News About A Recent Application of Parametricity

Janis Voigtländer

Technische Universität Dresden

ISS-AiPL'09

A standard function:

$$\begin{array}{l} \max f \left[\right] &= \left[\right] \\ \max f \left(a : as \right) = \left(f \ a \right) : \left(\max f \ as \right) \end{array}$$

A standard function:

$$\begin{array}{l} \max f \left[\right] &= \left[\right] \\ \max f \left(a : as \right) = \left(f \ a \right) : \left(\max f \ as \right) \end{array}$$

Some invocations:

 $\verb"map succ [1,2,3] = [2,3,4]$

A standard function:

$$\begin{array}{l} \max f \left[\right] &= \left[\right] \\ \max f \left(a : as \right) = \left(f \ a \right) : \left(\max f \ as \right) \end{array}$$

Some invocations:

 $\begin{array}{ll} \texttt{map succ} \ [1,2,3] & = [2,3,4] \\ \texttt{map not} & [\mathsf{True},\mathsf{False}] = [\mathsf{False},\mathsf{True}] \end{array}$

A standard function:

$$\begin{array}{l} \max f \left[\right] &= \left[\right] \\ \max f \left(a : as \right) = \left(f \ a \right) : \left(\max f \ as \right) \end{array}$$

Some invocations:

 $\begin{array}{ll} \texttt{map succ} \ [1,2,3] & = [2,3,4] \\ \texttt{map not} & [\mathsf{True},\mathsf{False}] = [\mathsf{False},\mathsf{True}] \\ \texttt{map even} \ [1,2,3] & = [\mathsf{False},\mathsf{True},\mathsf{False}] \end{array}$

A standard function:

$$\begin{array}{l} \max f \left[\right] &= \left[\right] \\ \max f \left(a : as \right) = \left(f \ a \right) : \left(\max f \ as \right) \end{array}$$

Some invocations:

 $\begin{array}{ll} \texttt{map succ } [1,2,3] &= [2,3,4] \\ \texttt{map not } [\texttt{True},\texttt{False}] &= [\texttt{False},\texttt{True}] \\ \texttt{map even } [1,2,3] &= [\texttt{False},\texttt{True},\texttt{False}] \\ \texttt{map not } [1,2,3] \end{array}$

A standard function:

$$\begin{array}{l} \max p :: (\alpha \to \beta) \to [\alpha] \to [\beta] \\ \max p f [] &= [] \\ \max p f (a : as) = (f a) : (\max p f as) \end{array}$$

Some invocations:

 $\begin{array}{ll} \text{map succ } [1,2,3] & = [2,3,4] \\ \\ \text{map not } [\text{True},\text{False}] = [\text{False},\text{True}] \\ \\ \text{map even } [1,2,3] & = [\text{False},\text{True},\text{False}] \\ \\ \\ \text{map not } [1,2,3] \end{array}$

A standard function:

$$\begin{array}{l} \max p :: (\alpha \to \beta) \to [\alpha] \to [\beta] \\ \max p f [] &= [] \\ \max p f (a : as) = (f a) : (\max p f as) \end{array}$$

Some invocations:

map succ [1,2,3]= [2,3,4]— $\alpha,\beta \mapsto Int, Int$ map not [True, False]= [False, True]— $\alpha,\beta \mapsto Bool, Bool$ map even [1,2,3]= [False, True, False]— $\alpha,\beta \mapsto Int, Bool$ map not [1,2,3]= [Talse, True, False]— $\alpha,\beta \mapsto Int, Bool$

A standard function:

$$\begin{array}{l} \max p :: (\alpha \to \beta) \to [\alpha] \to [\beta] \\ \max p f [] &= [] \\ \max p f (a : as) = (f a) : (\max p f as) \end{array}$$

Some invocations:

map succ [1,2,3]= [2,3,4]— $\alpha,\beta \mapsto Int, Int$ map not [True, False]= [False, True]— $\alpha,\beta \mapsto Bool, Bool$ map even [1,2,3]= [False, True, False]— $\alpha,\beta \mapsto Int, Bool$ map not [1,2,3] $\frac{1}{2}$ rejected at compile-time

A standard function:

 $\mathtt{map}::(\alpha\to\beta)\to[\alpha]\to[\beta]$

Some invocations:

map succ [1,2,3]= [2,3,4]— $\alpha,\beta \mapsto Int, Int$ map not [True, False]= [False, True]— $\alpha,\beta \mapsto Bool, Bool$ map even [1,2,3]= [False, True, False]— $\alpha,\beta \mapsto Int, Bool$ map not [1,2,3] $\frac{1}{2}$ rejected at compile-time

$$\begin{array}{l} \texttt{reverse} :: [\alpha] \to [\alpha] \\ \texttt{reverse} [] &= [] \\ \texttt{reverse} (a: as) = (\texttt{reverse} as) ++ [a] \end{array}$$

reverse ::
$$[\alpha] \rightarrow [\alpha]$$

reverse [] = []
reverse $(a : as) = (reverse as) ++ [a]$

For every choice of *f* and *l*: reverse (map f l) = map f (reverse l)

Provable by induction.

reverse ::
$$[\alpha] \rightarrow [\alpha]$$

reverse [] = []
reverse $(a : as) = (reverse as) ++ [a]$

For every choice of f and l: reverse (map f l) = map f (reverse l) Provable by induction.

Or as a "free theorem" [Wadler, FPCA'89].

 $\texttt{reverse} :: [\alpha] \to [\alpha]$

For every choice of f and l:

reverse (map f l) = map f (reverse l)

Provable by induction.

Or as a "free theorem" [Wadler, FPCA'89].

 $\begin{array}{l} \texttt{reverse} :: [\alpha] \to [\alpha] \\ \texttt{tail} :: [\alpha] \to [\alpha] \end{array}$

For every choice of f and l:
 reverse (map f l) = map f (reverse l)
 tail (map f l) = map f (tail l)

 $\begin{aligned} \texttt{reverse} &:: [\alpha] \to [\alpha] \\ \texttt{tail} &:: [\alpha] \to [\alpha] \\ &\texttt{g} &:: [\alpha] \to [\alpha] \end{aligned}$

For every choice of f and l: reverse (map f l) = map f (reverse l) tail (map f l) = map f (tail l) g (map f l) = map f (g l)

▶ Short Cut Fusion [Gill et al., FPCA'93]

- Short Cut Fusion [Gill et al., FPCA'93]
- ► The Dual of Short Cut Fusion [Svenningsson, ICFP'02]

- Short Cut Fusion [Gill et al., FPCA'93]
- ► The Dual of Short Cut Fusion [Svenningsson, ICFP'02]
- Circular Short Cut Fusion [Fernandes et al., Haskell'07]

...

