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Prologue
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Caveat emptor...
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Chapter 1

Introduction

1.1 Overview

Hume([7] is a modern programming language with strong foundations both in
classical automata[l14] and computability theory[4] and in contemporary func-
tional languages like Standard ML[13] and Haskell[5]. Hume is explicitly ori-
ented to developing systems requiring strong guarantees of well-bounded use of
resources, such as execution time, memory or power, through static analyses of
programs prior to execution rather than through run-time monitoring and in-
strumentation. To meet these needs, the Hume design makes an explicit distinc-
tion between coordination, concerned with managing how program components
interact with each other and the environment, and computation, concerned with
the activities carried out by individual components. This separation of concerns
enables us to offer, in a principled manner, different levels of language providing
different degrees of expressive power and precision of static resource analyses.
So, that’s one story. Another story is that...

1.2 What’s wrong with functional programming?

Once upon a time, well early in 2000, we had finished co-editing a substantial col-
lection of invited contributions on parallel functional programming[6]. Why, we
mused, had our favourite paradigm, functional programming, singularly failed
to have any discernable impact outside academia, despite its undoubted ele-
gance and formality? Perhaps it is precisely that elegance and formality that
puts people off. Perhaps functional languages are all mouth and no trousers:
full of promise of bridging theory and practicality, but just too difficult to de-
ploy without thorough understanding of both. Certainly, many people used
to a grounded von Neumann world, of assignment and iteration over concrete
structures of concrete types, are nonplussed by deep hierarchies of abstractions
more reminiscent of algebra than algorithms. And, while it may be that rea-
soning about and proving properties of functional programs are easier than for
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8 CHAPTER 1. INTRODUCTION

imperative programs, they aren’t actually that much easier beyond toy exam-
ples. In particular, full strength functional languages share all the undecidability
properties of other Turing Complete languages[4], so fully automatic analysis
of program properties is a non-starter and apparently tractable heuristics just
don’t scale to real world problems.

1.3 How about primitive recursion?

So, we thought, why not start with a language somewhat weaker than Turing
Complete, for which interesting properties are decideable? For example, prim-
itive recursion[11] has decideable termination and so might be a good starting
point for determining time and space behaviour. Alas, it is undecidable whether
or not an arbitrary program in a Turing Complete language is primitive recur-
sive.

There have been attempts at crafting purely or partly primitive recursive lan-
guages, like Burstall’s Inductively Defined Functions[3] or Turner’s Elementary
Strong Functional Programming[16]. Alas, these languages feel “unnaturally”
restricted by syntax and types, and lack clear programming methodologies for
coping with the absence of familiar properties like unbounded loops or arbitrary
depth structures.

A contrasting technique is to constrain programs to always satisfying prim-
itive recursive properties. Thus, Martin-Lo6f’s type theory forms the basis of a
constructive methodology for systematically refining a specification into a cor-
rect program[l]. Similarly, the recursion editor[2] supports the development
of programs from templates that guarantee termination. However, both ap-
proaches also greatly constrain the familiar free form style of programming as
programs must satisfy strong correctness and/or structural criteria at all stages
of development.

1.4 How about finite state automata?

Our next candidate, finite state automata(FSA)[9] seemed like a more promis-
ing basis for developing a language with strongly analytic properties. FSA
have decidable termination, which would provide firm foundations for time and
space analyses. Furthermore, FSA have decidable equivalence and unique, well
determined minimal forms, which would offer a good basis for program trans-
formation and optimisation.

Because of their close relationshop with formal languages, FSA and their
refinements have long been the basis for language transducers, for example in
Unix pattern matching in tools like grep and vi, and in parser generators like
lex/yacc and JavaCC. Furthermore, FSA formalisms and reasoning techniques
underpin model checking which is increasingly used to establish properties of
safety critical systems. For example, the Spin model checker complements the
Promela languagel8].
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FSA have recently found new currency in software engineering. Thus: FSA-
like state charts are key components of designs in the Unified Modelling Lan-
guage (UML)[15]; state models may be used to design concurrent systems[12];
state charts may be used to derive graphical user intefaces[10].

More generally, FSA are widely used by engineers to design both mechan-
ical and electrical control systems. If you mention functional programming or
primitive recursion to many engineers their eyes glaze over, but mention FSA
and they immediately have a handle on what you’re talking about.

However, while FSA simplicity is a major strength for their use in design,
it greatly compromises their usefulness as a basis for programming languages.
As FSA lack core abstractions for types and control structures, constructs that
would be taken for granted in higher level languages must be crafted explicitly.
Thus, models of realistic systems in FSA languages like Promela quickly become
large and complicated. Furthermore, in the worst case, establishing formal
properties of FSA requires explicit analysis of all possible transition paths, which
grow exponentialy in number for linear growth of FSA states and arcs.

So we began to think about how we could base a programming language
in FSA but still enable the use of advanced type and control abstraction of
functional programming languages.

1.5 From FSA to Hume

Formally, a FSA is a recogniser for symbol sequences corresponding to a regular
expression. At simplest, an FSA has a set of states linked by arcs labeled by
symbols. In general, in some old state, a FSA inspects the next input symbol
and changes to the state for which there is a connecting arc labelled with that
symbol. This process is called a transition. One state is designated the start.
There may be multiple final states corresponding to successful or failed recog-
nition of symbol sequences. Note that there is no output during transition: a
basic FSA can only indicate its final state. For example, Figure 1.1 shows a FSA
to check whether a sequence of bits ending with a ! has odd or even parity. A
simple FSA can be expressed as a set of transition rules of the form:

(oldstate,symbol) — newstate
so the example is:

(START,1) -> 0ODD
(START,0) —-> EVEN
(EVEN,0) -> EVEN
(EVEN,1) -> 0ODD
(0DD,0) -> ODD
(0DD,1) -> EVEN
(0DD, !) -> STOP ODD
(EVEN,!) -> STOP EVEN
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0

0

Figure 1.1: FSA for parity checking.

There are a number of points to notice about this state machine. First of
all, it runs continuously, consuming inputs. But it is not apparent where the
inputs come from. Secondly, every time it consumes an input it changes state.
But the state change is implicit in the notation. We might redraw the figure to
make these facits explicit - see Figure 1.2 Now we show links from the outside
environment to supply the input source and to feed the new state from one
transition to the old state of the next transition.

Refinements on this basic FSA include the Moore machine, which generates
an output on entering each new state, and the most general Mealey machine
which generates an output on each transition. For the Mealey machine, we can
extend the transition form to:

(oldstate,symbol) — (newstate,output)
Our example, extended with explicit output, becomes:

(START,1) -> (ODD,0dd)
(START,0) -> (EVEN,Even)
(EVEN,0) -> (EVEN,Even)
(EVEN,1) -> (ODD,0dd)
(0DD,0) -> (ODD,0dd)
(0DD,1) -> (EVEN,Even)
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input symbols

Figure 1.2: FSA for parity checking with explicit input and state.
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(0DD, !) -> (STOP ODD,Stopd odd)
(EVEN, !) -> (STOP EVEN,Stop even)

with diagram shown in Figure 1.3.

1.6 The essence of Hume

Now, thinking like good functional programmers, the left hand side of a Mealey
machine transition looks like a tuple pattern and the right hand side looks like
a tuple expression. So why not generalise the transition form to:

pattern — expression

Here we have the essence of Hume. We no longer distinguish the old state and
input symbol, or the new state and output symbol, though these remain special
cases. Instead, we have a much more powerful form as shown in Figure 1.4,
which we call a box, with links which we call wires. Inside the box is a sequence
of transitions from patterns to expressions, where both are support a rich range
of polymorphic types. Inputs may come from external sources, such as files or
devices or other boxes, or from the box itself. Similarly, outputs may go to
external sinks, such as files or devices or other boxes, or to the box itself. Thus,
the state has withered away and is encompassed by a a box wired to itself. Now,
on each execution cycle, inputs are matched against patterns, with a successful
match triggering the corresponding expression to generate the outputs. Thus,
a Hume program consists of a number of boxes, wired to each other and to the
external environment, repeatedly executing concurrently.

1.7 Example: parity checking

Let’s now write the parity checker in Hume, ignoring the terminating states for
the time being:

type bit = word 1;
data STATE = 0DD | EVEN;

stream input from "std_in";
stream output to "std_out";

box parity

in (s::STATE,symb::bit)

out (s’::STATE,message: :string)

match
(0DD,0) -> (0ODD,"0dd\n") |
(0DD,1) -> (EVEN, "Even\n") |
(EVEN,0) -> (EVEN,"Even\n") |
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input symbols

output

Figure 1.3: Mealey machine for parity checking with explicit input, output and
state.
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Figure 1.4: Generalised Mealey machine: the box.

(EVEN,1) -> (0ODD,"0dd\n");

wire parity
(parity.s’ initially EVEN,input)
(parity.s,output);

First of all we have auxilliary declaration:
e type bit = word 1; - defines bit to be a synonym for a one bit word;

e data STATE = ODD | EVEN - defines a constructed type data which can
have the values 0DD or EVEN;

e stream input from "std_in" - defines an stream input associated with
standard (i.e. keyboard) input;

e stream output to "std_out" - defines a stream output associated with
standard (i.e. display) output.

