
Tutorial

SAC 1.0

Single Assignment C

August 24, 2009

Sven-Bodo Scholz

University of Hertfordshire

Department of Computer Science

Hatfield, Herts, AL10 9AB

United Kingdom

Contents

1 Running the first program 2
1.1 A Checklist . 2
1.2 Create your first SaC Source File 2
1.3 Compile the Source File and Run the Program 3

2 Array Programming Basics 4
2.1 Lesson: Arrays as Data . 4

2.1.1 Defining Arrays . 4
2.1.2 Arrays and Variables . 7

2.2 Lesson: Shape-Invariant Programming 9
2.2.1 Standard Array Operations 9
2.2.2 Axis Control Notation . 17
2.2.3 Putting it all Together . 23

1

Chapter 1

Running the first program

The following instructions will help you write your first SaC program.

1.1 A Checklist

To succesfully write and run your first SaC program, you will need:

• An ANSI C compiler, such as gcc. Though not needed directly, the
SaC compiler relies on it.

• The SaC compiler sac2c. It can be downloaded at <http://www.sac-
home.org/>. For convenience, you should make sure, that sac2c is located
in your $PATH.

• The SaC standard library that comes with sac2c as part of the SaC
distribution. To make sure sac2c will be able to find it, the environment
variable $SACBASE should point to it, i.e., ls $SACBASE should yield at
least the subdirectories runtime and stdlib.

• Your favorite text editor, such as vi or emacs.

1.2 Create your first SaC Source File

Start your editor and type the following program:

Listing 1.1: Hello World� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 printf("Hello World!\n");
7 return(0);
8 }
� �

2

CHAPTER 1. RUNNING THE FIRST PROGRAM 3

As you can see, it has a strong resemblance to C. The major difference are the
module use declarations at the beginning of the program. They are explained
to more detail in another trail of the tutorial in Chapter ??. For now, it suffices
to keep in mind, that these two use declarations for most experiments will do
the job.

In order to proceed, save this program into a file named world.sac.

1.3 Compile the Source File and Run the Pro-
gram

The SaC compiler invocation is similar to the standard invocation of C compil-
ers. A typical shell session for compiling world.sac could be:

> cd /home/sbs/sac/
> ls
world.sac
> sac2c world.sac
> ls
a.out a.out.c world.sac
> a.out
Hello World!
>

The compilation process consists of two steps. First, the SaC compiler gen-
erates a C file, which then is compiled into target code by utilizing the system’s
C compiler. If no target file name is specified, the intermediate C file is named
a.out.c so that the subsequent invocation of the C compiler creates an exe-
cutable named a.out.

In the same way the default target name a.out is borrowed from standard
C compilers, the -o option for specifying target names is adopted as well. For
example, sac2c -o world world.sac results in files world.c and world.

Note here, that the compiled program is linked statically and does not require
any further linking or interpretation.

Chapter 2

Array Programming Basics

This trail gives an introduction to the basic concepts of array programming in
SaC. It consists of two lessons: Arrays as Data and Shape-Invariant Pro-
gramming. In the former lesson, the major differences between arrays in SaC
and arrays in more mainstream languages are explained. The lesson Shape-
Invariant Programming gives an introduction into the most important array
operations available in SaC. Based on these operations, several small examples
demonstrate how more complex array operations can be constructed by simply
combining the basic ones.

2.1 Lesson: Arrays as Data

In SaC, arrays are the only data structures available. Even scalar values are
considered arrays. Each array is represented by two vectors, a so-called shape
vector and a data vector. An array’s shape vector defines its shape, i.e.,
its extent within each axis, and its dimensionality (or rank), which is given
implicitly by the shape vector’s length.

The section on Defining Arrays explains how arrays of various dimen-
sionalities can be defined in SaC, and how they can be generated via nesting.
Furthermore, some elementary notation such as scalars, vectors, and matri-
ces is defined.

The section on Arrays and Variables discusses the purely functional array
model used in SaC.

2.1.1 Defining Arrays

In this section, several means for specifying arrays are explained.
In principle, all arrays in SaC can be defined by using the reshape operation.

reshape expects two operands, a shape vector and a data vector, both of which
are specified as comma separated lists of numbers enclosed in square brackets.

To get started, try the following program:

4

CHAPTER 2. ARRAY PROGRAMMING BASICS 5

Listing 2.1: Defining Arrays I� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 print(reshape([5], [1,2,3,4,5]));
7 print(reshape([3,2], [1,2,3,4,5,6]));
8 print(reshape([3,2,1], [1,2,3,4,5,6]));
9 return(0);

10 }
� �
It prints three arrays:

• an array of dimensionality 1 with 5 elements [1,2,3,4,5];

• an array of dimensionality 2 with 3 rows and 2 columns, and

• a 3-dimensional array with 3 elements in the leftmost axis, 2 elements in
the middle axis, and one element in the rightmost axis.

Note here, that the function print can be applied to arbitrary arrays. Be-
sides printing its argument’s dimensionality and shape, i.e., its shape vector, a
more intuitive representation of the array’s data vector is shown. However, as
the terminal allows for 2 dimensions only, arrays of higher dimensionality are
interpreted as nestings of 2-dimensional arrays. Therefore, the 3-dimensional
array is printed as a 2-dimensional array of vectors.

Exercise 1 In all these examples, the product of the shape vector matches the
length of the data vector. What do you expect to happen, if this condition does
not hold?

