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1 Introduction

Types play an increasingly important role in program construction, software
engineering, and reasoning about programs. They serve as documentation of
functionality, even as partial specifications, and can help to rule out whole classes
of errors before a program is ever run. Types thus provide qualitative guarantees
and enable safe reuse of code components. In particular, static type checking
constitutes a limited form of automatic correctness proof below the threshold of
full, and undecidable, program verification.

An important asset for maintaining a strong type discipline, which attempts
to prevent the use of code in unfit contexts by assigning types that are as precise
and descriptive as possible, without forgoing the goal of also flexible reuse is
the availability of polymorphism, first identified as a distinct concept by Stra-
chey [29]. A polymorphic type, or type scheme, expresses that a certain function-
ality is offered for different concrete type instantiations, and that in a controlled
fashion.

Even though the prospects of strong typing as a lightweight yet powerful
formal method have already begun to influence the design of mainstream pro-
gramming languages, and in particular Java and C# are embracing ever more
sophisticated forms of polymorphism [21,10], the real stronghold of typeful pro-
gramming is in the area of functional programming languages like ML [20] and
Haskell [25]. The clear mathematical basis of the functional paradigm makes lan-
guages adhering to it particularly amenable to precise analysis and thus allows
the formalisation and mastery, both theoretically and practically, of very potent
type systems. In fact, one of the defining characteristics of Haskell over the last
two decades has been its role as a highly effective laboratory in which to explore,
design, and implement advanced type-related ideas [11].

So the forefront of type research is still in the field of functional programming,
and it can be argued that this setting is best suited for exploring ways of using
types for high-level program construction and reasoning about the behaviour of
programs. Specifically, a very nice synergy arises from Haskell’s type discipline
and Haskell’s insistence on being a pure, rather than just any other “almost”,
functional language. The “no compromises” attitude vis-à-vis any impulse to
relax the compliance with the mathematical concept of side-effect-free functions
contributes to the existence of powerful reasoning techniques that connect the
types of functions to those functions’ possible observable behaviours. One such



technique is the systematic derivation of statements about program behaviour
from (polymorphic) types alone. Originating from Reynolds’ [26] characterisation
of what it means, abstractly, for a function to be fully polymorphic over some
part of its type, this approach has been popularised by Wadler [34] under the
slogan of “free theorems”. It combines fruitfully with algebraic techniques like
equational reasoning.

One prominent application area for free theorems has been, and continues
to be, the conception and study of semantics-preserving program transforma-
tions that can be used in a compiler to optimise for execution speed [9,30,7, and
others]. There are also somewhat surprising applications outside the core area
of programming language research as such. We report on such applications in
Sections 4 and 5. To set the stage, though, Sections 2 and 3 first give a brief intro-
duction to Haskell, its abstraction facilities, and associated reasoning techniques
in general and on the type level.

2 Haskell and its Abstraction Facilities

We begin by briefly illustrating some important Haskell concepts, based on exam-
ples. This section is not intended to be a thorough introduction to the language,
but rather should serve to recall key ingredients of the overall programming
methodology, as well as to clarify Haskell’s syntax for readers more familiar
with other functional languages. We also highlight ways of structuring Haskell
programs by means of abstraction and introduce the technique of equational
reasoning. For comprehensive accounts of the language including the discussion
of features like lazy evaluation we refer the reader to recent textbooks [12,24].

2.1 A Short Tour of Haskell

Programming in Haskell means programming with equations. For example, a
function delivering for every integer n, assumed to be nonnegative, the sum of
the integer values between 0 and n is given as follows:

sum :: Int→ Int
sum 0 = 0
sum (n+ 1) = n+ (sum n)

Note the (optional) type signature, the use of recursion/induction, and the defi-
nition by cases. The above looks much like how a mathematician would typically
write down a specification of the function sum, except for a different way of using
parentheses in denoting function application.

Definition by cases is supported via so-called pattern-matching on the left-
hand sides of equations, which is also available at other types than that of
integers. For example, summing up the elements of a list of integer values can
be done as follows:

listsum :: [Int]→ Int
listsum [ ] = 0
listsum (n : ns) = n+ (listsum ns)



The syntax of lists, as well as the way in which pattern-matching works for them,
should become clear from the following example evaluation:

listsum [1, 2, 3, 42]
= 1 + (listsum [2, 3, 42])
= 1 + (2 + (listsum [3, 42]))
= 1 + (2 + (3 + (listsum [42])))
= 1 + (2 + (3 + (42 + (listsum [ ]))))
= 1 + (2 + (3 + (42 + 0)))
= 48

In addition to existing types like integers and lists, the user can define their
own types at need, in particular arbitrary algebraic data types. For example, a
type of binary, leaf-labelled integer trees is introduced as follows:

data Tree = Node Tree Tree | Leaf Int

Pattern-matching is automatically available for such user-defined types as well:

treesum :: Tree→ Int
treesum (Leaf n) = n
treesum (Node t1 t2) = (treesum t1) + (treesum t2)

Often, some functionality is useful at, and can indeed be uniformly specified
for, more than one particular type. For example, computing the length of a list
should be possible completely independently of the (type of) values contained in
the list. The desired reuse here is enabled by polymorphism. A polymorphic type
is one in which some concrete types are replaced by type variables. The length
example then takes the following form:

length :: [α]→ Int
length [ ] = 0
length (a : as) = 1 + (length as)

This function can be used on lists of integers, [Int], lists of Boolean values, [Bool],
and even lists of trees, [Tree], lists of lists of integers, [[Int]], and so on.

