
SICSA Int. Summer School on

Advances in Programming

Languages

Phil Trinder

OpenMP Multicore Programming

Reading Materials

Numerous Tutorials on the web

Chapters of Multicore Programming Textbooks

Wikipedia article

Parts of this lecture are adapted from

computing.llnl.gov/tutorials/openMP/

1

Multicore Architectures

• Physical limits of semiconductor

technology and improved manufacturing

technologies make multicores the dominant

Central processor (CPU) technology

• Of course there are still lots of unicores,

e.g. in embedded systems

• The architectures are shared-memory, and

cores share some level of cache

• The terminology is (deliberately?)

confused: cores (C) may reside on the same

– (S)ilicon Chip

– (P)ackage

– Board, connected by a synchronising

bus

2

+-----------+ +-----------+

| +-------+ | | +-------+ |

| | +---+ | | | | +---+ | |

| | | C | | | | | | C | | |

| | +---+ | | | | +---+ | |

| | | | | | | |

| | +---+ | | | | +---+ | |

| | | C | | | | | | C | | |

| | +---+ | | | | +---+ | |

| | S| | Bus | | S| |

| +-------+ |<==========>| +-------+ |

| | || | |

| +-------+ | \/ | +-------+

| | +---+ | | +---+ | | +---+ | |

| | | C | | | |RAM| | | | C | | |

| | +---+ | | +---+ | | +---+ | |

| | | | | | | |

| | +---+ | | | | +---+ | |

| | | C | | | | | | C | | |

| | +---+ | | | | +---+ | |

| | S| | | | S| |

| +-------+ | | +-------+ |

| P| | P|

+-----------+ +-----------+

3

Multicore Architectures

• These components are often combined e.g.

the ’8-core’ Dell PowerEdge machines

comprise a pair of quad cores in 2 packages.

• Major performance issues are

– cache coherence - ensuring that each

core’s caches are consistent after

memory writes

– contention - synchronising memory

read/writes between cores

• The trend is towards more cores: many

cores

4

Multicore Programming

• The architectures encourages a

programming model with lightweight

threads (sometimes called filaments)

• Stateful programming (e.g. assignment)

causes problems with cache coherence

• Caution: much threaded code is not safe

for parallel execution!

• There are a number of programming

models being explored, e.g.

– Concurrent Collection libraries, e.g.

java.util.concurrent

– High-level Parallelism, e.g. JaSkel,

GpH, Erlang

– Thread-based models, e.g. Intel Thread

Library, OpenMP

5

What is OpenMP?

• Open Multi-Processing

• An API for multi-threaded, shared memory

parallelism

• API components:

1. Compiler Directives

2. Runtime Library Routines

3. Environment Variables

• Available for

– C, C++ and Fortran(s)

– Unix & some Windows platforms

6

OpenMP Does Not

• Guarantee efficient use of shared memory

• Check for data dependencies, data

conflicts, race conditions, or deadlocks

• Guarantee that I/O (e.g. to the same file)

is synchronous

7

History

• Developed by a consortium of companies:

HP, Intel, IBM, ...

• 1997 1st Standard

• 2008 OpenMP 3.0

8

Fork/Join Pattern

||

|| master thread

\/

F O R K

| | | | parallel

| | | | region

v v v v

J O I N

||

||

\/

F O R K

| | | | parallel

| | | | region

v v v v

J O I N

||

||

\/

9

Code Structure

#include <omp.h>

main () {

int var1, var2, var3;

Serial code

.

.

Beginning of parallel section. Fork a team of

threads and specify variable scoping

#pragma omp parallel private(var1, var2) shared(var3)

{

Parallel section executed by all threads

.

.

All threads join master thread and disband

}

Resume serial code

.

.

}

10

1. Compiler Directives

• #pragma omp directive [clause, clause, ...]

• A directive typically applies to the

following structured block

• No. threads determined by:

– Setting of the NUM THREADS clause

– Use of the omp set num threads()

library function

– Setting of the OMP NUM THREADS

environment variable

– Implementation default - usually the

number of cores, though it could be

dynamic

– others ...

11

#include <omp.h>

main () {

int nthreads, tid;

/* Fork a team of threads with each thread having

a private tid variable */

#pragma omp parallel private(tid)

{

/* Obtain and print thread id */

tid = omp_get_thread_num();

printf("Hello World from thread = %d\n", tid);

/* Only master thread does this */

if (tid == 0)

{

nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

} /* All threads join master thread and terminate */

}

12

Dual Core execution:

jove% helloPar

Hello World from thread = 1

Hello World from thread = 0

Number of threads = 2

jove%

8-core execution:

lxpara3% helloPar

Hello World from thread = 4

Hello World from thread = 3

Hello World from thread = 5

Hello World from thread = 1

Hello World from thread = 6

Hello World from thread = 2

Hello World from thread = 0

Number of threads = 8

Hello World from thread = 7

lxpara3%

13

Data Parallelism: for Directive

#pragma omp for [clause ...]}

schedule (type [,chunk])

ordered

collapse

nowait

reduction (operator: list)

...