- Short Cut Fusion [Gill et al., FPCA'93]
- ► The Dual of Short Cut Fusion [Svenningsson, ICFP'02]
- Circular Short Cut Fusion [Fernandes et al., Haskell'07]

• • • •

 Knuth's 0-1-principle and the like [Day et al., Haskell'99], [V., POPL'08]

- Short Cut Fusion [Gill et al., FPCA'93]
- ▶ The Dual of Short Cut Fusion [Svenningsson, ICFP'02]
- Circular Short Cut Fusion [Fernandes et al., Haskell'07]

• • • •

- Knuth's 0-1-principle and the like [Day et al., Haskell'99], [V., POPL'08]
- Bidirectionalisation [V., POPL'09]

- Short Cut Fusion [Gill et al., FPCA'93]
- ► The Dual of Short Cut Fusion [Svenningsson, ICFP'02]
- Circular Short Cut Fusion [Fernandes et al., Haskell'07]

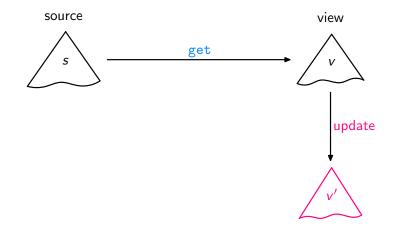
▶ ...

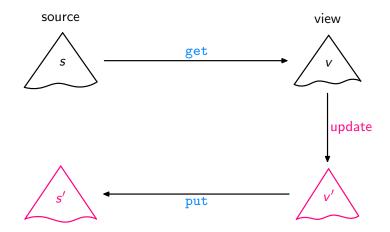
- Knuth's 0-1-principle and the like [Day et al., Haskell'99], [V., POPL'08]
- Bidirectionalisation [V., POPL'09]
- Reasoning about invariants for monadic programs [V., ICFP'09]

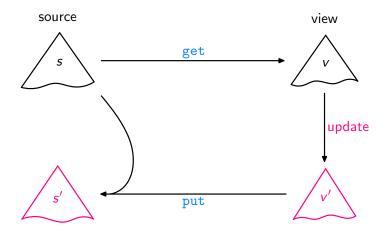
- Short Cut Fusion [Gill et al., FPCA'93]
- ► The Dual of Short Cut Fusion [Svenningsson, ICFP'02]
- Circular Short Cut Fusion [Fernandes et al., Haskell'07]

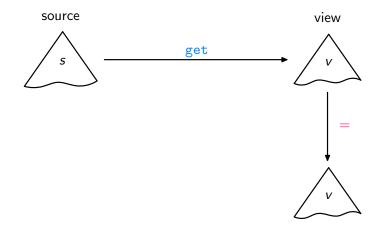
• • • •

- Knuth's 0-1-principle and the like [Day et al., Haskell'99], [V., POPL'08]
- Bidirectionalisation [V., POPL'09]
- Reasoning about invariants for monadic programs [V., ICFP'09]

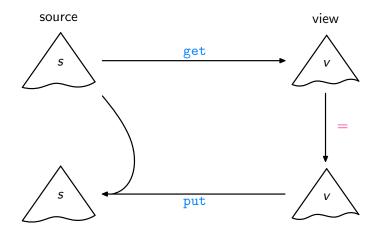




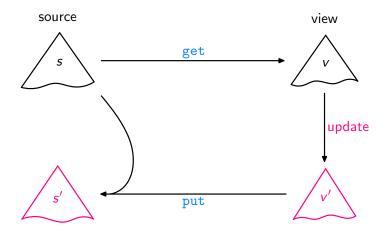




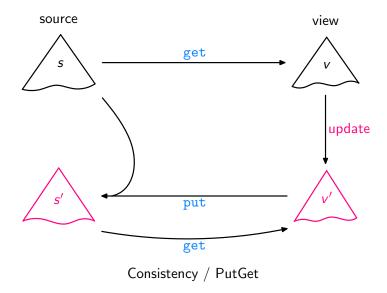
Acceptability / GetPut

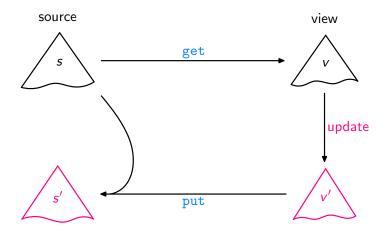


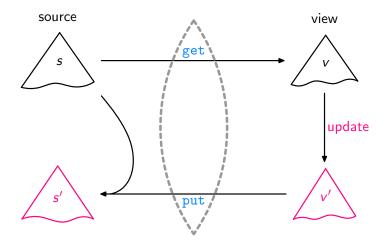
Acceptability / GetPut



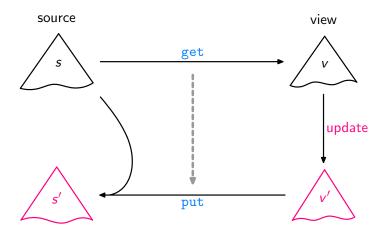
Consistency / PutGet





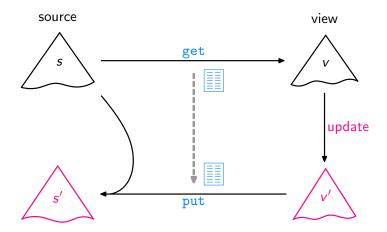


Lenses, DSLs [Foster et al., ACM TOPLAS'07, ...]

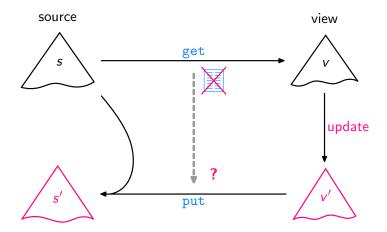


Bidirectionalisation

[Matsuda et al., ICFP'07]

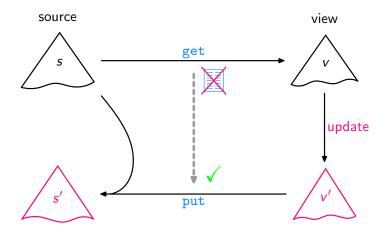


Syntactic Bidirectionalisation [Matsuda et al., ICFP'07]



Semantic Bidirectionalisation

Bidirectional Transformation



Semantic Bidirectionalisation

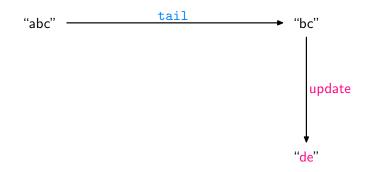
[V., POPL'09]

Aim: Write a higher-order function bff such that any get and bff get satisfy GetPut, PutGet,

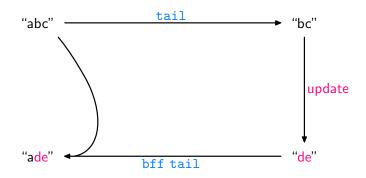
Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,

Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,

Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,



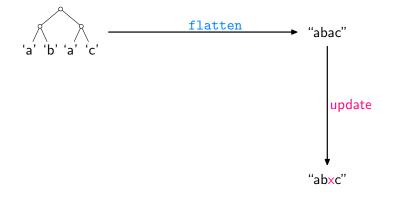
Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,



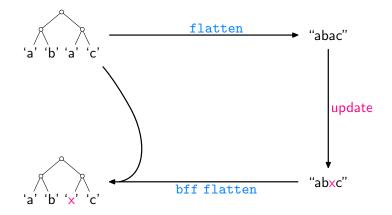
[†] "Bidirectionalization for free!"

Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,

Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,

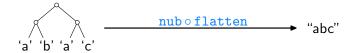


Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,

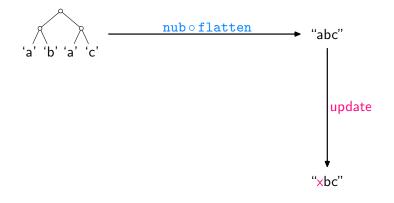


[†] "<u>B</u>idirectionalization <u>f</u>or <u>free</u>!"

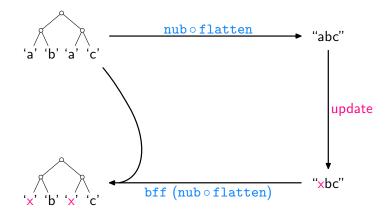
Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,



Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,



Aim: Write a higher-order function **bff**[†] such that any get and **bff** get satisfy GetPut, PutGet,



[&]quot;<u>B</u>idirectionalization <u>for free</u>!"

Assume we are given some

$$\texttt{get} :: [\alpha] \to [\alpha]$$

How can we, or bff, analyse it without access to its source code?

Assume we are given some

$$\texttt{get} :: [\alpha] \to [\alpha]$$

How can we, or **bff**, analyse it without access to its source code?

Idea: How about applying get to some input?

Assume we are given some

 $\texttt{get} :: [\alpha] \to [\alpha]$

How can we, or bff, analyse it without access to its source code?

Idea: How about applying get to some input? Like:

$$get [0..n] = \begin{cases} [1..n] & \text{if get} = \texttt{tail} \\ [n..0] & \text{if get} = \texttt{reverse} \\ [0..(\texttt{min } 4 n)] & \text{if get} = \texttt{take } 5 \\ \vdots \end{cases}$$

Assume we are given some

 $\texttt{get}::[\alpha] \to [\alpha]$

How can we, or bff, analyse it without access to its source code?

Idea: How about applying get to some input? Like:

$$get [0..n] = \begin{cases} [1..n] & \text{if get} = \texttt{tail} \\ [n..0] & \text{if get} = \texttt{reverse} \\ [0..(\min 4 n)] & \text{if get} = \texttt{take 5} \\ \vdots \end{cases}$$

Then transfer the gained insights to source lists other than [0..n] !

For every

$$\mathbf{g}::[\alpha]\to[\alpha]$$

we have

$$map f (g l) = g (map f l)$$

for arbitrary f and I.

For every

$$g :: [\alpha] \to [\alpha]$$

we have

$$map f (g l) = g (map f l)$$

for arbitrary f and l.

Given an arbitrary list s of length n + 1, set g = get, l = [0..n], f = (s !!), leading to:

map(s!!)(get[0..n]) = get(map(s!!)[0..n])

For every

$$g :: [\alpha] \to [\alpha]$$

we have

$$map f (g l) = g (map f l)$$

for arbitrary f and l.

Given an arbitrary list s of length n + 1, set g = get, l = [0..n], f = (s !!), leading to:

$$\max (s !!) (get [0..n]) = get (\underbrace{\max (s !!) [0..n]}_{s})$$
$$= get s$$

For every

$$g :: [\alpha] \to [\alpha]$$

we have

$$map f (g l) = g (map f l)$$

for arbitrary f and I.

Given an arbitrary list s of length n + 1,

 $\max (s !!) (get [0..n]) = get s$

For every

$$g :: [\alpha] \to [\alpha]$$

we have

$$map f (g l) = g (map f l)$$

for arbitrary f and l.

Given an arbitrary list s of length n + 1,

get s = map(s!!) (get [0..n])

for every get :: $[\alpha] \rightarrow [\alpha]$.

In general, given

$$\texttt{get}::S \to V$$

In general, given

$$\texttt{get}::S \to V$$

define a V^{C} and

 $\texttt{compl} :: S \to V^C$

In general, given

$$\texttt{get}::S \to V$$

define a V^{C} and

 $\texttt{compl}::S \to V^C$

such that

$$\lambda s
ightarrow (\texttt{get } s, \texttt{compl } s)$$

is injective

In general, given

$$\texttt{get}::S \to V$$

define a V^{C} and

$$\texttt{compl} :: S \to V^C$$

such that

$$\lambda s
ightarrow (ext{get} s, ext{compl} s)$$

is injective and has an inverse

$$\texttt{inv} :: (V, V^{C}) \rightarrow S$$

In general, given

$$\texttt{get}::S \to V$$

define a V^{C} and

$$\texttt{compl} :: S \to V^C$$

such that

$$\lambda s
ightarrow (ext{get} s, ext{compl} s)$$

is injective and has an inverse

$$\texttt{inv}::(V,V^{C}) \rightarrow S$$

Then:

put ::
$$S \rightarrow V \rightarrow S$$

put $s \ v' = inv \ (v', compl s)$

In general, given

$$\texttt{get}::S \to V$$

define a V^{C} and

$$\texttt{compl} :: S \to V^C$$

such that

$$\lambda s
ightarrow (ext{get} s, ext{compl} s)$$

is injective and has an inverse

$$\texttt{inv}::(V,V^{C}) \rightarrow S$$

Then:

put ::
$$S \rightarrow V \rightarrow S$$

put $s \ v' = inv \ (v', compl s)$

Important: compl should "collapse" as much as possible.

For our setting,

 ${\tt get} :: [\alpha] \to [\alpha]$,

what should be V^{C} and

 $\operatorname{compl} :: [\alpha] \to V^{\mathcal{C}}$???

For our setting,

 ${\tt get} :: [\alpha] \to [\alpha]$,

what should be $V^{\ensuremath{\mathcal{C}}}$ and

$$\operatorname{compl} :: [\alpha] \to V^{\mathcal{C}}$$
 ???

To make

$$\lambda s \rightarrow (\texttt{get } s, \texttt{compl } s)$$

injective, need to record information discarded by get.

For our setting,

 ${\tt get} :: [\alpha] \to [\alpha]$,

what should be V^{C} and

$$\operatorname{compl} :: [\alpha] \to V^{\mathcal{C}}$$
 ???

To make

$$\lambda s \rightarrow (\texttt{get } s, \texttt{compl } s)$$

injective, need to record information discarded by get.

Candidates:

1. length of the source list

For our setting,

 ${\tt get} :: [\alpha] \to [\alpha]$,

what should be V^{C} and

$$\operatorname{compl} :: [\alpha] \to V^{\mathcal{C}}$$
 ???