Next we have the declaration of the box parity consitituting the program. We
can discern:

e box parity - names the box;

e in (s::STATE,symb::bit) - identifies two inputs: s that will receive the
current state and symb that will receive the next input symbol;
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e out (s’::STATE,output::string) - identifies two output: s’ that will
produce the next state and message that will produce a string;

There follow the four transitions corresponding to the four states of the original
FSA. For example, we can read the first transition:

(0DD,0) -> (ODD,"0dd\n")

as saying: if the input state is ODD and the input symbol is 0 then output the
state 0DD and the message "0dd\n".
Finally, in the wiring:

e wire parity - identifies which box is being wired;
e (parity.s’ initially EVEN, input) - says that:

— parity’s input s is wired to parity’s output s’ and has initial value
EVEN;

— parity’s input symb is wired to the stream input
e (parity.s,output) - says that:

— parity’s output s’ is wired to parity’s output s;

— parity’s ouput message is wired to the stream output

This first example provides a simple flavour of Hume programming. In the
next few chapters, we explore in considerably more detail what goes on both
inside and outside boxes. We then turn to how the Hume design decisions enable
us to meet our original objective of providing a language suitable for resource
aware systems development.

1.8 Conventions

The Hume Report[7] contains the definitive, if flawed and evolving, account of
Hume.

In this book, text is in Times Roman, things we want to emphasise are in
italic Times Roman, and code is in Courier.

Syntactic classes are also in italic Times Roman. Syntax class names may
not always be the same as those in the formal definition of Hume[7] but the
correspondence should be straight forward.

Footnotes marked TP are Trivial Pursuits: engaging points of vacuous con-
tention between the authors.

Acknowledgements
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Chapter 2

Preliminaries

2.1 Introduction

In this chapter we are going to explore the underpining concepts and constructs
for Hume programming, in particular program structure, box construction and
wiring. We will also start to look at Hume types, expressions and patterns.

2.2 Program structure

A Hume program has three conceptual components:
e boz declarations, specifying the I/O and transition properties of boxes;

e wire declarations, specifying how boxes are connected to each other and
the wider environment;

o quzilliary declarations of types, constants, functions, streams amd so on
used in box and wire declarations.

While elements of these may appear in any order, as with other languages, it
makes sense to group related elements together. In particular, it is usual to start

a program with all common auxilliary declarations, and for wire declarations to

follow box declarations 1.

2.2.1 Identifiers

Hume identifiers are sequences of underbars (_), letters and digits, starting with
an underbar or letter. For example:

hUmE _Hume_dispels_doubt H12345_is_not_very_informative_and_2_long

Note that a single underbar is used for the wildcard pattern.

ITP1: should each wire declaration immediately follow the associated box declaration or
should all wire declarations be grouped together after all box declarations?

17



18 CHAPTER 2. PRELIMINARIES

2.2.2 Box declaration

At simplest, a box declaration takes the form:

box identifier

in (identifier: :type ...)
out (identifier: :type ...)
match transitions;

The in names and gives types to a comma separated sequence of inputs, and
the out names and gives types to the outputs.

All box identifiers must be unique.

All in and out identifiers must be unique to the box.

The transitions is a sequence of pattern -> expression transitions separated
by |. All patterns must have the same type as a tuple of the input wire types.
All expressions must have the same type as a tuple of the output wire types.

2.2.3 Box wiring

Boxes may be wired implicitly by position or explicitly point to point?.

For wiring by position, lists are provided of links to other boxes and the
enviroment, which are implicitly associated with the corresponding box inputs
and outputs. Wiring by position takes the form:

wire identifier (inputlinks) (outputlinks) ;

The identi fier names the box being wired. The inputlinks lists where the box’s
inputs are to be connected, and may be either box outputs or output streams,
discussed below. Similarly, the outputlinks lists where the box’s outputs are
to be connected, either box inputs or input streams, also discussed below. The
key notion is that the inputlinks should correspond in position and type with
the associated box’s inputs, and the outputlinks in position and type with the
associated box’s outputs.
A link to a box input or output has the form:

box — identifier.in/out — identifier
An input link may be optionally followed by:
initially wvalue

to specify some initial value on the wire.

A link to a stream is the stream’s identifier.

With point to point wiring, a link may be specified explicitly. This takes the
form:

wire link to link;

2TP2: is by position or point to point wiring preferable?
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Any wiring by position has an equivalent list of point to point wirings. However,
point to point wires are initialised separately:

initial box — identifier {in/out — identifier = value ...)};

where the box—identi fier is followed by a comma separated list of initialisations.
We will discuss wiring macros in a later chapter once we have met multi-box
programs.

2.2.4 Stream

A stream provides a connection to the operating environment enabling access
to devices, files, sockets and so on.

Streams communicate sequences of characters to and from boxes. The sys-
tem uses automagic I/0 to ensure that values are converted appropriately.

An input stream is defined as:

stream identifier from string;
and an output stream by:
stream identifier to string;

where the string is a double quoted file or socket path of an appropriate format
for the host system.

Standard input, typically from a keyboard, is denoted by "std_in" and
standard output, typically to a display, by "std_in".

2.3 Types

Hume has a rich polymorphic type system in the functional tradition. A key
innovation is the explicit distinction between sized and unsized types, which
greatly facilitates resource analysis. Sized types, including booleans, characters,
words, integers, floats, tuples, vectors and enumerated discriminated union, are
of stated precision or size. In contrast, unsized types, including strings, lists
and recursive discriminated union, may be of arbitrary precision or size.

As we shall hint at in this chapter, and discuss in the next, Hume is novel
in providing implicit automagic I/0 of most sized types.

2.3.1 Simple types
Booleans

Booleans have the type constructor bool and values true and false.
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Characters
Characters have the type constructor char and values of the form:
’character’
where character is a single symbol, for example:
’a’ 9’ @ ’)°
or a standard escaped symbol, for example:
’\n’ - newline
’\t’ - tab
>\’ s ingle quote
Words
Words are fixed sized unsigned bit sequences. They have the type constructor:
word size
where size denotes a fixed number of bits, for example:
word 64
Words values are hexadecimal:
0x hexdigits
for example:

OxFFFFO0001

Integers

Integers are fixed sized, twos complement signed. They have the type construc-
tor:

int size
as for word. Integer values are decimal?, for example:

42351 (-147)

Floats
Floats are fixed sized and signed. They have the type constructor:
float size
as for word. Float values may be floating point or exponential?, for example:

41.4243 44.45e46 4748e-49 (-50e51)

3TP3: negative integers need to be bracketed
4TP4: see TP3
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Enumerated discriminated unions

Enumerated discriminated unions provide a way for users to define new types
with a fixed number of values. They are defined by:

data constructor = identifiery | ... | identifier;;

There after, the values identi fier;...identi fiery all have type constructor. For
example, after:

data LIGHTS = RED | RED_AMBER | AMBER | GREEN;
RED, RED_AMBER, AMBER and GREEN all have type LIGHTS.

Note that Hume cannot input or output dicriminated unions.

2.3.2 Structured types

We will here consider tuples and strings. We will discuss lists and structured
discriminated types types later.

Tuples

Tuples are fixed length sequences of arbitrary type. A tuple of types type;...typen
itself has type:

(typer, . .., typen)

Tuples may be arbitrarily nested. For example:

(true,’a’) :: (bool,char)
((’b’,false),’1’) :: ((char,bool),char)
Strings

Arbitrary sized strings have the type constructor string. Sized strings have
constructor string size.
String values are arbitrary length sequences of symbols within double quotes:

"symbi . . .symby"
using the same escape conventions as characters. For example:

"Hume dispels doubt\n"

Vectors

Vectors are fixed sequences of the same type. Vector types take the form:
vector constant of type

where constant is a natural number. For this type, values take the form:
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<<valuey, ... ,valuen>>
where value; is of type type and N is the constant. For example:

<<’a’,’b’,’c’>> :: vector 3 of char
<<(’1’,true),(’2’,false)>> :: vector 2 of (char,bool)
<<<<false,false>>,<<false,true>>,
<<true,false>>,<<true,true>>>> ::
vector 3 of vector 2 of bool

2.3.3 Type aliases

Type aliases of the form:
type identifier = type;

may be used to provide simplified and meaningful identifiers. The subsequent
use of identifier in any context where a type may appear is equivalent to the
in situ substitution of type. For example, we will extensively use:

type integer = int 64;

in the rest of this book.

2.4 Patterns

Recall that boxes are composed of sequences of transitions of the form:
pattern -> expresion

On each box execution cycle, as discussed in more detail below, input wires are
matched against successive transition patterns, with a successful match trigger-
ing evaluation of the associated expression.

In general, a pattern is a tuple with one element for each input wire. In
turn, each element must be consistent with the type and denotation structure
of the corresponding wire’s type.