Polymorphism is not only available when defining functions, but also when
defining types. For example, a more general version of the above tree data type,
abstracted over the type of leaves, could have been introduced as follows:

data Tree α = Node (Tree α) (Tree α) | Leaf α

Then we could still have treesum with exactly the same defining equations as
above, but revised type signature treesum :: Tree Int→ Int, and moreover could
write functions that do not depend on a particular type of leaf values. Like so,
using the list concatenation operator (++) :: [α]→ [α]→ [α]:

flatten :: Tree α→ [α]
flatten (Leaf a) = [a]
flatten (Node t1 t2) = (flatten t1) ++ (flatten t2)



List types are nothing special in Haskell. Except for some syntactic sugar, they
are on an equal footing with user-defined algebraic data types. In fact, seeing []
as a type constructor of the same kind as the polymorphic version of Tree above,
lists can be thought of as being introduced with the following definition:

data [] α = (:) α ([] α) | [ ]

Another important abstraction facility is the use of higher-order types. That
is, a function argument can itself be a function. For example, the following
function applies another function, which is supplied as an argument, to every
element of an input list and builds an output list from the results:1

map :: (α→ β)→ [α]→ [β]
map h [ ] = [ ]
map h (a : as) = (h a) : (map h as)

Now two type variables, α and β, are used. They keep track of the dependencies
between the argument and result types of h and the types of the input and
output lists, respectively.

Since polymorphism, including forms of it that are more advanced than those
already seen above, is at the heart of all results reported on here, the next
subsection discusses it in some more detail.

2.2 The Virtues of Polymorphism

We have already introduced so-called parametric polymorphism, where the same
algorithm is used for all different instantiations of a type variable. For the func-
tion map :: (α → β) → [α] → [β] seen earlier this kind of polymorphism allows,
for example:

map (+1) [1, 2, 3] = [2, 3, 4] — with α, β 7→ Int, Int
map not [True,False] = [False,True] — with α, β 7→ Bool,Bool
map even [1, 2, 3] = [False,True,False] — with α, β 7→ Int,Bool

The concrete choice of type parameters for α and β is not given explicitly in
Haskell. Rather, it is inferred automatically (while, e.g., map not [1, 2, 3] would
be rejected).

So far, quantification over type variables has been implicit as well. For exam-
ple, the type (α → β) → [α] → [β] is actually interpreted as ∀α.∀β.(α → β) →
[α] → [β]. The positioning and scope of quantifiers can be quite important. To
see why, consider the following function definition:

f g = (g [1, 2, 3]) + (g [True,False])

1 When reading such higher-order type signatures, the function arrow “→” associates
to the right. So the type (α→ β)→ [α]→ [β] is the same as (α→ β)→ ([α]→ [β]),
but not the same as α→ β → [α]→ [β].



Note that in the equation’s right-hand side the function g is applied to lists of two
different types. But that should be fine if we apply f, for example, to length (in
which case we would expect the overall result to be 5). So it might be tempting
to give f the type ([α] → Int) → Int. But this attempt would fail, as it would
mean that we expect f to be a polymorphic function which for any concrete type,
say τ , takes a function of type ([τ ] → Int) as argument and delivers an integer
as result. And this τ is neither guaranteed to be Int, nor Bool, and certainly
not both at the same time. So the function calls g [1, 2, 3] and g [True,False] are
bound to lead to trouble. The point is that we do not really want f itself to
be polymorphic, but rather want it to be a function that takes a polymorphic
function as argument. That is, instead of ([α] → Int) → Int, which is equivalent
to ∀α.([α]→ Int)→ Int, we need f to have the type (∀α.[α]→ Int)→ Int. Such
rank-2 types [15] are allowed in mature Haskell implementations, and are crucial
for the mentioned program transformations [9,32], but also for the technique to
be discussed in Section 5. It is important to note, though, that this additional
abstraction facility, being able to write functions that abstract over functions
that abstract over types, comes at the price of type signatures no longer being
optional. In particular, the equation for f as given above in isolation is not a
legal function definition. Only when we add the type signature2

f :: (forall α. [α]→ Int)→ Int

it is accepted by the type checker; and so is, then, f length, which computes 5.
Another form of polymorphism is the so-called ad-hoc one, where a certain

functionality is provided for different types, without necessarily the same algo-
rithm being used in each and every instantiation. For example, an equality test
for lists of integers is likely to be implemented differently than the same kind
of test for integers themselves, or for trees of Boolean values. In Haskell, such
overloading of functionality is supported via type classes [36]. For example, the
class Eq with methods == and /= is declared as follows:

class Eq α where
(==) :: α→ α→ Bool
(/=) :: α→ α→ Bool

For base types like Int these methods are predefined, while for other types they
could be defined as in the following example:

instance Eq α⇒ Eq [α] where
[ ] == [ ] = True
(x : xs) == (y : ys) = (x == y) && (xs == ys)
xs /= ys = not (xs == ys)

Here an equality test for elements of an arbitrary, but fixed, type is used for
defining an equality test for lists of elements of that type. Without further def-
initions, the methods == and /= are then available for [Int], [[Int]], and so on.
2 Compiler flag -XRank2Types of GHC (http://www.haskell.org/ghc) version 6.8.2

is used from now on.

http://www.haskell.org/ghc


And the same is true for functions defined in terms of them, such as the following
one:

elem :: forall α. Eq α⇒ α→ [α]→ Bool
elem x = foldr (λa r → (a == x) || r) False

2.3 Equational Reasoning

As seen, a Haskell program is just a collection of equations defining the return
values of functions for given arguments. This approach is fundamentally different
from the concept of functions or procedures in imperative or impure functional
languages, where they may additionally access, and alter, some global state. A
Haskell function is really a function in the mathematical sense, transferring val-
ues to values and doing nothing else. This absence of side-effects implies that
every expression has a value that is independent of when it is evaluated. Clearly,
two expressions having the same value can thus be replaced for each other in
any program context without changing the overall semantics; a property often
called referential transparency. And the easiest way to establish that two expres-
sions have the same value is to observe them as the left- and right-hand sides of
the same program equation. Of course, doing so might involve the instantiation
of variables, on both sides and in exactly the same manner, that stand for ab-
stracted parts of the function’s input. Overall, this approach leads to a simple
but powerful reasoning principle.

