
Introduction
Target Architectures and their Challenges

Maior Compilation Challenges and Solutions
Summary

Compiler Technology for Data-Parallel Languages

Sven-Bodo Scholz

International Summer School on Advances in Programming Languages
Heriot-Watt University
Edinburgh, Scotland

25.-28.August 2009

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages



Introduction
Target Architectures and their Challenges

Maior Compilation Challenges and Solutions
Summary

Why Data-Parallelism Matters
Data-Parallel Languages and their Challenges

Multicores are Here!

I Parallelism was
I academically studied for a few decades
I affordable only by HPC labs with deep pockets
I programmed by experts

I Today Parallelism is
I available cheaply in everybody’s PCs and laptops

I single-core CPUs are history
I GPGPUs bring hundreds of cores for less than 100 GBP

⇒ Needs to be programmable by general practitioners!

⇒ Opportunity / Obligation for programming language research
to provide adequate tools!
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The Dawn of a Software Revolution

I Many of the ”old truths” do no longer hold!
I Sequential Truth: redundant computations are evil!
I Parallel Truth: redundant computation may reduce

synchronisation!
I Sequential Truth: excessive storage use is evil!
I Parallel Truth: separation of data may eliminate dependencies!

I Depending on the target hardware we may need to shift
between those!

⇒ A declarative approach is needed!
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Data-Parallelism

I Fundamental idea:

Formulate Algorithms in terms of SPACE rather than TIME

I Example: factorial
prod = 0;

for( i=1; i<=10; i++) {

prod *= i;

}
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The Compilation Challenge — a first glimpse —
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Compiler

sequential

code multi−threaded code

micro−threaded

code

prod( iota( n))

⇒ Different hardware architectures require different code
generation strategies!
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The Language Challenge

I What data structures are supported?
I Choice I: homogeneous or inhomogeneous data?
I Choice II: nested structure or flat?

I if nested, homogeneously or inhomogeneously?
I staticly known nesting depth or unlimited nesting?

I What operations are supported?
I Choice I: map-based only or map-based and fold-based?
I Choice II: homogeneous or inhomogeneous?
I Choice III: nested or flat only?

⇒ Genericity vs Efficiency Dilemma!
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A Collection of Choices Made

I APL / J/ K

I NESL

I SISAL

I Fortran90 / HPF

I SAC

I Google’s mapreduce

I Fortress

I data-parallel Haskell
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The Compilation Challenge — a second look —

I Hardware and software constraints interfere big time!
Examples:

I Only hohmogeneous data structures benefit from vector
instructions!

I Not all architectures do support truely nested concurrency!
I Some architectures do not cope well with inhomogeneous

operations.
I Achieving efficient fold operations typically requires

architecture dependent measures.

I Getting a single aspect wrong typically is fatal.
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Traditional SMPs

I several standard cores
(currently 2-8) on one chip

I thread handling expensive

I synchronisation expensive

I cache coherence expensive

I memory access bottleneck
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GPGPUs

I more than 128 cores

I hardware support for
thread creation and
synchronisation

I hardware support for
thread scheduling

I very restricted
thread-functionality

I strictly flat concurrency

I card-private memory
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Special Hardware, here: µTC

SVP SVP SVP SVP

SVP

SVP

SVPSVP

SVP

SVPSVPSVP

SVP SVP

SVPSVP

I several hundread full-fledged
cores

I hardware support for thread
creation

I hardware support for linear
synchronisation

I hardware support for thread
scheduling

I cash-only memory

I dynamic ressource allocation
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Challenge I: Concurrency Overhead Amortisation

typical thread overhead cost (pthreads on solaris):

I thread creation typically several thousands of cycles!

I thread switch costs more than 1000 cycles!

I semaphor-based sync typically as expensive as thread creation!
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Measure I: Localise ”Thread Management”

Main idea:
create a fixed set of threads, prefereably matching the number of
cores available, and have a light-weight solution in the runtime
system.

+ no OS thread switches needed

+ thread creation exactly once upon startup

+ lock-free synchronisations

+ cheap dynamic scheduling possible

− potential resource waste
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Measure II: Flattening: Maximising Scheduling Flexibility

Main idea:
expose as much concurrency to the local thread management as
possible by accumulating nested data parallel situations.

I Blelloch and Sabot, Compiling Collection-Oriented Languages onto
Massively Parallel Computers, Journal of Parallel and Distributed
Computing, 1990.

I Grelck, Scholz and Trojahner, WITH-Loop Scalarization – Merging
Nested Array Operations, IFL’03, 2004.

I Peyton Jones, Leshchinskiy, Keller and Chakravarty, Harnessing the
Multicores: Nested Data Parallelism in Haskell, FSTTCS, 2008.
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Measure III: Dedicated Hardware Support

Main idea:
novel architectures such as µTC enable more direct exposure of
data-parallelism to the hardware.

The overall gain of this approach is in the focus of current
research:

www.apple-core.info
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Challenge II: Computation vs Memory Transfer

Whatever is computed by a single thread on a single node underlies
the good ”old truths”!
⇒ exessive memory use becomes evil (again)!
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Measure I: Transforming Space into Time

Main idea:
use producer / consumer optimisations to avoid data structures to
be materialised in memory.