Pattern elements look like value denotations but may also have wvariable
identifiers in place of arbitrary value components. For the types we’ve met so
far, a pattern element may be:

e a constant boolean, word, integer, character, sized string or enumerated
discriminated union value;

a variable;

the wild card _;

a tuple of pattern elements;

a vector of pattern elements
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< less than

<= less than or equal

== equal

>= greater than or equal

> greater than
= not equal

Figure 2.1: Comparison operators.

Note that patterns may not contain floats or unsized strings: float equality is
not well defined; strings of arbitrary size cannot be distinguished in inputs.

Patterns elements are matched left to right with the values on the corre-
sponding wires. Here we will assume that every wire has a value: we will
consider patterns where wires may be empty in another chapter.

For a pattern element match with a wire value to succeed, it must correspond
in structure with the value on the corresponding wire. That is, if the pattern
element is a:

e constant, the corresponding wire value must be the same;

e variable, the match succeeds and the variable is bound to the corresponding
wire value;

e wildcard, the match succeeds;

e tuple or vector, the elements are matched with the corresponding elements
of the tuple or vector on the wire;

After a successful match, the variables in the pattern are bound to the
corresponding values from the wires for use in the associated expression.

2.5 Expressions

We will next quickly survey the operations and expressions for the types we
have met so far. We will meet all of these repeatedly in the rest of this book.

2.5.1 Comparison

The comparison operators are shown in Figure 2.1. All are infix, take two
arguments of the same type and return a bool.

These operators apply directly to simple types, and recursively, left to right,
to structured types. Character based constructs are compared in alphabetic
order. For example:

"cat" < "catamaran" = true
("a",1,1.0) >= ("a",2,1.0) = false
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operator action precedence
[l infix disjunction (or) 3
&& infix conjunction (and) 2
not prefix negation 1

Figure 2.2: Boolean operators.

operator action precendence
+ infix addition 3
- infix subtraction 3
* infix multiplication 2
div infix division 2
mod infix remainder 2
*% infix power 2
- prefix negation 1

Figure 2.3: Integer operators.

2.5.2 Boolean expressions

Boolean expressions may be constructed using the operators shown in Figure
2.2. They may be structured with arbitrarily nested bracket sub-expressions in

...

2.5.3 Integer expressions

The integer arithmetic operators are shown in Figure 2.3. All take one or more
integer argument of the same size and return an integer of the same size.
Integer expressions may be structured using (...).

2.5.4 Float expressions

The float arithmetic operators are shown in Figure 2.4. All take one or more
float arguments of the same size and return a float of the same size.

There are also the customary trigonometric and other infix operators shown
in Figure 2.5.

operator action precendence
+ infix addition 3
- infix subtraction 3
*% infix power 2
* infix multiplication 2
infix division 2
- prefix negation 1

Figure 2.4: Float operators.
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operator action

sin sine

cos cosine

tan tangent

asin inverse sine

acos inverse cosine
atan inverse tangent
sinh hyperbolic sine
cosh hyperbolic cosine
tanh hyperbolic tangent
atan?2 angle of point al/a2 to x axis
log natural logarithm
logl0 logarithm base 10
exp exponent

sqrt square root

Figure 2.5: Float trigonometric and other operators.

operator action precendence
+ infix addition 3
- infix subtraction 3
* infix multiplication 2
div infix division 2
mod infix remainder 2
*k infix power 2
- prefix negation 1

Figure 2.6: Word operators.

Float expressions may be structured using (...).

2.5.5 Word expressions

The word arithmetic operators are shown in Figure 2.6. All take one or more
word arguments of the same size and return a word of the same size.

The infix word manipulation operators are shown in Figure 2.7.

The bitwise word operators are shown in Figure 2.8.

Word expressions may be structured using (...).

2.5.6 String expressions

String elements are selected with infix @:
"hello"@3 = ’1°

Strings are joined with infix ++:
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operator action

1shl logical shift left
1shr logical shift right
ashl arithmetic shift left
ashr arithmetic shift right
rotl rotate left

rotr rotate right

bittest for word al test bit a2
bitset for word al set bit a2
bitclr for word al clear bit a2

Figure 2.7: Word manipulation operators.

operator action
~& and

| or
- not and

Figure 2.8: Word bitwise operators.

"hello"++" "++"there" = "hello there"
The length of string is found with infix length:

length "hello" = 5

2.5.7 Vector expressions
The infix operator v@i selects element ¢ of vector v:
<<2,4,6,8,10>>03 = 6

The prefix operator length returns the number of elements in a vector.
The prefix operator update v i e makes a copy® of vector v with element i
replaced with the value of expression e:

update <<1,2,3,4,5>> 3 33 = <<1,2,33,4,5>>

We will consider operators for creating and mapping over vectors after we
have met functions in the next chapter.

2.5.8 Type casting and coercion

While many types share the same lexical form of operators, Hume insists that
this is merely a convenience and that each form actually denotes a different op-
eration depending on the type context. Furthermore, binary operators only take
operands of the same type so implict mixed type operations are not permitted.

5TP5: details of destructive update are available on request
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Thus, where mixed type operand are required at least one must be converted
explicitly to be consistent with the other.

There are type forms of type conversion, casting and coercion.

Casting takes the form:

expression :: type

Here the value of expression will be converted to type provided it may be
accomplished without loss of information and at no run-time cost.
The more general® coercion takes the form:

expression as type

Here, there may be both a loss of information or a run-time cost.

It is usually possible to coerce an arbitrary non-function type to string and
thence to another non-function type. This may become clearer when we discuss
automatic input/output in the next chapter.

2.5.9 Putting it all together
To summarise, an arbitrary expression may be:
e a base constant;

e a variable;

a tuple or vector where each element is an expression;

e a conversion expression;

e a prefix operator applied to an appropriate expression;

e an infix operator applied to appropriate operand expressions;
e a bracketed expression.

We will, of course, see lots of concrete instances of these in the rest of this
book. We will also meet functions, lists and recursive discriminated unions in
the next chapter.

2.6 Program execution

So, now we have a program made up of named boxes wired to each other and to
named streams connected to the operating environment. Each box has named
and typed inputs and outputs, and a sequence of transitions from patterns over
inputs to expressions over outputs.

STP6: and more useful?
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To begin with, every box is potentially executable (RUNNABLE) and all
initial values are on the wires. Note that the order of box execution is not
specified”.

Execution is carried out in two stages. In the first pattern match stage, each
box attempts to match the values on its inputs against each transition pattern
in turn until one match succeeds. For now, we assume that matching always
starts with the first transition and proceeds in sequence through the transitions.
Such matching is termed unfair.

After a successful match, variables in the pattern are bound to correspond-
ing input values and the associated transition expression is then evaluated to
produce the output values. At the end of this stage, all local memory allocated
to the pattern and expression is reclaimed. However, no inputs are consumed
from wires and no outputs are asserted to wires.

Once all boxes have completed the first stage, in the second super-step stage,
wire transactions are resolved. For each box, values on successfully matched
wires are removed. Then, if all of the output wires for which new values have
been generated are empty then each wire is set to the coresponding output value
and the box is RUNNABLE for the next execution cycle.

However, if at least one output wire still has unconsummed values, then no
output values are asserted for that box. Instead, the new output values are held
until the next cycle. Such a box is said to be BLOCKED-OUTPUT.

On all subsequent cycles, only RUNNABLE boxes are eligible for pattern
matching, but both succesfully matched and BLOCKED-OUTPUT boxes are
considered in the super-step.

2.7 Comments

A comment is a line starting with —--. For a multi-line comment, every line must
be so marked.

2.8 Importing files

A directive:

import path

will insert the file at path, along with nested imports, prior to parsing.
Recursive imports are ignored.

2.9 Standard prelude

We will assume a minimal standard prelude:

"TP7: though in some implementations it is (possibly reverse) alphabetic order of box
name
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type integer = int 64;
stream input from "std_in";
stream output to "std_out;

in a file prelude.hume and that every subsequent program begins with:
import prelude.hume

We will sometimes redefine these definitions in situ as needed.

2.10 Summary

In this somewhat dense and jumbled chapter, we have met almost all of the
key ideas behind Hume. In the next few chapters, we will begin to systemat-
ically explore Hume programming, starting with single boxes of one transition
before developing single boxes with multiple transitions and multiple box pro-
grams. As well as considering further Hume constructs such as functions, lists,
structured discriminated unions and exceptions, we will also discuss Hume pro-
gramming techniques, in particular how to optimise what goes on inside and
outside of boxes. Finally, we will look at more elaborate ways of connecting to
the operating enviroment through sockets and foreign functions.
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Chapter 3

One box, one transition

3.1 Starting with nothing...

In this chapter we are just going to look at Hume programs that consist of a
single box with a single transition, with output to standard output and, usually,
input from standard input!.

Let’s begin with a program that accepts single integers and outputs them,
one at a time:

box oneint

in (n::integer)
out (n’::integer)
match

n -> n;

wire oneint (input) (output);

Note that, while we use unique identifiers for inputs and outputs, it is purely
“coincidental” if a pattern contains an identifier which also names an input or
output?; the name spaces are disjoint.

Note in the transition the special cases of a single variable input and of a
non-tuple output, which are not bracketed?.