Since the above explanation is best substantiated by an example, we consider
the following function definition:

filter :: forall α. (α→ Bool)→ [α]→ [α]
filter p [ ] = [ ]
filter p (a : as) = if p a then a : (filter p as)

else filter p as

Assume we want to prove that for every choice of p, h, and as (of appropriate
types), the following law holds:

filter p (map h as) = map h (filter (p ◦ h) as) (1)

Proceeding by induction on the list as, it suffices to establish that

filter p (map h [ ]) = map h (filter (p ◦ h) [ ]) (2)

holds and that

filter p (map h (a : as)) = map h (filter (p ◦ h) (a : as)) (3)

holds under the assumption that the induction hypothesis (1) holds for as. For
the induction base (2), equational reasoning succeeds as follows:

filter p (map h [ ])
= filter p [ ]
= [ ]
= map h [ ]
= map h (filter (p ◦ h) [ ])



And for the induction step (1)→(3):

filter p (map h (a : as))
= filter p ((h a) : (map h as))
= if p (h a) then (h a) : (filter p (map h as))

else filter p (map h as)
= if (p ◦ h) a then (h a) : (map h (filter (p ◦ h) as))

else map h (filter (p ◦ h) as)
= if (p ◦ h) a then map h (a : (filter (p ◦ h) as))

else map h (filter (p ◦ h) as)
= map h (if (p ◦ h) a then a : (filter (p ◦ h) as)

else filter (p ◦ h) as)
= map h (filter (p ◦ h) (a : as))

While equational reasoning is employed as an auxiliary technique in the works
we report on, our main focus is on reasoning about functions without having
access to their defining equations. How such reasoning is possible is the subject
of the next section.

3 Free Theorems

We review why a polymorphic type may allow to derive statements about a
function’s behaviour without knowing that function’s defining equations.

3.1 Free Theorems, Intuitively

It is best to start with a concrete example. Consider the following type signature:

f :: forall α. [α]→ [α]

What does it tell us about the function f? For sure that it takes lists as input
and produces lists as output. But we also see that f is polymorphic, and so
must work for lists over arbitrary element types. How, then, can elements for
the output list come into existence? The answer is that the output list can only
ever contain elements from the input list. This is so because the function f, not
knowing the element type of the lists it operates over, cannot possibly make
up new elements of any concrete type to put into the output, such as 42 or
True, or even id, because then f would immediately fail to have the general type
forall α. [α]→ [α].

So for any input list l (over any element type) the output list f l consists
solely of elements from l.

But how can f decide which elements from l to propagate to the output list, and
in which order and multiplicity? The answer is that such decisions can only be
made based on the input list l. For f has no access to any global state or other
context based on which to decide. It cannot, for example, consult the user in



any way about what to do. The means by which to make decisions based on l
are quite limited as well. In particular, decisions cannot possibly depend on any
specifics of the elements of l. For the function f is ignorant of the element type,
and so is prevented from analysing list elements in any way (be it by pattern-
matching, comparison operations, or whatever). In fact, the only means for f to
drive its decision-making is to inspect the length of l, because that is the only
element-independent “information content” of a list.

So for any pair of lists l and l′ of same length (but possibly over different
element types) the lists f l and f l′ are formed by making the same
position-wise selections of elements from l and l′, respectively.

Now recall the function map from Section 2.1. Clearly, map h for any function
h preserves the lengths of lists. So if l′ = map h l, then f l and f l′ are of the
same length and contain, at each position, position-wise exactly corresponding
elements from l and l′, respectively. Since, moreover, any two position-wise cor-
responding elements, one from l and one from l′ = map h l, are related by the
latter being the h-image of the former, we have that at each position f l′ contains
the h-image of the element at the same position in f l.

So for any list l and (type-appropriate) function h, the following law
holds:

f (map h l) = map h (f l) (4)

Note that during the reasoning leading up to this statement we did not (need
to) consider the actual definition of f at all. It could have been f = reverse, or
f = tail, or f = take 5, or many other choices. It just did not matter.

And what we just noticed is not a one-off success. Intuitive reasoning of the
same style as above can be applied to other polymorphic functions as well. For
example, one can arrive at the conclusion that for every function

f :: forall α. (α→ Bool)→ [α]→ [α]

the following law holds:

f p (map h l) = map h (f (p ◦ h) l) (5)

The steps required to establish this law are but minor extensions of the ones
leading to law (4) above. It is only necessary to additionally factor in how f’s
decision about which elements from an input list to propagate to the output list,
and in which order and multiplicity, may now depend also on the outcomes of
an input predicate, namely f’s first argument, on the input list’s elements.

