET x1 = % (e1) , . . . , xk = % (ek) IN op x1 · · ·xk

Call fid e1 · · · ek ; LET x1 = % (e1) , . . . , xk = % (ek) IN fid x1, . . . , xk

Constructor c e1 · · · ek ; LET x1 = % (e1) , . . . , xk = % (ek) IN c x1 · · ·xk

Tuple (e1, . . . , ek) ; LET x1 = % (e1) , . . . , xk = % (ek) IN (x1, . . . , xk)
Conditional if e1 then e2 else e3 ; LET x = % (e1) IN if x then % (e2) else % (e3)

Case
case e of

pat1 -> e1| · · · |patk
-> ek

;
LET x = % (e) IN
case x of pat1 -> % (e1) | · · · |patb

-> % (eb)

where the introduced variables x, y, xi, . . . are always assumed to be fresh. One might wonder why we
did not add the following transformation for the ordinary let as well:

let x1 = e1, . . . , xk = ek in e ;
LET x1 = % (e1) , . . . , x1 = % (ek) IN
let x1 = x1, . . . , xk = xk in % (e)

The reason is that the expression let x1 = e1, . . . , xk = ek in e is really just an abbreviation for
let x1 = e1 in let x2 = e2 in · · · let xk = ek in e. Hence the subsequent expressions may depend on
the previously-introduced variables. This leads to an unusual resource behaviour, especially since the
Schopenhauer compiler optimises the evaluation of let constructs by preallocating a stack frame for
the defined variables similar to a call frame, which in turn allows the result of a preceding evaluation
of subexpression to be popped from the stack before computing the next. This peculiarity requires us
to treat let constructs individually, thereby excluding the let construct from the transformation into
let-normal form.

7.1.2 Basic HUME Type System

Schopenhauer types are defined by the following grammar:

A ::= B | C | X | µX.{c1:A(1,1), . . . , A(1,j1) | . . . | ck:A(1,k), . . . , A(k,jk)}
B ::= unit | int | float | char | bool | string
C ::= A1, . . . , Ak −→ A

where ci ∈ Constrs are constructor labels. We have the usual set of base types, higher-order types, type
variables and type abstractions that can be used to build arbitrary recursive datatypes.

A recursive datatype consists of a type-variable abstraction and a partial-mapping from the set
of constructor labels Constrs to an ordered, possibly empty list of type-terms. For example, standard
binary trees with integer-labelled leaves and nodes would be written

µY.{Leaf:int | Node:int, Y, Y }

Note that as for all partial mappings, the order in which the constructors are listed is irrelevant,
hence the type µY.{Node:int, Y, Y | Leaf:int} is identical to that given above. Furthermore we treat all
Schopenhauer types module α-equivalence on the bound type variables, e.g. µY.{C:Y } = µX.{C:X}.
We should point out that non-recursive datatypes are already subsumed, since the abstracted variable is
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not required to occur within the range of the partial map. Although we may sometimes omit the leading
µ-operator and the superfluous abstracted variable for a non-recursive types for the sake of brevity, we
do not wish to treat non-recursive types any different from recursive ones, thereby avoiding unnecessary
redundancies in our type rules. Note moreover, that when referring to types, we only refer to closed
type-terms. There is no explicit folding and unfolding of recursive datatypes. Folding and unfolding is
implicitly paired with the construction and the destruction of each datatype in the usual way. Finally,
note that we allow higher-order types in an uncurried style. This is to allow for possibly different costs
in the case of partial applications, so allowing us to explicitly distinguish between A1−→ A2−→ C and
A1, A2−→ C, and so achieving a more accurate costing for higher-order functions. In this document, we
will use the term “partial application” to refer only to applications of functions of the latter type.

Type Rules for Expressions

We first show how to type a single Schopenhauer expression. Our type rules for Schopenhauer expres-
sions have the form

Σ; Γ ` e : A

meaning that the Schopenhauer expression e is of type A within context Γ and signature Σ. A context is
a partial map from the set of variables Var to types. A signature Σ maps function identifiers belonging
to the set Var to a triple consisting of a term defining the function’s body, an ordered list of argument
variables and a type. Since the signature Σ remains fixed with the program to be analysed, we refrain
from mentioning it within the premises of each expression-level rule in favour of a leaner notation. We
will describe the requirements on the signature in the later section 7.1.2, which describes how to treat
whole Schopenhauer programs.

∅ ` () : unit
(Unit)

b ∈ B
∅ ` b : bool

(Bool)

n ∈ Z
∅ ` n : int

(Int)

r ∈ R
∅ ` r : float

(Float)

c is a character

∅ ` c : char
(Char)

s is a string

∅ ` s : string
(String)

x:A ` x : A
(Var)

op ∈ {+, -, *, /}
x:int, y:int ` x op y : int

(PrimBOp Int)
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op ∈ {-}
x:int ` op y : int

(PrimUOp Int)

op ∈ {+., -., *., /.}
x:float, y:float ` x op y : float

(PrimBOp Float)

op ∈ {-.}
x:float ` op y : float

(PrimUOp Float)

op ∈ {==, >=, <=}
x:A, y:A ` x op y : bool

(PrimBOp Eq)

op ∈ {and, or}
x:bool, y:bool ` x op y : bool

(PrimBOp Bool)

op ∈ {not}
x:bool ` op y : bool

(PrimUOp Bool)

Σ(fid) =
(

; ;A1, . . . , Aa−→ C
)

k ≥ 0 k = a

y1:A1, . . . , yk:Ak ` fid y1 · · · yk : C
(App)

Σ(fid) =
(

; ;A1, . . . , Aa−→ C
)

k ≥ 1 k < a

y1:A1, . . . , yk:Ak ` fid y1 · · · yk : Ak+1, . . . , Aa−→ C
(Under App)

Σ(fid) =
(

; ;A1, . . . , Aa−→ C
)

a ≥ 1 k > a
y1:A1, . . . , ya:Aa ` fid y1 · · · ya : C x is fresh
x:C, ya+1:Aa+1, . . . , yk:Ak ` x ya+1 · · · yk : E

y1:A1, . . . , yk:Ak ` fid y1 · · · yk : E
(Over App)

D = A1, . . . , Aa−→ C k ≥ 1 k = a

z:D, y1:A1, . . . , yk:Ak ` z y1 · · · yk : C
(App Var)

D = A1, . . . , Aa−→ C k ≥ 1 k < a
B = Ak+1, . . . , Aa−→ C

z:D, y1:A1, . . . , yk:Ak ` z y1 · · · yk : B
(Under App Var)

D = A1, . . . , Aa−→ C a ≥ 1 k > a
y1:A1, . . . , ya:Aa ` z y1 · · · ya : C x is fresh
x:C, ya+1:Aa+1, . . . , yk:Ak ` x ya+1 · · · yk : E

z:D, y1:A1, . . . , yk:Ak ` z y1 · · · yk : E
(Over App Var)

The rules for function application, closure-creation (or under application) and over-application are
repeated twice: once for applications to normal functions, and once for applications to closures arising
from higher-order calls through variables representing parameters to function calls. While we have tried
to minimise the number of rules that are required, we must treat the application of literal functions and
called variables separately, since the enriched type systems for the resource analyses require slightly
different costs in each case.
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c ∈ Constrs C = µX.{· · · |c : B1, . . . , Bk| · · · }
Ai = Bi ∨ (Ai = C ∧Bi = X) (for i = 1, . . . , k)

x1:A1, . . . , xk:Ak ` c x1 . . . xk : C
(Constr)

Γ ` et : A Γ ` ef :
Γ, x:bool ` if x then et else ef : A

(Conditional)

∀i .

{
A ` pati

?. ∆i

Γ,∆i ` ei : B

Γ, x:A ` case ck x of pat1 -> e1| · · · |patk
-> ek : B

(Case)

∀i .



∆i =
{
x1:Ai

1, . . . , x(i−1):A
i
(i−1)

}
�FV(ei)

Ai =
⊎
j

ran
(
∆j� {xi}

)
.(Ai |Ai )

∆i,Γi ` ei : Ai

Γ1, . . . ,Γk+1 ` LET x1 = e1, . . . , xk = ek IN e : A
(Ghost let)

∀i .



∆i =
{
x1:Ai

1, . . . , x(i−1):A
i
(i−1)

}
�FV(ei)

Ai =
⊎
j

ran
(
∆j� {xi}

)
.(Ai |Ai )

∆i,Γi ` ei : Ai

Γ1, . . . ,Γk+1 ` let x1 = e1, . . . , xk = ek in ek+1 : Ak+1

(Let)

The type rules for the let-expression seem somewhat complicated due to the fact that they allow later
definitions to depend on earlier ones. This requires the use of the sharing relations, since in the enriched
type systems for the resource analyses need to be aware of multiple uses of each entity. However, each
reference must have the same type in this simple version of the type system.

Exceptions We require one ordinary Schopenhauer type to be distinguished as the type of excep-
tions (Err). There is nothing special about this user-defined type, whose form will generally be similar
to µX.{PatternMatchFailure|DivisionByZero int| · · · }. The only pecularity about Err is that the
argument type to all raise expressions must be equal to the argument type of all exception handlers.
It is therefore possible to refer to type Err throughout an entire program. Consequently, this distin-
guished type is formally a part of the pervasive signature Σ, as for all normal definitions in a program.
However, for the sake of brevity and readability, we will often omit it explicitly in the signature.

Γ ` e : Err
Γ ` raise exn e : A

(Raise)

Γ ` e : A
∆ ` raise exn ex : A

Γ,∆ ` e within q time raise exn ex : A
(Within Time)
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Γ ` e : A
∆ ` raise exn ex : A

Γ,∆ ` e within q stack raise exn ex : A
(Within Stack)

Γ ` e : A
∆ ` raise exn ex : A

Γ,∆ ` e within q heap raise exn ex : A
(Within Heap)

Substructural rules It is a noteworthy feature of our type system that all1 substructural type rules
have been made explicit, where substructural type rules are type rules which are not syntax-driven,
i.e. have the same expression occuring in one of their premises. Removing the rules for weakening and
sharing (also known as contraction) leaves a linear type system. The reason behind this design decision
is that we require to control the number of references to an object in our type based resource analyses,
so that we can determine when sharing occurs through the duplication of references, for example.
Furthermore, explicit substructural rules allow the use of simpler rules overall, since this approach
avoids merging these properties into all other rules, with consequent obfuscation. Note that additional
substructural rules will be introduced in the annotated type system in section 8.3.

Γ ` e : C
Γ, x:A ` e : C

(Weak)

Γ, x:A1, y:A2 ` e : C | φ .(A |A1, A2 )
Γ, z:A ` e[z/x, z/y] : C

(Share)

where the sharing relation .(A |A ) is a relation between a types and multisets of types:

.(A |A ) iff ∀x ∈ A . x = A

that is all elements (if any) of the multiset are equal to the single given type. While this definition may
seem somewhat contrived at this point, it will become an important part of the annotated type system
for the analysis, where this relation is redefined as partial map, mapping a single type and a multiset
of types to set of numerical constraints.

Type Rules for Pattern Matches

The type rule for case-expressions requires another construct, dealing with pattern matches:

A ` pat ?. Γ

where pat is a Schopenhauer pattern to be tested against an object of type A. If the pattern matches
successfully, then the resulting bindings are given by the context Γ.

unit ` () ?. ∅
(Pattern Unit)

b ∈ B
bool ` b ?. ∅

(Pattern Bool)

1That is all substructural properties except for permutation, which is built-in since we have, from the outset, defined
contexts to be partial maps. Hence, we do not distinguish between the two contexts x:A, y:B and y:B, x:A.
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n ∈ Z
int ` n ?. ∅

(Pattern Int)

r ∈ R
float ` r ?. ∅

(Pattern Float)

c is a character

char ` c ?. ∅
(Pattern Char)

s is a string

string ` s ?. ∅
(Pattern String)

A ` x ?. x:A
(Pattern Var)

A ` ?. ∅
(Pattern Wild)

∀i .
(
Bi ` pati

?. Γi

)
µX.{· · · |c : B1, . . . , Bk| · · · } ` c pat1 · · ·patk

?. Γ1, · · · ,Γk

(Pattern Constr)

Type Rules for Boxes and Declarations

A Schopenhauer program consists of a number of box and function declarations. Formally, the program
is defined by its signature Σ, which consist of two mappings: one mapping function-identifiers to their
declaration (a triple consisting of: the functions body, a list of argument variables, and the functions
type) and another mapping box-identifiers to box definitions.

Our translation to core Schopenhauer greatly simplifies the handling of boxes and thus the nature
of box definitions, since instead of dealing with an arbitrary number of input and output wires and the
possibilities of a wire being empty, a box is transformed into a single case expression which receives only
a single input bundle. A bundle is a non-recursive datatype having only one unique constructor, which
has as many arguments as the original box had input wires. These argument types are themselves non-
recursive constructors, each having two unique constructors, one of which has no argument (indicating
that no value is present in the wire), and one which has precisely one argument of the same type as the
original wire. In this manner, all the input is encapsulated in a single type. A similar technique is used
for the output. More precisely, if the original box definition was represented by a 7-tuple consisting
of: two ordered lists of typed wire variables for input and output respectively, a list containing pairs of
pattern-lists and expressions, the box-flag determining fair or unfair matching; the type of the possible
exceptions and the exception handler; then the transformed box definition is a 6-tuple consisting of an
expression, an argument variable, the fairness flag and the exception handler. Hence the box definition
is much more similar to a function definition and much easier to manage within our analysis. In detail,
the transformation simplifies

Σ(box ) =


[y1:A1, . . . , yk:Ak];
[z1:C1, . . . , zh:Ch];[
(pat(1,1)

, . . . ,pat(1,k)
; e1), . . . , (pat(1,1)

, . . . ,pat(j,k)
, ej)

]
;

fairness;Bx; ex
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to the more concise form

Σ(box ) =
(
ebox ; y;Abox −→ Cbox ; fairness;Bx; ex

)
where

Abox = µY.{Bundle-ik : {Wire-i1 :A1|None-i1}, . . . , {Wire-ik :Ak|None-ik}}
Cbox = µZ.{Bundle-oh : {Wire-o1:C1|None-o1}, . . . , {Wire-oh:Ch|None-oh}}
eb = case boxcase y of

Bundle-ik (Wire-i1 pat(1,1)
) · · · (Wire-ik pat(1,k)

) -> e1

|Bundle-ik (Wire-i1 pat(2,1)
) · · · (Wire-ik pat(2,k)

) -> e2
...

|Bundle-ik (Wire-i1 pat(j,1)) · · · (Wire-ik pat(j,k)
) -> ej

and each constructor Bundle-ik,Bundle-oh,Wire-i1, . . . ,Wire-ik,Wire-o1, . . . ,Wire-oh is assumed to
be unique to box box , except for the wire constructors which may lead to another box inside the
Schopenhauer program.

We can now define when a Schopenhauer program is well-typed. Given a set of identifiers Var of a
certain Schopenhauer program, this program is well-typed if and only if

a) for all functions fid ∈ Var with

Σ(fid) =
(
ef ; [y1, . . . , yk];A1, . . . , Ak −→ C

)
there exists a finite type derivation such that y1:A1, . . . , yk:Ak ` ef : C holds.

b) For all boxes box ∈ Var with

Σ(box ) = eb; y;A−→ C; fairness;Bx; ex

there exists a finite type derivation such that y:A ` eb : C and err:Err ` ex : C

c) For all pairs of boxes sharing a wire, type assigned to each wire is identical.



Chapter 8

Worst-Case Execution Time Analysis

Steffen Jost, Hans-Wofgang Loidl and Kevin Hammond

Abstract

This chapter describes the amortised analysis for worst-case execution time, giving a formal definition
of the rules for Schopenhauer. It is based on the time costs for the formal Schopenhauer Semantics
(Chapter 6), and related to actual execution costs for the Renesas M32C/85U microprocessor. The
analysis serves as an exemplar for all of our resource analyses: the stack and heap analyses have a
similar structure, differing only in the precise parameters and resource metrics of interest. We give
some examples, and show how our analysis can be used to produce linear costing information.
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8.1 Introduction

We describe a formally-based static analysis for determining Worst-Case Excecution Time (WCET) for
Schopenhauer, based on the Time costs as defined in the formal Schopenhauer Semantics (Chapter 6).
Our analysis consists of an elaborate type system, whose typings yield strict upper bounds on the
Worst-Case Execution Time of the typed terms. Our approach is as follows:

a) We enhance the standard type system for the Schopenhauer language (Chapter 7), which forms a
common basis for constructing analyses, for Worst Case Execution Time (described here), Stack-
space usage [81] and Heap space usage [80]. This type system is enhanced with an amortised cost
analysis for Worst-Case Execution Time. in accordance to the Time costs defined in the formal
Schopenhauer semantics (Chapter 5). The enhancement consists of added annotations to each
type, referred to as “Potential”, and a number of side-conditions to each type-rule governing the
use of the potential Worst-Case Execution Time.

b) Abstraction of the potential WCET then leads to a standard linear program, which can be solved
easily by standard techniques. Any solution to the derived linear program that is found by the
solver can then be used to assign a concrete potential to the input of a program; this potential
then furnishes an upper bound on the WCET for the computation of the analysed program for
that input.

Through the nature of a type-based approach to generating constraints, and since we are able to solve
the generated linear program at compile time using standard, efficient solver technology this directly
yields an efficient static WCET analysis for Schopenhauer.

8.1.1 Basic Principle of an Amortised Analysis

Our WCET analysis uses an amortised analysis approach. In amortised analysis, data structure(s)
are assigned an arbitrary non-negative number, representing the potential, usually denoted by Φ. The
amortised cost of an operation is its total cost (time or space) plus the difference in potential before and
after the operation. The sum of the amortised costs plus the potential of the initial data structure then
bounds (from above) the actual cost of a sequence of operations. If the potential is chosen carefully,
then the amortised cost of individual operations can be either zero or a constant even when their actual
cost is difficult to determine.

� �
� � � �
� � � �
� � � � � �
A B A B A B A B

Potential 3 0 4 0 4 0 0 0

Operation
−−−−−−→
enqu(�)

−−−−−−−−→
dequ( ) = �

−−−−−−−−→
dequ( ) = �

Actual Cost 1 1 5
Change of Potential 1 0 −4

Amortised Cost 2 1 1

Figure 8.1: Simulating a Queue by using two Stacks

The simplest example to show the usefulness of an amortised analysis is an implementation of a
queue using two stacks A and B. Enqueuing is performed on stack A, and dequeuing is performed on
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stack B, unless B is empty, in which case the entire contents of A are moved to B prior to dequeuing.
A sequence of example operations on such a simulated queue is shown in Figure 8.1. The costs shown
in this example here are for the time to execute a queue operation, but the principle can equally be
used for a different resource or other countable properties as well. We have chosen to use a time rather
than heap metric here since this conveys the intuition behind our approach in a straightforward way: it
is easy to see that enqueuing (enqu( )) has a time cost of one; while dequeuing (dequ( )) has a variable
cost, which is often one but may sometimes be proportional to the size of A.

This variable cost is unpleasant, since costing a sequence of queue operations will apparently require
us to track the current state of stack A. However, if we decree that the size of A is the potential of
the data then enqueuing will always have an amortised cost of 2 (one for the actual cost, one for the
increase in potential) and dequeuing will always have an amortised cost of 1, since the cost of moving
A over to (the empty stack) B cancels out against the decrease in potential. Thus, the actual cost of a
sequence of operations is bounded by the initial size of A, plus twice the number of enqueue operations,
plus the number of dequeue operations. In this case, we can also see this directly by observing that
each element is moved exactly three times: once into A, once from A to B, once out of B. Therefore
we require only the initial state, but do not have to model the state changes in order to determine
the cost of a sequence of operations. In the above queue example, both stacks have the same type,
but each element of A contributes 1 to the overall potential, whereas each element of B contributes a
potential of 0. Our idea is now to record this information within the type by adding a number to each
type constructor, which denotes the potential carried by each constructor of that type. So given an
element of such an annotated type, we can compute its assigned potential by summing over all nodes
times their assigned factor.