For reasons of convenience, we use the following terminology:

scalar always denotes an array of dimensionality 0,

vector always denotes an array of dimensionality 1, and

matrix always denotes an array of dimensionality 2.

As all arrays can be defined in terms of reshape, the following program as
well is perfectly legal:

Listing 2.2: Defining Arrays II� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 print(reshape([1], [1]));
7 print(reshape([], [1]));
8 return(0);
9 }
� �

CHAPTER 2. ARRAY PROGRAMMING BASICS 6

The most interesting aspect of this program is the array defined in line 7.
The empty shape vector makes it a 0-dimensional array, i.e., a scalar. The data
vector carries the scalar’s value, which, in this example, is 1.

Exercise 2 The arguments of reshape are vectors, i.e., arrays of dimension-
ality 1. Can they be specified by reshape expressions themselves?

The reshape notation is relatively clumsy, in particular, when being used for
scalars. Therefore, scalars and vectors can alternatively be specified by shortcut
notations as well.

For experimenting with these, try the following:

Listing 2.3: Shortcut Notation for Arrays� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 print(1);
7 print([1,2,3,4,5]);
8 print([[1,2], [3,4], [5,6]]);
9 print(genarray([4,3,2], 1));

10 print(genarray([4,3], [1,2]));
11 return(0);
12 }
� �

From these examples, we can see that scalars can be used in the same way as
in most programming languages, and that the notation used for the parameters
of reshape in the examples above in fact is a standard abbreviation of SaC.
The example in line 8 shows that nestings of arrays are implicitly eliminated,
i.e., the resulting array is identical to

reshape([3,2], [1,2,3,4,5,6]).
For this reason, array nestings in SaC always have to be homogeneous, i.e.,
the shapes of the inner array components have to have identical shapes.

Furthermore, a new function is introduced: genarray. It expects two argu-
ments, a shape vector that defines the shape of the result and a default element
to be inserted at each position of the result. As shown in the example of line 10,
the individual array elements can be non-scalar arrays as well which implicitly
extends the dimensionality of the result array.

Exercise 3 Given the language constructs introduced so far, can you define an
array that would print as

Dimension: 3
Shape : < 5, 2, 2>
< 0 0 > < 0 0 >
< 1 0 > < 0 0 >
< 0 1 > < 0 0 >
< 0 0 > < 1 0 >
< 0 0 > < 0 1 >

, but whose definition does not contain the letter 1 more than once?

CHAPTER 2. ARRAY PROGRAMMING BASICS 7

2.1.2 Arrays and Variables

This section explains why in SaC arrays are data and not containers for values
as found in most other languages.

So far, all examples where expression based, i.e., we did not use any vari-
ables. Traditionally, there are two different ways of introducing variables. In
conventional (imperative) languages such as C, variables denote memory loca-
tions which hold values that may change during computation. In functional
languages, similar to mathematics, variables are considered placeholders for
values. As a consequence, a variable’s value can never change. Although this
difference may seem rather subtle at first glance, it has quite some effects when
operations on large data structures (in our case: large arrays) are involved.

Let’s have a look at an example:

Listing 2.4: Variables as Placeholders� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 a = [1,2,3,4];
7 print(a);
8
9 b = modarray(a, [0], 9);

10 print(b);
11
12 return(0);
13 }
� �

The function modarray expects three arguments: an array to be ”modified“,
an index that indicates the exact position within the array to be ”modified“,
and the value that is to be inserted at the specified position. As we would
expect, the resulting array b is almost identical to a, only the very first element
has changed into 9.

Note here, that indexing in SaC always starts with index 0!
Referring to the container / placeholder discussion, the crucial question is:

does the variable a denote a container, whose value is changed by modarray?
If this would be the case, a and b would share the same container, and every
access to a after line 9 would yield [9,2,3,4]. If a in fact is a placeholder, it will
always denote the array [1,2,3,4], no matter what functions have obtained a
as an argument.

To answer this question, you may simply shift the first call of print two
lines down. As you can see, in SaC, variables are indeed placeholders.

A note for efficiency freaks:
You may wonder whether this implies that modarray always copies the
entire array. In fact, it only copies a if the placeholder property would
be violated otherwise.

As a result of this placeholder property, it is guaranteed that no function call
can affect the value of its arguments. In other words, the underlying concept

CHAPTER 2. ARRAY PROGRAMMING BASICS 8

guarantees, that all functions are ”pure“. Although this helps in avoiding nasty
errors due to non-intended side-effects, it sometimes seems to be an annoyance
to always invent new variable names, in particular, if arrays are to be modified
successively.

To cope with this problem, in SaC, variables do have a so-called scope, i.e.,
each variable definition is associated to a well-defined portion of program code
where its definition is valid. In a sequence of variable definitions, the scope of a
variable starts with the left hand side of its definition and either reaches down to
the end of the function, or, provided at least one further definition of a variable
with the same name exists, to the right hand side of the next such definition.
This measure allows us to reuse variable names. A slight modification of our
example demonstrates the effect of variable scopes in SaC:

Listing 2.5: Variable Scopes� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 a = [1,2,3,4];
7
8 b = modarray(a, [0], 9);
9 print(a);

10 a = b;
11 print(a);
12
13 a = modarray(a, [1], 8);
14 print(a);
15
16 return(0);
17 }
� �

Here, the use of a on the right hand side of line 9 still refers to the definition
of line 6, whereas the use in line 11 refers to the definition in line 10.