Note that law (5) is exactly the same as law (1) in Section 2.3, except that now
we claim it much more generally for all functions of filter’s type, not just for
the particular one considered there. And there is no need for induction anymore.
Better yet, the intuitive reasoning above can be put on a more formal basis.
The methodology of deriving free theorems à la Wadler [34] provides precisely a
way to obtain statements like above for arbitrary function types, and in a more
disciplined (and provably sound) manner than mere handwaving.



3.2 The Formal Background of Free Theorems

The origin of free theorems lies in Reynolds’ [26] studies about characterising
parametric polymorphism. The question approached was what it means for a
polymorphic function to behave uniformly, regardless of the concrete type at
which it is instantiated. Intuitively, the concept of two functions to behave the
same is that they map equal arguments to equal results. But this intuition does
not really make sense when we want to compare two different instantiations of
a polymorphic function. For example, when trying to compare the two instanti-
ations of a function f :: forall α. [α]→ [α] at types Int and Bool, we cannot say
that they “behave the same” when they “map equal input lists to equal output
lists”. After all, one of the two instantiations under consideration maps integer
lists to integer lists, while the other maps Boolean valued lists to Boolean valued
lists. And there is no concept of an integer list being “equal” to a Boolean valued
list. Reynolds’ key idea was to move away from equality and instead consider
arbitrary binary relations. Say we fix a relation between Int and Bool that relates
every even integer to True and every odd integer to False. Given this relation
as a base, it is straightforward to formulate a meaningful concept of an integer
list and a Boolean valued list being related: we simply require that the lists are
of the same length and that elements at corresponding positions are related in
the way just described. For the supposed two instances of f at Int and Bool
we can now require that they map related input lists to related output lists. If
f is truly polymorphic, with its behaviour independent of concrete choices for
instantiating α, then this invariant will indeed be preserved. Actually, it will
be so for every choice of a base relation between Int and Bool, not just for the
one connecting even integers to True and odd ones to False. And what is more,
this condition is not only necessary, but also sufficient. Not only will every truly
polymorphic f preserve every relation between every pair of concrete types cho-
sen for instantiating α, but also conversely is this universal preservation enough
to establish that f is polymorphic in a truly uniform way. For any f that were
to “cheat” by behaving differently for one type or another, it would be possible
to find some relation that is not preserved. It is this characterisation on which
Wadler [34] built his methodology of deriving free theorems. Of course, it is nec-
essary to make precise the idea of propagating relations from the base level to
relations over lists, over functions, and so on.

First, every quantification over type variables is replaced by quantification
over relation variables. For example, given the type signature f :: forall α. [α]→
[α] we obtain ∀R. [R] → [R]. Then, there is a systematic way of reading such
expressions over relations as relations themselves. In particular,

– base types like Int are read as identity relations,
– for relations R and S we have

R → S = {(f, g) | ∀(a, b) ∈ R. (f a, g b) ∈ S}

and



– for “type schemes” τ and τ ′ with at most one free variable, say α, and
a function F on relations such that every relation R between concrete
types τ1 and τ2, denoted R ∈ Rel(τ1, τ2), is mapped to a relation F R ∈
Rel(τ [τ1/α], τ ′[τ2/α]), we have

∀R. F R = {(u, v) | ∀τ1, τ2,R ∈ Rel(τ1, τ2). (uτ1 , vτ2) ∈ F R}
(Here, uτ1 is the instantiation of a value u of type forall α. τ at the type τ1,
and similarly for vτ2 . So far, we have always left type instantiation implicit,
and we will continue to do so in what follows.)

Also, every type constructor is read as an appropriate construction on relations.
For example, the list type constructor maps every relation R ∈ Rel(τ1, τ2) to
the relation [R] ∈ Rel([τ1], [τ2]) defined by

[R] = {([ ], [ ])} ∪ {(a : as, b : bs) | (a, b) ∈ R, (as, bs) ∈ [R]}
and similarly for other algebraic data types.

Free theorems are now derived from the fact, proved once and then used over
and over again, that every value of a concrete type is related to itself by the
relational interpretation of that type. For the example f :: forall α. [α] → [α]
this fact implies that any such f satisfies (f, f) ∈ ∀R. [R] → [R], which by
unfolding some of the above definitions is equivalent to having for every τ1, τ2,
R ∈ Rel(τ1, τ2), l :: [τ1], and l′ :: [τ2] that (l, l′) ∈ [R] implies (f l, f l′) ∈ [R],
or, specialised to the function level (R 7→ h, and thus [R] 7→ map h), for every
h :: τ1 → τ2 and l :: [τ1] that f (map h l) = map h (f l). This calculation finally
provides the formal, and systematic, counterpart to the intuitive reasoning seen
earlier.

4 A Knuth-like 0-1-2-Principle for Parallel Prefix
Computation

This section presents an application of type-based reasoning to a real-world
problem [31]. In particular, we benefit from Haskell’s mathematical rigour and
its abstraction and reasoning facilities in the endeavour to analyse a whole class
of algorithms.

4.1 Parallel Prefix Computation

Parallel prefix computation is a task with numerous applications in the hardware
and algorithmics fields [3]. The basic problem description is as follows:

Given an associative binary operation ⊕ and inputs x1, . . . , xn, compute
the values x1, x1 ⊕ x2, x1 ⊕ x2 ⊕ x3, . . . up to x1 ⊕ x2 ⊕ · · · ⊕ xn.