When we compile and run this program:

$ humec -lotsaspace oneint.hume

$ oneint

LTPS8: given arbitrary recursive expressions, this form, is of course Turing Complete.

2TP9: there is a plausible convention of pattern identifiers always reflecting associated
input/output identifiers but that seems over prescriptive

3TP10: we should probably have used different brackets to distinguish a sequence of pat-
terns for multiple input wires and a tuple pattern for a single wire.

31



32 CHAPTER 3. ONE BOX, ONE TRANSITION
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it will repeatedly read successive integers from the keyboard and write them to
the display.

Note that the program “knows” to expect an integer from standard input on
the input wire, without any explicit invocation of input. Similarly, the program
“knows” to display the integer on standard output without any explicit invoca-
tion of output. As we explore below, Hume has strong automagic I/O requiring
no user formatting of input or output.

Having input and output on the same line without identification is untidy,
so we will modify the program to prompt for input and display it on a separate
line. To do this, we change the expression to a tuple of the integer followed by
a newline and prompt. We must also change the output type:

box oneint2

in (n::integer)

out (n’::(integer,string))
match

n —-> (n,"\nNext> ");

Now, when we run the program:

1

1
Next>2
2
Next>8
3
Next>

we are prompted for input every time except the first.

Note that Hume automatically converts the tuple on the output into appro-
priate character representations for the elements separated by a space. This is
quite unlike other languages where values must either be converted explicitly for
textual display or the systems reconstructs the full syntactic value denotation.

Let us again change the program to print the integer and its square, again
by modifying the output type and the transition expression:

box intsq

in (n::integer)

out (n’::(integer,string))
match

n -> (n,n*n,"\nNext> ");

The output is now:
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Next> 2
2 4
Next> &
39
Next>

Now let us prompt for two integers and output the sum of their squares in
a more informative format:

box sumsq
in (n::(integer,integer))
out (n’::(string,integer,string,integer,string,integer,string))
match
(x,y) => ("x:",x,"y:",y, "xkx+y*xy: ", x*xx+y*y, "\nEnter x y> ");

with interaction:

Enter x y> 78
x:7 y:8 x*x+y*xy:113
Enter x y>

The input n is now from a single wire carrying a tuple of two values, matched
in the pattern by x and y. Once again, the system will automatically recog-
nise appropriate values for the tuple elements from the input stream character
sequence.

As always, the output type faithfully reflects the type of the expression tuple.
However, an alternative here is to simplify the output type to a single string

and then cast the tuple expression*:

box sumsq2
in (n::(integer,integer))
out (n’::string)
match
(x,y) > ("x:",x,"y:",y, "xkx+y*y: ", xxx+y*y,"\nEnter x y> ") as string;

Note that Hume’s polymorphic type system will, in this instance, ensure that
the expression is type correct even though the output no longer corresponds in
type and so provides no directly confirming type information. That is, x and
y must be integer because n is a tuple of integer so * must be integer
multiplication and + must be integer addition (and consistent with integer

1).
3.2 Simple functions

Hume provides functions as expression abstractions. At simplest, a function has
the same form as a box transition:

4TP11: if we'd used different brackets for a tuple expression and a transition expression
feeding mutiple wires then the cast wouldn’t be necessary here.
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identifier pattern = expression;

The identifier names the function. pattern is termed the formal parameter
and expression the body. Variables in the pattern have scope and extent in the
erpression.

If pattern has type type; and expression has type types then this function
has type:

typer — types

implying that identifier is a mapping from a type; to a types.
For example:

inc x = x+1;
is the integer increment function with type:
int 64 -> int 64

Note again that Hume can deduce that x is integer: 1 is integer so + must
be integer.

Where the type of pattern variables cannot be deduced in context, the func-
tion type must be defined explicitly. For example, in the square function:

5Q X = X*X;

* is overloaded so x does not have an unambiguous type. To ensure x is integer
requires:

sq :: integer -> integer;
5q X = X*X;

5;
identifier :: type;
Thus, we might have characterised sq by:

sq :: integer;
5Qq X = X*X;

A simple function call has the form:
identifier expression

expression; is termed the actual parameter. Function application is strict and
left to right. If:

identifier :: type; — types

5TP12: One author, from the Haskell tradition, thinks uniform explicit function typing is
the best style as it aids software development and documentation. The other author, from the
SML tradition if lazy, prefers to trust polymorphic type inference to tell him function types.
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and expression; evaluates to:
valuey :: type;

then the pattern is matched against valuey, binding any variables in pattern
to the corresponding elements of value, and the function body expression is
evaluated to return some:

values :: types

Function calls are used in expressions, and have higher precedence than infix
operators. For example, we may rewrite the core of the sum of squares program
as:

box sumsq3
in (n::(integer,integer))
out (n’::integer)
match
(x,y) -> sq x+sq y;

Brackets must be deployed round actual parameters which are infix expres-
sions or function applications. Thus:

sq 3+4 = 13

but:
sq (3+4) = 49

Tuples may be used to get the effect of multi-argument functions. For ex-
ample:

sumsq (x,y) = sq x+sq ¥;
Thus, we could further rewrite sum of squares as:

box sumsq4
in (n::(integer,integer))
out (n’::integer)
match
(x,y) -> sumsq (x,y);

The infix operator o is used to compose functions so:

indenti fier; (identi fiery (expression)) <
(identifiery o identifiers) expression

For example:
inc (sq (3)) < (inc o sq) 3

Functions may also be defined in Curried form:
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identifier :: type; => types => ... => typen
identifier pattern; patterns ... = expression

where pattern; has type;. Here, function application has the form:
identifier expression; expressions ...

where expression; has type;. From left to right, each expression; is evaluated
and its value matched against pattern,.
This is broadly equivalent to the un-Curried form:

identifier :: (typei,types ...) => typen
identifier (patterny,patterns ...) = expression

For example:

sumsqg X y = sq X+sq y ... sumsq 3 4 &
sumsq (x,y) = sq x+sq y ... sumsq (3,4)

The Curried form is retained for aesthetic reasons but is not particularly useful
as Hume does not support anonymous functions or partial application®.

3.3 Self wiring and state

So far we have met very simple boxes that endlessly consume inputs and generate
outputs. Each execution cycle is distinct and no information is held between
cycles. However, by wiring a box to itself, information may be retained from
one cycle to the next.

In general, a self-wired box has the form:

box identifier

in (identifiery: :typey,identifiery: :types . ..)
out (identifier]: :typey,identifiers: :types ...)
match transitions;

wire identifier
(identifier.identifier; initially wvalue, ...)
(identifier.identifier], ...);

illustrated in Figure 3.1.

Input identi fier; and output identi fier] are wired reflexively to each other,
and necessarily have the same type type;. By convention, self-wired inputs and
outputs share the same identifier.

Note that such wiring must have an initial value. This is a very common
ommission in Hume programs, leading to the box blocking right from the start.

Now, on each cycle, the pattern will match the current wire value from input
identifiery, expression will generate a value for output identifier], which will
be available from input ident fier; on the next cycle.

6TP13: this seemingly tiresome restriction aids resource analyses
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identifier

! |
! |
! |
! |
! |
: L/ _

. pattern —> expression |
| -

| - i // :
: P - g /// :
I e , I
| P - , |
: yd 4 |

identifier’

Figure 3.1: Self-wiring.

For example, consider a Hume program that maintains and displays a run-
ning total of input values:

box total
in (t,n::integer)
out (t’::integer,tot::(integer,string))
match
(t,n) —> (t+n, (t+n,"\nNext> "));

wire total
(total.t’ initially O, input)
(total.t, output);

which runs as:

1

1

Next> 2
3

Next> 3
6

Next>

On each cycle, t matches the old running total, initially 0, and n the next input.
Then, n is added to t which is both passed to n’ and displayed.
Note the short form in the input declaration for several inputs of the same

type:
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identifiery ,identifiers, ... :: type

For example, consider the extremely useful generation box which produces
a sequence of successive integers:

box gen

in (n::integer)
out(n’,r::integer)
match

n -> (n+1,n);

wire gen (gen.n’ initially 0) (gen.n,output);
Here, successive values are held on the n to n’ wire, and returned on r:
0123456789 ...

Note that the box has no input and so the self-wire must be initialised.

Self-wiring of boxes is equivalent to accumulation variables in recursive func-
tions. This observation underlies the linear recursive function to iterative box
transformation discussed in a later chapter.

3.4 Local definition

In the total program, we calculate t+n twice. We can simplify this by using a
local definition of the form:

let identifier = expression
in expressions

Local definitions are used to introduce local variables to hold intermediate
results. Thus, identifier is bound to the value of expression; throughout
exrpressions.

For example, we could rewrite total as:

box total2
in (t,n::integer)
out (t’::integer,tot::(integer,string))
match
(t,n) -> let s = t+n
in (s, (s,"\nNext> "));

Now, both references to s in (s, (s,"\nNext> ")) will share the same value
from t+n.