It is important to note that, while our analysis is entirely done at compile-time, the absolute poten-
tial can in fact be only computed at runtime, when the concrete data and its layout is known. However,
we will never actually compute the potential, but rather concern ourselves with the hypothetical change
of potential along all possible paths of computations, as expressed in our annotated type rules, which
we will now define below.

8.2 Notational Preliminaries

We denote the non-negative rational numbers by Q+. We denote D = R+ ∪ {∞}, i.e., the set of
non-negative real numbers together with an element ∞. Ordering and addition on R+ extend to D by
∞ + x = x +∞ = ∞ and x ≤ ∞. If U is a subset of D we write

∑
U for the (possibly infinite) sum

over all its elements. Since D contains no negative numbers, questions of ordering and non-absolute
convergence do not play a role; it is also the case that any subset of D has a sum, perhaps ∞. We write∑

i∈I xi for
∑
{xi | i∈I} and use other similar standard notations.

For index numbers ranging over the natural number N, we commonly omit the limits if they are
clear from the context, i.e. if A1, . . . , Ak are defined in the surrounding context, then stating that
formula Ψi is true for all i between 1 and k can be abbreviated as ∀i .Ψi. Furthermore, writing
∀i .Ai = {1, . . . , (i−1)} states that A1 is empty, A2 is the singleton set containing the number one, and
so on, eventually stating that Ak contains all natural numbers from 1 up to and excluding k.

The disjoint union of sets is denoted by ∪̇. Since we are often dealing with multisets, we write ]
for the multiset union in order to distinguish it from the ordinary union of sets ∪.

For partial maps, we use the following notations when used to model stacks, heaps, or typing
contexts: Let f be a partial map. The domain, co-domain and range (i.e. the image of the domain)
of f are denoted by dom(f), codom(f) and ran (f) respectively. We may abbreviate x ∈ dom(f) by
x ∈ f and sometimes f(x) by writing fx. We denote by f [x 7→ y] the partial map that sends x to y
and acts like f otherwise. Conversely, f \x denotes the map which is undefined for x and acts like f
otherwise. The restriction of f on X is written f�X , i.e. the map that acts like f for all x ∈ X and
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that is undefined otherwise. The empty map ∅ is often omitted, i.e. [x 7→ y] denotes the singleton map
sending x to y. We write f, g for the disjoint union of the partial maps f and g. The expression f, g is
undefined if the domains of f and g are not disjoint. In the special case of typing contexts, we allow
ourselves to write simply x:A for the partial maps otherwise denoted by [x 7→ A].

We write [ ] to denote the empty list and [a, b, c] for the list containing the elements a, b and c. The
concatenation of two lists is written l1 ++ l2. If h is a suitable element and t is a (possibly empty) list,
then h :: t is the list obtained by prepending h to t; while t++[h] denotes the list obtained by attaching
element h at the end of list t. The cardinality of a list l is denoted by |l|, e.g. |[a, b, c]| = 3. We identify
each list with its own index map, i.e. if l = [a, b, c] then l2 = b according to our previously introduced
abbreviations. The expression l5 is undefined in this example. We may sometimes write ~l for a list l to
enhance readability.

Finally, for readability within program examples, we allow ourselves to replace unimportant free
variables by the underscore symbol ‘ ’, as in Hume. Multiple occurrences of the underscore symbol ‘ ’
stand for different unnamed variables as usual, hence they are not connected with each other in any
way.

8.3 Determining Worst-Case Execution Time

The basic definitions of annotated types given in Chapter 7 also hold for Worst-Case Execution
Time (WCET). The constructor of each variant-type is annotated with a resource variable ∈ CV,
representing a factor determining the potential associated with all values of this type. Note that the
notion of potential is entirely independent of the resource that is being analysed. Therefore, any valid
annotated type derivation will require a different valuation, i.e. that different values ∈ Q+ are assigned
to the resource variables for different types of resource.

The type rules for expressions retain the form

Σ; Γ t
t′ e : A | ψ

where Γ is a context mapping variables belonging to the set Var to enriched Schopenhauer types
m,m′ ∈ CV, e is the Schopenhauer expression, A is an enriched Schopenhauer type, and ψ is a set of
constraints involving resource variables ∈ CV and constant values ∈ Q+. However, the meaning of this
statement, when derived using the type rules detailed below, is now as follows: For all valuations v
mapping all resource variables to Q+ such that the constraint set v(ψ) is satisfied, the Schopenhauer
expression e has type v(A) in the context v(Γ). Furthermore, for all memory configurations consisting
of environment ρ and heap H fitting the context Γ, executing the expression e will require at most
v(m) + Φv

H

(
ρ :v(Γ)

)
time units (where a time unit is usually defined as a single clock cycle of the

processor, but other units such as nanoseconds are also possible if desired).
Furthermore, if the computation finishes with heap H′ and result value v, then at least v(m′) +

Φv
H′

(
v :v(Γ)

)
time units remain unused after the computation has finished. This notion of unused time

units is required for compositionality. This can be formulated in the following theorem:

Theorem 1 (Correctness). Fix a Schopenhauer program.

Γ
q
q′ e:A | φ (1.A)

ρ,H ` e ; `,H′ (1.B)
H�vρ :Γ (1.C)

v : CV → Q+, satisfying φ (1.D)

If the four statements above are all satisfied, then it follows that for all r ∈ Q+ and p ∈ N such that
p ≥ v(q) + Φv

H

(
ρ :v(Γ)

)
+ r holds, there exists p′ ∈ N satisfying p′ ≥ v(q′) + Φv

H′
(
v:v(A)

)
+ r and also

H, ρ
t
t′ e ;� v,H

′ for some p, p′ ∈ Q+.
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The statement H, ρ
t
t′ e ;� v,H

′ refers to the formal Schopenhauer operational semantics (Chap-
ter 6), as defined for Worst-Case Execution Time. This specifies that e evaluates successfully in the
given memory configuration with at least t time-units available and that at least t′ time-units remain
unused after the evaluation is finished. It therefore measures the exact cost of an evaluation given some
input, whereas the annotated type rules which we will now define bound the Worst-Case Execution
Time for evaluating an expression for all well-typed inputs. We now define the annotated type rules
for Schopenhauer expressions for bounding Worst-Case Execution Time:

∅ Tmkunit

0 () : unit | ∅
(Unit)

b ∈ B

∅ Tmkbool

0 b : bool | ∅
(Bool)

n ∈ Z

∅ Tmkint

0 n : int | ∅
(Int)

r ∈ R

∅ Tmkfloat

0 r : float | ∅
(Float)

c is a character

∅ Tmkchar

0 c : char | ∅
(Char)

s is a string

∅ Tmkstring(|s|)
0 s : string | ∅

(String)

x:A Tpushvar

0 x : A | ∅
(Var)

op ∈ {+, -, *, /}

x:int, y:int
Tcallprim(op)

0 x op y : int | ∅
(PrimBOp Int)

op ∈ {-}

x:int
Tcallprim(op)

0 op y : int | ∅
(PrimUOp Int)

op ∈ {+., -., *., /.}

x:float, y:float
Tcallprim(op)

0 x op y : float | ∅
(PrimBOp Float)

op ∈ {-.}

x:float
Tcallprim(op)

0 op y : float | ∅
(PrimUOp Float)

op ∈ {==, >=, <=}

x:A, y:A Tcallprim(op)

0 x op y : bool | ∅
(PrimBOp Eq)

op ∈ {and, or}

x:bool, y:bool
Tcallprim(op)

0 x op y : bool | ∅
(PrimBOp Bool)
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op ∈ {not}

x:bool
Tcallprim(op)

0 op y : bool | ∅
(PrimUOp Bool)

ΣF (fid) =
(

; ; −→tt′ C
)

∅ t
t′ fid : C | ∅

(App0)

Σ(fid) =
(

; ;∀α ∈ ψ.A1, . . . , Aa−→
t

t′ C
)

k ≥ 0 k = a

y1:A1, . . . , yk:Ak
t
t′ fid y1 · · · yk : C | ψ

(App)

Σ(fid) =
(

; ;∀α ∈ ψ.A1, . . . , Aa−→
t

t′ C
)

k ≥ 1 k < a

∀i ≤ k .
(
φi = .(Ai |Ai, Ai )

)
β = α \ FV

(
A1, . . . , Ak

)
y1:A1, . . . , yk:Ak

Tmkfun(k)

0 fid y1 · · · yk : ∀β ∈ ψ.Ak+1, . . . , Aa−−−−−−−−−−−−−→
t + Tcall

t′ + Treturn + Tslide C |
⋃

i φi

(Under App)

Σ(fid) =
(

; ;∀α ∈ ψ.A1, . . . , Aa−→
t

t′ C
)

a ≥ 1 k > a

y1:A1, . . . , ya:Aa
t
t′ fid y1 · · · ya : C | φ x is fresh

x:C, ya+1:Aa+1, . . . , yk:Ak
t′ − Tap

t′′ x ya+1 · · · yk : E | χ

y1:A1, . . . , yk:Ak
t

t′′ − Tslide fid y1 · · · yk : E | φ ∪ ψ ∪ χ
(Over App)

D = ∀α ∈ ψ.A1, . . . , Aa−→
t

t′ C k ≥ 1 k = a

z:D, y1:A1, . . . , yk:Ak
t
t′ z y1 · · · yk : C | ψ

(App Var)

D = ∀α ∈ ψ.A1, . . . , Aa−→
t

t′ C k ≥ 1 k < a

∀i ≤ k .
(
φi = .(Ai |Ai, Ai )

)
β = α \ FV

(
A1, . . . , Ak

)
B = ∀β ∈ ψ.Ak+1, . . . , Aa−−−−−−−−−−−−−→

t + Tcall

t′ + Treturn + Tslide C

z:D, y1:A1, . . . , yk:Ak
Tmkfun(k)

0 z y1 · · · yk : B |
⋃

i φi

(Under App Var)

D = ∀α ∈ ψ.A1, . . . , Aa−→
t

t′ C a ≥ 1 k > a

y1:A1, . . . , ya:Aa
t
t′ z y1 · · · ya : C | φ x is fresh

x:C, ya+1:Aa+1, . . . , yk:Ak
t′ − Tap

t′′ x ya+1 · · · yk : E | χ

z:D, y1:A1, . . . , yk:Ak
t

t′′ − Tslide z y1 · · · yk : E | φ ∪ ψ ∪ χ
(Over App Var)

c ∈ Constrs C = µX.{· · · |c : q;B1, . . . , Bk| · · · }
Ai = Bi ∨ (Ai = C ∧Bi = X) (for i = 1, . . . , k)

x1:A1, . . . , xk:Ak
q + Size(c)

0 c x1 . . . xk : C | ∅
(Constr)

Γ t− Tiftrue

t′ et : A | φ Γ t− Tiffalse

t′ + Tgoto ef : A | ψ

Γ, x:bool
t
t′ if x then et else ef : A | φ ∪ ψ

(Conditional)
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ck ∈ {exprcase, funcase} ∀i .


A

t(i−1) − Tmatchrule

ti pati
?. ∆i;πi;ψi

Γ,∆i
t′i − Tmatchedrule

t′′ ei : B | φi

χi = {πi + ti ≥ t′i}
Γ, x:A t0 + Tcall + Tcreateframe

t′′ − Tslide− Treturn− Tgoto case ck x of pat1 -> e1| · · · |patk
-> ek : B |

⋃
i ψi ∪ φi ∪ χi

(Case Expr/Fun)

ck = boxcase

χ0 = {t ≥ t0 + Tcall + Tcreateframe}
∀i .


A

t(i−1) − Tmatchrule

ti pati
?. ∆i;πi;ψi

Γ,∆i
t′i − Tmatchedrule

t′′ ei : B | φi

χi = {πi + ti ≥ t′i + t0}
Γ, x:A t0

t′′ − Tslide− Treturn− Tgoto case ck x of pat1 -> e1| · · · |patk
-> ek : B |

⋃
i ψi ∪ φi ∪ χi

(Case Box)

Note the different definition of χi here compared with that used for expressions: A coordination-layer
case-expression has no initial potential for the cost of the pattern match itself. Hence, we use a new
variable t to pay for this cost, which must then be justified from the potential that is gained during the
pattern match, which we know must have succeeded for this rule to be used.

∀i .



∆i =
{
x1:Ai

1, . . . , x(i−1):A
i
(i−1)

}
�FV(ei)

Ai =
⊎
j

ran
(
∆j� {xi}

)
ψi = .(Ai |Ai )

∆i,Γi

t(i−1) − Tmakevar

ti ei : Ai | φi

Γ1, . . . ,Γk+1
t0

tk+1
LET x1 = e1, . . . , xk = ek IN e : A |

⋃
i φ1 ∪ ψi

(Ghost let)

∀i .



∆i =
{
x1:Ai

1, . . . , x(i−1):A
i
(i−1)

}
�FV(ei)

Ai =
⊎
j

ran
(
∆j� {xi}

)
ψi = .(Ai |Ai )

i 6= (k + 1) =⇒ ∆i,Γi

t(i−1) − Tmakevar

ti ei : Ai | φi

∆(k+1),Γ(k+1)
tk

t(k+1)
ek+1 : Ak+1 | φ(k+1)

Γ1, . . . ,Γk+1
t0 + Tcall + Tcreateframe

t(k+1) − Tgoto− Treturn let x1 = e1, . . . , xk = ek in ek+1 : Ak+1 |
⋃

i φi ∪ ψi

(Let)

Exceptions

Γ t
t′ e : Err | ψ

Γ t + Traise

t′ raise exn e : A | ψ
(Raise)

Γ t
t′ + Tgoto + Tdonewithin e : A | φ

∆ t′ + Traisewithin

t′′ raise exn ex : A | ψ

Γ,∆ t + Twithin

t′′ e within q time raise exn ex : A | φ ∪ ψ
(Within Time)
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Γ t
t′ + Tgoto + Tdonewithin e : A | φ

∆ t′ + Traisewithin

t′′ raise exn ex : A | ψ

Γ,∆ t + Twithin

t′′ e within q stack raise exn ex : A | φ ∪ ψ
(Within Stack)

Γ t
t′ + Tgoto + Tdonewithin e : A | φ

∆ t′ + Traisewithin

t′′ raise exn ex : A | ψ

Γ,∆ t + Twithin

t′′ e within q heap raise exn ex : A | φ ∪ ψ
(Within Heap)

Substructural rules

Γ, x:B t
t′ e : C | ψ

Γ, x:A t
t′ e : C | ψ ∪A<:B

(Supertype)

Γ t
t′ e : C | ψ

Γ t
t′ e : D | ψ ∪ C <:D

(Subtype)

Γ r
r′ e : A | ψ

Γ t
t′ e : A | ψ ∪ {t ≥ r, t− r ≥ t′ − r′}

(Relax Time)

Γ t
t′ e : C | ψ

Γ, x:A t
t′ e : C | ψ

(Weak)

Γ, x:A1, y:A2
?
? e : C | φ

Γ, z:A t
t′ e[z/x, z/y] : C | φ ∪ .(A |A1, A2 )

(Share)

The definitions for sharing .(A |A1, A2, . . . ) and subtyping A<:B of Chapter 7 remain unaltered since
they deal with an abstract notion of potential obtained by manipulating resource variables in a general,
resource-independent manner

8.3.1 Annotated Type Rules for Pattern Matches

The annotated type rules dealing with pattern matches have the form

A
t
t′ pat ?. Γ;π;ψ

where pat is a Schopenhauer pattern to be tested against an object of enriched Schopenhauer type A.
If the pattern matches successfully, then the resulting bindings are given by the context Γ; the released
potential is given in π as a linear combination of resource variables; and any constraints that arise are
collected in ψ. The time required to test this pattern is at most t time-units, of which at least t′ remain
after the pattern match is finished, regardless of the outcome of the test.

unit
Tmatchunit

0 () ?. ∅; 0; ∅
(Pattern Unit)

b ∈ B

bool
Tmatchbool

0 b ?. ∅; 0; ∅
(Pattern Bool)
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n ∈ Z

int
Tmatchint

0 n ?. ∅; 0; ∅
(Pattern Int)

r ∈ R

float
Tmatchfloat

0 r ?. ∅; 0; ∅
(Pattern Float)

c is a character

char
Tmatchchar

0 c ?. ∅; 0; ∅
(Pattern Char)

s is a string

string
Tmatchstring(|s|)

0 s ?. ∅; 0; ∅
(Pattern String)

A
Tmatchvar

0 x ?. x:A; 0; ∅
(Pattern Var)

A
Tmatchany

0 ?. ∅; 0; ∅
(Pattern Wild)

∀i .
(
Bi

ti−1

ti pati
?. Γi;πi;φi

)
µX.{· · · |c : q;B1, . . . , Bk| · · · }

t0 + Tcopy + Tunpack + PatSize(c)
tk − Tpop c pat1 · · ·patk

?. Γ1, · · · ,Γk; q + Σiπi;
⋃

i φi

(Pattern Constr)

Substructural Rules

A
r
r′ pat ?. Γ;π;φ

A
t
t′ pat ?. Γ;π;φ ∪ {t ≥ r, t− r ≥ t′ − r′}

(Pattern Relax Time)

For WCET the rules for pattern matches require the auxiliary definition of PatSize : Constrs → Q+,
which maps a constructors c to the number of time-units required to match any value to this constructor,
which is in general equal to Tmatchcon. However, in the case of Tuples or Vectors, the WCET for a
pattern match is significantly lower. This auxiliary definition is not required for the space analyses.

8.3.2 Annotated Type Rules for Boxes and Declarations

Given a set of identifiers Var of a certain Schopenhauer program, this program is well-typed if and only
if

a) for all functions fid ∈ Var with

Σ(fid) =
(
ef ; [y1, . . . , yk];A1, . . . , Ak −→

t

t′ C
)

there exists a finite type derivation such that y1:A1, . . . , yk:Ak
t
t′ ef : C holds.

b) For all boxes box ∈ Var with

Σ(box ) = eb; y;A−→
t

t′ C; fairness;Bx; ex | φ

there exists a finite type derivation such that y:A tx
t′ eb : C | φ and err:Err t

tx ex : C | ψ

c) For all pairs of boxes sharing a wire, type assigned to each wire is identical, including the resource
variable denoting the potential communicated through the wire.
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Figure 8.2: Phases of WCET computation

8.3.3 Timing Complete Hume Programs

The model we have provided is capable of determining all time costs within a Schopenhauer box.
Clearly, it is not sensible, in general, to time a complete Hume program, since Hume programs are not
usually expected to terminate. However, it is sensible to determine reactivity times to specific inputs.
By using the models derived here, we are able to determine this for individual Schopenhauer boxes,
since we can determine upper bound times on all costs from matching inputs on wires to producing wire
outputs. In this way, we are, in principle, able to verify timing constraints provided by Schopenhauer
programmers within a single box, for programs that include data structures and recursion.

Extending these costs to cover sequences of multiple boxes involves obtaining measurements of inter-
box scheduling time, and then combining these using models of multiple box behaviours. Since boxes
are combined using a static process network, and the range of inputs and outputs accepted by/produced
by each rule can also be determined statically, it follows that we would then be able to construct a
complete model of input-output WCET for any input-output combination. We intend to study this
extension in the longer term.

8.4 Concrete Time Costs for the Renesas M32C/85 Processor

In the WCET analysis described in the previous sections, we have used a set of manifest constants
rather than actual costs. This allows our static amortised WCET analysis to be generalised to different
types of processor. In this section, we describe how we have obtained preliminary costs for the Renesas
M32C/85 microprocessor using the aiT tool, and verified these against concrete measurements. Further
details can be found in Bonenfant et al. [15].



128 CHAPTER 8. WORST-CASE EXECUTION TIME ANALYSIS

8.4.1 Determining WCET using the aiT tool

The aiT tool determines the worst-case execution time of a program task in several phases, as shown
in Figure 8.2. These phases are:

• CFG Building decodes, i.e. identifies instructions, and reconstructs the control-flow graph
(CFG) from an executable binary program;

• Value Analysis computes address ranges for instructions accessing memory;

• Cache Analysis classifies memory references as cache misses or hits [40];

• Pipeline Analysis predicts the behavior of the program on the processor pipeline [89];

• Path Analysis determines a worst-case execution path of the program [144].