The definition in line 13 shows, how variable scopes can be used to specify
code that looks very much ”imperative“. However, you should always keep in
mind, that in SaC, the placeholder property always holds!

Exercise 4 What result do you expect from the following SaC program?

Listing 2.6: Scope Exercise� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 a = [1,2,3,4];
7 b = [a,a];
8
9 a = modarray(modarray(a, [0], 0), [1], 0);

10 b = modarray(b, [0], a);
11 print(b);
12
13 return(0);
14 }
� �

CHAPTER 2. ARRAY PROGRAMMING BASICS 9

2.2 Lesson: Shape-Invariant Programming

The term shape-invariant programming refers to a programming style where
all array operations are defined in terms of operations that are applied to entire
arrays rather than to individual array elements. In order to realize such a
programming style, it is an essential prerequisite to be able to apply functions
to arbitrarily shaped arguments. In SaC, this is the case.

All built-in array operations as well as all array operations supplied by the
standard library can be applied to arguments of arbitrary shapes. However,
most of the operations that require more than one argument do have certain
restrictions wrt. which array shapes can be combined as valid arguments. If
an operation is applied to a set of arguments whose shapes constitute an illegal
combination, usually, a type error message is given. In cases where this cannot
be decided statically, the compiler may accept such a kind of domain error and
produce a runtime error instead.

This lesson consists of three parts: The section on Standard Array Op-
erations introduces the most important standard array operations provided by
actual SaC compiler release. The next section explains Axis Control Nota-
tion, a powerful but simple way of manipulating the focus of array operations
wrt. individual axes of argument arrays. With it, the basic operations often
can easily be combined into rather complex operations as demonstrated in the
section on Putting it all Together.

2.2.1 Standard Array Operations

In the sequel, several toy examples demonstrate the functionality of the most
basic array operations of the actual SaC release. Their design is inspired by
those available in APL. However, several aspects - in particular wrt. special case
treatment in APL - have been adjusted to allow for a more runtime favorable
compilation in SaC.

A note for language design freaks:
You may have your own ideas on what primitive array operations should
be available and how the precise semantics of these should look alike.
Therefore, it should be mentioned here, that all(!) array operations
introduced in the remainder of this section are not hard-wired into the
language, but they are defined in the module Array from the standard
library. This is to say that the advanced SaC programmer may write
his own set of standard array operations. Consult the trail on defining
primitive array operations in chapter ?? for detailed information on how
to do so.

The individual parts of this section are all organized according to the follow-
ing scheme: first, a semi-formal introduction to the functionality of individual
operations is given. Then, several examples shed some more light on their ex-
act semantics by varying the argument shape constellations and by exploring
”border-line cases“ wrt. to domain restrictions if these do exist.

CHAPTER 2. ARRAY PROGRAMMING BASICS 10

Basic Operations

The most basic operations are very close to the model of arrays in SaC. They
comprise functions for inspecting, creating, and modifying an array’s shape
and content. If not stated otherwise, they are applicable to arbitrarily shaped
arguments of built-in element type. Note here, that some of them have been
introduced in earlier lessons already.

dim(a) returns the (scalar) dimensionality of the argument array a.
Domain restrictions: none.

shape(a) returns the shape vector of the argument array a.
Domain restrictions: none.

a[iv] constitutes a short-cut notation for sel(iv, a). It selects the array
element of a at index position iv. As a may be of any shape, the index
position is given as an index vector. The dimensionality of the result is
identical to the dimensionality of a minus the length of iv. Accordingly,
its shape is derived from the last components of the shape of a.
Domain restrictions:
• dim(iv) = 1

• shape(iv)[[0]] ≤ dim(a)

• ∀i ∈ {0, ...,shape(iv)[[0]]}: iv[[i]] < shape(a)[[i]].

a[iv]=expr; is a short-cut notation for an assignment of the form a = modarray(
a, iv, expr);. The result of this application is a new array which is al-
most identical to a. Only the element (subarray) at index position iv is
different, it is replaced by expr.
Domain restrictions:
• dim(iv) = 1

• shape(iv)[[0]] ≤ dim(a)

• ∀i ∈ {0, ...,shape(iv)[[0]]}: iv[[i]] < shape(a)[[i]]

• shape(expr) = shape(a[iv]).

reshape(shp, expr) computes an array with shape vector shp and data vec-
tor identical to that of expr.
Domain restrictions:
• dim(shp) = 1

•
shape(shp)[[0]]−1∏

i=0

shp[[i]] =
dim(expr)−1∏

i=0

shape(expr)[[i]].

genarray(shp, expr) generates an array of shape shp, whose elements are
all identical to expr.
Domain restrictions: dim(shp) = 1.