To make

$$\lambda s \rightarrow (\texttt{get } s, \texttt{compl } s)$$

injective, need to record information discarded by get.

Candidates:

- 1. length of the source list
- 2. discarded list elements

For our setting,

 ${\tt get} :: [\alpha] \to [\alpha]$,

what should be V^{C} and

$$\operatorname{compl} :: [\alpha] \to V^{\mathcal{C}}$$
 ???

To make

$$\lambda s \rightarrow (\texttt{get } s, \texttt{compl } s)$$

injective, need to record information discarded by get.

Candidates:

- 1. length of the source list
- 2. discarded list elements

For the moment, be maximally conservative.

 $\begin{array}{l} \textbf{type IntMap } \alpha = [(Int, \alpha)] \\ \texttt{compl} :: [\alpha] \to (Int, IntMap \ \alpha) \\ \texttt{compl} s = \textbf{let } n = (\texttt{length } s) - 1 \\ t = [0..n] \\ g = \texttt{zip } t \ s \\ g' = \texttt{filter} \ (\lambda(i, _) \to \texttt{notElem } i \ (\texttt{get } t)) \ g \\ \texttt{in } \ (n+1, g') \end{array}$

$$\begin{array}{l} \textbf{type } \texttt{IntMap } \alpha = [(\texttt{Int}, \alpha)] \\ \texttt{compl} :: [\alpha] \to (\texttt{Int}, \texttt{IntMap } \alpha) \\ \texttt{compl} s = \texttt{let } n = (\texttt{length } s) - 1 \\ t = [0..n] \\ g = \texttt{zip } t s \\ g' = \texttt{filter } (\lambda(i, _) \to \texttt{notElem } i \ (\texttt{get } t)) g \\ \texttt{in } (n+1, g') \end{array}$$

For example:

 $\texttt{get} = \texttt{tail} \qquad \rightsquigarrow \quad \texttt{compl "abcde"} = (5, [(0, \texttt{'a'})])$

$$\begin{array}{l} \textbf{type IntMap } \alpha = [(Int, \alpha)] \\ \texttt{compl} :: [\alpha] \to (Int, IntMap \ \alpha) \\ \texttt{compl} s = \textbf{let } n = (\texttt{length } s) - 1 \\ t = [0..n] \\ g = \texttt{zip } t \ s \\ g' = \texttt{filter} \ (\lambda(i, _) \to \texttt{notElem } i \ (\texttt{get } t)) \ g \\ \texttt{in } \ (n+1, g') \end{array}$$

For example:

$$\begin{array}{l} \textbf{type IntMap } \alpha = [(Int, \alpha)] \\ \textbf{compl} :: [\alpha] \rightarrow (Int, IntMap \ \alpha) \\ \textbf{compl } s = \textbf{let } n = (\texttt{length } s) - 1 \\ t = [0..n] \\ g = \texttt{zip } t \ s \\ g' = \texttt{filter } (\lambda(i, _) \rightarrow \texttt{notElem } i \ (\texttt{get } t)) \ g \\ \textbf{in } (n+1, g') \end{array}$$

For example:

$$\begin{split} & \texttt{inv} :: ([\alpha], (\texttt{Int}, \texttt{IntMap} \ \alpha)) \to [\alpha] \\ & \texttt{inv} \ (v', (n+1, g')) = \texttt{let} \ t \ = [0..n] \\ & h \ = \texttt{assoc} \ (\texttt{get} \ t) \ v' \\ & h' = h \ +\!\!\!+ g' \\ & \texttt{in} \ \texttt{seq} \ h \ (\texttt{map} \ (\lambda i \to \texttt{fromJust} \ (\texttt{lookup} \ i \ h')) \ t) \end{split}$$

$$\begin{split} & \texttt{inv} :: ([\alpha], (\texttt{Int}, \texttt{IntMap} \ \alpha)) \to [\alpha] \\ & \texttt{inv} \ (v', (n+1, g')) = \texttt{let} \ t \ = [0..n] \\ & h = \texttt{assoc}^{\dagger} \ (\texttt{get} \ t) \ v' \\ & h' = h + + g' \\ & \texttt{in} \ \texttt{seq} \ h \ (\texttt{map} \ (\lambda i \to \texttt{fromJust} \ (\texttt{lookup} \ i \ h')) \ t) \end{split}$$

For example:

$$get = tail \quad \rightsquigarrow \quad inv ("bcde", (5, [(0, 'a')])) = "abcde"$$

$$\begin{split} & \texttt{inv} :: ([\alpha], (\texttt{Int}, \texttt{IntMap} \ \alpha)) \to [\alpha] \\ & \texttt{inv} \ (v', (n+1, g')) = \texttt{let} \ t \ = [0..n] \\ & h = \texttt{assoc}^{\dagger} \ (\texttt{get} \ t) \ v' \\ & h' = h + g' \\ & \texttt{in} \ \texttt{seq} \ h \ (\texttt{map} \ (\lambda i \to \texttt{fromJust} \ (\texttt{lookup} \ i \ h')) \ t) \end{split}$$

For example:

$$\begin{split} & \texttt{inv} :: ([\alpha], (\texttt{Int}, \texttt{IntMap} \ \alpha)) \to [\alpha] \\ & \texttt{inv} \ (v', (n+1, g')) = \texttt{let} \ t \ = [0..n] \\ & h = \texttt{assoc}^{\dagger} \ (\texttt{get} \ t) \ v' \\ & h' = h + + g' \\ & \texttt{in} \ \texttt{seq} \ h \ (\texttt{map} \ (\lambda i \to \texttt{fromJust} \ (\texttt{lookup} \ i \ h')) \ t) \end{split}$$

For example:

To prove formally:

- inv (get s, compl s) = s
- ▶ if inv (v, c) defined, then get (inv (v, c)) = v
- ▶ if inv (v, c) defined, then compl (inv (v, c)) = c

[†] Can be thought of as zip for the moment.