Here is an obvious solution for n = 10, depicted as a prefix network in which
the inputs are provided at the top, values flow downwards along “wires” and get
combined by ⊕ -“gates”, and the outputs can be read off at the bottom, from
left to right:



x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕

At first glance, the above may appear to be the best solution possible, as it em-
ploys maximal reuse of partial results. After all, it is clear that nine applications
of ⊕ are necessary to compute x1 ⊕ x2 ⊕ · · · ⊕ x10 alone. So if the same nine
applications yield all the other required outputs as well, what could be better?
The point is that the number of applications of ⊕ is not the only measure of
interest. For example, the above solution is inherently sequential, which leads to
bad time performance even on parallel devices. Assuming that each application
of ⊕ requires one unit of time, the last output is not available until nine units
have passed. In contrast, the following maximally parallel solution requires only
four time units to deliver all outputs:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

⊕
⊕

⊕

⊕

⊕
⊕

⊕

⊕

⊕

⊕
⊕
⊕

⊕

⊕
⊕

Note that thanks to the assumed associativity of ⊕, correctness is still guaran-
teed. For example, x1 ⊕ x2 ⊕ · · · ⊕ x7 is now actually computed as (((x1 ⊕ x2)⊕
x3)⊕ (x4 ⊕ x5))⊕ (x6 ⊕ x7).

Admittedly, the shorter time to output in the parallel solution comes at the
expense of an increased number of ⊕ -“gates” and more complicated “wiring”.
But depending on the usage scenario this increase can be a worthwhile allowance.
In some scenarios, in particular in a hardware setting where the “wires” are



real wires and the ⊕ -“gates” are real gates, many more trade-offs (guided by
architectural, delay, or other constraints) are possible and of potential benefit.
Hence, a wealth of solutions has been developed over the years [28,5,16]. Key to
all of them is to use the associativity of ⊕ to rearrange how partial results are
computed and combined.

An obvious concern is that for correctness of such new, and increasingly
complex, methods. While checking the correctness of a concrete prefix network
is a straightforward, though maybe tedious, task, the real practical interest is
in validating a whole method of constructing prefix networks. For that is the
general nature of work on parallel prefix computation: to develop and study
algorithms that yield networks for arbitrary n ≥ 1. In the case of the completely
sequential network it should be clear how to abstract from n = 10 to arbitrary n.
But also behind the other network shown above there is a general construction
principle. It is the method of Sklansky [28], and as another example here is its
instance for n = 16:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

⊕
⊕

⊕
⊕

⊕

⊕

⊕
⊕
⊕

⊕
⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕

⊕
⊕

⊕
⊕
⊕

⊕
⊕
⊕
⊕

So if studying prefix networks really means studying methods for their con-
struction, how should these be expressed? Clearly, it would be beneficial to have
a common framework in which to describe all methods, be they classical or still
under development. For then they could be more readily compared, maybe com-
bined, and hopefully analysed using a common set of reasoning principles, as
opposed to when each method is described in a different formalism or notation.
One very attractive choice for the unifying framework is to use some universal
programming language. After all, by Turing completeness, this choice would al-
low to precisely capture the notion of an algorithm that may, or may not, be
a correct solution to the parallel prefix computation task. Of course, this idea
begs the question in terms of which programming language to cast the prob-
lem, algorithms, and analyses. It turns out that Haskell, with its mathematical
expressivity and nice abstraction facilities, is a very good fit.

4.2 Prefix Networks in Haskell

From the problem description at the beginning of the previous subsection it is
clear that any function implementing parallel prefix computation should have
the following type:

forall α. (α→ α→ α)→ [α]→ [α]



The polymorphism over α is justified by the fact that in the problem description
neither the type of the inputs x1, . . . , xn, nor any specifics (apart from associa-
tivity) of ⊕ are fixed, except (implicitly) that the type on which ⊕ operates
should be the same as that of the inputs. By providing the inputs in a variable-
length list, we express our interest in algorithms that work for arbitrary n. And
indeed, the prefix networks seen in the previous subsection are easily generated
in Haskell.

For example, the completely sequential construction method is captured as
follows:

serial :: forall α. (α→ α→ α)→ [α]→ [α]
serial op (x : xs) = go x xs

where go x [ ] = [x]
go x (y : ys) = x : (go (x ‘op‘ y) ys)

The method of Sklansky [28] is captured as follows:

sklansky :: forall α. (α→ α→ α)→ [α]→ [α]
sklansky op [x] = [x]
sklansky op xs = us ++ vs

where t = ((length xs) + 1) ‘div‘ 2
(ys, zs) = splitAt t xs
us = sklansky op ys
u = last us
vs = map (u ‘op‘) (sklansky op zs)

This function is already a bit more complicated than serial, but still expressed
in a way that is nicely declarative and accessible. Confidence that this code
really implements Sklansky’s method can also be gained from the fact that the
two parallel network pictures shown in the previous subsection, for n = 10 and
n = 16, were automatically generated from it.3 And more recent algorithms for
parallel prefix computation can be treated in the same way.

What is only hinted at above actually extends to a whole methodology for
designing, and then analysing, hardware circuits using functional languages. An
interesting introductory text containing many references is [27]. Our contribution
reported here is a display of what powerful abstractions can buy in this context.
Its reasoning is specific to parallel prefix computation, but similar results may
hold for other algorithm classes of interest.

4.3 A Knuth-like 0-1-2-Principle

Assume we have a candidate function of type forall α. (α→ α→ α)→ [α]→ [α].
This function could be our attempt at implementing a classical method from the
literature. Or it could be a new algorithm we have come up with or obtained by

3 In the same way, namely using a separate Haskell program, the completely sequential
network picture for n = 10 was automatically generated from the function serial

above.



refining or combining existing ones. Indeed, it could be a function that we only
hope to correctly implement parallel prefix computation, while actually it does
not. To assure ourselves of its correctness, we may try an explicit proof or at
least perform systematic testing. But it seems that in order to do so, we would
have to consider every concrete type τ as potential instantiation for α, and for
each such τ consider every (associative) operation of type τ → τ → τ as well as
every input list of type [τ ]. Not only would this mean a lot of work, it is also
unsatisfactory on a conceptual level. After all, given the rather generic problem
description, we could expect that analyses of solution candidates are possible in
a sufficiently generic way as well.

