Compiler Technology for Data-Parallel Languages

Sven-Bodo Scholz

International Summer School on Advances in Programming Languages
Heriot-Watt University
Edinburgh, Scotland

25.-28.August 2009

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Introduction
Why Data-Parallelism Matters

Data-Parallel Languages and their Challenges

Multicores are Herel

» Parallelism was

» academically studied for a few decades
» affordable only by HPC labs with deep pockets
> programmed by experts

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Introduction

Why Data-Parallel Matters

Multicores are Herel

» Parallelism was
» academically studied for a few decades
» affordable only by HPC labs with deep pockets
> programmed by experts
» Today Parallelism is
» available cheaply in everybody's PCs and laptops

> single-core CPUs are history
» GPGPUs bring hundreds of cores for less than 100 GBP

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Introduction
Matters

and their Cha

Multicores are Herel

» Parallelism was
» academically studied for a few decades
» affordable only by HPC labs with deep pockets
> programmed by experts
» Today Parallelism is
» available cheaply in everybody's PCs and laptops
> single-core CPUs are history
» GPGPUs bring hundreds of cores for less than 100 GBP
= Needs to be programmable by general practitioners!

= Opportunity / Obligation for programming language research
to provide adequate tools!

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Introduction
Why Data-Parallelism Matters

Data-Parallel Lang s and their Challenges

The Dawn of a Software Revolution

» Many of the "old truths” do no longer hold!

» Sequential Truth: redundant computations are evil!
» Parallel Truth: redundant computation may reduce
synchronisation!

» Sequential Truth: excessive storage use is evil!
» Parallel Truth: separation of data may eliminate dependencies!

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Introduction
Why Data-Parallelism Matters

arallel Lang nd their Chall

The Dawn of a Software Revolution

» Many of the "old truths” do no longer hold!

» Sequential Truth: redundant computations are evil!

» Parallel Truth: redundant computation may reduce
synchronisation!

» Sequential Truth: excessive storage use is evil!

» Parallel Truth: separation of data may eliminate dependencies!

» Depending on the target hardware we may need to shift
between those!

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Introduction
Why Data-Parallelism Matters

arallel Lang nd their Chall

The Dawn of a Software Revolution

» Many of the "old truths” do no longer hold!

» Sequential Truth: redundant computations are evil!

» Parallel Truth: redundant computation may reduce
synchronisation!

» Sequential Truth: excessive storage use is evil!

» Parallel Truth: separation of data may eliminate dependencies!

» Depending on the target hardware we may need to shift
between those!

= A declarative approach is needed!

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Introduction
Why Data-Parallelism Matters

Data-Parallel Languages and their Challenges

Data-Parallelism

» Fundamental idea:
Formulate Algorithms in terms of SPACE rather than TIME

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Introduction
Why Data-Parallelism Matters

Data-Parallel Languages and their Challenges

Data-Parallelism

» Fundamental idea:
Formulate Algorithms in terms of SPACE rather than TIME

» Example: factorial
prod = 0;
for(i=1; i<=10; i++) {

. prod *= ij; prod(iota(10))

(2] o Tw]
sy

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Introduction

ters
Parallel Lang d their Challenges

The Compilation Challenge — a first glimpse —

prod(fota(m) AD

—
sequential —
"
code™ multizfhreaded code code

“~_micro-threaded

Fasado

= Different hardware architectures require different code
generation strategies!

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Introduction
Why Data-Parallelism Matters

Data-Parallel Languages and their Challenges

The Language Challenge

» What data structures are supported?

» Choice I: homogeneous or inhomogeneous data?
» Choice Il: nested structure or flat?

> if nested, homogeneously or inhomogeneously?
> staticly known nesting depth or unlimited nesting?

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Introduction
Why Data-Parallelism Matters

Data-Parallel Languages and their Challenges

The Language Challenge

» What data structures are supported?

» Choice I: homogeneous or inhomogeneous data?
» Choice Il: nested structure or flat?

> if nested, homogeneously or inhomogeneously?
> staticly known nesting depth or unlimited nesting?
» What operations are supported?