CHAPTER 2. ARRAY PROGRAMMING BASICS 11

Although these operations are fairly self-explaining or known from the Lesson
2.1 on Arrays as Data, let us have a look at a few example applications:

Listing 2.7: Basic Operations� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [1,2,3,4,5,6,7,8,9,10,11,12];
7
8 mat = reshape([3,4], vect);
9 print(mat);

10
11 print(mat[[1,1]]);
12 print(mat[[2]]);
13 print(mat[[]]);
14
15 mat[[1,1]] = 0;
16 print(mat);
17 mat[[2]] = [0,0,0,0];
18 print(mat);
19 mat[[]] = genarray([3,4], 0);
20 print(mat);
21
22 empty_vect = [];
23 print(empty_vect);
24 empty_mat = reshape([22,0], empty_vect);
25 print(empty_mat);
26 print(dim(empty_mat));
27 print(shape(empty_mat));
28
29 return(0);
30 }
� �

The different selections in lines 11-13 show how the dimensionality of the
selected element increases as the length of the index vector decreases. If the
index vector degenerates into an empty vector, the entire array is selected.
Similarly, the applications of modarray in lines 15-19 demonstrate the successive
replacement of individual elements, rows, or the entire array.

Lines 22-27 are ment to draw the reader’s attention to the fact that there
exists an unlimited number of distinct empty arrays in SaC!

Exercise 5 Assuming mat to be defined as in the previous example, what results
do you expect from the following expressions:

• reshape([3,0,5], [])[[]]?

• reshape([3,0,5], [])[[1]]?

• reshape([3,0,5], [])[[1,0]]?

• mat[reshape([2,0], [])]?

CHAPTER 2. ARRAY PROGRAMMING BASICS 12

Element-wise Extensions

Most of the operations that can be found as standard operations on scalars
in other languages are applicable to entire arrays in SaC. Their semantics are
simply element-wise extensions of the well-known scalar operations. The binary
operations in general do have some domain restrictions. First, the element
types of both arguments do have to be identical. Furthermore, either one of the
arguments has to be a scalar value, or both arguments have to have identical
shapes. In the former case, the scalar value is combined with each element of
the (potentially non-scalar) second argument, which dictates the shape of the
result. The latter case results in an array of the same shape as both arguments
are, with the values being computed from the corresponding elements of the
argument arrays.

In detail, the following operations are available:

arithmetic operations including addition (e1 + e2), subtraction (e1 - e2),
negation (- e1), multiplication (e1 * e2), and division (e1 / e2). Fur-
thermore, division on rational numbers (e1 div e2) and a modulo oper-
ation (e1 % e2) are supported.
Domain restrictions: the element types have to be numerical.

logical operations including conjunction (e1 && e2), disjunction (e1 || e2),
and negation (! e1).
Domain restrictions: the element types have to be boolean.

relational operations including less-than (e1 < e2), less-or-equal (e1 <= e2),
equal (e1 == e2), not-equal (e1 != e2), greater-or-equal (e1 >= e2), and
greater-than (e1 > e2).
Domain restrictions: none.

max(e1, e2), min(e1, e2) compute the element-wise maximum and mini-
mum, respectively.
Domain restrictions: none.

where(p, e1, e2) is an element-wise extension of a conditional. It expects p,
e1, and e2 either to have identical shapes or to be scalar. If at least one
of the three arrays is non-scalar, that shape serves as shape of the result,
whose values are taken from e1 or e2 depending on the value(s) of p.
Domain restrictions:
• the element type of p has to be boolean

• the element types of e1 and e2 have to be identical

• ∃ shp: ((shape(p) = shp ∨ shape(p) = []) ∧ (shape(e1) = shp
∨ shape(e1) = []) ∧ (shape(e2) = shp ∨ shape(e2) = [])).

Again, these operations are fairly self-explanatory. Nevertheless, we present
a few examples:

CHAPTER 2. ARRAY PROGRAMMING BASICS 13

Listing 2.8: Elementwise Extensions� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [1,2,3,4,5,6,7,8,9];
7
8 mat = [vect, vect+10, vect+20];
9 print(mat);

10
11 mat2 = where((mat % 2) == 0, mat, -mat);
12 print(mat2);
13
14 print(max(mat2, 0));
15
16 return(0);
17 }
� �

The most interesting part of this example is the definition of the matrix
mat2 in line 11. The even numbers from the matrix mat are taken as they are,
whereas the odd numbers are negated. Note here, that all subexpressions in
predicate position are in fact non-scalar arrays: (mat % 2) denotes a matrix of
zeros and ones and (mat % 2) == 0 denotes a matrix of boolean values.

Exercise 6 What results do you expect from the following expressions:

• min(reshape([3,0,5], []), 42)?

• reshape([3,0,5], []) + reshape([3,0,5], [])?

• reshape([1,1], [1]) + reshape([1], [1])?

Restructuring Operations

The operations to be introduced here do not compute new values at all. Instead,
they are ment to create slightly differently structured arrays from existing ones.
Therefore, they are applicable to arrays of all built-in element types.

take(sv, a) takes as many elements from the array a as indicated by the shape
vector sv. Each element of sv corresponds to one axis of a starting from
the leftmost one. For positive components of sv, the elements are taken
from the ”beginning“, i.e., starting with index 0, otherwise they are taken
from the ”end“ including the maximum legal index of the corresponding
axis. All axes of a where there exists no corresponding element in sv are
taken entirely.
Domain restrictions:
• dim(sv) = 1

• shape(sv)[[0]] ≤ dim(a)

• ∀i ∈ {0, ...,shape(sv)[[0]]}: |sv[[i]]| ≤ shape(a)[[i]]

CHAPTER 2. ARRAY PROGRAMMING BASICS 14

drop(sv, a) drops as many elements from the array a as indicated by the
shape vector sv. Each element of sv corresponds to one axis of a starting
from the leftmost one. For positive components of sv, the elements are
dropped from the ”beginning“, i.e., starting with index 0, otherwise they
are dropped from the ”end“ starting from the maximum legal index of
the corresponding axis. All axes of a where there exists no corresponding
element in sv are left untouched.
Domain restrictions:
• dim(sv) = 1
• shape(sv)[[0]] ≤ dim(a)