Altogether:

type IntMap $\alpha = [(Int, \alpha)]$ $compl :: [\alpha] \to (Int, IntMap \alpha)$ compl s =let n = (length s) - 1t = [0..n]g = zip t s $g' = \text{filter} (\lambda(i, \underline{\}) \rightarrow \text{notElem} i (\text{get } t)) g$ in (n+1, g')**inv** :: $([\alpha], (Int, IntMap \alpha)) \rightarrow [\alpha]$ inv(v', (n+1, g')) = let t = [0..n] $h = \operatorname{assoc} (\operatorname{get} t) v'$ h' = h + g'in seq $h \pmod{(\lambda i \to \text{fromJust}(\text{lookup} i h'))} t$

 $\begin{array}{l} \texttt{put} :: [\alpha] \to [\alpha] \to [\alpha] \\ \texttt{put} \ s \ \mathsf{v}' = \texttt{inv} \ (\mathsf{v}', \texttt{compl} \ s) \end{array}$

Inlining compl and inv into put:

put
$$s \ v' =$$
let $n = (length s) - 1$
 $t = [0..n]$
 $g =$ zip $t \ s$
 $g' =$ filter $(\lambda(i, .) \rightarrow$ notElem $i \ (get \ t)) \ g$
 $h =$ assoc $(get \ t) \ v'$
 $h' = h + + g'$
in seq $h \ (map \ (\lambda i \rightarrow$ fromJust $(lookup \ i \ h')) \ t)$

Inlining compl and inv into put:

put
$$s \ v' =$$
let $n = (length s) - 1$
 $t = [0..n]$
 $g =$ zip $t \ s$
 $g' =$ filter $(\lambda(i, .) \rightarrow$ notElem $i \ (get \ t)) \ g$
 $h =$ assoc $(get \ t) \ v'$
 $h' = h + + g'$
in seq $h \ (map \ (\lambda i \rightarrow$ fromJust $(lookup \ i \ h')) \ t)$

Inlining compl and inv into put:

$$\begin{aligned} & \text{bff get } s \ v' = \text{let } n \ = (\text{length } s) - 1 \\ & t \ = [0..n] \\ & g \ = \text{zip } t \ s \\ & g' \ = \text{filter} \ (\lambda(i, _) \to \text{notElem } i \ (get \ t)) \ g \\ & h \ = \text{assoc} \ (get \ t) \ v' \\ & h' \ = h \ + g' \\ & \text{in } seq \ h \ (\text{map } (\lambda i \to \text{fromJust} \ (\text{lookup } i \ h')) \ t) \end{aligned}$$

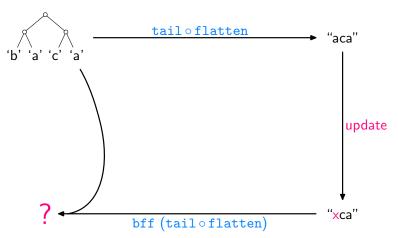
Inlining compl and inv into put:

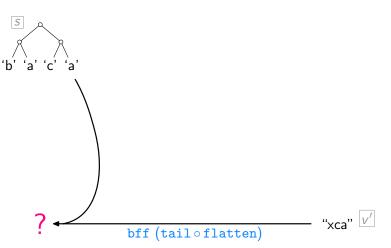
bff get s v' = let n = (length s) - 1
t = [0..n]
g = zip t s
g' = filter (
$$\lambda(i, _) \rightarrow \text{notElem } i \text{ (get } t)$$
) g
h = assoc (get t) v'
h' = h ++ g'
in seq h (map ($\lambda i \rightarrow \text{fromJust} (\text{lookup } i h')$) t)

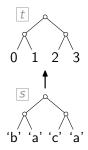
assoc [] [] = []
assoc (i:is) (b:bs) = let
$$m = \text{assoc is bs}$$

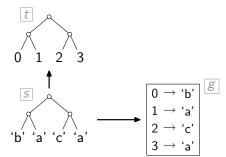
in case lookup i m of
Nothing $\rightarrow (i, b) : m$
Just $c \mid b == c \rightarrow m$

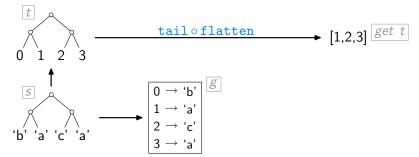
Actual code only slightly more elaborate!

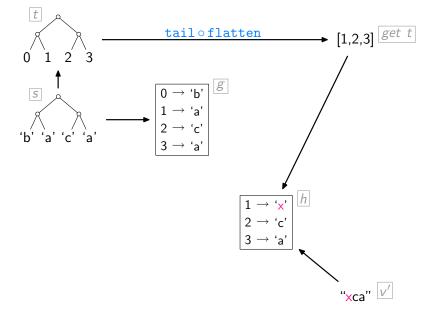


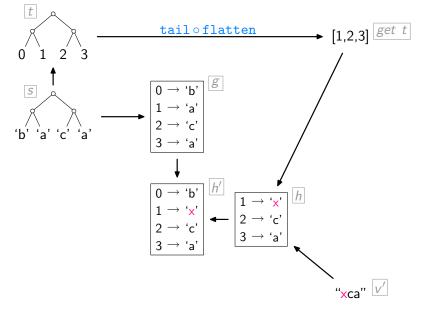


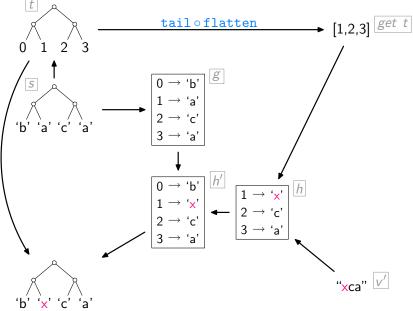


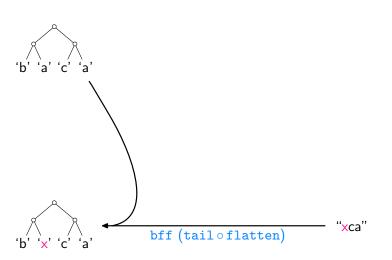












14 - 91/91

Major Problem:

Shape-affecting updates lead to failure.

Major Problem:

- Shape-affecting updates lead to failure.
- ► For example, bff tail "abcde" "xyz" ...

Major Problem:

- Shape-affecting updates lead to failure.
- ► For example, bff tail "abcde" "xyz" ...

Analysis as to Why:

Our approach to making

$$\lambda s \rightarrow (\texttt{get } s, \texttt{compl } s)$$

injective was to record, via compl, the following information:

- 1. length of the source list
- 2. discarded list elements

Major Problem:

- Shape-affecting updates lead to failure.
- ► For example, bff tail "abcde" "xyz" ...

Analysis as to Why:

Our approach to making

$$\lambda s \rightarrow (\texttt{get } s, \texttt{compl } s)$$

injective was to record, via compl, the following information:

- 1. length of the source list
- 2. discarded list elements
- Being maximally conservative this way often does not "collapse enough".

Major Problem:

- Shape-affecting updates lead to failure.
- For example, bff tail "abcde" "xyz" ...

Analysis as to Why:

Our approach to making

$$\lambda s
ightarrow (\texttt{get } s, \texttt{compl } s)$$

injective was to record, via compl, the following information:

- 1. length of the source list
- 2. discarded list elements
- Being maximally conservative this way often does not "collapse enough".