The cache analysis phase uses the results of the value analysis phase to predict the behavior of the
(data) cache based on the range of values that can occur in the program. The results of the cache
analysis are then used within the pipeline analysis to allow prediction of those pipeline stalls that may
be due to cache misses. The combined results of the cache and pipeline analyses are used to compute the
execution times of specific program paths. By separating the WCET determination into several phases,
it becomes possible to use different analysis methods that are tailored to the specific subtasks. Value
analysis, cache analysis, and pipeline analysis are all implemented using abstract interpretation [31], a
semantics-based method for static program analysis. Integer linear programming is then used for the
final path analysis phase.

Whilst the analysis works at a level that is more abstract than simple basic blocks, it is not capable
of managing the complex high-level constructs that we require. It can, however, provide useful and
accurate worst-case time information about lower level constructs. We are thus motivated to link
the two levels of analysis, combining information on recursion bounds and other high-level constructs
that we will obtain from the Hume source analysis we are constructing, with the low-level worst-case
execution time analysis that can be obtained from the AbsInt analysis. In order to achieve this, we will
eventually require two-way information flow between the analyses. In the short-term, it is sufficient
to provide one-way flow from the language-level analysis to the lower-level analysis. The use of an
abstract machine as the analysis target represents a new challenge for the aiT tool, since the structure
of instructions that need to be analysed can be significantly different from those that are hand-produced,
and the associated technical problems in producing cost information can therefore be more complex.

8.4.2 HAM Instruction WCET Costs for Renesas M32C/85

Figure 8.3 lists guaranteed worst-case execution time results, in clock cycles, for a subset of Hume
Abstract Machine instructions, ordered alphabetically. These timings were obtained using the aiT
tool from code generated using the ham2c Hume to C compiler, cross-compiling through either gcc
Version 3.4 or the IAR C compiler [138] to the Renesas M32C. As expected from a commercial compiler
targeting a few architectures, the IAR compiler generally produces more efficient code than gcc, with
our results being 42% lower on average, and up to 5.92 times more efficient in the case of MatchInt.
In a few cases, the aiT tool was unable to provide timing information directly, requiring additional
information such as loop bounds to be provided in order to produce timing results. In the long term, we
anticipate that we will be able to provide this information by analysis of Hume source constructs, and
by modifying the HAM code to include type information and other information that can be exploited
by the aiT tool. In the short term, we have calculated the information by hand, as far as possible.
For some instructions, however, we were unable to provide this information for the IAR-compiled code,
and results for these instructions are therefore given only for gcc-produced code.
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Instruction gcc IAR Ratio
Call 73 70 1.04
Copy 43
CopyArg 40 35 1.14
CreateFrame 76 72 1.06
Goto 5 3 1.67
If (true) 41 32 1.28
If (false) 41 32 1.28
MakeVar 43 36 1.19
MatchExn 808
MatchedRule 11 11 1.00
MatchInt 811 137 5.92
MatchRule 22 22 1.00
MatchVar 46 36 1.28
MkBool 136

Instruction gcc IAR Ratio
MkChar 136
MkCon 2 348 242 1.44
MkFun 0 198 165 1.20
MkInt 136 91 1.49
MkNone 26 21 1.24
MkVector 3 392 205 1.91
Pop 13
Push 12 11 1.09
PushVar 40 35 1.14
Return 1756
Schedule 410 602 0.68
Slide 62 53 1.17
SlideVar 94
TailCall 91 178 0.51

Figure 8.3: aiT HAM analysis: gcc and IAR compiled code

8.4.3 Timing Results

Figure 8.4 shows average execution and worst-case execution times obtained using the timing approach
described above, for HAM instructions compiled using the IAR compiler. Each average and worst-case
entry has been obtained from 10000 individual timings. We can see from the table that the worst-
case times and average-case times are very similar for most instructions, indicating that the instruction
timings are highly consistent in practice. Since certain instructions are parameterised on some argument
(for example, MkVector is parameterised on the vector size), in these cases, we have measured several
points and applied linear interpolation to obtain a cost formula. It is interesting to note that in these
case, the linear factor is identical for both WCET and average times and the constants are also very
close. In each case, we have subtracted the least time obtained from timing the empty sequence of
instructions (39 clock cycles), in order to give a conservative worst-case time. Since the worst-case time
for the empty sequence was 42 cycles, this means that the worst-case may, in fact, be up to three cycles
less than the numbers reported here.

Since we must save and restore system state, we needed to develop code that does this correctly. A
few abstract machine instructions have therefore not been costed, mainly because they perform more
complex state changes that may require additional intervention. It is worth noting that the values
included in this table give a good timing predictor, but one that could only be used to provide absolute
worst-case guarantees under some statistical probability.

8.4.4 Quality of the Static Analysis using the aiT Tool

Figure 8.5 compares the upper bounds on worst-case execution timing obtained using the aiT tool
from Figure 8.3 with the corresponding measured worst cases from Figure 8.4. We can see that in all
cases apart from MatchRule, the static analyis gives an upper bound that is greater than or equal
to the measured execution time. For MatchRule, the static analysis yields an upper bound that is
one cycle smaller than our measured worst-case. Since our worst case timings are conservative, and
may have an experimental error of up to three clock cycles, as described above, we conclude that the
static analysis correctly yields upper bounds on execution costs for these HAM instructions. For the
instructions we have compared, the bound given by the static analyis is at most 50% greater than the
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Instructions AVG WCET Ratio
Ap 760 761 1.00
Call 61 62 1.02
Callprim

== Bool 246 251 1.02
∗ Float 240 242 1.01
+ Float 262 267 1.02
== Float 255 260 1.02
− Int 114 119 1.04
∗ Int 130 132 1.02
/ Int 168 177 1.05
+ Int 114 119 1.04
< Int 215 220 1.02
== Int 216 221 1.02
> Int 217 223 1.03

Consume 27 31 1.24
Copy 27 31 1.15
CopyArg 27 30 1.11
CreateFrame 51 57 1.12
Goto 1 2 2.00
If (true) 24 29 1.21
If (false) 24 26 1.08
MakeVar 26 31 1.19
MatchAny 6 10 1.67
MatchAvailable 7 10 1.43
MatchBool 24 29 1.21
MatchCon 22 26 1.18
MatchedRule 8 12 1.50
MatchExn 22 28 1.27
MatchFloat 24 29 1.21
MatchInt 23 29 1.26

Instructions AVG WCET Ratio
MatchNone 6 10 1.67
MatchRule 18 23 1.28
MatchString n 3 × n 3 × n

+ 45 + 47
MatchTuple 6 10 1.67
MatchVar 26 31 1.19
MaybeConsume 20 28 1.40
MkBool 63 70 1.11
MkChar 63 70 1.11
MkCon n 41 × n 41 × n

+ 84 + 89
MkFun n 42 × n 42 × n

+ 108 + 113
MkInt 64 65 1.02
MkNone 15 21 1.40
MkString n 13 × n 13 × n

+ 133 + 140
MkTuple n 41 × n 41 × n

+ 63 + 66
MkVector n 41 × n 41 × n

+ 63 + 65
Pop 6 9 1.50
Push 6 9 1.50
PushVar 27 30 1.11
PushVarF 37 40 1.08
Raise 374 377 1.01
Return 112 116 1.04
Slide 41 44 1.07
SlideVar 58 63 1.09
Unpack 114 118 1.04

Figure 8.4: Experimental average and worst-case timings for HAM instructions

Instructions aiT Measured Ratio
bound WCET

Call 70 62 1.13
CopyArg 35 30 1.17
CreateFrame 72 57 1.26
Goto 3 2 1.50
If (true) 32 29 1.10
If (false) 32 26 1.23
MakeVar 36 31 1.16
MatchRule 22 23 0.96

Instructions aiT Measured Ratio
bound WCET

MatchVar 36 31 1.16
MkCon 2 242 170 1.42
MkFun 0 165 113 1.46
MkInt 91 65 1.40
MkNone 21 21 1.00
Push 11 9 1.22
PushVar 35 30 1.17
Slide 53 44 1.20

Figure 8.5: Quality of the aiT Analysis

measured worst-case (for Goto, representing a difference of only one clock cycle); the mean difference
is 22%, with a standard deviation of 16%. We conclude that the static analysis provides an accurate
upper bound on execution time.
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8.5 Simple Analysis Examples

In this section we present several examples of running our analysis on some simple Hume programs.
We first consider the costs of simple expressions and functions, then extend this to programs including
boxes.

For illustrative purposes, we have chosen to use the measured worst-case execution times for the
Renesas M32C/85 in this section rather than those obtained using the aiT tool. Since we have only
obtained analytical aiT timings for a relatively small subset of the HAM instructions, but have a
near-complete set of measured WCET timings, this approach allows us to cover a wider range of appli-
cations, and to demonstrate more features of our analytical framework and implementation. We would
emphasise that the figures given here are consequently only worst-case, and not formally guaranteed
bounds on execution time. However, we will easily be able to replace these timings with the analytical
timings, once they become available.

8.5.1 Example: factorial function

Our first example is the factorial function, implemented over floating point numbers rather than natural
numbers. We chose to use a floating point representation because such values are commonly used in
the computer vision domain that is one of our targets, and also because floating-point values tend to
be more difficult to handle in analyses than, for example, natural numbers. Additionally to annotating
all user-defined datatypes with potentials, as defined in the previous section, we employ a datatype-
independent interval analysis, which aims to statically deduce ranges for the possible value of a variable
at runtime, and propagate this information to the recursive call in the function body. Thus, we are able
to deal with recursion not restricted to special types such as natural numbers or linearly structured
datatypes such as lists, and in particular we can handle floats. A current limitation of the interval
analysis is its intra-procedural (or -functional) nature. We plan to extend it to cope with more complex
recursion patterns in the near future. The Hume code for the obvious factorial function is:

program

type _float = float 32;

fac n = if (n==0.0)
then 1.0
else n * (fac (n - 1.0));

expression (fac);

In the first stage of the analysis this code is translated into an intermediate format:

program

-- type of main
val main :: float, ->float
-- Functions
{fac :: float, ->float (n :: float) =
glet ?z_1 = 0.0
in glet ?z_2 = n==?z_1

in if ?z_2
then 1.0
else glet ?z_3 = 1.0

in glet ?z_4 = n-.?z_3
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in glet ?z_5 = (fac <> ?z_4)
in n*.?z_5}

-- Boxes
-- Expression:
(fac)

Desugaring the program into our core syntax produces a new function body for fac, where (possibly
nested) case expressions are used to match against given patterns (if any). Note that in this format
all functions are in let-normal-form, with internally created variables always starting with an ?.. Fur-
thermore, all overloaded binary operators have been instantiated with their monomorphic counterparts
(where *. stands for multiplication on floating-point numbers etc). Function calls are specially anno-
tated to indicated whether they have the specified number of arguments or are over- or under-saturated.
In this example, we see that we have a call to fac with the specified number of arguments (1), which
is indicated by the <> operator. The worst-case time consumption is given in terms of the following
(rich) type of the main function:

ARTHUR3 typing for resource "Time":
30, (float<1043>) -501/0-> float<59> ,0

This type indicates that, for an input value of n, the execution of the main function will require
1043n + 501 machine cycles, plus 30 cycles to set-up the main expression (for the other examples we
will ignore this set-up time). An interval analysis, which aims to statically deduce ranges for the
possible value of a variable at runtime, is performed on the floating-point variables, to generate linear
(in-)equality constraints. These constraints are then solved by a separate LP-solver.

We now analyse a variant of the factorial function, for which our heap inference was able to give
tighter bounds.

program

type _float = float 32;

fac :: _float -> _float;
fac 0.0 = 1.0 ;
fac n = n * (fac (n - 1.0));

expression (fac);

The only difference to the previous version is the use of top-level pattern matching rather than an
explicit conditional in the body. When translated to intermediate code this gives:

program

-- type of main
val main :: float, ->float
-- Functions
{fac :: float, ->float (?arg_11 :: float) =
case ?arg_11 of
(0.0) -> 1.0|
(n) -> glet ?z_1 = 1.0

in glet ?z_2 = n-.?z_1
in glet ?z_3 = (fac <> ?z_2)

in n*.?z_3



8.5. SIMPLE ANALYSIS EXAMPLES 133

esac}
-- Boxes
-- Expression:
(fac)

The key difference for the analysis is that now the variable n is used in only one branch, whereas before
it was used outside the recursion case, namely in the head of the conditional, as well. Such usage
requires a sharing of the associated potential and causes weaker bounds to be inferred.

For this version the rich type of the main expression is:

ARTHUR3 typing for resource "Time":
30, (float<785>) -245/0-> float<116> ,0

i.e. for an input n, in total 785n + 245 cycles are needed. So, we see a considerable improvement of
runtime (as well as heap usage) for this version, wheras only slightly more stack space is required. It
seems that this version is the clear winner in this head-to-head comparison.

8.5.2 Example: sum-over-list

The next example infers the costs for a list-traversing function, computing the sum over a list of float
values.

type _float = float 32;

data flist = Cons _float flist | Nil;

sum11 :: flist -> _float;
sum11 (Nil) = 0.0 ;
sum11 (Cons f fs) = f + (sum11 fs);

expression sum11;

The intermediate code for this example shows how a function with pattern matching is translated into
(possibly nested) case statements. The overloaded multiplication operation on Hume-level is instanti-
ated to a monomorphic *. over floats.

program

type flist = Cons {-2-} float flist | Nil {-0-}

-- type of main
val main :: flist, ->float

-- Functions
{sum11 :: flist, ->float (?arg_11 :: flist) =
case ?arg_11 of
((Nil)) -> 0.0|
(Cons f fs) -> glet ?z_1 = (sum11 <> fs)

in f+.?z_1
esac}

-- Boxes
-- Expression:
sum11
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Unsurprisingly the time consumption of the main expression, namely the function sum11, is linear in
the length of the input list, as shown by the following (rich) type:

ARTHUR3 typing for resource "Time":
30, (flist[934;float<0>,#|0]) -476/126-> float<0> ,0

For every Cons node of the list, represented as float<0>,# in the type, 934 cycles are needed to perform
the computation. In total, this gives a worst-case time consumption of 934n+ 476 for an input list of
length n.

8.5.3 Example: multiplication (box- vs expression-level)

One powerful technique to infer costs for complex (recursive) functions is to transform the program by
“lifting” functions from the expression-level to the box-level. This has been frequently used in the past
to cost Hume programs. The following example implements multiplication over floating-point numbers
in terms of repeated addition operations. By lifting the recursion to box level, and encoding the state
of the recursion in 3 wires, we obtain an iterative version with 2 boxes. The mult2 box drives the
computation by feeding the two input values that should be multiplied along the output wires iter1,
iter2 and iter3 to the worker box itermult. The latter takes input from wires i1, i2 and i3, and
uses the output wires iter1’, iter2’ and iter3’ to hold the state of the computation by feeding them
back to its own input wires iter1, iter2 and iter3.

program

type _float = float 64;

stream stdin1 to "std_in";
stream stdin2 to "std_in";
stream stdout to "std_out";

-- takes 2 floats as input and initialises the inputs
-- for the itermult box, which does the main work
box mult2
in (i::_float, j::_float)
out (iter1 ::_float, iter2 ::_float, iter3 ::_float)
match
(x,y) -> (0.0,x,y);

stream output to "std_out";

wire mult2 (stdin1, stdin2)
(itermult.i1,itermult.i2,itermult.i3);

-- computing (_,x,y,_,_,_,_) -> x*y, using the other last 3 inputs
-- and first 3 outputs as state via feedback wires
box itermult
in (i1::_float, i2::_float, i3::_float, iter1::_float, iter2::_float, iter3::_float)
out (iter1’::_float, iter2’::_float, iter3’::_float, r::_float)
match
(r,x,y,*,*,*) -> (r,x,y,*) |
(*,*,*,r,x,y) -> if y==0.0

then ( *, *, *, r)
else (r+x, x, y - 1.0, *);
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wire itermult
(mult2.iter1,mult2.iter2,mult2.iter3,itermult.iter1’,itermult.iter2’,itermult.iter3’)
(itermult.iter1,itermult.iter2,itermult.iter3,output);

It is easy to see that the computation in both boxes represents code on FSM Hume level, since no
recursion is used. Inferring the worst-case execution time we get the following rich type:

ARTHUR3 typing for resource "Time":

Box: mult2
?v_8: wire1float[1073;float<0>|*], ?v_9: wire1float[0;float<1659.5>|*]

---621/0--->
?v_1: wire1float[0;float<0>|*], ?v_2: wire1float[0;float<0>|*], ?v_3: wire1float[0;float<1659.5>|*]

Box: itermult
?v_1: wire1float[0;float<0>|*], ?v_2: wire1float[0;float<0>|*], ?v_3: wire1float[0;float<1659.5>|*],
?v_4: wire1float[0;float<0>|*], ?v_5: wire1float[0;float<0>|*], ?v_6: wire1float[796.5;float<1659.5>|*]

---3588.5/0--->
?v_4: wire1float[0;float<0>|*], ?v_5: wire1float[0;float<0>|*], ?v_6: wire1float[796.5;float<1659.5>|*],
?v_7: wire1float[0;float<0>|*]

In this case the time consumption of the itermult box is linear in the input wires ?v_3 and ?v_6.
Altogether for input y (along wire ?v_3) of size n and input y (along wire ?v_6) of size m 1659.5n +
1659.5m + 796.5 cycles are needed by the itermult box. This bound is in fact significantly weaker
than we had hoped for, and we are currently examining the exact reason.

To demonstrate the usefulness of our resource inference, we now look at a function, directly imple-
menting the computation as recursive program on the Hume expression level.

program

stream stdin1 to "std_in";
stream stdin2 to "std_in";
stream stdout1 to "std_out";
stream stdout2 to "std_out";

type _float = float 32;

dec :: _float -> _float;
dec x = x - 1.0;

mult :: _float -> _float -> _float -> _float;
mult r x y = if y==0.0

then r
else mult (r+x) x (dec y);

box mult13
in (i :: _float, j :: _float)
out (i’ :: _float, o :: _float)
match
(x, y) -> (1.0, mult 0.0 x y);
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Figure 8.6: Hume example: vending machine box diagram

wire mult13 (stdin1, stdin2) (stdout1, stdout2);

Now mult is a recursive function and the overall program is on PR Hume level. Still, we can derive an
upper bound for the box mult13, which directly calls this recursive function:

Solution has been written to file constraints.solved
ARTHUR3 typing for resource "Time":

Box: mult13
?v_1: wire1float[1428;float<0>|*], ?v_3: wire1float[0;float<1068>|*]
---621/0--->
?v_2: wire1float[0;float<0>|*], ?v_4: wire1float[0;float<0>|*]

The costs are linear in the second input and constant in the first input. For an input j (along wire ?v_3)
of size n the box needs 1068n + 1468 + 621 cycles. We see that with this inference, the programmer
can write much simpler code to implement the program, and still obtain upper bounds for the resource
consumption.

8.5.4 Example: vending machine

The next example simulates the behaviour of a simple drinks vending machine [? ]. A system diagram
is shown in Figure 8.6. We will show Hume code only for the most important 3 boxes of the system.
The control box (coffee) responds to inputs from the keypad box (inp) and the cash holder box
representing presses of a button (for tea, coffee, or a refund) or coins (nickels/dimes) being loaded
into the cash box. If a drinks button (tea/coffee) is pressed, then the controller determines whether
a sufficient value of coins has been deposited for the requested drink using the vend function. If so,
the vending unit (outp) is instructed to produce the requested drink. Otherwise, the button press is
ignored.