Here the 0-1-Principle of Knuth [14] comes to mind. It states that if an obliv-
ious sorting algorithm, that is one where the sequence of comparisons performed
is the same for all input sequences of any given length, is correct on Boolean
valued input sequences, then it is correct on input sequences over any totally
ordered value set. This principle greatly eases the analysis of such algorithms. Is
something similar possible for parallel prefix computation? For 0-1 the answer
is negative: one can give a function that is correct for all binary operations and
input lists over Boolean values, but not in general. The next best thing to hope
for then is that a three-valued type may suffice as a discriminator between good
and bad candidate functions. And this is indeed the case.

Our 0-1-2-Principle for parallel prefix computation can be formulated as fol-
lows. Let a function

candidate :: forall α. (α→ α→ α)→ [α]→ [α]

be given and let
data Three = Zero | One | Two

If for every associative operation (⊕) :: Three → Three → Three and every list
xs :: [Three],

candidate (⊕) xs = serial (⊕) xs

then the same holds for every type τ , associative (⊕) :: τ → τ → τ , and xs :: [τ ].
That is, correctness of candidate at the type Three implies its correctness at
arbitrary type. Here the definition of “correctness” is “semantic equivalence
to serial for associative operations as first input”. Actually, the formal ac-
count [31] uses a different reference implementation than serial, but one that
is easily shown to be semantically equivalent to it by equational reasoning.

The only aspect of the overall proof to which we want to draw attention here
is the role of type-based reasoning. Note that we have not put any restriction
on the actual definition of candidate, just on its type. This situation is, of
course, a case for working with a free theorem. The free theorem derived from
candidate’s type is that for every choice of concrete types τ1 and τ2, a function
h :: τ1 → τ2, and operations (⊗) :: τ1 → τ1 → τ1 and (⊕) :: τ2 → τ2 → τ2, if for
every x, y :: τ1,

h (x⊗ y) = (h x)⊕ (h y) (6)



then for every xs :: [τ1],

map h (candidate (⊗) xs) = candidate (⊕) (map h xs)

This free theorem’s conclusion gives us a starting point for relating the behaviour
of candidate at different types, as ultimately required for the 0-1-2-Principle.
Unfortunately, it is not as easy as setting τ1 = Three and τ2 = τ and working
from there. Instead, we found it necessary to use an indirection via the type of
integer lists (and an auxiliary statement originally discovered by M. Sheeran).
Also, some good choices for h, ⊗, and ⊕ must be made, associativity must be
factored into establishing the precondition (6), and some properties of permu-
tations are needed. But all in all, once we have the above free theorem, the
proof is mainly a bunch of equational reasoning steps. It has additionally been
machine-verified using the Isabelle interactive proof assistant [4].

5 Semantic Bidirectionalisation

This section presents a novel approach to the view-update problem known from
the database area, utilising programming language theory surrounding polymor-
phic types [33].

5.1 Bidirectional Transformation

Assume we have a domain of concrete values and a function get that takes such
a value as source and produces from it a view by abstracting from some details.
Now assume this view is updated in some way, and we would like to propagate
this change back to the input source. So we need another function put that
takes the original source and an updated view and produces an updated source.
Clearly, get and put should be suitably related, because otherwise the integrity
of the data to be transformed by using them is threatened. In the database area,
where the concrete and abstract domains will typically be relation tables or XML
trees, the following conditions have been proposed [1]:

put s (get s) = s (7)
get (put s v) = v (8)

put (put s v) (get s) = s (9)
put (put s v) v′ = put s v′ (10)

known as acceptability, consistency, undoability, and composability.
Writing and maintaining good get/put-pairs requires considerable effort.

So it is natural to invest in methodologies that can reduce this burden on
the programmer. The ideal is to not have to write two separate specifications
and to establish their relatedness by proving (some of) the conditions above,
but to instead be able to provide only a single specification and still get both
forward/backward-components. This problem has received much attention from



the programming language community in recent years. For example, Foster et
al. [8] pioneered a domain-specific language approach that fences in a certain
subclass of transformations, provides a supply of correctly behaving get/put-
pairs on a low level, and then describes systematic and sound ways of assem-
bling bigger bidirectional transformations from smaller ones. Another approach
is to devise an algorithm that works on a syntactic representation of somehow
restricted get-functions and tries to infer appropriate put-functions automati-
cally [17]. While all the approaches proposed in the literature had been syntactic
in nature, we present one that works purely on the level of semantic values.

5.2 Bidirectionalisation of Polymorphic get

The idea is to write, directly in the language in which the forward and backward
functions shall live themselves, a higher-order function that takes get-functions
as arguments and returns appropriate put-functions. It turns out that Haskell
is very well up to the task. One thing to stress is that “on the semantic level”
means that when prescribing how put will behave we are not willing, or even
able, to inspect the function definition of get. That is, the backward component
we return cannot be based on a deep analysis of the forward function’s innards.
This restriction may sound crippling, and yet we can provide nontrivial, and
well-behaved, put-functions for a wide range of (polymorphic) get-functions.
And forgoing any possibility to “look into” get liberates our approach from con-
siderable syntactic restraints. In particular, and in contrast to the situation with
all previous approaches, the programmer is not anymore restricted to drawing
forward functions from some sublanguage only.