► For example:

get = tail \rightsquigarrow put "abcde" "xyz" fails precisely because compl "abcde" = (5, [(0, 'a')])

So assume there is a function

```
shapeInv :: Int \rightarrow Int
```

with, for every source list *s*,

length s = shapeInv (length (get s))

So assume there is a function

 $shapeInv :: Int \rightarrow Int$

with, for every source list s,

length s = shapeInv (length (get s))

Then:

$$\begin{array}{l} \operatorname{compl} :: [\alpha] \to (\operatorname{Int}, \operatorname{Int}\operatorname{Map} \alpha) \\ \operatorname{compl} s = \operatorname{let} n = (\operatorname{length} s) - 1 \\ t = [0..n] \\ g = \operatorname{zip} t s \\ g' = \operatorname{filter} (\lambda(i, _) \to \operatorname{notElem} i \ (\operatorname{get} t)) g \\ \operatorname{in} (n+1, g') \end{array}$$

So assume there is a function

 $shapeInv :: Int \rightarrow Int$

with, for every source list s,

length s = shapeInv (length (get s))

Then:

$$\begin{split} & \texttt{inv} :: ([\alpha], (\texttt{Int}, \texttt{IntMap} \ \alpha)) \to [\alpha] \\ & \texttt{inv} \ (v', (n+1, g')) = \texttt{let} \ t \ = [0..n] \\ & h = \texttt{assoc} \ (\texttt{get} \ t) \ v' \\ & h' = h + g' \\ & \texttt{in} \ \texttt{seq} \ h \ (\texttt{map} \ (\lambda i \to \texttt{fromJust} \ (\texttt{lookup} \ i \ h')) \ t) \end{split}$$

 $\begin{array}{ll} \operatorname{inv} :: ([\alpha], & \operatorname{IntMap} \alpha \) \to [\alpha] \\ \operatorname{inv} (v', & g' \) = \operatorname{let} n = (\operatorname{shapeInv} (\operatorname{length} v')) - 1 \\ & t = [0..n] \\ & h = \operatorname{assoc} (\operatorname{get} t) v' \\ & h' = h + g' \\ & \operatorname{in} \operatorname{seq} h (\operatorname{map} (\lambda i \to \operatorname{fromJust} (\operatorname{lookup} i h')) t) \\ \end{array}$

But how to obtain shapeInv ???

But how to obtain shapeInv ???

One possibility: provided by user.

But how to obtain shapeInv ???

One possibility: provided by user.

Another possibility: determined statically (dependent types?).

But how to obtain shapeInv ???

One possibility: provided by user.

Another possibility: determined statically (dependent types?).

Just for experimentation:

shapeInv :: Int \rightarrow Int
shapeInv / = head [n + 1 | n \leftarrow [0..], (length (get [0..n])) == /]

Not Quite There, Yet

Works quite nicely in some cases:

get = tail ~~ put "abcde" "xyz" = "axyz"

Not Quite There, Yet

Works quite nicely in some cases:

Not Quite There, Yet

Works quite nicely in some cases:

But not so in others:

get = init → put "abcde" "xyz" fails

Not Quite There, Yet

Works quite nicely in some cases:

But not so in others:

Not Quite There, Yet

Works quite nicely in some cases:

But not so in others:

The problem: by keeping indices around, compl still does not "collapse enough".

Not Quite There, Yet

Works quite nicely in some cases:

But not so in others:

The problem: by keeping indices around, compl still does not "collapse enough".

Note: even without these indices, $\lambda s \rightarrow (\text{get } s, \text{compl } s)$ would be injective.

$$\begin{array}{l} \operatorname{compl} :: [\alpha] \to [(\operatorname{Int}, \alpha)] \\ \operatorname{compl} s = \operatorname{let} n &= (\operatorname{length} s) - 1 \\ t &= [0..n] \\ g &= \operatorname{zip} t s \\ g' &= \operatorname{filter} (\lambda(i, _) \to \operatorname{notElem} i \ (\operatorname{get} t)) g \\ \operatorname{in} g' \end{array}$$

$$\begin{array}{ll} \operatorname{compl}::\left[\alpha\right] \to \left[\begin{array}{c} \alpha \end{array}\right] \\ \operatorname{compl} s = \operatorname{let} n &= (\operatorname{length} s) - 1 \\ t &= \left[0..n\right] \\ g &= \operatorname{zip} t s \\ g' &= \operatorname{filter} \left(\lambda(i, _) \to \operatorname{notElem} i \; (\operatorname{get} t)\right) g \\ & \operatorname{in} \operatorname{map} \operatorname{snd} g' \end{array}$$

$$\begin{array}{l} \operatorname{compl}:: [\alpha] \to [& \alpha \] \\ \operatorname{compl} s = \operatorname{let} n = (\operatorname{length} s) - 1 \\ & t = [0..n] \\ & g = \operatorname{zip} t s \\ & g' = \operatorname{filter} \left(\lambda(i, _) \to \operatorname{notElem} i \ (\operatorname{get} t)\right) g \\ & \operatorname{in} \operatorname{map} \operatorname{snd} g' \\ \\ \operatorname{inv}:: ([\alpha], [(\operatorname{Int}, \alpha)]) \to [\alpha] \\ & \operatorname{inv} \left(v', g'\right) = \operatorname{let} n = (\operatorname{shapeInv} (\operatorname{length} v')) - 1 \\ & t = [0..n] \\ & h = \operatorname{assoc} (\operatorname{get} t) v' \\ & h' = h + g' \\ & \operatorname{in} \operatorname{seq} h \left(\operatorname{map} (\lambda i \to \operatorname{fromJust} (\operatorname{lookup} i h')) t\right) \end{array}$$

$$\begin{array}{l} \operatorname{compl} :: [\alpha] \to [& \alpha \end{array}] \\ \operatorname{compl} s = \operatorname{let} n = (\operatorname{length} s) - 1 \\ & t = [0..n] \\ & g = \operatorname{zip} t s \\ & g' = \operatorname{filter} (\lambda(i, _) \to \operatorname{notElem} i (\operatorname{get} t)) g \\ & \operatorname{in} \operatorname{map} \operatorname{snd} g' \end{array}$$
$$\operatorname{inv} :: ([\alpha], [& \alpha \end{array}]) \to [\alpha] \\ \operatorname{inv} (v', c) = \operatorname{let} n = (\operatorname{shapeInv} (\operatorname{length} v')) - 1 \\ & t = [0..n] \\ & h = \operatorname{assoc} (\operatorname{get} t) v' \\ & g' = \operatorname{zip} (\operatorname{filter} (\lambda i \to \operatorname{notElem} i (\operatorname{get} t)) t) c \\ & h' = h + g' \\ & \operatorname{in} \operatorname{seq} h (\operatorname{map} (\lambda i \to \operatorname{fromJust} (\operatorname{lookup} i h')) t) \end{array}$$

$$\begin{array}{l} \operatorname{compl} :: [\alpha] \to [& \alpha \end{array}] \\ \operatorname{compl} s = \operatorname{let} n = (\operatorname{length} s) - 1 \\ & t = [0..n] \\ & g = \operatorname{zip} t s \\ & g' = \operatorname{filter} (\lambda(i, _) \to \operatorname{notElem} i \ (\operatorname{get} \ t)) \ g \\ & \operatorname{in} \ \operatorname{map} \operatorname{snd} g' \end{array}$$
$$\operatorname{inv} :: ([\alpha], [& \alpha \]) \to [\alpha] \\ \operatorname{inv} (v', c) = \operatorname{let} n = (\operatorname{shapeInv} (\operatorname{length} v')) - 1 \\ & t = [0..n] \\ & h = \operatorname{assoc} (\operatorname{get} t) \ v' \\ & g' = \operatorname{zip} (\operatorname{filter} (\lambda i \to \operatorname{notElem} i \ (\operatorname{get} t)) \ t) \ c \\ & h' = h + g' \\ & \operatorname{in} \ \operatorname{seq} h \ (\operatorname{map} (\lambda i \to \operatorname{fromJust} (\operatorname{lookup} i \ h')) \ t) \end{array}$$