» Choice |: map-based only or map-based and fold-based?
» Choice Il: homogeneous or inhomogeneous?
» Choice Ill: nested or flat only?

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Introduction
Why Data-Parallelism Matters

Data-Parallel Languages and their Challenges

The Language Challenge

» What data structures are supported?

» Choice I: homogeneous or inhomogeneous data?
» Choice Il: nested structure or flat?

> if nested, homogeneously or inhomogeneously?
> staticly known nesting depth or unlimited nesting?

» What operations are supported?

» Choice |: map-based only or map-based and fold-based?
» Choice Il: homogeneous or inhomogeneous?
» Choice Ill: nested or flat only?

= Genericity vs Efficiency Dilemma!

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Introduction
tels)

Parallel Lang d their Challenges

A Collection of Choices Made

APL / J/ K

NESL

SISAL

Fortran90 / HPF
SAC

Google's mapreduce

Fortress

vV v vV VvV vV Vv VY

data-parallel Haskell

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Introduction
Why Data-Parallelism Matters

Data-Parallel Languages and their Challenges

The Compilation Challenge — a second look —

» Hardware and software constraints interfere big time!
Examples:

» Only hohmogeneous data structures benefit from vector
instructions!
Not all architectures do support truely nested concurrency!

» Some architectures do not cope well with inhomogeneous
operations.

» Achieving efficient fold operations typically requires
architecture dependent measures.

» Getting a single aspect wrong typically is fatal.

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Target Architectures and their Challenges

Traditional SMPs

» several standard cores
(currently 2-8) on one chip

thread handling expensive

synchronisation expensive

HyperTransport™
Technology links
provide up to 24GBIs
peak bandwidth

per processor.

cache coherence expensive

vV v v VY

memory access bottleneck

64GBIs @
DDR-400

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Target Architectures and their Challenges

GPGPUs
more than 128 cores
Davice » hardware support for
SIS)
thread creation and
S

synchronisation

» hardware support for
thread scheduling

Constant Cache > very restricted
[|_Texture Cache |] thread-functionality
Y v
Off-Chip Device (Global) Memory » strictly flat concurrency

» card-private memory

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Target Architectures and their Challenges

Special Hardware, here: pTC

'SVP' 'SVP' 'SVP' 'SVP'
'SVP' 'SVP' 'SVP' 'SVP'
o) or |- o} o]
[}

several hundread full-fledged
cores

hardware support for thread
creation

hardware support for linear
synchronisation

hardware support for thread
scheduling

cash-only memory

» dynamic ressource allocation

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Target Architectures and their Challenges

Special Hardware, here: pTC

» several hundread full-fledged

cores

SVE SVE SYE SvP » hardware support for thread
creation

'SVP H SVPH“”' 'SVPI » hardware support for linear
synchronisation

Lsve |- sve f-sve |- sve » hardware support for thread

[o} oo |- o] scheduling

» cash-only memory

» dynamic ressource allocation

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Target Architectures and their Challenges

Special Hardware, here: pTC

» several hundread full-fledged

cores

SVE SVE » hardware support for thread
creation

'SVPI 'SVP » hardware support for linear
synchronisation

SVP SVP

' ' ' ' » hardware support for thread
scheduling

IR ED

» cash-only memory

» dynamic ressource allocation

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Concurrency Overhead Amortization
Computatio Memory Transfer
The pdate Problem

Maior Compilation Challenges and Solutions

Challenge |: Concurrency Overhead Amortisation

typical thread overhead cost (pthreads on solaris):
» thread creation typically several thousands of cycles!
» thread switch costs more than 1000 cycles!

» semaphor-based sync typically as expensive as thread creation!

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

head Amortization
mory Transfer
Problem

Maior Compilation Challenges and Solutions

Measure |: Localise " Thread Management”

Main idea:
create a fixed set of threads, prefereably matching the number of
cores available, and have a light-weight solution in the runtime
system.