Let us consider a specific example in Haskell, for simplicity working with
lists only rather than with richer data structures like tables or trees. Assume our
get-function is as follows:

get :: forall α. [α]→ [α]
get as = take ((length as) ‘div‘ 2) as

Here the abstraction amounts to omitting the input list’s second half. Propa-
gating an update on the preserved first half back to the original, full list can be
done with the following function:

put :: forall α. [α]→ [α]→ [α]
put as as ′ = let n = (length as) ‘div‘ 2

in if (length as ′) == n then as ′ ++ (drop n as)
else error “Shape mismatch.”

And indeed, our higher-order function bff (named for an abbreviation of the full
paper’s title), when applied to the above get, will return this put.4 Of course not
the exact syntactic definition of put that is shown above, but a functional value
4 Well, almost. Actually, it will return this function with type forall α. Eq α⇒ [α]→

[α]→ [α].



that is semantically equivalent to it. This is absolutely enough from an appli-
cation perspective. We want automatic bidirectionalisation precisely because we
do not want to be bothered with thinking about the backward function. So we
do not care about its syntactic form, as long as the function serves its purpose.
There is a certain price to pay, namely bff get runs much less efficiently on its
inputs than the hand-coded put does, in this and in other examples. But that is
a different story. Here we are interested in safety and programmer (rather than
program) productivity.

One aspect to be aware of is that the put-function given above is a partial
function only. That is, it may raise an exception for unsuitable input that repre-
sents a view-update that cannot (automatically and consistently) be reconciled
with the original source. Some in the related literature, notably [8] and follow-on
works, emphasise the static description, or even calculation, of the domain on
which a put-function is totally defined. We instead follow Matsuda et al. [17],
accept partiality, and weaken the bidirectional properties (8)–(10) somewhat by
adding definedness preconditions. Specifically, these three properties are only
required to hold if put s v is actually defined, and (10) even has the additional
precondition that put (put s v) v′ is defined as well. The thus revised conditions,
and the original (7), are what we prove for polymorphic get and put = bff get.5

The way we do so crucially depends on get being of polymorphic type, because
such a type allows us to learn something about get’s behaviour without having
access to its defining equations.

5.3 Leveraging Free Theorems

We do not want to repeat the full development and implementation of bff or
the associated proofs here, but at least explain some of the key ideas.

Assume that bff is given a function get :: forall α. [α]→ [α] as input. How
can it gain information about this function, so as to exploit that information
for producing a good backward function? Note that get is of exactly the type
discussed as first example in Section 3.1. There, we have analysed what this type
tells us about the behaviour of any such function. The essence of this analysis was
that such a function’s behaviour does not depend on any concrete list elements,
but only on positional information. Now we additionally use that this positional
information can even be observed explicitly, for example by applying get to
ascending lists over integer values. Say get is tail, then every list [0..n] is
mapped to [1..n], which allows bff to see that the head element of the original
source is absent from the view, hence cannot be affected by an update on the
view, and hence should remain unchanged when propagating an updated view
back into the source. And this observation can be transferred to other source
lists than [0..n] just as well, even to lists over non-integer types, thanks to law (4)
from Section 3.1. In particular, that law allows us to establish that for every list

5 Again, almost. In general, we prove the conditions up to == rather than up to
semantic equivalence. But for the typical instances of Eq used in practice, == and
= totally agree.



s of the same length as [0..n], but over arbitrary type, we have

get s = map (s !!) (get [0..n]) (11)

where (!!) :: forall α. [α]→ Int→ α is the operator used in Haskell for extracting
a list element at a given index position, starting counting from 0.

Let us develop the above line of reasoning further, again on the tail example.
So bff tail is supposed to return a good put. To do so, it must determine what
this put should do when given an original source s and an updated view v. First,
it would be good to find out to what element in s each element in v corresponds.
Assume s has length n+1. Then by applying tail to the same-length list [0..n],
bff (or, rather, bff tail = put) learns that the original view from which v was
obtained by updating had length n, and also to what element in s each element
in that original view corresponded. Being conservative, we will only accept v if
it has retained that length n. For then, we also know directly the associations
between elements in v and positions in the original source. Now, to produce
the updated source, we can go over all positions in [0..n] and fill them with the
associated values from v. For positions for which there is no corresponding value
in v, because these positions were omitted when applying tail to [0..n], we
can look up the correct value in s rather than in v. For the tail example, this
will only concern position 0, for which we naturally take over the head element
from s.

The same strategy works also for general bff get. In short, given s, produce
a kind of template s′ = [0..n] of the same length, together with an association g
between integer values in that template and the corresponding values in s. Then
apply get to s′ and produce a further association h by matching this template
view versus the updated proper value view v. Combine the two associations into a
single one h′, giving precedence to h whenever an integer template index is found
in both h and g. Thus, it is guaranteed that we will only resort to values from the
original source s when the corresponding position did not make it into the view,
and thus there is no way how it could have been affected by the update. Finally,
produce an updated source by filling all positions in [0..n] with their associated
values according to h′. Some extra care is needed when matching the template
view versus the updated proper value view, to produce h, for the case that an
index position is encountered twice. This case occurs as soon as get duplicates a
list element. Consider, for example, get = (λs→ s++ s). Applied to a template
[0..n], it will deliver the template view [0, . . . , n, 0, . . . , n]. Under what conditions
should a match between this template view and an updated proper value view
be considered successful? Clearly only when equal indices match up with equal
values, because only then we can produce a meaningful association reflecting a
legal update.