• schedule specifies how loop iterations are

divided amongst threads

– static iterations of size chunk are

statically assigned

– dynamic iterations of size chunk are

assigned, and when a thread finshes it

dynamically collects the next chunk

– auto scheduling delegated to

compiler/runtim

– ...

• nowait threads don’t synchronise at the

end of the loop

14

• ordered loop iterations must be executed

in the same order as in a sequential

program

• reduction Performs a reduction on all

scalar variables in list using the specified

operator, e.g. reduction(+:sum). It is

analogous to the fold or reduce patterns

found in other languages like MPI,

mapreduce etc.

A private copy of each variable in list is

created for each thread. At the end of the

statement block, the final values of all

private copies of the reduction variables are

combined using the operator, and the

result is placed back into the shared

reduction variable.

• ...

15

#include <omp.h>

#define CHUNKSIZE 100

#define N 1000

main ()

{

int i, chunk;

float a[N], b[N], c[N];

/* Some initializations */

for (i=0; i < N; i++)

a[i] = b[i] = i * 1.0;

chunk = CHUNKSIZE;

#pragma omp parallel shared(a,b,c,chunk) private(i)

{

#pragma omp for schedule(dynamic,chunk) nowait

for (i=0; i < N; i++)

c[i] = a[i] + b[i];

} /* end of parallel section */

}

16

Control Parallelism: sections

Directive

#pragma omp sections [clause ...]

reduction (operator: list)

nowait

• Create threads to evaluate different control

structures in a program

17

include <omp.h>

#define N 1000

main () {

int i;

float a[N], b[N], c[N], d[N];

for (i=0; i < N; i++) { /* Initialise */

a[i] = i * 1.5;

b[i] = i + 22.35;

}

#pragma omp parallel shared(a,b,c,d) private(i)

{

#pragma omp sections nowait

{

#pragma omp section

for (i=0; i < N; i++)

c[i] = a[i] + b[i];

#pragma omp section

for (i=0; i < N; i++)

d[i] = a[i] * b[i];

} /* end of sections */

} /* end of parallel section */

}

18

Synchronisation Constructs

• #pragma omp critical [name]

structured block

If a thread is executing in a critical

region, any other thread reaching the

region blocks until the first thread exits

• #pragma omp barrier

A thread reaching a barrier waits until all

other threads have reached the barrier.

Thereafter all threads resume parallel

execution.

• ...

19

Data Sharing Clauses

• As OpenMP is a shared memory paradigm

variables are shared by default

• However it is important for each thread to

keep a private copy of some variables,

including loop index variables, thread id,

etc.

• See previous programs for examples

20

2. Run-Time Library Functions

Library functions support

• Querying the number of threads/

processors, setting number of threads

• Semaphores

• Portable wall clock timing

• Setting execution environment for functions

21

Example functions

• Getting and setting number of threads:

void omp set num threads(int num threads)

int omp get num threads(void)

• Get thread Id (see 1st example program):

int omp get thread num(void)

• Get no. processors:

int omp get num procs(void)

• Set/Unset locks

void omp set lock(omp lock t *lock)

void omp unset lock(omp lock t *lock)

• Get wallclock time

double omp get wtime(void)

22

3. Environment Variables

• OpenMP parallel evaluation can be

controlled from the environment, for

example:

• To control parallel for loops:

export OMP SCHEDULE="dynamic"

• To set the maximum number of threads to

use during execution:

export OMP NUM THREADS=6

For example:

lxpara3% export OMP_NUM_THREADS=4

lxpara3% helloPar

Hello World from thread = 2

Hello World from thread = 3

Hello World from thread = 1

Hello World from thread = 0

Number of threads = 4

lxpara3%

• ...

23

Critique of OpenMP

• Provides high-level parallelism compared

with MPI

• Programmer must

– identify paradigm(s) and introduce

them e.g. data parallelism, control

parallelism

– control thread granularity

– identify shared and private variables

– synchronise on shared variables

• The directives are:

– elaborate - how do you chose the best

ones?

– a fixed set: there’s no way to introduce

a new directive

– there are only fixed ways of combining

directives. Other coordination notations

allow coordination constructs to be

combined, e.g. sequenced, composed, or

passed as arguments.

24