Now:

get = init ~~ put "abcde" "xyz" = "xyze"

```
Let get = sieve with:
```

sieve ::
$$[\alpha] \rightarrow [\alpha]$$

sieve $(a:b:cs) = b: (sieve cs)$
sieve _ = []

```
Let get = sieve with:

sieve :: [\alpha] \rightarrow [\alpha]

sieve (a:b:cs) = b: (sieve cs)

sieve _ = []
```

Then:

put [1..8] [2, -4, 6, 8] = [1, 2, 3, -4, 5, 6, 7, 8]

Let get = sieve with: sieve :: $[\alpha] \rightarrow [\alpha]$ sieve (a:b:cs) = b: (sieve cs)sieve _ = []

Then:

put [1..8]
$$[2, -4, 6, 8]$$
 = $[1, 2, 3, -4, 5, 6, 7, 8]$
put [1..8] $[2, -4, 6]$ = $[1, 2, 3, -4, 5, 6]$

Let get = sieve with: sieve :: $[\alpha] \rightarrow [\alpha]$ sieve (a:b:cs) = b: (sieve cs) sieve _ = []

Then:

put [1..8]
$$[2, -4, 6, 8]$$
 = $[1, 2, 3, -4, 5, 6, 7, 8]$
put [1..8] $[2, -4, 6]$ = $[1, 2, 3, -4, 5, 6]$
put [1..8] $[2, -4, 6, 8, 10, 12]$ = $[1, 2, 3, -4, 5, 6, 7, 8, \bot, 10, \bot, 12]$

Let get = sieve with:
sieve ::
$$[\alpha] \rightarrow [\alpha]$$

sieve $(a:b:cs) = b:$ (sieve cs)
sieve _ = []

Then:

put [1..8]
$$[2, -4, 6, 8]$$
 = $[1, 2, 3, -4, 5, 6, 7, 8]$
put [1..8] $[2, -4, 6]$ = $[1, 2, 3, -4, 5, 6]$
put [1..8] $[2, -4, 6, 8, 10, 12]$ = $[1, 2, 3, -4, 5, 6, 7, 8, \bot, 10, \bot, 12]$

However:

 $\texttt{put} \ \texttt{[1..8]} \ \texttt{[0,2,-4,6,8]} \ = \ \texttt{[1,0,3,2,5,-4,7,6,\bot,8]}$

Let get = sieve with:
sieve ::
$$[\alpha] \rightarrow [\alpha]$$

sieve $(a:b:cs) = b: (sieve cs)$
sieve _ = []

Then:

put [1..8]
$$[2, -4, 6, 8]$$
= $[1, 2, 3, -4, 5, 6, 7, 8]$ put [1..8] $[2, -4, 6]$ = $[1, 2, 3, -4, 5, 6]$ put [1..8] $[2, -4, 6, 8, 10, 12]$ = $[1, 2, 3, -4, 5, 6, 7, 8, \bot, 10, \bot, 12]$

However:

 $\texttt{put} \ \texttt{[1..8]} \ \texttt{[0,2,-4,6,8]} \ = \ \texttt{[1,0,3,2,5,-4,7,6,\bot,8]}$

Whereas we might have preferred:

 $\texttt{put} \ \texttt{[1..8]} \ \texttt{[0,2,-4,6,8]} \ = \ \texttt{[} \bot, \texttt{0,1,2,3,-4,5,6,7,8]}$

Types:

constrain the behaviour of programs

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- enable lightweight, semantic analysis methods

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- enable lightweight, semantic analysis methods

On the practical side:

efficiency-improving program transformations

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- enable lightweight, semantic analysis methods

On the practical side:

- efficiency-improving program transformations
- applications in specific domains (more out there?)

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- enable lightweight, semantic analysis methods

On the practical side:

- efficiency-improving program transformations
- applications in specific domains (more out there?)

Bidirectionalisation in particular:

hot topic (databases, models community, ...)

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- enable lightweight, semantic analysis methods

On the practical side:

- efficiency-improving program transformations
- applications in specific domains (more out there?)

Bidirectionalisation in particular:

- hot topic (databases, models community, ...)
- need a way to inject/exploit "user knowledge"

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- enable lightweight, semantic analysis methods

On the practical side:

- efficiency-improving program transformations
- applications in specific domains (more out there?)

Bidirectionalisation in particular:

- hot topic (databases, models community, ...)
- need a way to inject/exploit "user knowledge"

On the programming language side:

push towards full programming languages

Types:

- constrain the behaviour of programs
- thus lead to interesting theorems about programs
- enable lightweight, semantic analysis methods

On the practical side:

- efficiency-improving program transformations
- applications in specific domains (more out there?)

Bidirectionalisation in particular:

- hot topic (databases, models community, ...)
- need a way to inject/exploit "user knowledge"

On the programming language side:

- push towards full programming languages
- aim for exploiting more expressive type systems

References I

- F. Bancilhon and N. Spyratos.
 Update semantics of relational views.
 ACM Transactions on Database Systems, 6(3):557–575, 1981.
- N.A. Day, J. Launchbury, and J. Lewis. Logical abstractions in Haskell. In *Haskell Workshop, Proceedings*. Technical Report UU-CS-1999-28, Utrecht University, 1999.
- J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt.

Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem.

ACM Transactions on Programming Languages and Systems, 29(3):17, 2007.

References II

- J.P. Fernandes, A. Pardo, and J. Saraiva.
 A shortcut fusion rule for circular program calculation.
 In *Haskell Workshop, Proceedings*, pages 95–106. ACM Press, 2007.
- A. Gill, J. Launchbury, and S.L. Peyton Jones.
 A short cut to deforestation.
 In Functional Programming Languages and Computer Architecture, Proceedings, pages 223–232. ACM Press, 1993.
- P. Johann and J. Voigtländer.
 Free theorems in the presence of seq.
 In *Principles of Programming Languages, Proceedings*, pages 99–110. ACM Press, 2004.

References III

P. Johann and J. Voigtländer. A family of syntactic logical relations for the semantics of Haskell-like languages.

Information and Computation, 207(2):341–368, 2009.