• ∀i ∈ {0, ...,shape(sv)[[0]]}: |sv[[i]]| ≤ shape(a)[[i]]

tile(sv, ov, a) takes a tile of shape sv from a starting at the index specified
by the offset vector ov. For axes where no values of sv or ov are specified
these are assumed to be identical to the extent of a or 0, respectively.
Domain restrictions:
• dim(sv) = dim(ov) = 1
• shape(sv)[[0]] ≤ dim(a)

• shape(ov)[[0]] ≤ dim(a)

• ∀i ∈ {0, ...,shape(ov)[[0]]}: ov[[i]] ≤ shape(a)[[i]]

• ∀i ∈ {0, ...,min(shape(ov)[[0]], shape(sv)[[0]])}:
ov[[i]] + sv[[i]] ≤ shape(a)[[i]]

• ∀i ∈ {min(shape(ov)[[0]], shape(sv)[[0]]), ..., shape(sv)[[0]]}:
sv[[i]] ≤ shape(a)[[i]]

e1 ++ e2 concatenates arrays e1 and e2 wrt. the leftmost axis. As in SaC
all arrays are homogeneous, this requires all but the leftmost axis to be of
identical extent.
Domain restrictions:
• e1 and e2 have to be of identical element type
• drop(1, shape(e1)) = drop(1, shape(e2)).

rotate(ov, a) rotates the array a wrt. those axes specified by the offset vec-
tor ov. Starting from the leftmost axis, the elements of ov specify by
how many positions the elements are rotated towards increasing indices
(positive values) or towards decreasing indices (negative values). Domain
restrictions:
• dim(ov) = 1
• shape(ov)[[0]] ≤ dim(a)

shift(ov, expr, a) shifts the array a wrt. those axes specified by the offset
vector ov. The element positions that become ”void“ are filled by the
(scalar) default element expr. Again, depending on the sign of the values
of ov the elements are either shifted towards increasing or decreasing in-
dices.
Domain restrictions:

CHAPTER 2. ARRAY PROGRAMMING BASICS 15

• dim(ov) = 1

• shape(ov)[[0]] ≤ dim(a)

• shape(expr)[[0]] = []

A few examples:

Listing 2.9: Restructuring Operations� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [1,2,3,4,5,6,7,8,9];
7
8 mat = [vect, vect+10, vect+20];
9 print(mat);

10
11 print(take([2,-2], mat));
12 print(take([2], mat));
13 print(take([], mat));
14
15 print(take([0], mat));
16 print(take([2, 0], mat));
17 print(take([2], reshape([3,0,5], [])));
18
19 print(drop([0, -1], mat));
20
21 print(mat ++ mat);
22
23 print(rotate([-1, 42], mat));
24 print(rotate([1], mat));
25
26 print(shift([0, -2], 0, mat));
27 print(shift([0, -22], 0, mat));
28 print(shift([1], 0, mat));
29
30 return(0);
31 }
� �

The applications of take in lines 11-13 demonstrate, how the dimensionality
of mat remains unaffected by the length of the first argument. Only the shape
of the result and the ”side“ from which the elements are taken is defined by it.

The applications in lines 15-17 demonstrate how empty arrays are dealt with
in the individual argument positions. In particular from the example in line 17
it can be seen how well the concept of having an unlimited number of different
empty arrays available fits nicely into the overall framework.

The remaining examples are rather straightforward. the only aspect of in-
terest here may be the ”overflows“ in the rotation and shift parameters in lines
23 and 27, respectively.

Exercise 7 Which of the following expressions can be reformulated in terms of
take, ++, and the basic operations defined in the previous parts?

• drop(v, a)?

• tile(v, o, a)?

CHAPTER 2. ARRAY PROGRAMMING BASICS 16

• shift([n], e, a)?

• shift([m,n], e, a)?

• rotate([n], a)?

• rotate([m,n], a)?

Can we define the general versions of shift and rotate as well?

Reduction Operations

The library for the standard array operations also contains a set of functions
that fold all (scalar) elements of an array into a single one. The most common
ones of these are described here.

sum(a) sums up all elements of the array a. If a is an empty array, 0 is
returned.
Domain restrictions: the element type has to be numerical.

prod(a) multiplies all elements of the array a. If a is an empty array, 1 is
returned.
Domain restrictions: the element type has to be numerical.

all(a) yields true, iff all elements of a are true. If a is an empty array, true
is returned.
Domain restrictions: the element type has to be boolean.

any(a) yields true, iff at least one element of a is true. If a is an empty array,
false is returned.
Domain restrictions: the element type has to be boolean.

maxval(a) computes the maximum value of a. If a is an empty array, the
minimal number of the according element type is returned.
Domain restrictions: the element type has to be numerical.

minval(a) computes the minimum value of a. If a is an empty array, the
maximal number of the according element type is returned.
Domain restrictions: the element type has to be numerical.