-- Vending machine example, (c) K.Hammond, University of St Andrews
-- after specification by Pieter Koopman, CEFP July 2005
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type _float = float 32;

data coins = Nickel | Dime;
data drinks = Coffee | Tea ;
data buttons = BCoffee | BTea | BCancel;

-- input handling box
box inp
in ( c :: char )
out ( coin :: coins, button :: buttons )
match

’N’ -> ( Nickel, * )
| ’D’ -> ( Dime, * )
| ’C’ -> ( *, BCoffee )
| ’T’ -> ( *, BTea )
| ’X’ -> ( *, BCancel )
| _ -> ( *, * ) ;

-- coffee vending box

vend :: drinks->_float->_float->(drinks,_float,_float);
vend drink cost v = if v >= cost then (drink, v-cost, *) else (*, v, * );

box coffee
in ( coin :: coins, button :: buttons, value :: _float )
out ( drink :: drinks, value’ :: _float, return :: _float )
match

( Nickel, *, v ) -> ( *, v + 5.0, * )
| ( Dime, *, v ) -> ( *, v + 10.0, * )
| ( *, BCoffee, v ) -> vend Coffee 10.0 v
| ( *, BTea, v ) -> vend Tea 5.0 v
| ( *, BCancel, v ) -> ( *, 0.0, v ) ;

showdrink :: drinks->(int 2);
showdrink Coffee = 0;
showdrink Tea = 1;

-- output handling box
box outp
in ( drink :: drinks, return :: _float )
out (d :: int 2, r :: _float)
match
( d, * ) -> (showdrink d, *)

| ( *, r ) -> (* , r)
;

stream stdout to "std_out";
stream stderr to "std_err";
stream stdin from "std_in";

wire inp ( stdin )
( coffee.coin, coffee.button );

wire coffee ( inp.coin, inp.button, coffee.value’ initially 0.0 )
( outp.drink, coffee.value, outp.return );
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wire outp ( coffee.drink, coffee.return )
( stdout, stderr );

Below we show only the interesting part of the generated intermediate code:

program

type wire1float = W1float {-1-} float| NOVAL1float {-0-}

type wire1int = W1int {-1-} int| NOVAL1int {-0-}

type wire1drinks = W1drinks {-1-} drinks | NOVAL1drinks {-0-}

type wire1buttons = W1buttons {-1-} buttons | NOVAL1buttons {-0-}

type wire1coins = W1coins {-1-} coins | NOVAL1coins {-0-}

type wire1char = W1char {-1-} char| NOVAL1char {-0-}

...

type bundle2coinsbuttons = B2coinsbuttons {-2-} wire1coins wire1buttons

type bundle3drinksfloatfloat = B3drinksfloatfloat {-3-} wire1drinks wire1float wire1float

...

type tuple2coinsbuttons = T2coinsbuttons {-2-} coins buttons

type tuple3drinksfloatfloat = T3drinksfloatfloat {-3-} drinks float float

...

type coins = Nickel {-0-}| Dime {-0-}

type drinks = Coffee {-0-}| Tea {-0-}

type buttons = BCoffee {-0-}| BTea {-0-}| BCancel {-0-}

-- Functions

{vend :: drinks,float,float, ->bundle3drinksfloatfloat (drink :: drinks) (cost :: float) (v :: float) =

glet ?z_21 = v>=cost

in if ?z_21

then glet ?z_22 = v-.cost

in glet ?q_23 = NOVAL1float

in glet ?w_58 = W1drinks drink

in glet ?w_57 = W1float ?z_22

in B3drinksfloatfloat ?w_58 ?w_57 ?q_23

else glet ?q_24 = NOVAL1drinks

in glet ?q_25 = NOVAL1float

in glet ?w_56 = W1float v

in B3drinksfloatfloat ?q_24 ?w_56 ?q_25;

... }

-- Boxes

val ?arg_00 :: bundle1char

box inp

in (?v_6 :: wire1char) -- bundle1char

out (?v_2 :: wire1coins) (?v_1 :: wire1buttons) -- bundle2coinsbuttons

match

case ?arg_00 of

(B1char (W1char (’N’))) -> glet ?z_9 = (Nickel)

in glet ?q_10 = NOVAL1buttons

in glet ?zz_0 = W1coins ?z_9

in B2coinsbuttons ?zz_0 ?q_10|

(B1char (W1char (’D’))) -> glet ?z_11 = (Dime)

in glet ?q_12 = NOVAL1buttons

in glet ?zz_0 = W1coins ?z_11

in B2coinsbuttons ?zz_0 ?q_12|

(B1char (W1char (’C’))) -> glet ?q_13 = NOVAL1coins

in glet ?z_14 = (BCoffee)

in glet ?zz_1 = W1buttons ?z_14

in B2coinsbuttons ?q_13 ?zz_1|

(B1char (W1char (’T’))) -> glet ?q_15 = NOVAL1coins

in glet ?z_16 = (BTea)



8.5. SIMPLE ANALYSIS EXAMPLES 139

in glet ?zz_1 = W1buttons ?z_16

in B2coinsbuttons ?q_15 ?zz_1|

(B1char (W1char (’X’))) -> glet ?q_17 = NOVAL1coins

in glet ?z_18 = (BCancel)

in glet ?zz_1 = W1buttons ?z_18

in B2coinsbuttons ?q_17 ?zz_1|

(B1char ?wild_55) -> glet ?q_19 = NOVAL1coins

in glet ?q_20 = NOVAL1buttons

in B2coinsbuttons ?q_19 ?q_20

esac

;

...

Note that in the intermediate code we do not have special data structures for tuples, vectors etc. All
these data structures are mapped into user-defined data structures, which are automatically inserted
at the begin of the program. To deal with values passed along wires between boxes, we automatically
generate 2 forms of datatypes in the intermediate code. A unary wire datatype, with a constructor of
the form W1<type> to represent the wire itself, and nullary constructor NOVAL1<type> representing the
absence of input. A bundle datatype collects all input- or output-wires of a box into one datatype. Both
forms need to be monomorphic in the current system and are therefore instantiated for all (combinations
of) types needed in the particular program. These data-structures are handled specially by the costing
module of the inference to avoid over-estimates due to the inserted constructors. With these in-place,
we can use the same inference machinery for boxes as is used for functions, in particular we can attach
potentials to the constructors of wire data-types. Also note, that in this intermediate code the names
of the wires between boxes match up, thus implicitly representing the connections between the boxes.
For the above example the inferred costs are:

ARTHUR3 typing for resource "Time":

Box: inp
?v_6: wire1char[1809;char|*]

---2603/0--->
?v_2: wire1coins[0;coins[0|0]|*], ?v_1: wire1buttons[1741;buttons[0|402|0]|*]

Box: coffee
?v_2: wire1coins[0;coins[0|0]|*], ?v_1: wire1buttons[1741;buttons[0|402|0]|*],
?v_5: wire1float[0;float<0>|*]

---4790/0--->
?v_3: wire1drinks[1104;drinks[0|207]|*], ?v_5: wire1float[0;float<0>|*],
?v_4: wire1float[626;float<0>|*]

Box: outp
?v_3: wire1drinks[1104;drinks[0|207]|*], ?v_4: wire1float[626;float<0>|*]

---1180/0--->
?v_7: wire1int[687;int|*], ?v_8: wire1float[0;float<0>|*]

In contrast to the situations for heap and stack, the time consumption is not constant over the inputs
(but it is independent of the size of the float value, as shown by the 0 potential in float<0>). On the
wire ?v_1 we see a cost of 402 cycles attached to the BTea case, whose processing expands to a call of
the function vend.

8.5.5 Example: core of Canny edge detection

As final example we take the computational core of the Canny edge detection algorithm [20], imple-
mented by the LASMEA partner group (see also EmBounded Deliverable 07 [134] on real-time testbed
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applications). The full algorithm detects edges in a 2-dimensional image, by comparing the contrast
values of neighbouring points in a window that is traversing the image. The core of this algorithm is a
function mapapply job limit next sr si img of type
(img->img) -> (img->img) -> (img->img) -> float -> float -> img -> img.
Here job describes the function that should be applied to each window, limit selects the window based
on the current position, next moves to the next position, sr and si are boundary values to prevent
the window from overruning the end of the image, and img is the image to process. This function is
instantiated several times in the Canny code with convolution operations using the Gaussian filters as
worker functions. The original Hume code for this function is:

mapapply job limit next sr si img =
if (sr<=si)
then (job (limit img)):(mapapply job limit next sr (si-1) (next img))
else [];

Several versions have been implemented, based on lists and vectors. As test case for the analysis we
chose a list-based version. We instantiate the function parameters with concrete functions to get a first
order version of the code (it should be noted, however, that the analysis itself can deal with higher-order
functions, but due to limitations of the translation into intermediate code, this hasn’t been used so far).
Also, to simplify the program we use a list of floats rather than a list of lists of floats, i.e. we consider
only a 1-dimensional image. The program we are analysing is this:

type _float = float 32;
data flist = NNil | CCons _float flist;

hd_flist :: flist -> _float;
hd_flist l =

case l of
(CCons h t) -> h;

tl_flist :: flist -> flist;
tl_flist l =

case l of
(CCons h t) -> t;

inc :: _float -> _float;
inc x = x + 1.0;

max3 :: flist -> _float;
max3 xs = case xs of (CCons x1 xs1) ->

case xs1 of (CCons x2 xs2) ->
case xs2 of (CCons x3 xs3) ->
if (x1<x2)
then if (x2<x3) then x3 else x2
else if (x1<x3) then x3 else x1;

take3 :: flist -> flist;
take3 xs = case xs of (CCons x1 xs1) ->

case xs1 of (CCons x2 xs2) ->
case xs2 of (CCons x3 xs3) ->
(CCons x1 (CCons x2 (CCons x3 NNil)));

next :: flist -> flist;
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next xs = tl_flist xs;

mapit :: _float -> _float -> flist -> flist;
mapit sr si l =
if (sr<=si)
then CCons (max3 (take3 l)) (mapit sr (si - 1.0) (next l))
else NNil;

expression (mapit);

Note that this program has a significantly more complex computational structure compared to the
vending machine in the previous section. By performing only one pass over the data structure we still
can hope to derive an upper bound using our approach of linear programming for solving the generated
constraints. Indeed, when we analyse the code we get the following upper bound:

ARTHUR3 typing for resource "Time":
30, (float<0>,float<567>,flist[0|4605;float<0>,#]) -4236/0-> flist[3891|0;float<0>,#] ,0

In total the mapit function takes 567m+ 4605n+ 4236 cycles for an input list of length n and a float
value si of size m. Again, the inference can capture linear bounds in several input arguments.





Chapter 9

Validation of Analysis Results

Steffen Jost and Kevin Hammond

Abstract

This chapter assesses the quality of the results produced by our prototype implementation of the pa-
rameterised worst-case execution time, stack- and heap-space analyses for Schopenhauer. We apply our
prototype implementation of the analyses to several example programs, half of them being theoretical
and half being practical program examples, and compare the obtained results with measurements of
test runs of these programs.

The upper bounds by our fully automatic space analysis tools prove to be highly accurate in al-
most all cases, especially for stack space. One program example, the RobuCAB messaging subsystem,
unfortunately requires some manual intervention to produce acceptable bounds on heap space usage.

The general simplicity of applying our prototype space analysis tools and the good quality of the
results produced is very encouraging and shows the maturity of the tools that we have produced to
support our analyses.
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9.1 The parameterised time, heap- and stack-space analyses

Our analysis is defined formally as a set of type rules for Schopenhauer expressions, in the form:

Σ; Γ t
t′

p
p′

m
m′ e : A | ψ

where e is a Schopenhauer expression of type A, Σ and Γ define the typing context for the e. If all
constraints in ψ are satisfied, then the execution of e will succeed when at least t time, p stack- and
m heap-units were available at the start of the execution1. Furthermore, t′ time, p′ stack- and m′

heap-units will be unused after e has been evaluated.
In essence, every valuation v that satisfies all constraints within ψ gives rise to a linear cost formula

bounding from above the space requirements to evaluate the Schopenhauer expression e.
These type rules (Chapter 7) were encoded to give an automatic time and space analysis for Schopen-

hauer expressions that takes an expression and contextual information as its inputs, and produces a
parameterised typing with its associated constraints. The constraints are then solved by a standard
constraint solver, whose solutions allow the generation of the linear cost formula as the output of the
analysis.

9.1.1 How the Analyses Works

To recapitulate, our analyses work as follows:

a) The Schopenhauer program to be analysed is first translated into a simplified subset of Schopen-
hauer, which we refer to as Core-Hume. This pre-processing exposes several compiler decisions
and removes any ambiguity for the evaluation order of sub-expressions. This translation also
clearly exposes all stack operations from source language constructs, removing any ambiguities
in the source language which are traditionally decided by the compiler. This knowledge then
enables us to determine rigid bounds on stack usage by our analysis. Note that from a theoretical
viewpoint Core-Hume must still be regarded as a high-level language, albeit a de-sugared2 one, as
opposed to a bytecode or machine-level language. The entire process is described in Chapter 7.

Note that in order to obtain a useful WCET bound, we also need precise knowledge about the
memory configuration, since each memory operation will also have an associated time cost. There-
fore the main contribution of the translation is to expose stack operations from source language
constructs.

b) The Core-Hume program is then analysed by our amortised WCET and space analyses. Our
amortised analysis is type-based and thus first constructs a standard type derivation. All occurring
types are then enriched by inserting resource variables ranging over the non-negative rational
numbers, denoting potential. Afterwards all annotated type rules, are then matched to the
unannotated counterparts and the arising constraints among the resource variables are gathered.
These gathered constraints form a linear constraint program, containing parameters for differing
actual costs (e.g. heap- or stack-space costs).

c) In order to solve this linear program, the cost parameters must be instantiated with reliable
values for the target architecture of interest. These are taken from the Schopenhauer operational
semantics (Chapter 6). We have used AbsInt’s aiT tool to determine WCET bounds for individual
HAM instructions on the Renesas M32C/85U microprocessor. Although the aiT tool is a powerful
and sophisticated tool that requires a trained user, the cost parameters for each HAM instruction
only need to be determined once per target architecure.

1in addition to the potential of Γ, which is always zero at top level
2in the sense that a Human would not want to write Core-Hume by Hand
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The analyses for WCET, heap- and stack-space usage are performed independently: We simply
rerun this step, exchanging the cost parameter table according to the desired resource, i.e. either
the cost parameters for heap-space or stack-space usage.

d) The linear program is then solved using a standard LP-solver. The complexity of the linear
programs that we generate is not a problem for current LP-solver technology and can be solved
efficiently.

The solution to the linear program then gives rise to an annotated typing of the original program.
This annotated typing in turn allows bounds on WCET, stack- and heap-space consumption to
be computed as a simple linear formula over the program’s principal input sizes. The generation
of this human-readable cost formula has been done by hand here, but we have now automated
this feature.

Step a) has already been incorporated into the prototype Schopenhauer to HAM compiler, since it
is dependent on several compiler decisions. Essentially it branches out an intermediate form of the
program along its compilation process, augmented by several annotations to safe redundancies (e.g. the
number of variables contained in a pattern match, etc.).

The implementation of Steps b)–d) has been written as a standalone tool in Haskell, a modern,
powerful functional language [39, 44] [79]. Thanks to using comprehensive cost parameters that cater
for all imaginable occasions, the implementation of Step b) is entirely generic. These cost parameters
are instantiated using an appropriate cost table, which can be for time or space, or other metrics, as
required. For the remainder of this document we shall be concerned with the cost tables for stack- and
heap-space consumption, as described by the operational semantics from Chapter 6. and verified by the
cost model (Chapter 5). These actual cost parameters, as used in the remainder of this chapter, repre-
sent the space costs for executing Schopenhauer code on the Renesas M32C/85U processor. However,
unlike the cost parameters for worst-case execution time, these cost parameters only depend marginally
on the target architecture, since space management is largely due to the design of Schopenhauer and its
compiler. Therefore the presented results are likely to hold for a vast number of similar architectures.

The final step (Step d), solving and interpreting the linear program, is also automatically performed
by our prototype analysis tool. The generated linear programming problem is solved by calling a
standard external LP-solver (lp-solve [10]), which is available under the GNU Lesser General Public
License.

During execution of the analysis, the generic cost parameters, concrete cost parameters for WCET,
heap- and stack-space and the constraints that are generated are all saved to files in a human readable
format. This gives the user the opportunity to verify and understand the analysis process, if required.

9.1.2 Assessing the quality of the results

Our analysis yields a formally guaranteed upper bound on the worst-case execution time, and the stack-
and heap-space usage for the analysed program. However, obtaining a poor upper bound may result
in an overly conservative use of resources, and we therefore want to minimise any discrepancy between
our predicted bound and the actual WCET and space usage of a program. A perfect analysis would
produce bounds which are matched precisely by at least one test run.

However, such perfect results are unlikely to be obtained for the following reasons:

1) In general, it is undecidable whether all computational paths through a program are in fact valid
or not. This is a well-known problem and our analysis does not even attempt to solve it. For
example, in the expression

if FALSE then 〈high-cost〉 else 〈low-cost〉
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our analysis will not recognize that the then-branch is never executed and will use high-cost as
the overall cost of the entire expression.

While it might initially appear desirable to recognize such trivial instances in a more sophisticated
version of our analysis, simple cases such as this can easily be recognized by a simple optimizing
compiler and can thus be eliminated from the input to the analysis. However, recognizing all
dead computational paths accurately is not possible in general.

2) The cost parameters that are obtained using the aiT tool for each HAM instructions are them-
selves already individual worst-case bounds, with some margin of inaccuracy. It follows that
summing these individual costs will lead to some over-estimation of the actual WCET. For exam-
ple, on the Renesas M32C/85U processor reading or writing data at an odd memory address takes
one more clock cycle than reading or writing data at an even address. Since we may not know the
actual runtime memory addresses, we conservatively assume that each read/write operation may
refer to an odd address. Although this assumption leads to a guaranteed upper bound on WCET,
it is highly unlikely that we would encounter a program where every memory access was to an
odd address. While this particular issue could be resolved by careful code generation/memory
mapping, there are many other, similar examples which are not so easily resolved.

3) Even if we were to obtain the actual least upper bound on execution time, we still might not be
able to generate test cases that would expose this cost.

4) Some usage may depend on parametes other than input size. For example, stack-space usage
often depends on the depth of the data rather than its overall size.

Fortunately, the analysis is capable of warning us where such an imprecision might occur, and as
opposed to worst-case execution time, such instances are rare enough for space usage in order to help
us in the generation of actual worst-case test cases for stack- and heap-space usage, thus lessing the
impact of this particular problem. The test results in the following pages show that our space analyses
deal very well with these problems, and that surprisingly only the last of the described problems is
likely to apply.

Our approach is to apply our prototype implementation of our analyses to several testbed programs.
We will then measure their worst-case runtime on varying test inputs and use these to validate the
analysis results we obtain. The measurements for heap- and stack-space usage of the simple examples
in Sections 9.2 and 9.3 were performed by using the cost model described in Chapter 5. Unlike for
worst-case execution time, the cost model is exact for heap- and stack-space costs, as shown in our
validation of the cost model (EmBounded Deliverable D28 [96]). The high precision of the cost model
is unsurprising, since the cost-counting instrumentation has full access to the run-time heap and stack.
Using the cost model for obtaining the space measurements therefore obsoletes the need for time
consuming tedious test runs using an actual Renesas M32C/85U board. Exploiting the cost model in
this way was highly beneficial for the completion of the work described here.

Unfortunately, the examples discussed in Sections 9.5 and 9.6 depend on further hardware. Hence
for these the heap- and stack space usage had to measured on the actual Renesas M32C/85U board.
This also means that we could not search for a test case that actually exhibited true worst-case space
usage behaviour. Instead, we only have the worst-case space usage that occurred during the normal
operation – which may or may not included the worst-case, the last of the three problems described
above.