Note that only an identifier, and not an arbitrary pattern, may be used in
a let definition”. Thus, to match tuple results from a function it is necessary to
compose its call with another function whose formal parameter is an appropriate
tuple pattern. For example, we might naturally attempt to write:

“TP14: See TP13.
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sumdiff :: (integer,integer) -> (integer,integer)
sumdiff (x,y) = (x+y,x-y);

let (x,y) = sumdiff(p,q) in (y,x)

but instead must craft:
swap :: (integer,integer) -> (integer,integer);

swap (a,b) = (b,a);

swap (sumdiff (p,q))

3.5 Creating and mapping over vectors

The prefix operator vecdef n f creates a vector of length n where element i is
function f applied to i:

vecdef 5 sq = <<1,4,9,16,25>>

The prefix operator vecmap v f creates a new vector from function f applied
to each element of vector v:

vecmap <<1,2,3,4,5>> inc = <<2,3,4,5,6>>

3.6 expression

When developing functions, it is often useful to be able to test them indepen-
dently of the boxes in which they’re going to be used. Hume provides the
“expression command” of the form:

expression expression;

which may appear arbitrarily amongst declarations.
At run time, the expression is evaluated and the value is displayed.

3.7 Automagic I/0

I/O provision is a common and long-standing weakness of programming lan-
guage design. Many languages have no intrinsic I/O, which instead is provided
through libraries with no standardisation. Furthermore, where I/0O is part of
the language it often feels like an afterthought. Typically, there is inconsistent
orthogonality of I/0, often with structured types, and indeed some base types,
not supported at all. A widely observed consequence is that I/O requires a
disproportionate amount of effort in software development, distracting from a
primary focus on how inputs are turned into outputs.
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output :: type — value — text

output [word size] w = showword size w
output [int size] i = showint size i
output [float size] r = showfloat size r
output [bool] b = showbool b

output [char] ¢ = showchar ¢

output [string] s = output [[char] |s

output [[ type 1] [ey...ep] =

output type e;++" "++ ... output type e,
output [( type;...type,)] (eq...en) =

output type; e1++" "4+ ... output type, e,
output [vector size of type] <<ej...egize>> =

output type e;++" "++ ... output type €g;ze

where ‘showword’, ‘showint’, ‘showfloat’, ‘showbool’ and ‘showchar’
are appropriate base type output functions, and ‘+4’ is a text
concatenation operator.

Figure 3.2: Output by type.

Hume supports what is colloquially termed automagic 1/0O, where, as far
as possible, there are implicit conversions to and from textual and internal
representations of data values. This is driven entirely by type information in
context without any programmer intervention.

Hume follows the imperative rather than the functional tradition in that val-
ues are represented as flat sequences of base values rather than in the syntactic
denotation form. Denotation I/O may be useful once values have been con-
structed, for example as a basis for program tracing or simple implementation
independent persistent data. Ultimately, however, all values that are not con-
structed within a program through abstracted denotations must result from the
conversion of raw external textual input. It is inconvenient to have to prepare
input data in syntactic denotation form, especially if that data has been already
generated by other programs. It is also tiresome to read syntactic denotations
of complex nested structures, especially if one is not familiar with the language
in which they originate. Thus, we decided that Hume I/O would be based on
flat textual representations.

3.7.1 Output

In Hume, all denotable values except discriminated union types have output
representations. Generation of output is driven by the structure of the type of
the value to be output, and may be defined recursively as shown in Figure 3.2.

Note that arbitrary sized structure values have non-unique text representa-
tions. For example, the text sequence:
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input :: type — text — value * text

input [word size] t = getword size t
input [int size] t = getint size t
input [float size] t = getfloat size t
input [bool] t = getbool t

input [char] t = getchar t

input [( type;...type,) t =

let (el,t1) = input type; t
(en,tn) = input type, tn_1
in ((el...en),tn)
input [vector size of type |t =
let (el,t1) = input type t

(€sizesbsize) = Input type tg;ze
in (<<el...esize>>,tsize)

where ‘getword’, ‘getint’, ‘getfloat’, ‘getbool’ and ‘getchar’ are
appropriate base type input functions which return values of the

required type and the text that follows their representation in the
input.

Figure 3.3: Input by type.

12345678

represents the vectors:

<<1,2,3,4,5,6,7,8>> :: vector 8 of integer;
<k<1,2,3,4,5,6,7,8,9>>>> :: vector 1 of vector 8 of integer
<<k<1,2,3,4>>,<<5,6,7,8>>>> :: vector 2 of vector 4 of integer

<<<<1,2>>,<<3,4>>,<<5,6>>,<<K7,8>>>> ::
vector 4 of vector 2 of integer

amongst others.

3.7.2 Input

Hume input is restricted to fixed size types, and may be defined recursively on
a required value’s type signature as shown in figure 3.3.

This restriction is required because of the ambiguity of text representations
discussed above: it is not possible to identify a unique value for an unsized type
from a flat textual representation.

However, one benefit of the Hume approach is that the shape of structures
may be changed transparently through I/O, or type conversion, precisely be-
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cause of the non-uniqueness of representation. For example, a fixed length
sequence of bits:

1011001010010010

may be input as vectors of varying size and dimension, of words of varying sizes:

<<1011,0010,1001,0010>> :: vector 4 of word 4
<<10110010,10010010>> :: wvector 2 of word 8
<<<<1011,0010>>,

<<1001,0010>>>> :: vector 2 of vector 2 of word 4
<<k<1,0,1,1>>,

<<0,0,1,0>>,

<<1,0,0,1>>,

<<0,0,1,0>>>> : vector 4 of vector 4 of word 1

3.7.3 Limitations

The big benefit of automagic I/O is for input of uniform sized data from a
continuous stream. However, input of non-uniform data or data sequences of
finite but unknown length is curiously problematic.

For example, there is no easy way to input an arbitrary length sequence of
characters ending with a newline. Instead, a sized vector of characters must be
used to input sequences which are always of the same length. The vector is then
coerced to string.

For example, inputing a data size followed by that quantity of data requires
an explicit state machine with different phases for acquiring the size and the
data. We will see an example of this in a subsequent chapter when we consider
file I/0.

Otherwise, for data sequences with separator markers, indeed for any free
form data, it is necessary to deploy a state machine that acquire a sequence of
characters as one big string, followed by explicit parsing either through recursive
functions or further state machines.



Chapter 4

One box, multiple
transitions

4.1 Introduction

In the last chapter we looked at the construction of basic patterns and expres-
sions for a box with just one transition. We will now look at more elaborate
patterns and expressions, in particular for recursive data types, for a box with
multiple transitions.

4.2 Multiple transitions

Our single transition boxes are unable to distinguish amongst different combi-
nations of input values, for which multiple tarnsitions are required. In general,
a box match has the form:

match
patterny —> expressiony |
patterng —> expressions |

All the patterns must have the same type as the inputs. All the expressions
must have the same type as the outputs.

Transitions do not need to be different. Repeated transitions, combined with
fair matching discussed below, may be used to bias the match.

As noted in an earlier chapter, for this unfair matching, matching always
starts with pattern, and proceeds pattern by pattern through the sequence
of transitions. Collectively, the patterns should exhaustively cover the space of
input values. This does not imply that one pattern must always succeed though:
a match may fail if one input is not available at the point of match.

For example, consider inputing simple expressions of the form:
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carry sum carry’
0 0 0

— —_— OO, R OOX

y
0
1
0
1
0
1
0
1

— == O OO
R OO~ O
— == O = OO

Figure 4.1: Full adder.

integer operator integer
where the operator may be +, -, * or /:

box arith

in (e::(integer,char,integer))

out (r::(integer,string))

match
(i1,2+7,i2) -> (i1+i2,"\n") |
(i1,’-2,i2) -> (i1-i2,"\n") |
(i1,°%2,i2) -> (i1¥i2,"\n") |
(i1,’/7,i2) -> (i1 div i2,"\n") |
(_,op,_) -> (0,"bad operator\n");

which runs as:

W N =
+ .
[N

* 8

24

6 %7

0 bad operator

We can directly read off a truth table as a Hume box, with one transitionfor
each table row. For example, the full adder in Figure 4.1 becomes:

box adder
in (xyc::(bit,bit,bit))
out (sc::(bit,bit))
match
(0,0,0) -> (0,0)
(0,1,0) —> (1,0)
(1,0,0) —> (1,0)
(1,1,0) —> (0,1)
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(0,0,1) -> (1,0) |
(0,1,1) -> (0,1) |
(1,0,1) -> (0,1) |
(1,1,1) —> (1,1);

4.3 Exceptions

Exceptions may be raised explicitly by an expression or by the system in re-
sponse to some aberrant condition.
User defined exceptions are declared by:

exception identifier type;
and raised within expressions by:
raise identifier value

where the exception argument value is of type.
Exceptions are handled by augmenting a box declaration to identify both
which exceptions the box accepts and how they are dealt with:

box ...

in ...

out ...

handles (identifiery,identifiers...)

match ...

handle
identifiery pattern, -> expression; |
identifiery patterny -> expressions |

Thus, handles introduces recognised exceptions and handle says what to do
with them. Here, pattern; must be of the requisite type for exception identi fier;.