A few examples:

Listing 2.10: Reduction Operations� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [1,2,3,4,5,6,7,8,9];
7
8 mat = [vect, vect+10, vect+20];
9

CHAPTER 2. ARRAY PROGRAMMING BASICS 17

10 print(sum(mat));
11 print(prod(vect));
12 print(all(mat >= 1));
13 print(any(mat > 1));
14 print(maxval(mat));
15 print(minval(mat));
16
17 return(0);
18 }
� �

Most of these examples, again, are fairly self explanatory. However, you may
get an idea of the specificational advantages of shape-invariant programming
when having a closer look at lines 12 and 13. They demonstrate the rather
intuitive style of program specifications that results from it.

Exercise 8 All operations introduced in this part apply to all elements of the
array they are applied to. Given they array operations introduced so far, can
you specify row-wise or column-wise summations for matrices? Try to specify
these operations for a 2 by 3 matrix first.

2.2.2 Axis Control Notation

As can be seen from the Exercise 8, without further language support, it is
rather difficult to apply an array operation to certain axes of an array only. This
section introduces two language constructs of SaC which, when taken together,
can be used to that effect. While Generalized Selections are convenient for
separating individual axes of an array, Set Notations allow to recombine such
axes into a result array after applying arbitrary operations to them. However,
as the two constructs in principle are orthogonal, we introduce them separately
before showing how they can be combined into an instrument for Axis Control.

Generalized Selections

The selection operation introduced in Section 2.2.1 does not only allow scalar
elements but entire subarrays of an array to be selected. However, the selec-
tion of (non-scalar) subarrays always assumes the given indices to refer to the
leftmost axes, i.e., all elements wrt. the rightmost axes are actually selected.
Sofar, a selection of arbitrary axes is not possible. As an example consider the
selection of rows and columns of a matrix. While the former can be done easily,
the latter requires the array to be transposed first.

To avoid clumsy notations, SaC provides special syntactical support for se-
lecting arbitrary subarrays called Generalized Selections. The basic idea is to
indicate the axes whose elements are to be selected entirely by using dot-symbols
instead of numerical values within the index vectors of a selection operation.

Note here, that vectors containing dot-symbols are not first class
citizens of the language, i.e., they can exclusively be specified within
selection operations directly!

There are two kinds of dot-symbols, single-dots which refer to a single axis
and triple-dots which refer to as many axes as they are left unspecified within

CHAPTER 2. ARRAY PROGRAMMING BASICS 18

a selection. In order to avoid ambiguities, a maximum of one triple-dot symbol
per selection expression is allowed.

A few examples:

Listing 2.11: Generalized Selections� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [1,2,3,4,5,6,7,8,9];
7
8 mat = [vect, vect+10, vect+20];
9 print(mat);

10
11 print(mat[[1]]);
12 print(mat[[1,.]]);
13 print(mat[[1,...]]);
14
15 print(mat[[.,1]]);
16 print(mat[[...,1]]);
17
18 print(mat[[1,...,1]]);
19
20 arr3d = [mat, mat];
21 print(arr3d);
22
23 print(arr3d[[.,1]]);
24 print(arr3d[[...,1]]);
25
26 return(0);
27 }
� �

The examples in lines 11-13 demonstrate different versions for selecting the
second row of the matrix mat. However, as the rightmost axis is to be selected,
a dot-free version (cf. line 11) suffices for this task. The selection of the second
column of mat is shown in lines 15 and 16. Line 18 demonstrates that the
triple-dot notation can also be successfully applied if no axis can be matched at
all.

The difference between the single-dot and the triple-dot notation is shown in
lines 23 and 24. While the selection in line 23 is identical to arr3d[[.,1,.]],
the one in line 24 is identical to arr3d[[.,.,1]].

Only in cases where the number of single-dots plus the number of numerical
indices exceeds the number of axes available, an error message will be generated.

Exercise 9 How can a selection of all elements of mat be specified using gen-
eralized selections? Try to find all 9 possible solutions!

Exercise 10 Referring to Exercise 5, can this new notation be used for selecting
”over“ empty axis? For example, can you specify a selection vector < vec >, so
that reshape([3,0,5], [])[< vec >] == reshape([3,0], []) holds?

CHAPTER 2. ARRAY PROGRAMMING BASICS 19

Set Notation

The means for composing arrays that have been described so far are rather
restricted. Apart from element-wise definitions all other operations treat all
elements uniformly. As a consequence, it is difficult to define arrays whose el-
ements differ depending on their position within the array. The so-called set
notation facilitates such position dependent array definitions. Essentially, it
consists of a mapping from index vectors to elements, taking the general form

{ <index vector> -> <expression> }
where <index vector> either is a variable or a vector of variables and <expression>
is a SaC expression that refers to the index vector or its components and defines
the individual array elements. The range of indices this mapping operation is
applied to usually can be determined by the expression given and, thus, it is
not specified explicitly.

A note for language design freaks:
You may wonder why we restrict the expressiveness of the set notation
by relying on compiler driven range detection rather than an explicit
range specification. The reason for this decision is the observation that
in many situations the capabilities of the set notation suffice whereas an
explicit specification of ranges would obfuscate the code.
Furthermore, as you will see in chapter ??, SaC provides a more versa-
tile language construct for defining arrays. However, the expressiveness
of that construct comes for quite some specificational overhead.