- K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalization transformation based on automatic derivation of view complement functions. In International Conference on Functional Programming, Proceedings, pages 47–58. ACM Press, 2007.
- F. Stenger and J. Voigtländer.
 Parametricity for Haskell with imprecise error semantics.
 In *Typed Lambda Calculi and Applications, Proceedings,* volume 5608 of *LNCS*, pages 294–308. Springer-Verlag, 2009.

References IV

J. Svenningsson.

Shortcut fusion for accumulating parameters & zip-like functions.

In International Conference on Functional Programming, Proceedings, pages 124–132. ACM Press, 2002.

J. Voigtländer.

Much ado about two: A pearl on parallel prefix computation. In *Principles of Programming Languages, Proceedings*, pages 29–35. ACM Press, 2008.

J. Voigtländer.

Bidirectionalization for free!

In *Principles of Programming Languages, Proceedings*, pages 165–176. ACM Press, 2009.

References V

J. Voigtländer.

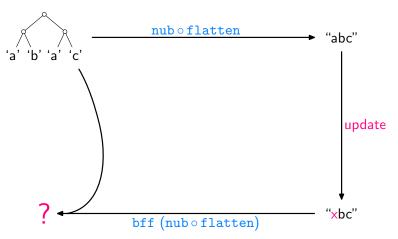
Free theorems involving type constructor classes.

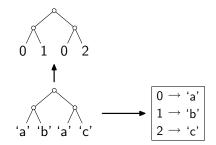
In International Conference on Functional Programming, Proceedings. ACM Press, 2009.

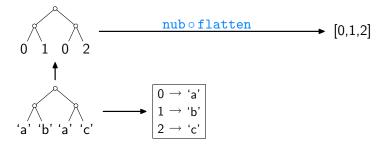
P. Wadler.

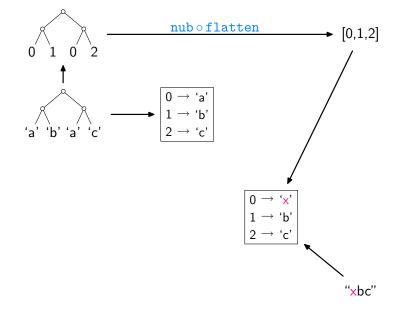
Theorems for free!

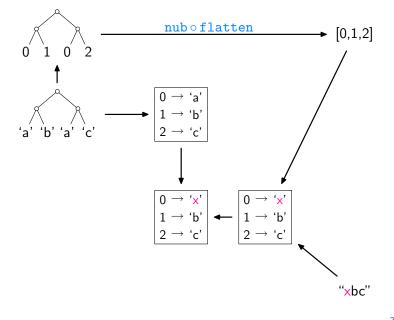
In Functional Programming Languages and Computer Architecture, Proceedings, pages 347–359. ACM Press, 1989.

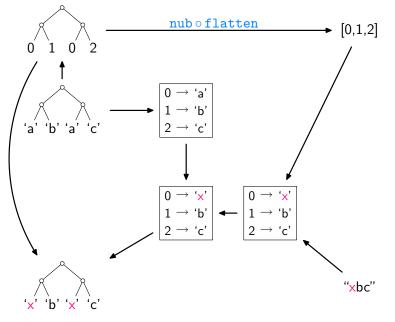












Why g (map f I) = map f (g I), intuitively

• $g :: [\alpha] \to [\alpha]$ must work uniformly for every instantiation of α .

Why g (map f I) = map f (g I), intuitively

- ▶ g :: $[\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list /.

- ▶ g :: $[\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I*.

- ▶ g :: $[\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I*.
- ► The only means for this decision is to inspect the length of *I*.

- ▶ g :: $[\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I*.
- ► The only means for this decision is to inspect the length of *I*.
- The lists (map f I) and I always have equal length.

- $g :: [\alpha] \to [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I*.
- ▶ The only means for this decision is to inspect the length of *I*.
- The lists (map f I) and I always have equal length.
- g always chooses "the same" elements from (map f l) for output as it does from l,

- $g :: [\alpha] \to [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I*.
- ▶ The only means for this decision is to inspect the length of *I*.
- The lists (map f I) and I always have equal length.
- g always chooses "the same" elements from (map f l) for output as it does from l, except that in the former case it outputs their images under f.

- ▶ g :: $[\alpha] \rightarrow [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I*.
- ▶ The only means for this decision is to inspect the length of *I*.
- The lists (map f I) and I always have equal length.
- g always chooses "the same" elements from (map f l) for output as it does from l, except that in the former case it outputs their images under f.
- g (map f l) is equivalent to map f (g l).

- $g :: [\alpha] \to [\alpha]$ must work uniformly for every instantiation of α .
- ► The output list can only contain elements from the input list *I*.
- Which, and in which order/multiplicity, can only be decided based on *I*.
- ▶ The only means for this decision is to inspect the length of *I*.
- The lists (map f I) and I always have equal length.
- g always chooses "the same" elements from (map f l) for output as it does from l, except that in the former case it outputs their images under f.
- g (map f l) is equivalent to map f (g l).
- That is what we wanted to prove!

[Wadler, FPCA'89] : for every g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$,

 $g p (map f l) = map f (g (p \circ f) l)$

[Wadler, FPCA'89] : for every g :: $(\alpha \rightarrow \mathsf{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$,

$$g p (map f l) = map f (g (p \circ f) l)$$

• if f strict $(f \perp = \perp)$.

[Wadler, FPCA'89] : for every $g :: (\alpha \to Bool) \to [\alpha] \to [\alpha]$, $g \ p \ (map \ f \ l) = map \ f \ (g \ (p \circ f) \ l)$ \blacktriangleright if f strict $(f \perp = \perp)$.

[Johann & V., POPL'04] : in presence of seq, if additionally:

▶
$$p \neq \bot$$
,
▶ f total ($\forall x \neq \bot$. $f x \neq \bot$).

[Wadler, FPCA'89] : for every $g :: (\alpha \to Bool) \to [\alpha] \to [\alpha]$, $g \ p \ (map \ f \ l) = map \ f \ (g \ (p \circ f) \ l)$ \blacktriangleright if f strict $(f \perp = \perp)$.

[Johann & V., POPL'04] : in presence of seq, if additionally:

p ≠ ⊥,
f total (
$$\forall x \neq \bot$$
. *f* x ≠ ⊥).

[Johann & V., I&C'09] : taking finite failures into account

÷

[Wadler, FPCA'89] : for every g :: $(\alpha \rightarrow \text{Bool}) \rightarrow [\alpha] \rightarrow [\alpha]$, g p (map f l) = map f (g (p \circ f) l) if f strict (f $\perp = \perp$).

[Johann & V., POPL'04] : in presence of seq, if additionally:

p ≠ ⊥,
f total (
$$\forall x \neq \bot$$
. *f* x ≠ ⊥).

[Johann & V., I&C'09] : taking finite failures into account

[Stenger & V., TLCA'09] : taking imprecise error semantics into account