-+ no OS thread switches needed

+ thread creation exactly once upon startup

+ lock-free synchronisations

+ cheap dynamic scheduling possible

— potential resource waste

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Concurrency Overhead Amortization
Computatio Memory Transfer
The pdate Problem

Maior Compilation Challenges and Solutions

Measure Il: Flattening: Maximising Scheduling Flexibility

Main idea:
expose as much concurrency to the local thread management as
possible by accumulating nested data parallel situations.

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Maior Compilation Challenges and Solutions

Measure Il: Flattening: Maximising Scheduling Flexibility

Main idea:
expose as much concurrency to the local thread management as
possible by accumulating nested data parallel situations.

» Blelloch and Sabot, Compiling Collection-Oriented Languages onto
Massively Parallel Computers, Journal of Parallel and Distributed
Computing, 1990.

» Grelck, Scholz and Trojahner, WITH-Loop Scalarization — Merging
Nested Array Operations, IFL'03, 2004.

> Peyton Jones, Leshchinskiy, Keller and Chakravarty, Harnessing the
Multicores: Nested Data Parallelism in Haskell, FSTTCS, 2008.

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Concurrency Overhead Amortization
Computatio Memory Transfer

Maior Compilation Challenges and Solutions The e P

Measure IlI: Dedicated Hardware Support

Main idea:
novel architectures such as uTC enable more direct exposure of

data-parallelism to the hardware.
The overall gain of this approach is in the focus of current
research:

www.apple-core.info

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Concurrency Overhead Amortization
Computation vs Memory Transfer
The Ag ate Update Problem

Maior Compilation Challenges and Solutions

Challenge Il: Computation vs Memory Transfer

Whatever is computed by a single thread on a single node underlies
the good "old truths”!
= exessive memory use becomes evil (again)!

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Concurrency Overhead Amortization
Computation vs Memory Transfer
The A ate Update Problem

Maior Compilation Challenges and Solutions

Measure |: Transforming Space into Time

Main idea:
use producer / consumer optimisations to avoid data structures to
be materialised in memory.

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Concurrency Overhead Amortization
Computation vs Memory Transfer

Maior Compilation Challenges and Solutions The Upsrkiie el

Measure |: Transforming Space into Time

Main idea:
use producer / consumer optimisations to avoid data structures to
be materialised in memory.

» Abrams, An APL Machine, PhD thesis, 1970.

» Scholz, With-loop-folding in SAc—Condensing Consecutive Array
Operations, IFL'97, 1997.

» Chakravarty and Keller, Functional Array Fusion, ICFP'01, 2001.
» Ghuloum, Ct: C for Throughput Computing , Intel white paper.

» Russell, Mellor, Kelly and Beckmann, DESOLA: an Active Linear
Algebra Library Using Delayed Evaluation and Runtime Code
Generation, Science of Computer Programming, 2008.

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Concurrency Overhead Amortization
Computation vs Memory Transfer
The A ate Update Problem

Maior Compilation Challenges and Solutions

Measure Il: Locality Enhancing Scheduling

Main idea:
order the elements computed by a single thread in a cache efficient
way.

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Concurrency Overhead Amortization
Computation vs Memory Transfer

Maior Compilation Challenges and Solutions

The Update Problem

Measure Il: Locality Enhancing Scheduling

Main idea:
order the elements computed by a single thread in a cache efficient
way.

» Wolf and Lam, A Data Locality Optimizing Algorithm, PLDI'91,
1991.

» Grelck, Kreye and Scholz, On Code Generation for Multi-Generator
WITH-Loops in SAC, IFL'99, 2000.

» Bondhugula, Hartono, Ramanujam, and Sadayappan, A practical
automatic polyhedral parallelizer and locality optimizer, PLDI'08,
2008.

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Concurrency Overhead Amortization
Computation vs Memory Transfer
ate Update Problem

Maior Compilation Challenges and Solutions The Ag

Measure Ill: Latency Hiding

Main idea:
if thread-switches are cheap, we can create several threads on one

core!
=> non-memory bound computations can hide the memory latency!

Architectures like SUN's Niagra, GPGPUs or uTC benefit directly!