Let us have a look at some examples:

Listing 2.12: Basic Set Notation� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [0,1,2,3,4,5,6,7,8,9];
7
8 mat = { [i] -> vect[[i]]*10+vect };
9 print(mat);

10
11 mat_inc = { iv -> mat[iv] + 1};
12 print(mat_inc);
13
14 mat_trans = { [i,j] -> mat[[j,i]] };
15 print(mat_trans);
16
17 mat_diag = { [i,j] -> where(i==j , mat[[i,j]] , 0) };
18 print(mat_diag);
19
20 return(0);
21 }
� �

The set notation in line 8 defines a vector whose components at position [i]
are vectors that are computed from adding a multiple of 10 to the vector vect.
The legal range of i is derived from the selection vect[[i]] yielding in fact

CHAPTER 2. ARRAY PROGRAMMING BASICS 20

a matrix with shape [10,10]. An explicit element-wise increment operation is
specified in line 11. Since the operation does not need to refer to individual axes
a variable iv is used for the entire index vector rather than having variables for
individual index components. Line 14 shows how the matrix can be transposed,
and line 17 changes all non-diagonal elements to 0.

Exercise 11 Which of these operations can be expressed in terms of the array
operations defined so far?

Exercise 12 What results do you expect if mat is an empty matrix, e.g., reshape(
[10,0], [])?

As we can see from the set notation in line 8, non-scalar expressions within
the set notation per default constitute the inner axes of the result array. This can
be changed by using .-symbols for indicating those axes that should constitute
the result axis.

A few examples:

Listing 2.13: Advanced Set Notation� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [0,1,2,3];
7
8 mat = { [.,i] -> vect[[i]]*4+vect };
9 print(mat);

10
11 arr3d = { [i] -> vect[[i]]*16 + mat};
12 print(arr3d);
13
14 arr3d = { [.,.,i] -> vect[[i]]*16 + mat};
15 print(arr3d);
16
17 arr3d = { [.,i] -> vect[[i]]*16 + mat};
18 print(arr3d);
19
20 return(0);
21 }
� �

These examples show how the result can be directed into any axes of the
result. As can be seen in line 17, the axes of the expressions can even be put
into non-adjacent axes of the result.

Exercise 13 The .-symbol in the set notation allows us to direct a computation
to any axes of the result. This is identical to first putting the result into the
innermost axes and then transposing the result. Can you come up with a general
scheme that translates set notations containing .-symbols into set notations that
do without?

CHAPTER 2. ARRAY PROGRAMMING BASICS 21

Axis Control

Although generalized selections and the set notation per se can be useful their
real potential shows when they are used in combination. Together, they consti-
tute means to control the axes a given operation is applied to.

The basic idea is to use generalized selections to extract the axes of interest,
apply the desired operation to the extracted subarrays and then recombine the
results to the overall array.

For example, we can easily now sum up the individual rows or columns of a
matrix:

Listing 2.14: Axis Control: sum� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [0,1,2,3,4,5,6,7,8,9];
7
8 mat = { [.,i] -> vect[[i]]*10+vect };
9 print(mat);

10
11 sum_rows = { [i] -> sum(mat[[i]]) };
12 print(sum_rows);
13
14 sum_cols = { [i] -> sum(mat[[.,i]]) };
15 print(sum_cols);
16
17 return(0);
18 }
� �

Reduction operations, in general, are prone to axis control, as they often need
to be applied to one or several particular axis rather than an entire array. Other
popular examples are the maximum (max) and minimum (min) operations:

Listing 2.15: Axis Control: max� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [0,1,2,3];
7
8 arr3d = { [i,j] -> vect[[i]]*4 + vect[[j]]*16 + vect };
9 print(arr3d);

10
11 max_inner_vects = { [i,j] -> max(arr3d[[i,j]]) };
12 print(max_inner_vects);
13
14 max_inner_arrays = { [i] -> max(arr3d[[i]]) };
15 print(max_inner_arrays);
16
17 max_outer_arrays = { [i] -> max(arr3d[[.,.,i]]) };
18 print(max_outer_arrays);
19
20 return(0);
21 }
� �

CHAPTER 2. ARRAY PROGRAMMING BASICS 22

In line 8, we directly generate a 3 dimensional array from the vector vect.
Lines 11, 14, and 17 compute maxima within different slices of that array.
max inner vects is a matrix containing the maxima within the innermost vec-
tors, i.e., the 3-dimensional array is considered a matrix of vectors whose max-
imum values are computed. For max inner arrays, the array is considered a
vector of matrices; it contains the maximum values of these subarrays. The last
example demonstrates, that outer dimensions can be considered for reduction
as well.

Further demand for axis control arises in the context of array operations
that are dedicated to one fixed axis (usually the outermost one) and that need
to be applied to another one. Examples for this situation are the concatenation
operation (++) and reverse:

Listing 2.16: Axis Control: ++, reverse� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 vect = [0,1,2,3];
7
8 arr3d = { [i,j] -> vect[[i]]*4 + vect[[j]]*16 + vect };
9 print(arr3d);

10
11 print(arr3d ++ arr3d);
12 print({ [i] -> arr3d[[i]] ++ arr3d[[i]] });
13 print({ [i,j] -> arr3d[[i,j]] ++ arr3d[[i,j]] });
14
15 print(reverse(arr3d));
16 print({ [i] -> reverse(arr3d[[i]]) });
17 print({ [i,j] -> reverse(arr3d[[i,j]]) });
18
19 return(0);
20 }
� �

Line 11 shows a standard application of the concatenation of two arrays.
It affects the outermost axis only, resulting in an array of shape [8, 0, 0].
The two subsequent lines show, how to apply concatenation to other axis. Es-
sentially, the selections on the right hand sides select the subexpressions to be
catenated and the surrounding set notation glues the concatenated subarrays
back together again.