When a handled exception has been raised, the pattern is matched with the
exception argument and the value of the corresponding expression is returned.
A raised but unhandled exception causes the program to fall over.

A box will only handle exceptions raised in its own matches. Thus, excep-
tions cannot be used for time-warp style inter-box communication.

For example, if we run the previous program:

22/ 0
Division By Zero

$

the Div0 system exception is raised and the program stops.
We can handle this exception with:
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box arith

in (e::(integer,char,integer))

out (r::(integer,string))

handles DivO

match
(i1,°+7,i2) -> (i1+i2,"\n") |
(i1,’-2,i2) -> (i1-i2,"\n") |
(i1,°%2,i2) -> (i1¥i2,"\n") |
(i1,°/°,i2) -> (i1 div i2,"\n") |
(_,op,_) => (0,"bad operator\n")

handle DivO _ -> (0,"divide by zero\n");

for example:

33/ 0

0 divide by zero
33/ 3

11

Note that any data on self-wires is not accessible to an exception handler
and should be assumed to be lost after the exceptions. An exception has no
pattern to match a self-wire input. Furthermore an exception must generate
some value for a self-wire output!.

System exceptions are described in the Hume manual?.

4.4 Star pattern and expression

The star pattern * will ignore the corresponding input. Thus a star pattern will
always succeed even if the input is empty, and will not consume a non-empty
input.

Similarly, the complementary star expression, also *, will produce a valid
empty output.

The star pattern may only be used at the top level to match a whole wire.
That is, star patterns may not be nested in structured patterns.

Similarly, the star expression may only be used to produce output for an
entire tuple. That is, star expressions may not be nested in structured express-
sions. However, star expressions may appear at the top level of the body of a
function, provided that ultimately produces an empty output for a whole wire.
Note that * is a state of being not a value and so cannot be passed around, say
as an argument.

ITP14: but what happens if an exception occurs before inputs are consumed on the su-
perstep and asserts * on the self wire?

2TP15: It is not entirely well defined what system exceptions return. Possibilities include
a string or the empty tuple.
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Note that these constructs, which are central to Hume’s versatility, mark an
important point of break with the functional tradition where all functions are
expected to be total.

We will make considerable use of these forms in the rest of this book.

4.5 Box iteration

A common Hume trope is a box which is self wired to repeat some activity until
some condition is met:

box iterate

in (init::type;,accum: :types)

out (accum’: :types,result: :types)

match
(x,base_pattern) -> (*,base_expression) |
(x,iterate_pattern) -> (iterate_expression,*) |
(initial_pattern,*) -> (initial_expression,*) ;

wire iterate (input,iterate.accum’) (iterate.accum,output);

Note the input accum and output accum’ which are wired to each other to
accumulate a partial result.

The iteration starts with the third pattern which accepts an initial value from
input, ignores the accumulation wire, passes the input value suitably modified
to the accumulation wire and generates no output.

The iteration continues with the second pattern which ignores the input,
further processes the accumulated value and again generates no output.

Finally, the terminating first pattern ignores the input, does not produce an
accumulation value and outputs the final value.

For example, consider summing all the values from 1 to some input integer.
In some imperative language we would have something like:

READ(N) ;

I :=N;

S :=0;
WHILE I>0 DO
BEGIN

SUM : UM + I;

H
[}

lTl ]
= 0

END
WRITE(S)

In Hume we use the iterative form:

box sum
in (n::integer,a::(integer,integer))
out (a’::(integer,integer),r::integer)
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match

(%,(0,8)) —> (%,s) |
(x,(i,8)) —> ((A-1,s+i),*) |
(n,*) -> ((n,0),*) ;

wire sum (input,sum.a’) (sum.a,output);

Starting with the second transition, we ignore the input, pick up the accumu-
lated count so far (i) and sum so far (s), decrement the count and add it to the
sum, and generate no output. Then, the last transition picks up the input and
initialises the count and sum, while the first transition returns the final sum.

Note that the order of transitions is crucial. If we started with the input
transition, it would succeed every time there was a new input, restarting the
computation. And if we started with the iterating transition we would never
recognise the termination case.

4.6 Tuple on wire or many wires?

We could have written sum with two self-wires each carrying a single value
instead of one self-wire carrying a tuple of two values:

box sum?2
in (n::integer,c,t::integer)
out (c’,t’::integer,r::integer)
match
(%,0,8) => (*,%,s) |
(*x,i,8) -> (i-1,s+i,*) |
(n,*,*) => (n,0,*) ;

wire sum2 (input,sum2.c’,sum2.t’) (sum2.c,sum2.t,output);

This is computationally equivalent to sum and arguably easier to read. It is also
less efficient as more wires must be maintained and matched.

4.7 Recursive functions

Recursive functions are a natural form in Hume:

identifier patterniy patternis ... = expression;
identifier patterns, patterngs ... = expressions;

Patterns in corresponding positions in each case must have the same type. Ex-
pressions must have the same type.
For example, to sum the integers from 1 to n:

sum 0 = 0;
sum n = n+sum (n-1);
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4.8 Recursion and iteration

We can now see that the general iterative box above has the equivalent recursive
function:

identifier :: type; —> types;
identifier base_pattern = base_expression;
identifier iterate_pattern = iterate_expression;

which may be embeded in a box:

box iterate

in (n::typer)

out (n’::types)
match

n -> identifier n;

wire iterate (...) (...)

For example, we could rewrite the summation program as:

box sum3

in (n::integer)
out (n’::integer)
match

n —-> sum n;

wire sum3 (input) (output);

which is clearly considerably simpler.

However, the choice between a recursive function and an iterative box is
not straightforward. A recursive form may consume more local memory if it is
not tail recursive. The iterative box may be more memory efficient but must
be scheduled for every iteration where the box with recursion is only scheduled
once. However, if the recursion is costly then, in a multi-box program, this may
delay execution of other boxes. Finally, there may be recursive forms for which
it is hard to establish useful resource bounds.

Arguably, recursive functions should be used to prototype a program, which
is then refined to the iterative form:

e if memory use is problematic;
e to ease balancing a multi box system;

e if resource bounds of adequate precision cannot be found;
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4.9 Structured discriminated union

The discriminate union also extends naturally to user defined structures. First
of all, the right hand side elements may also include constructor designated
typed sub-elements:

data constructor = ... | identifier type; types ... o
For example, we might define a mixed arithmetic type by:

type real = float 64;
data ARITH = INT integer | REAL real;

ARITH is a new type constructor with values INT integer and REAL real, for
example:

INT 42 :: ARITH
REAL 42.42 :: ARITH

Structured discriminated union patterns may be used in transition matches
and function declarations. For example, we can write a single function to per-
form both integer and real addittion:

add (INT i1) (INT i2) = INT (i1+i2);
add (REAL r1) (REAL r2) = REAL (ri1+r2);

SO:

add (INT 1) (INT 2) = INT 3
add (REAL 1.1) (REAL 2.2) = REAL 3.3

We can also define recursive discrimnated unions where the new constructor
itself appears as a sub-element type. For example, we might define arbitrary
length sequences of integers:

data INTSEQ = IEND | INEXT integer INTSEQ;

with values like:

INEXT 1 (INEXT 2 (INEXT 3 IEND)) :: INTSEQ
For example, to sum an INTSEQ:

sumintseq IEND = 0;
sumintseq (INEXT i is) = i+sumintseq is;

Discriminate unions may be parameterised:

data constructor identifiery identifiers ... =
| identifier typei types ... | ...;
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constructor then has parameteric polymorphism: the parameters identifier;
may be referred to in the sub-element types and insantiated with arbitrary
types.

For example, we may generalise INTSEQ to a sequence of arbitrary type:

data SEQ a = END | NEXT a (SEQ a);
construct sequences of SEQ for any type a:

NEXT "a" (NEXT "b" (NEXT "c" END)) :: SEQ string
NEXT (1,1.0) (NEXT (2,2.0) (NEXT (3,3.0) END))) :: SEQ (integer,real)

and explicitly specialise SEQ to a concrete type:

type INTSEQ = SEQ integer;

4.10 Lists

The SEQ type discussed above is, of course, a linked list. Hume provides lists as
a standard type. A list of arbitary type has type:
[typel

The empty (null) list is [J.

Lists are constructed with the infix operator :, where the left operand (head)
is of some type and the right operand (tail) is a list of the same type. For
example:

1:(2:(3:(4:(5:[1)))) :: [integer]

A null terminated list:

may be represented in the simplified form:
[elementy,elements, . .. ,elementy]

for example:

[1,2,3,4,5] :: [integer]

Note that the singleton [1] is the null terminated list 1: [].