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Concurrency C d Amortization
Computa mory Transfer
The Aggregate Update Problem

Maior Compilation Challenges and Solutions

Challenge Ill: The Aggregate Update Problem

» The data-parallel approach suggests the use of many large
data structures.

> It is key to leave it to the compiler to decide which/ how
many are being materialised!

= requires a space-efficient implicit memory management!

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Concurrency Ov
Computation emory Transfer

Maior Compilation Challenges and Solutions T Anmrie Uik P

Measure |: Reference Counting

Main idea:

keep the number of active references to any given data structure in
a seperately maintained field.
= enables updates and memory reuse ASAP!

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Concur
Compu
The Aggregate Update Problem

Maior Compilation Challenges and Solutions

Measure |: Reference Counting

Main idea:

keep the number of active references to any given data structure in
a seperately maintained field.

= enables updates and memory reuse ASAP!

» Cann, Compilation Techniques for High Performance Applicative
Computation, PhD thesis, 1989.

» Trojahner, Implicit Memory Management for a Functional Array
Processing Language, Diploma Thesis, 2005.

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Concurrency Ov
Computation emory Transfer
The Aggregate Update Problem

Maior Compilation Challenges and Solutions

Measure Il: Concurrent Heap Management

Main idea:

keep separate heaps for separate threads
= lock-free concurrent memory management can be achieved.

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Concurri / Amortization
Computa y Transfer
The Aggregate Update Problem

Maior Compilation Challenges and Solutions

Measure Il: Concurrent Heap Management

Main idea:
keep separate heaps for separate threads
= lock-free concurrent memory management can be achieved.

» Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R.
Wilson, Hoard: A Scalable Memory Allocator for Multithreaded
Applications, ASPLOS-IX, 2000.

» Joseph Attardi and Neelakanth Nadgir, A Comparison of Memory
Allocators in Multiprocessors, Sun Developer Network, 2003.

» Grelck and Scholz, Efficient Heap Management for Declarative Data
Parallel Programming on Multicores, DAMP'08, 2008.

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Concurrency C d Amortization
Computa mory Transfer
The Aggregate Update Problem

Maior Compilation Challenges and Solutions

Open Issue: How to deal with dynamic nesting?

» current allocators are mainly effective due to restrictions in
the the way threads are created / what threads do

» architectures with hardware support for thread creation /
handling break these boundaries

» How do we avoid the re-introduction of lock-based memory
operations?
www.apple-core.info

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Summary

Multicores will Enforce a Software Revolution

» Nobody wants to buy a new machine if he does not benefit in
terms of performance!

» Hand-parallelising programs is just too hard!

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Summary

Data-Parallel Programmming defines
algorithms in SPACE rather than in TIME

» Data-Parallel Programmming is not just the ability to
parallelise loops without dependencies!

» It encourages different program specifications where
dependencies are expressed in data rather than time!

> lterations are expressed as vectors / arrays!

» check it out!
WWw.sac-home.org

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Summary

Compiling Data-Parallel Programms is Far from Trivial

» all the black-belt knowledge of parallel programming needs to
go into the compiler

> getting a seemingly minor detail wrong often prevents from
performance gains

» compilion techniques are heavily dependent on the target
hardware

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Summary

Some Solutions Exist

localised scheduling techniques
target-dependent space time transformations

private heap management

vV v v v Y

The techniques shown here enable auto-parallelisation that
easily outperforms that of Fortran90/ HPF programs!

» The first autoparallelising compilers for GPGPUs are coming
into existance just now!

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

Summary

Much More Work Needs to be Done

Many new architectures enable new approaches
How generic can data parallel programs be?
How can we make use of hybrid architectures?

Can optimisation happen at runtime?

vV v.v. v Y

Sven-Bodo Scholz Compiler Technology for Data-Parallel Languages

	Introduction
	Why Data-Parallelism Matters
	Data-Parallel Languages and their Challenges

	Target Architectures and their Challenges
	Maior Compilation Challenges and Solutions
	Concurrency Overhead Amortization
	Computation vs Memory Transfer
	The Aggregate Update Problem

	Summary