The examples in lines 15-17 show the same exercise for a the operation
reverse which reverses the order of the elements within an array wrt. the
outermost axis.

Exercise 14 The operation take is defined in a way that ensures inner axes
to be taken completely in case the take vector does not provide enough entities
for all axes. How can take be applied to an array so that the outermost axis
remains untouched and the selections are applied to inner axes, starting at the
second one? (You may assume, that the take vector has fewer elements than the
array axes!) Can you specify a term that - according to a take vector of length
1 - takes from the innermost axis only?

CHAPTER 2. ARRAY PROGRAMMING BASICS 23

Exercise 15 Can you merge two vectors of identical length element-wise? Ex-
tend your solution in a way that permits merging n-dimensional arrays on the
outermost axis.

2.2.3 Putting it all Together

The array operations presented so far constitute a substantial subset of the func-
tionality that is provided by array programming languages such as APL. When
orchestrated properly, these suffice to express rather complex array operations
very concisely. In the sequel, we present two examples that make use of this
combined expressive power: matrix product and relaxation.

Matrix Product

The matrix product of two matrices A and B (denoted by A�B) is defined as
follows:

Provided A has as many columns as B has rows, the result of A�B has as
many rows as A and as many columns as B. Each element (A�B)i,j is defined
as the scalar product of the i-th row of A and the j-th column of B, i.e., we
have (A�B)i,j =

∑
k Ai,k ∗Bk,j .

This definition can directly be translated into the following SaC code:

Listing 2.17: Matrix Product� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 id = [[1d, 0d, 0d], [0d, 1d, 0d], [0d, 0d, 1d]];
7
8 vect = [1d, 2d, 3d, 4d];
9 mat = [vect, vect+4d, vect+8d];

10 print(mat);
11
12 res = { [i,j] -> sum(id[[i,.]] * mat[[.,j]]) };
13 print(res);
14
15 return(0);
16 }
� �

After defining two matrices id and mat in lines 6 and 8, respectively, the
matrix product id � mat is specified in line 12. id[[i,.]] selects the i-th
row of id and mat[[.,j]] refers to the j-th column of mat. The index ranges
for i and j are deduced from the accesses into id and mat, respectively. A
variable k as used in the mathematical specification is not required as we can
make use of the array operations * and sum.

Relaxation

Numerical approximations to the solution of partial differential equations are
often made by applying so-called relaxation methods. These require large

CHAPTER 2. ARRAY PROGRAMMING BASICS 24

arrays to be iteratively modified by so-called stencil operations until a certain
convergence criterion is met. Fig. 2.1 illustrates such a stencil operation. A

0

1/8

0

4/8

1/8

1/80

1/8

0

Figure 2.1: A 5-point-stencil relaxation with cyclic boundaries

stencil operation re-computes all elements of an array by computing a weighted
sum of all neighbor elements. The weights that are used solely depend on the
positions relative to the element to be computed rather than the position in the
result array. Therefore, we can conveniently specify these weights by a single
matrix of weights as shown on the left side of Fig. 2.1.

In this example, only 4 direct neighbor elements and the old value itself
are taken into account for computing a new value. (Hence its name: 5-point-
stencil operation). As can be seen from the weights, a new value is computed
from old ones by adding an eight-th each of the values of the upper, lower, left,
and right neighbors to half of the old value.

As demonstrated on the right side of Fig. 2.1 our example assumes so-called
cyclic boundary conditions. This means that the missing neighbor elements
at the boundaries of the matrix are taken from the opposite sides as indicated
by the elliptic curves.

In the sequel, we concentrate on the specification of a single relaxation step,
i.e., on one re-computation of the entire array. This can be specified as a single
line of SaC code:

Listing 2.18: Relaxation with Cyclic Boundaries� �
1 use StdIO: all;
2 use Array: all;
3
4 int main()
5 {
6 weights = [[0d, 1d, 0d], [1d, 4d, 1d], [0d, 1d, 0d]] / 8d;
7
8 vect = [1d, 2d, 3d, 4d];
9 mat = [vect, vect+4d, vect+8d, vect+12d];

10 print(mat);
11
12 mat = { [i,j] -> sum({ iv -> weights[iv] * rotate(iv-1, mat)}[[...,i,j]]) };
13 print(mat);
14
15 return(0);
16 }
� �

CHAPTER 2. ARRAY PROGRAMMING BASICS 25

Line 6 defines the array of weights as given on the left side of Fig. 2.1. Our
example array is initialized in lines 8-9. The relaxation step is specified in line
12. At its core, all elements are re-computed by operations on the entire array
rather than individual elements. This is achieved by applying rotate for each
legal index position iv into the array of weights weights. Since the expression
{ iv -> weights[iv] * rotate(iv-1, mat)} computes a 3 by 3 array of
matrices (!) the reduction operation sum needs to be directed towards the outer
two axes of that expression only. This is achieved through axis control using a
selection index [...,i,j] within a set notation over i and j.

Exercise 16 Another variant of relaxation problems requires the boundary el-
ements to have a fixed value. Can you modify the above solution in a way that
causes all boundary elements to be 0? [Hint: You may consider the boundary
elements to actualy be located outside the matrix]