I Abrams, An APL Machine, PhD thesis, 1970.

I Scholz, With-loop-folding in Sac–Condensing Consecutive Array
Operations, IFL’97, 1997.

I Chakravarty and Keller, Functional Array Fusion, ICFP’01, 2001.

I Ghuloum, Ct: C for Throughput Computing , Intel white paper.

I Russell, Mellor, Kelly and Beckmann, DESOLA: an Active Linear
Algebra Library Using Delayed Evaluation and Runtime Code
Generation, Science of Computer Programming, 2008.
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Measure II: Locality Enhancing Scheduling

Main idea:
order the elements computed by a single thread in a cache efficient
way.

I Wolf and Lam, A Data Locality Optimizing Algorithm, PLDI’91,
1991.

I Grelck, Kreye and Scholz, On Code Generation for Multi-Generator
WITH-Loops in SAC, IFL’99, 2000.

I Bondhugula, Hartono, Ramanujam, and Sadayappan, A practical
automatic polyhedral parallelizer and locality optimizer, PLDI’08,
2008.
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Measure III: Latency Hiding

Main idea:
if thread-switches are cheap, we can create several threads on one
core!
⇒ non-memory bound computations can hide the memory latency!

Architectures like SUN’s Niagra, GPGPUs or µTC benefit directly!
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Challenge III: The Aggregate Update Problem

I The data-parallel approach suggests the use of many large
data structures.

I It is key to leave it to the compiler to decide which/ how
many are being materialised!

⇒ requires a space-efficient implicit memory management!
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Measure I: Reference Counting

Main idea:
keep the number of active references to any given data structure in
a seperately maintained field.
⇒ enables updates and memory reuse ASAP!

I Cann, Compilation Techniques for High Performance Applicative
Computation, PhD thesis, 1989.

I Trojahner, Implicit Memory Management for a Functional Array
Processing Language, Diploma Thesis, 2005.

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages



Introduction
Target Architectures and their Challenges

Maior Compilation Challenges and Solutions
Summary

Concurrency Overhead Amortization
Computation vs Memory Transfer
The Aggregate Update Problem

Measure I: Reference Counting

Main idea:
keep the number of active references to any given data structure in
a seperately maintained field.
⇒ enables updates and memory reuse ASAP!

I Cann, Compilation Techniques for High Performance Applicative
Computation, PhD thesis, 1989.

I Trojahner, Implicit Memory Management for a Functional Array
Processing Language, Diploma Thesis, 2005.

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages



Introduction
Target Architectures and their Challenges

Maior Compilation Challenges and Solutions
Summary

Concurrency Overhead Amortization
Computation vs Memory Transfer
The Aggregate Update Problem

Measure II: Concurrent Heap Management

Main idea:
keep separate heaps for separate threads
⇒ lock-free concurrent memory management can be achieved.

I Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R.
Wilson, Hoard: A Scalable Memory Allocator for Multithreaded
Applications, ASPLOS-IX, 2000.

I Joseph Attardi and Neelakanth Nadgir, A Comparison of Memory
Allocators in Multiprocessors, Sun Developer Network, 2003.

I Grelck and Scholz, Efficient Heap Management for Declarative Data
Parallel Programming on Multicores, DAMP’08, 2008.
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Open Issue: How to deal with dynamic nesting?

I current allocators are mainly effective due to restrictions in
the the way threads are created / what threads do

I architectures with hardware support for thread creation /
handling break these boundaries

I How do we avoid the re-introduction of lock-based memory
operations?

www.apple-core.info

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages



Introduction
Target Architectures and their Challenges

Maior Compilation Challenges and Solutions
Summary

Multicores will Enforce a Software Revolution

I Nobody wants to buy a new machine if he does not benefit in
terms of performance!

I Hand-parallelising programs is just too hard!
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Data-Parallel Programmming defines
algorithms in SPACE rather than in TIME

I Data-Parallel Programmming is not just the ability to
parallelise loops without dependencies!

I It encourages different program specifications where
dependencies are expressed in data rather than time!

I Iterations are expressed as vectors / arrays!

I check it out!
www.sac-home.org
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Compiling Data-Parallel Programms is Far from Trivial

I all the black-belt knowledge of parallel programming needs to
go into the compiler

I getting a seemingly minor detail wrong often prevents from
performance gains

I compilion techniques are heavily dependent on the target
hardware
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Some Solutions Exist

I localised scheduling techniques

I target-dependent space time transformations

I private heap management

I ...

I The techniques shown here enable auto-parallelisation that
easily outperforms that of Fortran90/ HPF programs!

I The first autoparallelising compilers for GPGPUs are coming
into existance just now!

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages



Introduction
Target Architectures and their Challenges

Maior Compilation Challenges and Solutions
Summary

Much More Work Needs to be Done

I Many new architectures enable new approaches

I How generic can data parallel programs be?

I How can we make use of hybrid architectures?

I Can optimisation happen at runtime?

I ...
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