Using the standard functions

zip :: forall α. forall β. [α]→ [β]→ [(α, β)]

and
lookup :: forall α. forall β. Eq α⇒ α→ [(α, β)]→ Maybe β



with
data Maybe β = Nothing | Just β

and the obvious semantics, the strategy described above could be implemented
as follows:

bff :: (forall α. [α]→ [α])→ (forall α. Eq α⇒ [α]→ [α]→ [α])
bff get [ ] [ ] = [ ]
bff get [ ] v = error “Shape mismatch.”
bff get s v = let s′ = [0..((length s)− 1)]

g = zip s′ s
h = assoc (get s′) v
h′ = h++ g

in map (λi→ case lookup i h′ of Just b→ b) s′

assoc :: Eq α⇒ [Int]→ [α]→ [(Int, α)]
assoc [ ] [ ] = [ ]
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of
Nothing→ (i, b) : m
Just c → if b == c

then m
else error “Update violates equality.”

assoc = error “Shape mismatch.”

Note that the first two defining equations for bff reflect the fact that a func-
tion get :: forall α. [α] → [α] can map [ ] only to [ ], so only an empty list is
accepted as updated view for an empty source. The case and if in the second
defining equation for assoc provide for the correct treatment of duplication of
list elements, by checking whether indeed equal indices match up with equal
values.

The implementation given above is clearly not optimal. It makes a rather bad
choice for representing the associations between integer values and values from
s and v. Above, lists of pairs are used for this, namely [(Int, α)], and lookup is just
linear search. The full paper [33] actually uses the standard library Data.IntMap
instead, with better asymptotic behaviour. The implementation in the paper
also differs in other, smaller ways from the one above, such as by a more refined
error handling, but the key ideas are the same.

More importantly, the paper then goes on to develop semantic bidirectional-
isation for other functions than ones of type forall α. [α]→ [α]. One dimension
of generalisation is to consider functions that are not fully polymorphic, but may
actually perform some operations on list elements. For example, the following
function uses equality, or rather inequality, tests to remove duplicate occurrences
of list elements:

get :: forall α. Eq α⇒ [α]→ [α]
get [ ] = [ ]
get (a : as) = a : (get (filter (a /=) as))



It is not in the reach of the bidirectionalisation strategy described thus far. It
cannot be given the type forall α. [α] → [α], and indeed the essential law (11)
does not hold for it.6 But by working with refined free theorems [34, Section 3.4]
it is possible to treat get-functions of type forall α. Eq α ⇒ [α] → [α] as well,
to implement a higher-order function

bffEq :: (forall α. Eq α⇒ [α]→ [α])→ (forall α. Eq α⇒ [α]→ [α]→ [α])

and to prove that every pair get :: forall α. Eq α ⇒ [α] → [α] and put =
bffEq get satisfies the laws (7)–(10), in their revised form discussed at the end
of Section 5.2. The same goes for the type class Ord capturing ordering tests, a
new higher-order function

bffOrd :: (forall α. Ord α⇒ [α]→ [α])→ (forall α. Ord α⇒ [α]→ [α]→ [α])

and get-functions like the following one:

get :: forall α. Ord α⇒ [α]→ [α]
get = (take 3) ◦ List.sort

For each of bff, bffEq, and bffOrd, the full paper actually only discusses the
proofs for conditions (7) and (8), but those for (9) and (10) are similar.

Another dimension of generalisation is to consider functions that deal with
data structures other than lists. By employing polymorphism over type con-
structor classes [13], like Haskell’s Functor class, and type-generic programming
techniques, we provide one implementation of each bff, bffEq, and bffOrd that
applies to functions involving a wide range of type constructors, on both the
source and the view sides. For example, the very same bff can be used to
bidirectionalise the get-function shown in Section 5.2 as well as flatten from
Section 2.1.

An online interface to the implementations from the full paper is accessible
at http://linux.tcs.inf.tu-dresden.de/~bff/cgi-bin/bff.cgi.

6 Outlook

The story of type-based thinking and reasoning about programs is only at its
beginning. We expect to see it having a big impact also on practical software
construction in the coming years. One possible scenario is that ideas and fea-
tures first developed and studied in the context of perceivedly mere academic
languages and type systems continue to slowly trickle into the mainstream, as
has happened with the inclusion of parametric polymorphism into Java and C#,
and of first-class functions (i.e., λ-abstractions) into the latter. Scala [23] is an
experiment into how a resulting hybrid object-oriented/functional language with
strong ties to type theory research may look like. Another possible scenario is
6 Consider s = “abcbabcbaccba” and n = 12. Then on the one hand, get s = “abc”,

but on the other hand, map (s !!) (get [0..n]) = map (s !!) [0..n] = s.

http://linux.tcs.inf.tu-dresden.de/~bff/cgi-bin/bff.cgi


a more radical paradigm shift. Microsoft’s LINQ project, which directly builds
on Haskell work, demonstrates that this is not as absurd a prospect as it may
seem [19].

And Haskell does not even represent the upper end of the expressiveness
spectrum of type systems. Currently, one could say that the object-oriented re-
search community looks towards Haskell when seeking a yardstick of how strong
types could be [35,6]. But there is more to discover beyond Haskell. For example,
dependent types in languages like Coq [2], Epigram [18], and Agda [22] capture
semantically richer properties of functions, and could thus lead to new heights
in expressiveness for applications in the spirit of free theorems.
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