Another important advantage over worst-case execution time is the deterministic nature of space
consumption. For a specific input a single test run suffices already to determine the overall space usage
accurately.
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9.2 Example: Simple Photographer

type _smallint = int 16; -- Type declarations
type _bool = int 1;
type _pos = (_smallint, _smallint);

data _op = P | L | R | U | D; -- Camera instructions

pos_initial :: _pos -> _bool;
pos_initial (xpos, ypos) =
if xpos==0 && ypos == 0 -- Test whether camera is
then 1 -- in neutral position (1)
else 0; -- or not (0).

action :: (_smallint, _smallint, [_op], [_pos]) -> ([_pos], _bool);
action (xpos,ypos,rest,aps) =
case rest of
[] -> (aps, pos_ok (xpos, ypos)) -- (1) end

| (P:xs) -> step (xpos, ypos, xs, ((xpos,ypos):aps)) -- (2) take picture
| (L:xs) -> step (xpos-1,ypos, xs, aps) -- (3) turn left
| (R:xs) -> step (xpos+1,ypos, xs, aps) -- (4) turn right
| (U:xs) -> step (xpos, ypos-1, xs, aps) -- (5) tilt upwards
| (D:xs) -> step (xpos, ypos+1, xs, aps); -- (6) tilt downwards

Figure 9.1: Simple Photographer Example

This first example is sufficiently simple to permit in-depth study: a code snippet that processes a
list of operations for simulating the capture of photos with an electric pan & tilt camera. The camera
can be tilted up and down or turned left and right in in fixed-size increments. The current orientation
of the camera is represented by two integers. Furthermore the camera can be instructed to take a
picture at the current position. So this simple example code snippet can be imagined to be a tiny part
in a more complex program, for example to track a moving object. Similar applications might be found
in control settings, such as the controller of a circuit board drilling robot, etc. The commented HUME
code is shown in Figure 9.1 and the automatically-produced Core-Hume program that was fed to the
analysis is shown in Appendix 9.7.1.

The function action takes as its input the current orientation of the camera, a list of instructions
and an accumulator of camera orientations (i.e. a protocol of past operations). The datatype of camera
instructions consists of 5 elements: P for capturing a picture at the current position; L and R to turn
left and right; and U and D to tilt up and down respectively.

Executing the function action processes the given list of instructions in a tail-recursive way, using a
6-way case discrimination on the command issued: if a command to move the camera is issued (L, R, U or
D), then the orientation is adjusted accordingly; if the command P is given (meaning that a photograph
should be taken), then the current position is added to the list of positions at which photographs have
already been taken (aps), and if there are no further actions, then the machine stops, having first
checked that that the camera has now returned to its initial position (0, 0).

For example, action(0,0,[R,R,U,P,L,P,L,P,D],[]) specifies that the camera starts with the
initial orientation (0, 0) and should first rotate right twice, then tilt upwards, take a picture, turn left,
take a picture, turn left once more, taking a third picture and eventually tilting downwards again.
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ARTHUR3 typing for HumeHeapBoxed:
pos_ok:
(tuple2intint[T2intint<0>:int,int]) -(12/0)-> int

action:
(tuple4intintlist1_oplist1tuple2intint[
T4intintlist1_oplist1tuple2intint<0>:
int,
int,
list1_op[
C1_op<10>:_op[L<0>|R<0>|P<4>|U<0>|D<0>],#|
N1_op<20>],

list1tuple2intint[
C1tuple2intint<0>:tuple2intint[T2intint<0>:int,int],#|
N1tuple2intint<0>] ] )

-(0/0)->
tuple2list1tuple2intintint[
T2list1tuple2intintint<0>:
list1tuple2intint[
C1tuple2intint<0>:tuple2intint[T2intint<0>:int,int],#|
N1tuple2intint<0>],

int]

Figure 9.2: Raw output of heap-space analysis for the Photographer example

Hence the call will evaluate to ([(2,-1),(1,-1),(0,-1)],True), meaning that the camera took three
pictures at the orientations (2,−1), (1,−1) and (0,−1) and returned to its initial position afterwards.

9.2.1 Assessing the quality of the heap-space bound

Running the space analysis with the Renesas M32C/85U cost parameters for heap space usage directly
yields the output shown in Figure 9.2. In order to obtain this output, the analysis generated a constraint
set consisting of 199 proper constraints over 351 variables. Solving such a small and sparse constraint
set is a trivial task for any current LP-solver, which are easily capable of dealing with problems that
may be a thousand times larger. The time required to perform the entire analysis for this example on
a contemporary Laptop, including the constraint solving, is very small (≤ 0.06s) and dominated by the
IO-operations to read the Schopenhauer program from the harddisk and to write the constraint set to
the harddisk. We will thus discuss the runtime of the analysis only for the larger program examples in
Section 9.5 and Section 9.6.

The output in Figure 9.2 requires a little practice to read, but it can be straightforwardly be
transformed into a simple linear cost formula for each function. We first see that each call to the
auxiliary function pos_ok will consume 12 heap units, regardless of the input provided. However, this
result is uninteresting as this cost is also entailed in the cost formula for the main function action,
which eventually calls function pos_ok. The cost formula for function action can be more easily read
in the following simple form:

20 + 14 ·#P + 10 ·#L + 10 ·#R + 10 ·#U + 10 ·#D (9.2.1)

where #P denotes the number of P-instructions, #L denotes the number of L-instructions, etc., which
are contained in the input of the call to main function action.
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Note again that the above formula represents the worst-case heap space consumption incurred by a
completed call to function action. This includes the cost of all subsequent calls, both recursive calls to
itself as well as calls to other function, in this case only pos_ok, which by itself consumes 12 heap units
per call. It does not entail the heap space occupied by the input. The analysis can be instructed to
cost the setup of a certain input as well, in which case the result is a single constant number. In other
words, analysing a function like action yields an implicit cost formula, while analysing an expression
like action(0,0,[L,P,R],[]) automatically applies that cost formula to the provided input and returns
a single number. This single number then also includes the cost of generating the provided input in the
first place. For example, the input action(0,0,[L,P,R],[]) occupies 32 heap units: 2 heap units for
each (boxed) integer constant, 20 heap units for the command list [L,P,R], 2 heap unit for the (boxed)
empty list of integer pairs, and 6 heap units for the quadruple itself that stores the pointers to these
four objects. In general each n-tuple requires 2 +n heap units for storage, since all values are boxed in
the underlying memory model chosen for Schopenhauer. A list of length n requires 2 + 4n heap units
for storage, plus the heap required to store the boxed objects, as the list itself only holds the pointers.
Since a command instruction occupies 2 heap units, a command list of length n requires 2 + 6n heap
units in total, thus 20 for a command list of length 3.

In order to assess the quality of out space analyses, we have applied the analysis once to obtain the
general cost formula as shown above (9.2.1). We then executed the Schopenhauer code several times
with different concrete inputs and measured the actual consumption. Note that unlike for worst-case
execution time, running the program for a specific input once is enough to determine both the heap-
and stack-space usage exactly. From the measured figure, we deducted the cost for generating the input
and compared that value to the bound derived from the general cost formula for the cost incurred by
the call to the function. For added safety and to ensure that the we deducted the corrected amount,
we also ran the analysis once more for the complete call including the specific input.

Function Input Heap Usage Analysis Bound Ratios
Actual Heap Size Overall Call Overall Call Overall Call
[] 14 34 20 34 20 1.0 1.0
[P] 20 54 34 54 34 1.0 1.0
[D] 20 50 30 50 30 1.0 1.0
[D,P] 26 70 44 70 44 1.0 1.0
[D,P,U] 32 86 54 86 54 1.0 1.0
[P,P,P,P,P] 44 134 90 134 90 1.0 1.0
[U,U,U,U,U] 44 114 70 114 70 1.0 1.0
5P 3L 3R 2U 2D 104 294 190 294 190 1.0 1.0
72P 176{L,R,U,P} 1502 4290 2788 4290 2788 1.0 1.0
72P 178{L,R,U,P} 1514 4322 2808 4322 2808 1.0 1.0

Table 9.1: Heap-space analysis results for Photographer example

The result is shown in Table 9.1: the first two columns shows the specific input together with the
number of heap units required to store that input (the last three entries were shortened by only listing
the number of occurrences of each command – the actual order showed to be irrelevant anyway); the
next column, “Heap Usage Overall” shows the measured consumption, immediately followed by “Heap
Usage Call” which is simply the overall amount minus the input size; Column “Analysis Bound Overall”
shows the bound obtained by the individual analysis run, including the cost of generating the input;
Column “Analysis Bound Call” shows the bound as calculated from the general formula obtained by
the initial single run of the analysis, which did not know which input would be applied, so this is the
important column; and the last two columns show the ratios for convenience.
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ARTHUR3 typing for HumeStackBoxed:
pos_ok:
(tuple2intint[T2intint<0>:int,int]) -(9/9)-> int

action:
(tuple4intintlist1_oplist1tuple2intint[
T4intintlist1_oplist1tuple2intint<0>:
int,
int,
list1_op[
C1_op<0>:_op[L<0>|R<0>|P<0>|U<0>|D<0>],#|
N1_op<5>],

list1tuple2intint[
C1tuple2intint<0>:tuple2intint[T2intint<0>:int,int],#|
N1tuple2intint<0>] ] )

-(19/23)->
tuple2list1tuple2intintint[
T2list1tuple2intintint<0>:
list1tuple2intint[
C1tuple2intint<0>:tuple2intint[T2intint<0>:int,int],#|
N1tuple2intint<0>],

int]

Figure 9.3: Raw output of stack-space analysis for the Photographer example

The result shows that the heap space consumption for the Photographer program example can
be predicted exactly in all cases. The reason for this perfect result is that each possible branch of
computation is associated with an individual element of the input. This allows for the existence of an
exact linear formula to describe the overall heap space usage in the same form as the formulas produced
by our analysis tool. The analysis thus demonstrates that is indeed capable of finding this formula.

9.2.2 Assessing the quality of the stack-space bound

Repeating the analysis with the stack space cost parameters for the Renesas M32C/85U yields the
output shown in Figure 9.3, which required solving 223 proper constraints over 399 variables, an
excerpt of which is shown in Appendix 9.7.2, followed by an excerpt of one of the debug trace outputs
generated during the analysis process.

The stack-space cost formula for the main function action reduces to the single constant 24, i.e.
the stack space usage does not depend on the given input in any way according to our analysis.

The overall maximum stack size measured is 31, which turns out to be indeed independent of the
input as predicted. Again, we have to deduct the stack space required for the initial setup and the
generation of the input. It turns out that a maximum of 10 stack units is required to generated an input
having a command list of arbitrary length. Of these 10 stack units, three are reclaimed by generating
the quadruple (whish pop 4 pointer and pushes one) immediately before the call, thus revealing that
the maximum stack space usage of the call is indeed 24 as predicted by our analysis.

Similarly to the previous section assessing heap-space usage, we applied the analysis also to the full
program expression containing the input generation. Again, it accurately predicts a maximum stack
usage of 31 units in accordance to the measurements.

For consistency we repeat the cost/measurement-table for stack space usage in Table 9.2, but omit
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Function Input Maximum Stack Analysis Bound Ratios
Actual Max Stack Overall Call Overall Call Overall Call
[] 10 31 24 31 24 1.0 1.0
[P] 10 31 24 31 24 1.0 1.0
[D] 10 31 24 31 24 1.0 1.0
[D,P] 10 31 24 31 24 1.0 1.0

. . .
...

...
...

...
...

...
...

72P 176{L,R,U,P} 10 31 24 31 24 1.0 1.0
72P 178{L,R,U,P} 10 31 24 31 24 1.0 1.0

Table 9.2: Stack-space analysis results for Photographer example

ARTHUR3 typing for resource "TimeM32":

pos_ok: (tuple2intint[T2intint:0;int<0>,int<0>]) -(1288/0)-> int<3>

action:
(tuple4intintlist1_oplist1tuple2intint[

T4intintlist1_oplist1tuple2intint<0>:
int<0>,
int<0>,
list1_op[
C1_op<2013>:_op[P<27>|L<0>|R<263>|U<526>|D<789>],#
|N1_op<790>],

list1tuple2intint[
C1tuple2intint<0>: tuple2intint[T2intint<0>:int<0>,int<0>],#
|N1tuple2intint<0>]])

-(2115/0)->
tuple2list1tuple2intintint[
T2list1tuple2intintint<0>: list1tuple2intint[
C1tuple2intint<0>:tuple2intint[T2intint<0>:int<0>,int<0>],#
|N1tuple2intint<0>],

int<3>]

Figure 9.4: WCET analysis for the Photographer example

several trivially repeated rows. Again, the analysis accurately predicts the maximum stack space usage
of the program in all cases.

9.2.3 Assessing the quality of the WCET results

The automatically-produced Core-Hume program that was input to the analysis is shown in Ap-
pendix 9.7.1. Running the WCET analysis with the Renesas M32C/85U cost parameters yields the
output shown in figure 9.4. In order to enhance generalities, these figures are given as multiples of the
basic clock cycle used by the processor. Since we are using a 32MHz version of the M32C/85U, absolute
execution times in seconds can be obtained by multiplying the number of clock cycles by 3.125 · 10−5.

The constraint set contains 224 constraints over 409 different variables. Solving this is a trivial



9.2. EXAMPLE: SIMPLE PHOTOGRAPHER 153

task for any current LP-solver, which are easily capable of dealing with problems that may be a
thousand times larger. The annotated type printout that is returned from the analysis presently requires
some practice to decipher. The lengthy function names were introduced by the automated translation
from Hume to Core-Hume, and include full type information, as in the JVM. Every function arrow is
annotated with two values: the first value denotes the maximum number of clock cycles that are required
when computing the function, the second value denotes at least how many of these remain unused once
the computation is finished. These values correspond to the potentials that are manipulated by our
formal definition of the analysis. For example, the annotation -(x/y)-> means that the function
requires at most (x − y) clock cycles to compute. The second value is mainly needed for function
composition, and is usually zero for the WCET analysis. We will see a use for the second annotation
in the next example (Section 9.3).

We can see from the output that a call to the function pos_ok takes at most 1288 cycles (the first
value annotation on the arrow of the function’s type).3 We do not need to worry about the cost of
pos_ok, since this function is only called by the main function action, whose WCET already accounts
for all subsequent calls to other functions, including tail calls to itself. However, the numbers on the
arrow only denote the input-independent part of the WCET bound. The total WCET for a function
also contains an input-dependent part (the values enclosed in angle brackets in Figure 9.4). These
values represent the weight that each individual argument has with respect to the overall WCET for
that function. These weights can be straightforwardly translated into the simple linear formula

2905 + 2040 ·#P + 2013 ·#L + 2276 ·#R + 2539 ·#U + 2802 ·#D

where #P denotes the number of P-instructions, #L denotes the number of L-instructions, etc., which
are contained in the input of the call to action. The formula is computed by simple addition from the
annotations given in figure 9.4: We see there that processing each element of the instruction list costs
at most 2013 clock cycles, plus a certain amount depending of the actual instruction. For example,
processing an R instruction requries an additional 263 cycles, yielding a total of 2276 as shown in the
formula. While it might be expected that the final four cases (L, R, U and D) would all give identical
results, since their code is identical, the general pattern-matching code requires earlier patterns to have
been tested, and failed to match before later ones are tried. Reordering the rules would therefore change
the cost assigned to each instruction. The fixed value of 2905 clock cycles for the action function as
a whole, consists of the 2115 cycles from the arrow annotation plus a weight of 790 for the [] that
terminates each sequence of actions.

For example, the call action(0,0,[R,R,U,P,L,P,L,P,D],[]) will complete in at most 22944 =
2666 + (3 · 2040) + (2 · 2013) + (2 · 2276) + (1 · 2539) + (1 · 2802) clock cycles. We have verified that the
automatic WCET analysis for this code snippet corresponds to our formal analysis by performing the
same analysis by hand. We will now investigate how our theoretical WCET bound relates to actual
measured worst-case execution times. More details on how we actually derive our cost values in given
in Sections 9.7.2 and 9.7.4.

3The annotation int<3> also shows that the call needs three cycles less if True is returned: the else-branch requires
three additional clock cycles to allow for the unconditional branch around the then-branch.
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9.3 Example: List Folding

-- Program: sum over list-of-floats
-- Variant: using high-order function fold

type num = float 32;
--type num = int 32;

add :: num -> num -> num;
add x y = x + y;

fold :: (num -> num -> num) -> num -> [num] -> num;
fold f n [] = n;
fold f n (x:xs) = fold f (f x n) xs;

sum :: [num] -> num;
sum xs = fold add 0 xs;

Figure 9.5: Summing lists using the higher-order fold function

Our second simple example is the standard folding function over lists (also known as the reduce
function): fold f n xs applies function f across every element in xs, plus an accumulated result for
the rest of the list, starting with the value n. For example, we can define the function sum that sums
lists of numbers as fold add 0 xs, or the function product as fold times 1 xs. This function is
interesting in determining that our analysis works for higher-order definitions (fold is parameterised
on function f) as well as first-order definitions. The corresponding Schopenhauer program is shown in
Figure 9.5.

We performed the analysis twice, once for summing integers and once for floating-point numbers.
However, the results were identical, since a float occupies the same amount of heap space as an integer
in our current memory management system. Even if the sizes would differ, stack space usage would
remain unaffected, since all values are boxed and the size of a pointer does not depend on the object it
is pointing to.

Furthermore there is no effect on the actual numbers used, hence for the remainder of this section,
we will distinguish the input only by its length, i.e. the length of the list of numbers that is to be
summed up.

9.3.1 Assessing the quality of the heap-space bound

ARTHUR3 typing for HumeHeapBoxed:

add: (int,int) -(2/0)-> int

fold: ((int,int) -(0/0)-> int, int, ?list1int[?C1int<0>:int,#|?N1int<0>])
-(0/0)-> int

sum: (?list1int[?C1int<2>:int,#|?N1int<0>]) -(6/0)-> int

Figure 9.6: Raw output of heap-space analysis for the list-folding example

The output of applying our analysis for heap space usage to the example provided the output shown
in Figure 9.6. The constraint set generated contained about 66 constraints over 135 variables. For a
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number list of length n we thus obtain the simple heap space cost formula

6 + 2n (9.3.1)

for running the function sum. It is noteworthy that the individual analysis of the fold function shows an
argument function having zero heap usage costs, while function add, which will fill the argument role,
shows a cost of two. There are always several annotations admissible by the constraint sets produced by
the analysis. The reported results always try to show numbers as low as possible. Plugging functions
together, like applying add to fold will restrict the number of possible choices for the annotated type
of fold. Inndeed, we obtain

fold add : (int,?list1int[?C1int<2>:int,#|?N1int<0>]) -(0/0)-> int

for this as expected. However, it is important to note that each function is analysed only once! Each
individual use of a function simply produces another copy of the constraints that had been generated
for that function, allowing a differing annotated type.

For evaluating the measurement, we have to deduct the cost of creating and storing the input in
the first place again. This cost is 2 + 6n for a list of number of length n, consisting of 2 heap units for
the single list end element, 4 heap cells for each list node that holds two pointers and another two heap
cells for the actual number stored.

Also as for the previous example, we again applied the analysis to the full expression as well, i.e.
including the cost of the creation of the input in the analysed code.

Function Input Heap Usage Analysis Bound Ratios
Length Heap Size Overall Call Overall Call Overall Call
0 2 8 6 8 6 1.0 1.0
1 8 16 8 16 8 1.0 1.0
2 14 24 10 24 10 1.0 1.0
3 20 32 12 32 12 1.0 1.0
4 26 40 14 40 14 1.0 1.0
5 32 48 16 48 16 1.0 1.0
50 302 408 106 408 106 1.0 1.0

Table 9.3: Heap-space analysis results for list folding example

The results are shown in Table 9.3 and again the heap space analysis is flawless, despite the use of
high-order functions, which make use of resource parametric resource by necessity.

9.3.2 Assessing the quality of the stack-space bound

Similarly applying our analysis for stack space usage produces the annotated typing as shown in Fig-
ure 9.7. The constraint set generated contained about 76 constraints over 79 variables. The number of
variables is much lower as for heap space usage, since this time we choose to omit the introduction of
slack variables. This is a fine-tuning that happens to provide a slightly better annotated typing in this
instance.