List elements are selected through pattern matching. Both forms may be
used in patterns. For example, to check if a string list is in ascending order:

sorder [] = true;
sorder [_] = true;
sorder (s1:(s2:t)) = s1 <= s2 && sorder (s2:t);
Note that s1 matches the list head, s2 the head of the tail, and t the tail of the
tail.
Lists of the same type may be appended end to end:
append [] 12 = 12;
append (h1:t1) t2 = hl:append tl1 t2;

with the infix operator ++.
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4.11 Conditional expression

Transition and function pattern matching can only determine whether or not
some value is present on an input or an argument: it cannot check other value
properties. Where it is not possible to distinguish properties by pattern match-
ing, a conditional expression may be used. This has the form:

if expression; then expression, else expressions

where expression; returns a boolean, and expressions and expressions return
the same type.
For example, to generate an ascending sequence of integers:

gen i n = if i<=n then i:gen (i+1) n else [];

Note that, in boxes, the conditional expression can only be used in expression
evaluation after transition pattern matching, that is after a commitment has
been made to consume inputs>.

4.12 Example: sieve of Erastothenes

Consider finding generating all the prime numbers using the sieve of Eras-
tothenes. We maintain a list p of all the primes we’ve found so far, starting
with [2], and generate successive integers n, starting with 3. Then if none of
the values in p divides the next integer n:

isprime _ [] = true;
isprime n (h:t) = if n mod h == 0 then false else isprime n t;

we add it to the end of the list and display it. Either way, we generate the next
integer:

box sieve
in (n::integer,p::[integer])
out (n’::integer,p’::[integer] ,next:: (integer,char))
match
(n,p) -> if isprime n p
then (n+1,p++[n],(n,’\n’))
else (n+l,p,*);

wire sieve
(sieve.n’ initially 3,sieve.p’ initially [2])
(sieve.n,sieve.p,output);

Here we maintain the next integer and known primes on wires (n to n’ and p
to p’) between execution cycles. For a change, we have used separate self-wires
rather than a single self-wire of a tuple.

3TP16: perhaps Hume need guarded match patterns
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Many boxes

5.1 Introduction

We've now reached the point where we can consider building multi box pro-
grams. It might seem that, like any other software system, we can identify the
components, encapsulate them accordingly and stick them all together. How-
ever, multi-box programs are inherently concurrent: despite Hume’s abstract
aura of evaluation order independence and super step synchronisation, we still
have the very concrete considerations of sequencing, race conditions, blocking,
starvation, live lock, deadlock and so on. However, as with all programming,
such problems can be minimised by careful design, and systematic construction
and testing.

5.2 Multiple boxes

Let’s start by building a half adder corresponding to the truth table in Figure
5.1, but using even lower level components as shown in Figure 5.2.

We receive a pair of bits on the input, fan them out to separate XOR and
AND boxes, and join the resultant sum and carry:

box fanout
in (xy::(bit,bit))
out (xyl,xy2::(bit,bit))

X 'y sum carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Figure 5.1: Half adder.

93
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(x.y)

l

fanout

(x.Y) / Ni(,y)
OR AND

X

SUN Arry

join

(sum,carry)

Figure 5.2: Half adder as XOR and AND.

match
x,y) -> ((x,y),(x,y));

box XOR
in (xy::(bit,bit))
out (sum::bit)
match
(0,0) —>
(0,1) —>
(1,0) —>
(1,1) ->

O - = O

)

box AND
in (xy::(bit,bit))
out (carry::bit)
match
(0,0) —>
(0,1) —>
(1,0) —>
(1,1) —>

= O O O

>
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cycle box input output

1. fanout (z,y)1 (z,y)1 and (2,y)1
XO0R MATCHFAIL -
AND MATCHFAIL -
join  MATCHFAIL -

2. fanout (z,%)2 (z,y)2 and (7,9)2
XOR (z,y)1 sum;
AND (z,y)1 carryy
join  MATCHFAIL -

3. fanout (x,y)s (z,y)s and (z,y)s3
XOR (x,9)2 Sum2
AND (x,9)2 carryz
join suma, carryy  (sum, carry)y

Figure 5.3: Half adder execution cycles.

box join
in (sum,carry::bit)
out (sc::(bit,bit))
match

(s,0) > (s,0);

wire fanout (input) (XOR.xy,AND.xy);
wire XOR (fanout.xyl) (join.sum);

wire AND (fanout.xy2) (join.carry);
wire join (XOR.sum,AND.carry) (output);

Now it is important to note that this is actually a three stage pipe line which

takes three execution cycles to fully process an initial input, as shown in Figure
5.3.

5.3 Example: vending machine

Consider the vending machine cash handler design shown in Figure 5.4.

The vending machine itself keeps track of credit and the current purchase
price, and requests change checks and coin release from the change mechanism.
The change mechanism keeps track of coins and dispenses change.

Figure 5.5 shows the main vending machine in more detail. The state self-
wire indicates I/O or change mechanism interaction. The credit and price self-
wire keeps track of the customer’s credit and the prices of items. The code wire
from the input indicates whether the customer has inserted cash, requested a
purchase or wants change. The action and amount wire goes to change mech-
anism which returns information on the response and change wire. Finally, the
message is to the output.

Figure 5.6 shows the change mechanism in more detail.
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vending
machine

change
mechanism

:

Figure 5.4: Vending machine cash handler design.

response _
«ate Code +change credit

+ price
Y l l Y

vending
machine

Lo

message action
+ amount

Figure 5.5: Vending machine.
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action amount coins

Ll

change
mechanism

Vo

response  change

Figure 5.6: Change mechanism.

The action and amount wire is from, and the response and change wire is
back to, the vending machine. The current coins self-wire keeps track of the
number of each denomination of coin the machine holds.

We will assume that the cash handler accepts UK coins in the demoninations
£2, £1, fifty pence, twenty pence, ten pence, five pence, two pence and one
penny:

values = <<200,100,50,20,10,5,2,1>>;
MAXCOINS = 8;

type COINS = vector 1 .. 8 of integer;

It is useful to be able to display a set of coins as an appropriately formatted
string:

showChange c i =
if i>MAXCOINS

then "\n"
else
if c@i==

then showChange c (i+1)
else (c@i) as string++"* "++(values@i) as string++"p; "++showChange c (i+1);

First of all, let’s consider adding a coin to some set of counts of coins:

exception BAD_COIN::integer;

add coin coins i =
if i>MAXCOINS
then raise BAD_COIN coin
else
if coin==values@i
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then update coins i (coins@i+1)
else add coin coins (i+1);

We need to be able to check if some amount of money is satisfied by some set
of coins:

data ACK = OK | FAIL;

check 0 _ _ = 0K;
check amount coins i =

if i>MAXCOINS
then FAIL
else

let m = amount div (values@i)

in

if m>coins@i
then check (amount-values@i*coins@i) coins (i+1)
else check (amount-values@i*m) coins (i+1);

We also need to be able to return an amount of change from an initial set of
coins, along with the remaining coins:

release O change coins _ = (change,coins);
release amount change coins i =
let m = amount div (values@i)
in
if m>coins@i
then release (amount-values@i*coins@i)
(update change i (change@i+coins@i))
(update coins i 0) (i+1)
else release (amount-values@ix*m)
(update change i (change@i+m))
(update coins i (coins@i-m)) (i+1);

The change mechanism may be asked to ADD some ammount to the coins it
holds, CHECK if some amount is satisfied by its coins or RELEASE some
amount of change from its coins:

data ACTION = ADD | CHECK | RELEASE;

box change
in (action::ACTION,amount::integer,coins::COINS)
out (response::ACK,change::COINS,coins’::COINS)
match

(ADD, coin,coins) ->

let coins’ = add coin coins 1

in (*,*,coins’)

(CHECK,amount,coins) ->
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(check amount coins 1,*,coins) |

(RELEASE, amount,coins) —>

case release amount <<0,0,0,0,0,0,0,0>> coins 1 of
(change,coins’) -> (*,change,coins’);

Note that the transitions selectively generate outputs. Thus: for ADD, no
response or change are returned; for CHECK, no change is returned; for RE-
LEASE, no response is returned.

The vending machine itself may INPUT a customer request of the form:

c 0 = release credit as change
¢ coin = add coin to credit
d amount = if credit is more than amount, debit credit

It may also be CHECKING to see if the change machine enough coins to satisfy
a debit, or waiting for the change mechanism to RELEASE change:

data STATE = INPUT | CHECKING | CHANGE;
showCredit credit = "CREDIT "++credit as string++"\n";

box vending
in (s::STATE,code:: (char,integer),credit::integer,price::integer,
response: : ACK, change: : COINS)
out (s’::STATE,m::string,credit’::integer,price’::integer,
action::ACTION,amount: :integer)
match
(INPUT, (’c’,0) ,credit,*, *,*x) —>
(CHANGE, "GETTING CHANGE\n",O,*,RELEASE,credit) |
(INPUT, (’c’,coin) ,credit,*,*,*) —>
(INPUT, showCredit (credit+coin),credit+coin,*,ADD,coin) |
(INPUT, (°d’ ,amount) ,credit,*,*,*) ->
if amount>credit
then (INPUT,"NOT ENOUGH CREDIT\n"++showCredit credit,credit,*,*,*)
else (CHECKING,"CHECKING CHANGE\n",credit,amount,CHECK,amount)
(CHECKING, *,credit,price,0K,*) ->
(INPUT, "PURCHASE MADE\n"++showCredit (credit-price),credit-price,*,*,*)
(CHECKING,*,credit,_,FAIL,*) —>
(INPUT,"NO CHANGE\n"++showCredit credit,credit,*,*, *)
(CHANGE, *,credit, *,*,change) ->
(INPUT, showChange change 1++showCredit credit,credit,*,*,*);

The transactions here are somewhat more complicated, with considerable
use of ignore patterns and expressions.