The constraint set usually allows many different annotated typings, each describing an admissible
cost formula. Solely for the purpose of conveying this information to a human, the analysis employs an
heuristic which tries to find the “best” annotated typing. We are forced to use an heuristic here, since
examples can be constructed were “best” depends on additional knowledge – mostly our intentions on
how to use a program.
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ARTHUR3 typing for HumeStackBoxed:

add: (int,int) -(8/9)-> int

fold: ((int,int) -(0/ANY)-> int,int,?list1int[?C1int<0>:int,#|?N1int<0>])
-(14/16)-> int

sum: (?list1int[?C1int<0>:int,#|?N1int<0>]) -(27/27)-> int

Figure 9.7: Raw output of stack-space analysis for the list-folding example

This heuristic also shows in the individual typing of function fold, containing the value ANY, which
stands for any arbitrary positive number. The meaning that that fold has the best resource usage if it
is given a function as an argument, that requires no additional stack space to run, but is miraculously
capable of freeing an arbitrary amount of stack space upon completion. Clearly, such a function cannot
exist. However, this does not imply that there is no admissible cost formula if we provide a function like
add, which requires 8 additional stack units to run and frees up 9 afterwards (by popping its arguments
from the stack, add is capable of lowering the current stack-space usage in effect by one). In fact, such
an annotated typing does exist, since otherwise there would be no annotated typing for sum.

Note however that influencing the heuristic which simply choose an annotated typing among many
admissible ones is a non-essential tweak. As we have seen in the previous subsection, plugging functions
together will usually reduce the set of admissible annotated typings already enough for the heuristic to
choose the “best” solution among all possible annotated typings. For example, for an expression which
evaluates to a base value, such as sum[1,2,3], the cost formula is just a constant. Clearly, the best
constant cost formula for the upper bound on resource usage is the least upper bound, i.e. the smallest
constant.

According to the result in Figure 9.7 above, summing a list of numbers requires at most 27 stack
units, regardless of the length of the list to be summed up. So in this case the result is a constant cost
formula.

Again for evaluating the measurement, we have to deduct the cost of creating and storing the input
in the first place again. The basic setup require 6 stack space units, plus 1 if the input is just an empty
list and plus 2 if the input is a non-empty list of arbitrary length. However, in the latter case one stack
space might be reclaimed immediately before the call, therefore we always may deduct 7 stack space
units from the overall figure for the cost which is related to the call only.

Also as for the previous example, we again applied the analysis to the full expression as well, i.e.
including the cost of the creation of the input in the analysed code.

Function Input Maximum Stack Analysis Bound Ratios
Length Max Stack Overall Call Overall Call Overall Call
0 7 24 17 24 27 1.00 1.59
1 8 34 27 34 27 1.00 1.00
2 8 34 27 34 27 1.00 1.00
3 8 34 27 34 27 1.00 1.00
4 8 34 27 34 27 1.00 1.00
5 8 34 27 34 27 1.00 1.00
50 8 34 27 34 27 1.00 1.00

Table 9.4: Stack-space analysis results for list folding example
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add : (int,int) -(565/0)-> int
fold : ((int,int) -(832/169)-> int,int,list1int[

C1int<1620>:int,#|N1int<76>])
-(563/169)-> int

sum : (list1int[C1int<1620>:int,#|N1int<76>]) -(987/0)-> int

Figure 9.8: WCET analysis results for summing integers

The comparison of the stack space analysis with the actual maximum stack usage is shown in
Table 9.4. The analysis is exact, if it is also provided with the input for the computation. The generic
cost formula obtained by a single run of the analysis, which had no knowledge about the input, is exact
in all cases, except for the empty input list, in which case it safely overestimates stack usage by less
than 60%.

This overestimation is due to the heuristic choosing the generic formula. Running the analysis with
default option of inserting slack variables that are to be minimised in all inequalities yields the cost
formula 17 + 11n, where n is the length of the input list. This formula is exact for the empty list, but
otherwise rather bad. The problem is that our heuristic for choosing a solution among all admissible
one treats both cases as equal, so at one time we eliminate the imprecision for the case where the empty
list is received and at the other we eliminate the imprecision for the case where the non-empty list is
received. As a result of this investigation, the option of not introducing slack variables has become the
default for stack-space analysis.

9.3.3 Assessing the quality of the WCET results for the List folding examples

We performed the analysis twice, once for integers (Figure 9.8) and once for floating-point numbers.
(Figure 9.9). We see that summing a list of n integers on the Renesas M32C/85U processor takes at
most 1063 + n · 1620 clock cycles. Summing a list of n floats similarly requires at most 1071 + n · 2610
clock cycles. The constraint sets generated contained about 60 constraints over 125 variables.

It is interesting to observe that there is a difference of 267 clock cycles between using add on its own
and as an argument of fold, regardless of the type of number that is being summed. This is because
add can only be given as an argument to fold once it is turned into a function closure, and this has
some cost (267 clock cycles in this instance).

Table 9.5 gives WCETs for both integer and floating-point summations on the M32C/85U, compar-
ing the measured WCET against that predicted by the analysis. For integers, the measured WCETs
conform precisely to a time formula of 995+1250∗#cycles. The analysis predicts costs that are within
30% of these figures. In fact, we observe that our time series for the analysis will converge to give a
(safe) over-prediction of at most 29.6% compared with the measured WCETs that we expect.

Since floating-point arithmetic on the Renesas processor is performed using a software library rather
than by hardware instructions, we are not able to obtain such a precise result for floating-point sum-
mation. Here,our time series converges to give an over-predicton of at most 88.2% compared with
the extrapolated formula for measured WCETs. This difference is revealed by the low level timing

add : (float,float) -(1555/0)-> float
fold : ((float,float) -(1822/169)-> float,float,list1float[

C1float<2610>:float,#|N1float<76>])
-(563/169)-> float

sum : (list1float[C1float<2610>:float,#|N1float<76>]) -(995/0)-> float

Figure 9.9: WCET analysis results for summing floating point numbers



158 CHAPTER 9. VALIDATION OF ANALYSIS RESULTS

list- integer floating point
size measured analysis ratio measured analysis ratio
0 995 1063 1.07 1008 1071 1.06
1 2245 2683 1.20 2305 3681 1.60
2 3495 4303 1.23 3696 6291 1.70
3 4745 5923 1.25 5083 8901 1.75
4 5995 7543 1.26 6477 11511 1.78
5 7245 9163 1.26 7874 14121 1.79
6 8495 10783 1.27 9271 16731 1.80
7 9745 12403 1.27 10668 19341 1.81
8 10995 14023 1.28 12072 21951 1.82
9 12245 15643 1.28 13479 24561 1.82
∞ ≤ 1.296 < 1.88

Table 9.5: Measured WCET results for summation on the M32C/85U

information that we have obtained. For example, the aiT tool indicates that floating-point additions
can take up to 1106 clock cycles, whereas the worst case that we measured was 267 clock cycles. For
floating-point multiplication, there is much less discrepancy: the aiT yields a predicted bound of 356
clock cycles versus a measured worst case of 242 clock cycles, i.e. an excess of 47.1%. Although our
measured WCETs for floating-point addition are all within 1.2%, for a number of arbitrarily-chosen
floating-point arguments, any worst-case analysis must account for a number of rarely-encountered
execution paths in the library code. It entirely possible that these paths were not exercised by the test
cases that we have chosen to use.
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9.4 Example: PID Controller

Our third example is taken from the set of real-time testbeds that we developed in the EmBounded
project, the simple 2-degrees-of-freedom PID controller for the classic “ball and beam” experiment.
This system consists of a control system for a simulation of the classic “ball and beam” experiment.
The simulation is based upon the open-source dynamics engine “OpenODE”4 simulator with a minimal
environment based upon openGL. The source code for this example is given in Appendix 9.8. We have
only considered WCET results for this example.

Previous work included a simple control system for a water tank using an initial version of the
data socket interface between the OCaml-based Hume interpreter and a simple graphics-based tank
simulation. The new simulation is a fully-featured physical simulation of a ball and beam with actuator
control and direct measurement of beam angle and ball position. It uses a development of the original
socket interface generalized to read structured data from URI-defined data sources. Figure 9.10 shows
the graphical output from the simulation.

Figure 9.10: Ball and beam simulation with OpenODE and OpenGL

A simple PID controller in Hume Two control systems were written in Hume. The first was a
simple 2 degree-of-freedom PID controller, Figure 9.11. Our Hume code is a direct implementation of
these recursive equations for a 2-DOF controller with rectangular integration, see Figure 9.12. There
are only three basic actions;

1) initialize the controller, detected by an initial false for an initialization flag, subsequently set to
true,

2) reset the simulation if the ball comes off the beam, a command code of ’2’ to the simulation
which provides a status flag (onbeam) for the ball’s on-beam status, and

3) the main control loop which performs the integration using previous instances of loop variables
to implement unit delays.

This type of controller is known not to perform well with the ball and beam simulation and is difficult
to tune for this application since the ball and beam system is strongly non-linear. For example, the

4http://www.ode.org
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Pk = Kp ∗ (ek − ek−1)
Ik = Ki ∗ T ∗ ek
Dk = (Kd/T ) ∗ (ek − 2 ∗ ek−1 + ek−2)
CVk = CVk−1 + Pk + Ik +Dk

ek = SPk − PVk

Figure 9.11: Equations for a 2 degree-of-freedom PID controller with rectangular integration

match

(c,(false,ek1,ek2,lc),(vSPk,vCVk1,vPVk,phi,onbeam)) ->

((’x’,vCVk1),*,(true,0.0,0.0,c))

| (c,(true,ek1,ek2,lc),(vSPk,vCVk1,vPVk,phi,0)) ->

((’2’,vCVk1),(vSPk,vCVk1,vPVk,phi,0,c),(true,0.0,0.0,c))

| (c,(true,ek1,ek2,lc),(vSPk,vCVk1,vPVk,phi,1)) ->

let vT = c - lc in

let ek = vPVk - vSPk in

let vPk = vKp * (ek - ek1) in

let vIk = vKi * vT * ek in

let vDk = ((vKd/vT) * (ek - 2.0*ek1 + ek2)) in

let vCVk = vCVk1 + limitPID(vPk + vIk + vDk) in

((’x’,vCVk),(vSPk,vCVk1,vPVk,phi,1,vT),(true,ek,ek1,c));

Figure 9.12: Hume code for the 2-DOF PID controller

optimal control parameters depend upon the size of the window the simulation is running in. Thus, a
second control system was written using the well-known cascaded PID loop controller using the PID
controller from the first version as a building block, Figure 9.13. This, in effect works by driving the
actuator very hard from the beam angle in the inner loop and using the beam angle to finely control
the ball position in the outer loop.

A cascaded PID controller For this application the inputs from and outputs to the plant (the ball
and beam simulation) have been separated into a dedicated box (plant) whose job is to coordinate
the controllers and the simulation. Each of the PID controllers (boxes pid1 and pid2) are identical
to the controller in the simple PID application except that the setpoint (SP) has been separated from
the inputs. The plant box measures the sampling rate which is added to the input parameters for
each of the controllers. It is then a simple case of wiring the controllers in the cascaded configuration
illustrated in Figure 9.13.

This controller works much better but is still prone to diverging if the system alters, for example if
the window is resized. The original intention was to develop an adaptive controller for this simulation,
which works much better with this type of system and, in fact, this may still be done as a precursor to
the control system used on the guided vehicles.

Again, this application has been adapted for the humec compiler. Some minor changes to the source
were required, for instance since the control loop runs about a hundred times faster the sampling rate
for the controller is set by the control loop rather than simply being measured as for the interpreted
code. Times measured outwith a predefined sampling interval range are ignored.

Our WCET results are shown in Figure 9.14. The analysis generated 459 constraints over different
793 variables. By adding all input weights, we can see that the PID controller box requires at most
36682 clock cycles per iteration. We can also see that the first branch of the PID controller box can be
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Plant

pid1

pid2

data://localhost.localdomain:1400

(SP,CV1,x,φ,onbeam)(cmd,CV)

(T,φ,CV1)

φ

SP

(T,x,φ)

CV

Figure 9.13: Structure of cascaded PID controller

computed much faster (in at most 15081 cycles), since the weight of 21601 attached to the value True
for the init-flag of the lvs-wire does not apply for the initial case.

An interesting detail in the analysis result is that we obtain an arbitrary weight (<ANY>) for the

Box: ctlr
ctlr.p : wire1tuple0[W1tuple0<13149>:tuple0[T0<0>]|NOVAL1tuple0],
ctlr.sp : wire1int[W1int<0>:int|NOVAL1int],
ctlr.pv : wire1int[W1int<0>:int|NOVAL1int],
ctlr.lvs : wire1tuple5boolfloatfloatfloatint[
W1tuple5boolfloatfloatfloatint<0>:tuple5boolfloatfloatfloatint[
T5boolfloatfloatfloatint<0>:bool[True<21601>|False<0>],float,float,float,int]

|NOVAL1tuple5boolfloatfloatfloatint]
---1932/0--->
ctlr.p2 : wire1int[W1int<0>:int|NOVAL1int],
ctlr.cv : wire1int[W1int<0>:int|NOVAL1int],
ctlr.err : wire1int[W1int<0>:int|NOVAL1int],
ctlr.lvs’ : wire1tuple5boolfloatfloatfloatint[
W1tuple5boolfloatfloatfloatint<0>:tuple5boolfloatfloatfloatint[
T5boolfloatfloatfloatint<0>:bool[True<0>|False<ANY>],float,float,float,int]

|NOVAL1tuple5boolfloatfloatfloatint]

Figure 9.14: WCET analysis results for the PID controller
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Measured execution time
Branch Repetitions Minimum Average Maximum Analysis Ratio
Rule 1 1 11674 11674 11674 15081 1.2918
Rule 0 999 27473 27742 28406 36682 1.2913

Table 9.6: Measured WCET results for PID-controller on M32C/85U

value False as the output of the init-flag to the lvs’-wire. An arbitrary potential, such as this, that
occurs in the output of a program must be justified somehow, usually by a corresponding <ANY> weight
in one of the input values. Since there is no ANY weight on any of the input wires, we can deduce that a
False value is never actually produced. A quick glance at the code in appendix 9.8 easily confirms this,
since both branches of the box have the constant True at this position. This init-flag is only used to
signal the start (or resetting) of the PID controller, causing it to initialize itself. Therefore it is always
set to True if the box has run at least

9.4.1 Assessing the quality of the WCET results for the PID Controller example

We have measured best-case, worst-case and average case times for individual iterations of the controller
box on the M32C/85U. The box contains two rules, one for initialisation and one that actually controls
the outputs. The results of our measurements are shown in Table 9.6.

The initialisation branch was executed once, giving a measured WCET of 11674 clock cycles against
a predicted WCET bound of 15081 clock cycles, a discrepancy of 29.18%. The more interesting control
branch was executed 999 times, with an average runtime of 27742 clock cycles and a measured WCET of
28406 clock cycles. The guaranteed WCET bound that we predict is 36682 clock cycles, a discrepancy
of 29.13%.
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9.5 Example: Inverted Pendulum

Figure 9.15: Inverted Pendulum controlled by Renesas M32C/85U

Our next example is the inverted pendulum controller from EmBounded Deliverable D7 [135]. This
implements a simple, real-time control engineering problem. A pendulum is hinged upright at the end
of a rotating arm. The controller receives as input the angles of the pendulum and the rotating arm
and should produce as its output the electric potential for the motor that rotates the arm in such a
way that the pendulum remains in an upright position. The sensor outputs as well as the input to
the motor may range in voltage between -10V and +10V. Since the Renesas M32C/85U only accepts a
voltage range between 0V and 5V, three simple operational amplifier (op-amp) voltage scaling circuits
were used to interface the pendulum to the development board.

The original Schopenhauer code for the inverted pendulum controller, required some minor modi-
fications to suit it for analysis. We also added some timing code. We were then able to successfully
apply our analysis to the code. The revised Schopenhauer code is shown in Appendix 9.9. It comprises
about 180 lines of code, which are translated into about eight hundred lines of Core-Hume (not shown
here).

9.5.1 Heap space analysis results for the Inverted Pendulum example

The automated analysis for heap space usage of the inverted pendulum controller code generates 499
proper linear constraints over 1010 different resource variables. The overall runtime required for the
analysis of these 600 lines of Core-Hume code, including writing the constraints to harddisk and solving
them, requires less than (0.22s) on a standard laptop with an 1.8GHz single core Intel Pentium M
processor and 1GB of memory.

The output of the analysis is shown in Figure 9.16. This yields the simple constant cost formula
that 299 heap units are required per control loop (which are also reclaimed at the end of each control
loop, as the box heap is cleared after each run).

The measurements on the actual Renesas M32C/85U reveal a largely differing heap usage for each
loop, depending on the inputs received and the necessary actions taken by the control loop. We
measured a heap space usage between 143 and 299 units in the worst case.

Therefore, the analysis predicts the worst case exactly. The analysis was unable to give us an input
depend cost formula, that would reveal the reduced heap usage in certain cases. This is due to the
inputs being numeric values, whose value does correspond linearly to the heap space usage. Thus we
assume that a simple cost formula does not exists for the inverted pendulum controller, that would
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ARTHUR3 typing for HumeHeapBoxed:

Box: regu
regu.b1: wire1tuple0[W1tuple0<0>:tuple0[T0<0>]|NOVAL1tuple0]
regu.b2: wire1tuple0[W1tuple0<0>:tuple0[T0<0>]|NOVAL1tuple0]
regu.b3: wire1tuple0[W1tuple0<0>:tuple0[T0<0>]|NOVAL1tuple0]
regu.clk: wire1float[W1float<299>:float|NOVAL1float]
regu.alpha_w:

wire1word[W1word<0>:int|NOVAL1word]
regu.theta_w:

wire1word[W1word<0>:int|NOVAL1word]
regu.etat: wire1tuple7boolboolfloatfloatfloatwordword[
W1tuple7boolboolfloatfloatfloatwordword<0>:
tuple7boolboolfloatfloatfloatwordword[
T7boolboolfloatfloatfloatwordword<0>:
bool[True<0>|False<0>],bool[True<0>|False<0>],float,float,float,int,int]|

NOVAL1tuple7boolboolfloatfloatfloatwordword]
---0/0--->
regu.moteur_w:

wire1word[W1word<0>:int|NOVAL1word]
regu.erreur_w:

wire1word[W1word<0>:int|NOVAL1word]
regu.compteur_w:

wire1word[W1word<0>:int|NOVAL1word]
regu.etat’: wire1tuple7boolboolfloatfloatfloatwordword[
W1tuple7boolboolfloatfloatfloatwordword<0>:
tuple7boolboolfloatfloatfloatwordword[
T7boolboolfloatfloatfloatwordword<0>:
bool[True<0>|False<ANY>],bool[True<0>|False<0>],float,float,float,int,int]|

NOVAL1tuple7boolboolfloatfloatfloatwordword]

Figure 9.16: Raw output of heap space analysis for the inverted pendulum example

directly link heap space usage to the sensor voltage. However, this is unimportant from a practical
viewpoint, since it is only the worst case heap space usage that needs to be accounted for in practice.
The analysis is clearly capable of fulfilling this purpose.

9.5.2 Stack space analysis results for the Inverted Pendulum example

The automated analysis for stack space usage of the inverted pendulum controller code generates 628
proper linear constraints over 651 different resource variables. The reduced number of variables is again
due to the choice of not introducing explicit slack variables which are minimised.

The output of the stack space analysis for the inverted pendulum controller is shown in Figure 9.17.
This yields the simple constant cost formula that at most 93 stack units are required per control loop
pass, which are of course released at the end of each loop pass.

In contrast to heap space usage, our measurements on the actual Renesas M32C/85U board show
that the maximum stack space usage varies only a little with the input, alternating between 70 and 93
stack units. Again, the worst case bound predicted by the analysis is accurate.
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ARTHUR3 typing for HumeStackBoxed:

Box: regu
regu.b1: wire1tuple0[W1tuple0<0>:tuple0[T0<0>]|NOVAL1tuple0]
regu.b2: wire1tuple0[W1tuple0<0>:tuple0[T0<0>]|NOVAL1tuple0]
regu.b3: wire1tuple0[W1tuple0<0>:tuple0[T0<0>]|NOVAL1tuple0]
regu.clk: wire1float[W1float<86>:float|NOVAL1float]
regu.alpha_w:

wire1word[W1word<0>:int|NOVAL1word]
regu.theta_w:

wire1word[W1word<0>:int|NOVAL1word]
regu.etat: wire1tuple7boolboolfloatfloatfloatwordword[
W1tuple7boolboolfloatfloatfloatwordword<0>:
tuple7boolboolfloatfloatfloatwordword[
T7boolboolfloatfloatfloatwordword<0>:
bool[True<0>|False<0>],bool[True<0>|False<0>],float,float,float,int,int]|

NOVAL1tuple7boolboolfloatfloatfloatwordword]
---7/83--->
regu.moteur_w:

wire1word[W1word<0>:int|NOVAL1word]
regu.erreur_w:

wire1word[W1word<0>:int|NOVAL1word]
regu.compteur_w:

wire1word[W1word<9>:int|NOVAL1word]
regu.etat’: wire1tuple7boolboolfloatfloatfloatwordword[
W1tuple7boolboolfloatfloatfloatwordword<0>:
tuple7boolboolfloatfloatfloatwordword[
T7boolboolfloatfloatfloatwordword<0>:
bool[True<0>|False<ANY>],bool[True<0>|False<0>],float,float,float,int,int]|

NOVAL1tuple7boolboolfloatfloatfloatwordword]

Figure 9.17: Raw output of stack space analysis for the inverted pendulum example
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Measured execution time
Branch Repetitions Minimum Average Maximum Analysis Ratio
Match 0 18 3217 3218 3241 3146 0.971
Match 1 18 3749 3749 3749 4390 1.395
Match 2 18 4432 4432 4432 5750 1.297
Match 3 108 2830 2830 2830 6443 2.277
Match 4 58 2837 2837 2837 7171 2.528
Match 5 3804 2669 2669 2669 7702 2.886
Match 6 5976 36118 42222 47635 63678 1.337

Table 9.7: WCET measurements for the inverted pendulum

9.5.3 Assessing the quality of the WCET results for the Inverted Pendulum ex-
ample

The automated analysis of the inverted pendulum controller code generates 2558 linear constraints (of
which 304 were immediately recognized as trivial and discarded) over 4518 different variables. The
overall runtime required for the analysis, including solving the generated linear programming problem,
took less than 2.7 seconds5 on a standard laptop with an 1.8Ghz Intel Pentium M processor and 1GB
of memory.

We have measured the best-case, worst-case and average clock times required to process a single
branch of the controller separately. The box contains six rules: the first four simply handle button
presses for starting and stopping the experiment, the fifth represents a halted state, while the sixth
represents the actual controlling code. Both our measurements and our analysis predictions are shown
in Table 9.5.3.

We see that our analysis gives a high over-approximation for branches 3-5. This happens because
our prototype implementation of the analysis over-estimates the time required for processing each
pattern match by applying an overly pessimistic (but safe) assumption about match failure. Since the
time required to process the actual body of these branches is very small when compared to the cost of
performing the pattern match, this over-estimation dominates the costs for these branches. Performing
the analysis separately on the body of these branches, excluding any pattern matching costs yields a
reasonable bound of 2711 clock cycles in each case.

The result for the last branch, the actual controlling loop, is much better, since its overall processing
cost is high as compared to the time required for performing the pattern matches. Therefore the over-
estimation of pattern match costs becomes negligble, and we observe over-estimation of 33.7% compared
with measured WCET. This is consistent with our observations for the previous examples.

Since we have used a chip with a clock frequency of 32Mhz, the measured loop time is 1.488ms,
while our predicted loop time would be 1.989ms.

5The runtime of the analysis increases to 3.2 seconds if safety assertion checking is enabled.
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9.6 Example: RobuCAB electric vehicle

Figure 9.18: RobuCAB electric vehicle

The last example is the messaging subsystem of the RobuCAB control system, described in detail in
EmBounded Deliverable D33 [130], which deals with reading messages from the vehicle and generating
control messages from instructions that are to be send to the vehicle. The general requirements of this
system component are:

1) arrange for the asynchronous status messages from the vehicle to be started and stopped as
required;

2) decode the incoming messages and build correctly formatted messages for output;

3) manage the status information being sent asynchronously by the vehicle and store it in a form
accessible to the rest of the program;

4) allow outgoing command messages to be inserted into the current message traffic;

5) send a regular (possibly null) message at least every half-second to avoid an automatic safety
cut-out;

The messaging subsystem of the RobuCAB, which comprises of two primary boxes, robucab_in and
robucab_out, contains a total of 229 lines of code, which are automatically translated into 1317 lines of
Core-Hume. Box robucab_in processes the messages sent by the RobuCAB vehicle to the Schopenhauer
control system, while robucab_out encodes and sends instructions to the vehicle. We will compare the
analysis’ results with actual measurements gathered from testruns of the Schopenhauer control system
on the actual RobuCAB vehicle. EmBounded Deliverable D33 [130] contains more detail on this
example.

9.6.1 Heap space analysis results for the RobuCAB messaging subsystem

Performing the automated heap space analyses on the RobuCAB messaging subsystem generates
1608 constraints over 3226 variables for robucab_in and 235 constraints over 477 variables for for
robucab_out. The overall runtime for analysing the heap space usage for both boxes is less than a
single second on an average laptop with an 1.8GHz single core Intel Pentium M processor and 1GB of
memory.
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Heaps space usage for Box robucab in

The analysis reports that the heap space usage of robucab_in is non-linear, i.e. it is not possible to
construct a cost formula for heap space usage based on the input sizes. However, reading the produced
traces immediately shows the culprit: one of the auxiliary functions called in the box robucab_in has a
non-linear cost. The function recursively calculates a checksum and has a large heap space consumption,
due to all numeric values being boxed (and thus requiring heap space) and those are not reclaimed until
the box has run to completion. The analysis is in fact capable of analysing this function on its own,
using a new experimental feature that assigns potential to numeric values. However, this feature is
currently unsafe to use in general and can thus no be applied to the whole program code. A manual
inspection showed that it is safe to use on the checksum function itself. It turns out that the heap space
usage of the checksum function admits a linear cost formula in terms of the input values (an integer
input has a fixed size, but a large range of possible values). The analysis thus yields a cost formula of
48 + 26 · z for the heap cell consumption of the checksum function on its own. The parameter z is an
actual integer input value for that checksum function. Inspecting the RobuCAB protocols, we learn
that this value is restricted to the interval [1, . . . , 17], hence we can derive a constant heap space usage
bound of 490 heap cells for the checksum function.

The analysis for robucab_in with the call removed yields a heap usage bound of 64 plus either 18
or 9, depending on the message kind received. The checksum function is only called in branches with
require the 9 additional cell, thus resulting in an overall heap space usage bound of 64+9+490 = 563.
The maximum actual heap space usage recorded during the test runs of the vehicle was 292, hence the
analysis overestimated the heap space usage by 92.8%. This relatively large overestimation is likely to
be due to z not reaching the value 17 during the test runs. Unfortunately, we are currently unable to
test this hypothesis since we have no access to the RobuCAB at the moment and we were not aware of
the importance of that value during the original test runs.

Heaps space usage for Box robucab out

The analysis directly yields the cost formula 26 + 13 · n, where n is the length of a list among the
inputs of the box. The list is used as buffer, since we initially found it necessary to buffer the output to
prevent overrun at the RobuCAB end of the communications link. In practice, however, we find that
only a single buffer place is required to resolve the communications timing problems so we can replace
the list with an optional value. Therefore the list is either empty or contains a single element. This
yields a maximum heap usage of 39 units. Compared with the measured value of 30 heap units, this
yields an acceptable overestimation of 30%.

9.6.2 Stack space analysis results for the RobuCAB messaging subsystem

The automated analysis for maximum stack space usages succeeds directly with no surprises. For
robucab_in, 1870 constraints over 1799 variables were generated; and 269 constraints over 276 variables
for robucab_out. The analysis completed within half the time of the heap space analysis, i.e. < 1.4s.
This reduction in time is mostly due to not introducing slack variables into the constraints, as explained
in Section 9.3.2.

The bound on stack space usage for robucab_in is 70 and for robucab_out is 24. In both cases,
this is just one unit above the actually measured stack space usage, 69 and 23 stack units respectively,
leading to an overestimation of just 1% and 4%. We have not yet found the source of this small error,
and again would like to repeat our test run on the RobuCAB in order to determine what exactly
is differing and why. It is still possible that the analysis is actually correct, with the test runs not
exhibiting the possible worst-case usage.
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9.7 Analysis protocols for the photographer program example

In the following section we will show some excerpts of the various intermediate files produced by the
analysis in its course of operation. All excerpts are from the stack-space analysis performed on the
photographer program example given in Section 9.2, Figure 9.1. None of these files is intended to be
seen (nor understood) by the end user of our automated analysis, i.e. the programmer that programs in
Schopenhauer, making use of its guaranteed resource analyses. We provided these excerpts here solely
to provide a glimpse on the inner workings of the analysis.

9.7.1 Translation to Core-Hume

This is the result of the automatic translation of the program shown in Figure 9.1 to Core-Hume
(Chapter 7), and which is input to the analysis. Line numbers have been added in front of each line to
ease readability and allow the tracing of the time cost parameters shown in the following subsections
back to this source code.

This excerpt is meant to give a rough impression what the transformed code looks like. All identifiers
that have been introduced by the analysis are preceeded by a question mark in order to distinguish them
from identifiers specified by the programmer. The question mark symbol was simply chosen because it
is not allowed to be at the start of an identifier in Schopenhauer.

1 −−
2 −−
3 −− R u n n i n g c p p l i k e t h i s : c p p −P p h o t o g r a p h e r 1 5 . hume >

x / tmp / p h o t o g r a p h e r 1 5 1 9 5 4 6 . hume

4 −− i m p o r t i n g / tmp / p h o t o g r a p h e r 1 5 1 9 5 4 6 . hume

5 −− AST i n g e e k − n o r m a l − f o r m 1 . 5 . 2 . 3 9 2 0 d e c l a r a t i o n s i n t o t a l

x −−−−−−−−−−−−−−−
6

7 −− 2 0 d e c l a r a t i o n s i n t o t a l

8 −− 2 f u n c t i o n d e c l a r a t i o n s , s p l i t i n t o 2 l e t r e c b l o c k s

9 −− c h e c k s u m : 4 2 9 8 6 5

10 program
11 data ? uunit = ?Unit
12 data ? tup le0 = ?T0
13 data ? b u n d l e 4 i n t i n t l i s t 1 o p l i s t 1 t u p l e 2 i n t i n t =

x ? B 4 i n t i n t l i s t 1 o p l i s t 1 t u p l e 2 i n t i n t ? w i r e1 in t ? w i r e1 in t
x ? w i r e 1 l i s t 1 o p ? w i r e 1 l i s t 1 t u p l e 2 i n t i n t

14 data ? bund l e2 in t i n t = ? B2 int in t ? w i r e1 in t ? w i r e1 in t
15 data ? b u n d l e 4 i n t i n t l i s t l i s t = ? B 4 i n t i n t l i s t l i s t ? w i r e1 in t ? w i r e1 in t

x ? w i r e 1 l i s t ? w i r e 1 l i s t
16 data ? bund l e 2 l i s t i n t = ? B2 l i s t i n t ? w i r e 1 l i s t ? w i r e1 in t
17 data ? b und l e 2 l i s t 1 t u p l e 2 i n t i n t i n t = ? B2 l i s t 1 t u p l e 2 i n t i n t i n t

x ? w i r e 1 l i s t 1 t u p l e 2 i n t i n t ? w i r e1 in t
18 data ? t u p l e 4 i n t i n t l i s t 1 o p l i s t 1 t u p l e 2 i n t i n t =

x ? T 4 i n t i n t l i s t 1 o p l i s t 1 t u p l e 2 i n t i n t int int ? l i s t 1 o p
x ? l i s t 1 t u p l e 2 i n t i n t

19 data ? t up l e 2 i n t i n t = ? T2int int int int
20 data ? t u p l e 4 i n t i n t l i s t l i s t = ? T 4 i n t i n t l i s t l i s t int int ? l i s t 1 o p

x ? l i s t 1 t u p l e 2 i n t i n t
21 data ? t u p l e 2 l i s t i n t = ? T2 l i s t i n t ? l i s t 1 t u p l e 2 i n t i n t int



170 CHAPTER 9. VALIDATION OF ANALYSIS RESULTS

22 data ? t u p l e 2 l i s t 1 t u p l e 2 i n t i n t i n t = ? T2 l i s t 1 t u p l e 2 i n t i n t i n t
x ? l i s t 1 t u p l e 2 i n t i n t int

23 data ? l i s t 1 t u p l e 2 i n t i n t = ? C1tup l e2 in t in t ? t up l e 2 i n t i n t ? l i s t 1 t u p l e 2 i n t i n t
24 | ? N1tup l e2 in t in t
25 data ? l i s t 1 o p = ?C1 op op ? l i s t 1 o p
26 | ?N1 op
27 data op = L
28 | R
29 | P
30 | U
31 | D
32 −− t y p e o f m a i n

33 −− v a l m a i n : : {− n o t y p e −}
34 −− F u n c t i o n s

35 {{−## FUND ( non − l i f t e d ) p o s o k : : ( ? t u p l e 2 i n t i n t i n t i n t ) −> i n t

x ? t u p l e 2 i n t i n t −}
36 {− a r g T y p e s f t y = ( ? t u p l e 2 i n t i n t i n t i n t ) −}
37 pos ok : : (? t u p l e 2 i n t i n t −> int ) (? pos ok arg 11 : : ? t u p l e 2 i n t i n t ) =
38 f c a s e 2 ? pos ok arg 11 of
39 (? T2 int int xpos ypos ) −>
40 glet
41 ? z 55 = 0 ;
42 ? bdg ypos 56 = ypos ;
43 ? z 57 = (? bdg ypos 56 == ? z 55 ) ;
44 ? z 58 = 0 ;
45 ? bdg xpos 59 = xpos ;
46 ? z 60 = (? bdg xpos 59 == ? z 58 ) ;
47 ? z 61 = (? z 60 && ? z 57 )
48 in i f ? z 61
49 then 1
50 else 0
51 esac }
52 {{−## FUND ( non − l i f t e d ) a c t i o n : : ( ? t u p l e 4 i n t i n t l i s t 1 o p l i s t 1 t u p l e 2 i n t i n t

x i n t i n t ( ? l i s t 1 o p o p ) ( ? l i s t 1 t u p l e 2 i n t i n t ( i n t , i n t ) ) )

x −>(? t u p l e 2 l i s t 1 t u p l e 2 i n t i n t i n t ( ? l i s t 1 t u p l e 2 i n t i n t ( i n t , i n t ) ) i n t )

x ? t u p l e 4 i n t i n t l i s t 1 o p l i s t 1 t u p l e 2 i n t i n t −}
53 {− a r g T y p e s f t y = ( ? t u p l e 4 i n t i n t l i s t 1 o p l i s t 1 t u p l e 2 i n t i n t i n t i n t

x ( ? l i s t 1 o p o p ) ( ? l i s t 1 t u p l e 2 i n t i n t ( i n t , i n t ) ) ) −}
54 ac t i on : : (? t u p l e 4 i n t i n t l i s t 1 o p l i s t 1 t u p l e 2 i n t i n t −>

x ? t u p l e 2 l i s t 1 t u p l e 2 i n t i n t i n t ) (? a c t i on a r g 11 : :
x ? t u p l e 4 i n t i n t l i s t 1 o p l i s t 1 t u p l e 2 i n t i n t ) =

55 f c a s e 4 ? a c t i on a r g 11 of
56 (? T 4 i n t i n t l i s t 1 o p l i s t 1 t u p l e 2 i n t i n t xpos ypos r e s t aps ) −>
57 glet ? bdg r e s t 62 = r e s t
58 in
59 case 1 ? bdg r e s t 62 of
60 ( ( ? N1 op ) ) −>
61 glet
62 ? bdg ypos 63 = ypos ;
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63 ? bdg xpos 64 = xpos ;
64 ? z 65 = ? T2int int ? bdg xpos 64 ? bdg ypos 63 ;
65 ? f po s ok 66 = ( pos ok $$ ? z 65 ) ;
66 ? bdg aps 67 = aps
67 in ? T2 l i s t 1 t u p l e 2 i n t i n t i n t ? bdg aps 67 ? f po s ok 66
68 |
69 (? C1 op ( (L) ) xs ) −>
70 glet
71 ? bdg aps 68 = aps ;
72 ? bdg xs 69 = xs ;
73 ? bdg ypos 70 = ypos ;
74 ? z 53 = 1 ;
75 ? bdg xpos 71 = xpos ;
76 ? z 52 = (? bdg xpos 71 −. i ? z 53 ) ;
77 ? z 54 =
78 ? T 4 i n t i n t l i s t 1 o p l i s t 1 t u p l e 2 i n t i n t ? z 52 ? bdg ypos 70

x ? bdg xs 69 ? bdg aps 68
79 in ( ac t i on $ ! ? z 54 )
80 |
81 (? C1 op ( (R) ) xs ) −>
82 glet
83 ? bdg aps 72 = aps ;
84 ? bdg xs 73 = xs ;
85 ? bdg ypos 74 = ypos ;
86 ? z 50 = 1 ;
87 ? bdg xpos 75 = xpos ;
88 ? z 49 = (? bdg xpos 75 +. i ? z 50 ) ;
89 ? z 51 =
90 ? T 4 i n t i n t l i s t 1 o p l i s t 1 t u p l e 2 i n t i n t ? z 49 ? bdg ypos 74

x ? bdg xs 73 ? bdg aps 72
91 in ( ac t i on $ ! ? z 51 )
92 |
93 (? C1 op ( (P) ) xs ) −>
94 glet
95 ? bdg aps 76 = aps ;
96 ? bdg ypos 45 = ypos ;
97 ? bdg xpos 47 = xpos ;
98 ? z 43 = ? T2int int ? bdg xpos 47 ? bdg ypos 45 ;
99 ? z 42 = (? C1tup l e2 in t in t ? z 43 ? bdg aps 76 ) ;

100 ? bdg xs 77 = xs ;
101 ? bdg ypos 44 = ypos ;
102 ? bdg xpos 46 = xpos ;
103 ? z 48 =
104 ? T 4 i n t i n t l i s t 1 o p l i s t 1 t u p l e 2 i n t i n t ? bdg xpos 46

x ? bdg ypos 44 ? bdg xs 77 ? z 42
105 in ( ac t i on $ ! ? z 48 )
106 |
107 (? C1 op ( (U) ) xs ) −>
108 glet
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109 ? bdg aps 78 = aps ;
110 ? bdg xs 79 = xs ;
111 ? z 40 = 1 ;
112 ? bdg ypos 80 = ypos ;
113 ? z 39 = (? bdg ypos 80 −. i ? z 40 ) ;
114 ? bdg xpos 81 = xpos ;
115 ? z 41 =
116 ? T 4 i n t i n t l i s t 1 o p l i s t 1 t u p l e 2 i n t i n t ? bdg xpos 81 ? z 39

x ? bdg xs 79 ? bdg aps 78
117 in ( ac t i on $ ! ? z 41 )
118 |
119 (? C1 op ( (D) ) xs ) −>
120 glet
121 ? bdg aps 82 = aps ;
122 ? bdg xs 83 = xs ;
123 ? z 37 = 1 ;
124 ? bdg ypos 84 = ypos ;
125 ? z 36 = (? bdg ypos 84 +. i ? z 37 ) ;
126 ? bdg xpos 85 = xpos ;
127 ? z 38 =
128 ? T 4 i n t i n t l i s t 1 o p l i s t 1 t u p l e 2 i n t i n t ? bdg xpos 85 ? z 36

x ? bdg xs 83 ? bdg aps 82
129 in ( ac t i on $ ! ? z 38 )
130 esac
131 esac }



9.7. ANALYSIS PROTOCOLS FOR THE PHOTOGRAPHER PROGRAM EXAMPLE 173

9.7.2 Excerpt from the generated constraints

We provide an excerpt of the generated constraint file for the auxiliary function pos_ok contained in
the Photographer example, as generated to determine the generic cost formula for stack-space usage
for this function, which also forms the input to the LP-solver. Again, this excerpt is meant to convey
an overview of the nature of the generated constraints, rather than particular details.