Finally, we wire the whole cash handler together. Initially, the change mech-
anism has no coins and the customer has nor credit:

wire change
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(vending.action,vending.amount,change.coins’ initially <<0,0,0,0,0,0,0,0>>)
(vending.response,vending.change,change.coins);

wire vending

(vending.s’ initially INPUT,input,vending.credit’ initially O,vending.price’,
change.response, change. change)
(vending.s,output,vending.credit,vending.price,change.action,change.amount);

For example:

ch

CREDIT 5

ch

CREDIT 10

cl0

CREDIT 20

cH0

CREDIT 70

di5

CHECKING CHANGE
PURCHASE MADE
CREDIT 55

c0

GETTING CHANGE
1 x50 p; 1 x5 p;
CREDIT O

We will later explore how to use sockets to connect the machine to a Java
graphical user interface (GUI).

5.4 TFile I/O

File I/O is rather more complex than with standard I/O. Hume boxes are non-
terminating, and standard I/O is potentially an endless stream of characters,
whereas files are all too finite. The central problems are dealing with end of file
for input and indicating end of file for output.

In Hume, when end of file is detected, the system End0fFile exception is
thrown. This implies that a box directly connected to a file cannot accumulate
input data on a self-wire as it will not be accessible after the end of file exception.

However, file input may be managed by separating out the box consuming
the file from the box that processes the data, and linking them with one wire to
carry a tag indicating whether or not end of file has been reached, and another
to carry the data. After end of file, the non-existent data can be ignored and
so need not be sent. Similarly, the tag can be ignored so long as there is more
data, and so need not be sent either.

For example, consider summing an unknown number of integer from a file:
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stream input from "numbs.txt";
data STATUS = EOF;

box getnumbs
in (n::integer)
out (s::STATUS,n’::integer)
handles EndOfFile
match n -> (*,n)
handle EndOfFile _ -> (EOF,*);
box sumnumbs
in (s::STATUS,n,sum: :integer)
out (sum’,result::integer)
match
(x,n,sum) -> (sum+n,*) |
(EOF, *,sum) -> (*,sum);

wire getnumbs (input) (sumnumbs.s,sumnumbs.n);
wire sumnumbs

(getnumbs.s,getnumbs.n’, sumnumbs.sum’ initially 0)
(sumnumbs . sum, output) ;

Files are closed when a program terminates. And programs terminate when
no box is RUNNABLE i.e. when all boxes are BLOCKEDOUT!.

5.5 Box templates

Consider building a full adder from two half adders and an OR, where the
halfadders in turn are made from XOR and AND, as shown in Figure 5.7.

To simplify the presentation we have used a modified fanout that takes two
separate inputs.

We now have two fanouts, two XORs and two ANDS. Rather than copying,
pasting and renaming the boxes for these constructs, we can use a box template
to define replicated copies.

Thus:
template identifier;
in (...)
out (...)
match ...;

defines a template for the identifier; family of identical boxes.
Then:

TP 17: there may be a hack in some implementations where a file is closed if sent /\0’
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X y sum c
P |
fanout fanout
(xy) / \icy) (sum’ ,c))/ (sum’ c)
AND XOR AND XOR
\ carry’”’
carry sum
v
OR
carry
Y
join
(sum,carry)

Figure 5.7: Full adder as gates.
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instantiate identifier; as identifieroxN

where IV is some integer, will create IV copies of identi fier, with names identi fiers1,
identifiers2, ... | identifieraN.
In the full adder, we can now define:

template fanout
in (x,y::Bit)
out (x1,y1,x2,y2::Bit)
match
x,y) > (x,y,%,¥);

template xor
in (x,y::Bit)
out (z::Bit)
match ...;

template and
in (x,y::Bit)
out (z::Bit)
match ...;

and create the requisite copies with:

instantiate fanout as f*2;
instantiate xor as x*2;
instantiate and as ax2;

Wiring of the new boxes £1, £2, x1, x2, al and a2 then proceeds as usual.

5.6 Wiring loops and macros

Consider a very simple simulation of a circular railway track on which trains may
only travel in a clockwise direction. The circuit is built from track sequences of
the form shown in Figure 5.8.

The idea is that a train may enter from the previous track and exit to the
next track. It can see the next track’s entry signal and it displays its own entry
signal to the previous track.

When a train is on a track and the next track’s signal is red then the track’s
signal remains red. If the next track’s signal is green then the train may exit
the track and it’s signal goes green. If a track is empty then a train may enter
it and its signal goes red. Otherwise an empty track retains a green signal:

template track

in (s::STATE,entry::STATE,nextsignal: :SIGNAL)
out (s’::STATE,exit::STATE,signal::SIGNAL)
match
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S entry next signa

exit signal

Figure 5.8: Track.

(TRAIN,*,RED) -> (TRAIN,*,RED) |
(TRAIN,*,GREEN) -> (EMPTY,TRAIN,GREEN)
(EMPTY,TRAIN,_) -> (TRAIN,*,RED) |
(EMPTY,*,_) -> (EMPTY,*,GREEN) ;

instantiate track as tx*4;
Now, wiring even four pieces of track becomes tedious and error prone:

wire t1l

(tl.s’ initially TRAIN,t4.exit,t2.signal initially GREEN)
(tl.s,t2.entry,t4.nextsignal);

wire t2

(t2.s’ initially EMPTY,tl.exit,t3.signal initially GREEN)
(t2.s,t3.entry,tl.nextsignal);

wire t3

(t3.s’ initially EMPTY,t2.exit,t4.signal initially GREEN)
(t3.s,t4.entry,t2.nextsignal) ;

wire t4

(t4.s’ initially EMPTY,t3.exit,tl.signal initially GREEN)
(t4.s,tl.entry,t3.nextsignal);

Hume offers number of forms which greatly simplify wiring. First of all, simple
Macros:

macro identifier identifier, = expression;
may be called as:
identi fier (expressiony)

within {. ..} in wire declarations.
Hume also provides wiring loops to simplify repetitive wiring:
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for identifier = expression; to expressions
[except (expressions, . . .)]
wire — declaration;

where wire — declaration may contain references to {identifier}. This is
then equivalent to a sequence of wire — declaration for all integer values from
expression; to expressiony, optionally except for expressions etc.

Wiring loops are further augmented with wiring macros:

wire identifier (identifiery,...) = wire — declaration;
which are called as:
wire ident fier (expressiony, . ..)
For example, we might simplify the wiring above to:

constant TRACKS = 4;

wire ti1
(tl.s’ initially TRAIN,t4.exit,t2.signal initially RED)
(tl.s,t2.entry,t4.nextsignal);

wire Track (this,prev,next) =

wire {this}

({this}.s’ initially EMPTY,{prev}.exit,{next}.signal initially GREEN)
({this}.s,{next}.entry,{prev}.nextsignal);

for i = 2 to TRACKS-1
wire Track (t{i},t{i-1},t{i+1});

wire Track (t4,t3,tl1);

Note the special cases for the tracks at the “ends” of the circuit: t1 and t4.
Note the even more special case for t1 as it has a different initial state.

And we can’t actually observe this program doing anything unless we trace
it.

5.7 Sockets

5.8 Foreign functions

5.9 Fair matching

The Hume matching we have met so far is unfair: on each execution cycle,
transitions are considered in sequence starting with the first. Thus, the same
rules may always succeed with subsequent rules never being considered.
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Unfair matching may be subverted using an explicit state self-wire with
an enumerated constructed type to ensure that each match is considered as
required.

For example, suppose we wish to send alternate input values to two outputs:

data STATE = LEFT | RIGHT;

box alternate
in (s::STATE,n::integer)
out (s’::STATE,1l,r::integer)
match
(LEFT,n) -> (RIGHT,n,*) |
(RIGHT,n) -> (LEFT,*,n);

wire alternate (alternate.s’ initially LEFT,...)
(alternate.s,...,.

Here the alternating value on the STATE self-wire value results in alternating
transition match success.

Where it is important for every match to have an equal probability of success,
Hume also provides fair matching:

box identifier

in (identifier: :type ...)
out (identifier: :type ...)
fair transitions;

For example, we can rewrite our example as:

box alternatel

in (n::integer)
out (1,r::integer)
fair

n -> (n,*) |

n -> (x,n);

wire alternatel (...) (,...,...)

With fair matching, transition selection can be biased by replicating transi-
tions. Thus, in our example, to send twice as many inputs to the left as to the
right:

box alternate?2

in (n::integer)
out (1,r::integer)
fair

n -> (n,*) |

n -> (n,*) |

n -> (*,n);



5.9. FAIR MATCHING 67

One fair match implementation technique is round robin where on each exce-
cution cycle, matching starts with the first transition after the one which most
recently matched successfully on a previous cycle.
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