The header of the constraint file contains a comment giving some general information, for example
that the file contains just 22 constraints over 44 different variables. Any current LP-solver can deal
with much larger linear programs containing more than several hundred thousand constraints. The
current LP-solver used by our implementation to solve the constraints is LP-solve [10], available under
the lesser general public licence (LGPL).

Each constraint is preceded by a label, which identifies the line and column number of the trans-
formed program code shown in the previous section, that triggered the generation of that particular
constraint. Furthermore a 3-letter code identifies its purpose, for example MkIn stands for “Make
Integer”, i.e. the generation of an integer constant.

Note that variables starting with an s indicate simple “slack” variables which occur only once, and
which allow imprecision to be introduced where this is necessary. In other words the equations we have
provided are, in fact, inequalities. However, the slack variables are used in the objective function to
minimise the imprecision as much as possible.

We can also see that automatically generated comments are also present within the constraint file
to help readability for the expert user. This makes it easier to understand and verify the reason behind
the generation of a particular constraint. Further detailed information about how these constraints are
generated is given in EmBounded Deliverable D05 [81].

/*
This file is an automatically generated lp for ’lp_solve (Version 5)’.

(Constraints for : "photographer15.art3")
(Filename should be: "constraints.lp.pos_ok")
(Processing Date : Wed Sep 24 10:27:32 BST 2008)

Contains 22 proper constraints over 44 variables.
(plus 4 trivial constraints)

Resource Metric:
Stack-space costs for executing HAM code via C, with all values being BOXED.
Selection codes: HumeStackBoxed, StackBoxed, SB, HumecStackBoxed
Submodels: HumeStackBoxed, HumeStackUnboxed
Monotone: False
Revision: 1.1.2.9
Date: 2008/09/22 11:33:39
Author: jost

Annotated Type of main expression:
pos_ok: V{20}.P(44)

(?tuple2intint[?T2intint<0>:int,int]) -(x012/y007)-> int

*/

Min: +2 x012 - y007 +1.5 s224 +1.5 s225 +1.5 s226 +1.5 s227 +1.5 s228 +1.5 s229
+1.5 s230 +1.5 s231 +1.5 s232 +1.5 s233 +1.5 s234 +1.5 s235 +1.5 s236
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+1.5 s237 +1.5 s238 +1.5 s239 +1.5 s240 +1.5 s241 +1.5 s242 +1.5 s243
+1.5 s244 +1.5 s245;

CallIn_pos_ok: + x001 - x012 +3 + s245 = 0;
CallOutpos_ok: - y001 + y007 -4 + s244 = 0;
/*
L0037C002 Function ’pos_ok’: (?tuple2intint[?T2intint:int,int]) -(x001/y001)-> int

*/
L0038C026__MAf: + y001 - y002 -3 + s243 = 0;
L0038C026__MBf: + m001 - m002 +3 + s242 = 0;
L0039C030_Mmi1: - m004 + m001 + s241 = 0;
L0039C030_Mmi2: + x002 + m002 - m004 + s240 = 0;
L0039C030_Msu1: - x001 + x002 + x003 - x005 + m002 + s239 = 0;
L0039C030_Msu2: - x001 + m004 + s238 = 0;
L0039C030_Mtly: + m002 - m003 + s237 = 0;
L0039C030_PCaf: - x004 + x005 -2 + s236 = 0;
L0039C030_PCmi: - x002 + x004 +2 + s235 = 0;
L0041C016_MkIn: - x003 + z000 +1 + s234 = 0;
L0042C023__Var: - z000 + z001 +1 + s233 = 0;
/*
L0043C016 Binop: "?bdg_ypos_56": int, "?z_55": int{0.0~0.0}, result: bool
*/
L0043C016__OPe: - z001 + z002 -1 + s232 = 0;
L0044C016_MkIn: - z002 + z003 +1 + s231 = 0;
L0045C023__Var: - z003 + z004 +1 + s230 = 0;
/*
L0046C016 Binop: "?bdg_xpos_59": int, "?z_58": int{0.0~0.0}, result: bool
*/
L0046C016__OPe: - z004 + z005 -1 + s229 = 0;
/* L0047C016 Binop: "?z_60": bool, "?z_57": bool, result: bool */
L0047C016__OPa: - z005 + z006 -1 + s228 = 0;
L0048C009__Iei: - z006 + z008 -1 + s227 = 0;
L0048C009__Iti: - z006 + z007 -1 + s226 = 0;
L0049C014_MkIn: + y002 - z007 +1 + s225 = 0;
L0050C014_MkIn: + y002 - z008 +1 + s224 = 0;
0 <= y007 <= 1.0e7;
m001 >= 0;
m002 >= 0;
m003 >= 0;
m004 >= 0;
s224 >= 0;
s226 >= 0;

...
Further non-negativity constraints for all remaining variables have been omitted from this excerpt

for brevity.
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9.7.3 Excerpt from the protocol of used stack cost parameters

This is an excerpt of the stack-space cost parameters used in that particular run of our analysis for the
photographer example on the auxiliary function pos_ok.

L0038C026__MBf VAL 3 FOR RCmatch (FunCase (Just 2)) PBefore
L0038C026__MAf VAL -3 FOR RCmatch (FunCase (Just 2)) PAfter
L0039C030_PCmi VAL 2 FOR RCpattern (PCon "?T2intint" [PVar "xpos",PVar "ypos"])

(Just P3Middle)
L0039C030_PCaf VAL -2 FOR RCpattern (PCon "?T2intint" [PVar "xpos",PVar "ypos"])

(Just P3After)
L0041C016_MkIn VAL 1 FOR RCmk IntTyp (IntVal 0)
L0042C023__Var VAL 1 FOR RCpvar 0
L0043C016__OPe VAL -1 FOR RCbop = IntTyp IntTyp
L0044C016_MkIn VAL 1 FOR RCmk IntTyp (IntVal 0)
L0045C023__Var VAL 1 FOR RCpvar 0
L0046C016__OPe VAL -1 FOR RCbop = IntTyp IntTyp
L0047C016__OPa VAL -1 FOR RCbop && BoolTyp BoolTyp
L0048C009__Iti VAL -1 FOR RCif True PBefore
L0048C009__Iei VAL -1 FOR RCif False PBefore
L0049C014_MkIn VAL 1 FOR RCmk IntTyp (IntVal 1)
L0050C014_MkIn VAL 1 FOR RCmk IntTyp (IntVal 0)
CallIn_pos_ok VAL 3 FOR RCapp True "pos_ok"

[ConTyp "?tuple2intint" []] PBefore ExactApp 0
CallOutpos_ok VAL -4 FOR RCapp True "pos_ok"

[ConTyp "?tuple2intint" []] PAfter ExactApp 0
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9.7.4 Excerpt from the protocol of used time parameters

This is an excerpt of the time parameters used in that particular run of our analysis for the photographer
example. Following Section 9.7.2, we concentrate on WCET parameters used for the translated source
code lines 40–50. As described above, we can see at label L0040C031_MrS the WCET parameter for a
successful pattern match, and that it was mapped to the value 10 by the current cost table for executing
Schopenhauer on a Renesas M32C/85U processor.

Note that some cost parameters are themselves parameterised. For example, the WCET for pushing
a variable onto the top of the stack depends on whether the variable is stored inside the current frame
or deeper. We see that the WCET for pushing a variable from the current frame to the top of the stack
is 39 clock cycles, while pushing a variable from the previous frame has a WCET of 46 clock cycles.
Chapter 8 contains more information about how these WCET parameters were obtained using AbsInt’s
aiT tool.

AT L0040C031_Mr_ VAL 20 FOR Tmatchrule
AT L0040C031_Pci VAL 30 FOR Tmatchcon
AT L0040C031_Pcm VAL 174 FOR (Tcopyarg + Tunpack 2)
AT L0040C031_Pci VAL 30 FOR Tmatchcon
AT L0040C031_Pvr VAL 36 FOR Tmatchvar
AT L0040C031_Pco VAL 9 FOR Tpop
AT L0040C031_Pcf VAL 9 FOR Tpop
AT L0040C031_MrS VAL 10 FOR Tmatchedrule
AT L0041C032_Var VAL 46 FOR Tpushvar 1
AT L0042C032_Var VAL 46 FOR Tpushvar 1
AT L0043C030_Var VAL 39 FOR Tpushvar 0
AT L0044C031_Var VAL 46 FOR Tpushvar 1
AT L0045C032_Var VAL 46 FOR Tpushvar 1
AT L0046C032_Var VAL 46 FOR Tpushvar 1
AT L0047C025_Con VAL 182 FOR Tmktuple 2
AT L0048C025_Con VAL 215 FOR Tmkcon 2
AT L0049C025_Con VAL 286 FOR Tmktuple 4
AT L0050C014_Apt VAL 85 FOR Ttailcall 1 1
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9.8 Hume Code for the PID Controller Example

This appendix contains the Hume source code of the 2-degrees-of-freedom PID controller for the classic
“ball and beam” experiment from Deliverable D7 (WP8a).

program

interrupt p from "TIMERB0";
--interrupt b1 from "INT0";
--interrupt b2 from "INT1";
--interrupt b3 from "INT2";
memory p2 to "P2:p8";
memory ad00 from "AD00L:p8";
memory ad01 from "AD01L:p8";
memory da0 to "DA0:p8";
memory da1 to "DA1:p8";

type integer = int 16;
type real = float 32;

-- PID controller with rectangular integration:
-- Pk = Kp (ek - e(k-1))
-- Ik = Ki T ek
-- Dk = (Kd/T) (ek - 2 e(k-1) + e(k-2))
-- CVk = CVk-1 + Pk + Ik + Dk
-- where ek = SPk - PVk, and T is the sampling interval.

-- Sample rate
constant vT = 0.001; -- just a guess

-- Control constants
constant vKp = 0.2;
constant vKi = 0.5;
constant vKd = 0.008;

-- Ramp limit
constant vPIDlim = 0.001;

-- Limit function
limit x mi ma = if x < mi then (mi::real) else if x > ma then ma else x;
limitR x r = limit x (0.0 - r) r;

-- Scale inputs/outputs
-- We also limit output to 0 to 255
scale_in x = ((x :: integer) as real) / 255.0;
scale_out x = if x < 0.0 then 0

else if x > 1.0 then 255 else ((x * 255.0) as integer);

-- Compute the error output
rabs x = if x < 0.0 then (0.0 - x) else x;
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cerr sp pv = scale_out (rabs ((scale_in pv) - (scale_in sp)));

-- Inconvenient types
type lvs_t = (bool,real,real,real,integer);

-- Initial control variable state
constant cv_init = 127; -- need word<->int casts !!! 0x7f;

-- Initial loop variable for controller box
constant lvs_init = (false,0.0,0.0,0.0,0);

-- The control loop.
-- Inputs: p - run off the b0 timer.
-- sp - set point (AD0).
-- pv - process variable (AD1).
-- lvs - loop variables (init flag, errors, last time, mode).
-- Outputs: cv - output to plant (DA0).
-- err - error output (DA1).
-- lvs - loop variables.
box ctlr
in (p::(), sp::integer, pv::integer, lvs::lvs_t)
out (p2::integer, cv::integer, err::integer, lvs’::lvs_t)

match
(_,sp,pv,(false,_,_,_,_)) ->
(0,cv_init,cerr sp pv,(true,0.0,0.0,scale_in cv_init,0))

| (_,sp,pv,(true,ek1,ek2,cv1,led)) ->
let ek = (scale_in pv) - (scale_in sp) in
let vPk = vKp * (ek - ek1) in
let vIk = vKi * vT * ek in
let vDk = (vKd / vT) * (ek - 2.0 * ek1 + ek2) in
let vPIDk = limitR (vPk + vIk + vDk) vPIDlim in
let vCVk = cv1 + vPIDk in
(led+1,scale_out vCVk,cerr sp pv,(true,ek,ek1,vCVk,led+1));

wire ctlr (p, ad00, ad01, ctlr.lvs’ initially lvs_init)
(p2, da0, da1, ctlr.lvs);



9.9. HUME CODE FOR THE INVERTED PENDULUM EXAMPLE 179

9.9 Hume Code for the Inverted Pendulum Example

This section contains the source code for the inverted pendulum example from as used to perform the
analysis. The single box at the end of the code has several branches: the first three deal with the
pressing of button 1, starting, resetting and stopping the pendulum control loop; the fourth and fifth
deal with button 2 and button 3, allowing a calibration the motor output while the control loop is
stopped; the sixth applies when there are no button presses while the control loop is stopped, i.e. it
does nothing; and the last is the actual control loop. Note that only the last branch performs any
actual work.

--program

-- Streams
interrupt b1 from "INT0";
interrupt b2 from "INT1";
interrupt b3 from "INT2";
memory p2 to "P2:p8";
memory ad00 from "AD00L:p8";
memory ad01 from "AD01L:p8";
memory da0 to "DA0:p8";
memory da1 to "DA1:p8";

-- Types
type byte = word 8;
type integer = int 16;
type real = float 32;

type _vec = vector 4 of real;

-- Input/Output scaling for ADC/DAC

#define inputSensitivity 0.081415926535 // by experiment
#define scaleIn ((2.0 * inputSensitivity) / 255.0) // 0x00 to 0xff
#define offsetIn (0.0 - inputSensitivity)

b2r :: byte -> real;
b2r b = (((b :: byte) as real) * scaleIn) + offsetIn;

#define outputSensitivity 0.5 // +/-0.5
#define minOut (0.0 - outputSensitivity) // 0 volts
#define maxOut outputSensitivity // 5 volts
#define scaleOut ((maxOut - minOut) * 255.0) // 0x00 to 0xff
#define offsetOut (scaleOut / 2.0) // 127.5;

r2b :: real -> byte;
r2b r =
if r < minOut
then 0x00
else if r > maxOut

then 0xff
else ((((r :: real) * scaleOut) + offsetOut) as byte);

-- Limit motor output

#define motorZero 0x8c
#define motorMarg 0x0c



180 CHAPTER 9. VALIDATION OF ANALYSIS RESULTS

#define motorMin (motorZero - motorMarg)
#define motorMax (motorZero + motorMarg)

#define motorZeroR (((motorZero as real) - offsetOut) / scaleOut)

limitMotor :: byte -> byte;
limitMotor w = if w < motorMin then motorMin else

if w > motorMax then motorMax else w;

invertMotor :: byte -> byte;
invertMotor w =
if w > motorZero
then
let delta = w - motorZero in
if delta > motorZero
then 0x00
else motorZero - delta

else
let delta = motorZero - w in
if delta > (0xff - motorZero)
then 0xff
else motorZero + delta;

-- Multiply vector by #define
mult1441 :: _vec -> _vec -> real;
mult1441 x y = (x@1)*(y@1) + (x@2)*(y@2) + (x@3)*(y@3) + (x@4)*(y@4);

{- Control #defines computed by Octave -}

-- define K = << (-0.65900), (-21.00773), (-1.31144), (-3.36854) >>;

{- Emulate RTC with timers -}

#define clkTick 0.001 // Time for one timer tick
#define cntrTicks 2.0 // Number of ticks between timer interrupts
-- You need to match this with the clock config on the board

#define dT 0.002 // clkTick * cntrTicks; -- Computed clock tick

box counter
in (p::int 32, s::real)
out (p’::int 32, s’::real, clk::real)

match
(0,s) -> (100,s+dT,s+dT)

| (p,s) -> (p-1,s,*);

wire counter
(counter.p’ initially 100, counter.s’ initially 0.0)
(counter.p, counter.s, regu.clk);

{- Control box -}

#define thetaMin 0x40
#define thetaZero 0x7f
#define thetaMax 0xe0
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#define thetaZero_r (thetaZero as real)
#define thetaSensitivity 0.2

type etat_t = (bool,bool,real,real,real,byte,byte);

#define offsetZero 0x3f

stop_etat :: byte -> etat_t;
stop_etat ao = (false,false,0.0,0.0,0.0,ao,0x00);

run_etat :: byte -> etat_t;
run_etat ao = (true, false,0.0,0.0,0.0,ao,0x00);

deriv_etat :: byte -> etat_t;
deriv_etat ao = (true, true, 0.0,0.0,0.0,ao,0x00);

init_etat :: () -> etat_t;
init_etat u = stop_etat (offsetZero - 0x26);

applyOffset :: byte -> byte -> byte;
applyOffset offset angle =
if offset > offsetZero
then angle + (offset - offsetZero)
else angle - (offsetZero - offset);

rabs :: real -> real;
rabs r = if (r::real) < 0.0 then (0.0 - r) else r;

getTO :: byte -> byte;
getTO theta_w =
let theta_r = ((theta_w :: byte) as real) in
let diff = rabs (theta_r - thetaZero_r) in
let diff_w = ((diff * thetaSensitivity) as byte) in
if theta_r < thetaZero_r
then offsetZero + diff_w
else offsetZero - diff_w;

box regu
in (b1::(), b2::(), b3::(), clk::real, alpha_w::byte, theta_w::byte, etat::etat_t)
out (moteur_w::byte, erreur_w::byte, compteur_w::byte, etat’::etat_t)

match
(_,*,*,_,_,_,(false,false,_,_,_,ao,_)) -> (*,*,*,run_etat ao) -- b1 (run)

| (_,*,*,_,_,_,(true, false,_,_,_,ao,_)) -> (*,*,*,deriv_etat ao) -- b1 (deriv)
| (_,*,*,_,_,_,(true, true, _,_,_,ao,_)) -> (motorZero,0x00,*,stop_etat ao) -- b1 (stop)
| (*,_,*,_,_,_,(tf,dv,ap,tp,lc,ao,cnt)) -> (*,*,*,(tf,dv,ap,tp,lc,ao+0x01,cnt)) -- b2 (motor+)
| (*,*,_,_,_,_,(tf,dv,ap,tp,lc,ao,cnt)) -> (*,*,*,(tf,dv,ap,tp,lc,ao-0x01,cnt)) -- b3 (motor-)
| (*,*,*,_,alpha_w,_,(false,dv,ap,tp,lc,ao,cnt)) -> -- (stopped)

(*,*,alpha_w,(false,dv,ap,tp,lc,ao,cnt))
| (*,*,*,c,alpha_w,theta_w,(true,deriv,alphaPrec,thetaPrec,lc,alphaOffset,cnt)) -- (running)
->
let te = (c - lc) in
let theta_r = ((theta_w :: byte) as real) in
let ek = theta_r - thetaZero_r in
let thetaOffset = getTO theta_w in
let aoo = applyOffset thetaOffset alphaOffset in
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let alpha_wo = applyOffset aoo alpha_w in
let alpha = b2r alpha_wo in
let theta = b2r theta_w in
if theta_w < thetaMin || theta_w > thetaMax
then (motorZero,*,*,(true,deriv,alpha,theta,c,alphaOffset,cnt))
else
let xest =
if deriv
then
let thetaPt = (theta-thetaPrec)/te in
let alphaPt = (alpha-alphaPrec)/te in
<< theta, alpha, thetaPt, alphaPt >>

else << theta, alpha, 0.0, 0.0 >>
in
let kay = << (-0.65900), (-21.00773), (-1.31144), (-3.36854) >> in
let v = 0.0 - mult1441 kay xest in
let motorOut = invertMotor (limitMotor (r2b v)) in
(motorOut,0x00,cnt,(true,deriv,alpha,theta,c,alphaOffset,cnt+0x01));

wire regu (b1, b2, b3, counter.clk, ad00, ad01, regu.etat’ initially init_etat ())
(da0, da1, p2, regu.etat);
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