
News About

A Recent Application of Parametricity

Janis Voigtländer

Technische Universität Dresden

ISS-AiPL’09

Functional Programming in Haskell

A standard function:

map f [] = []
map f (a : as) = (f a) : (map f as)

1 – 2/10

Functional Programming in Haskell

A standard function:

map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

1 – 3/10

Functional Programming in Haskell

A standard function:

map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

map not [True,False] = [False,True]

1 – 4/10

Functional Programming in Haskell

A standard function:

map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

map not [True,False] = [False,True]

map even [1, 2, 3] = [False,True,False]

1 – 5/10

Functional Programming in Haskell

A standard function:

map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

map not [True,False] = [False,True]

map even [1, 2, 3] = [False,True,False]

map not [1, 2, 3]

1 – 6/10

Functional Programming in Haskell

A standard function:

map :: (α→ β)→ [α]→ [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

map not [True,False] = [False,True]

map even [1, 2, 3] = [False,True,False]

map not [1, 2, 3]

1 – 7/10

Functional Programming in Haskell

A standard function:

map :: (α→ β)→ [α]→ [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

map not [True,False] = [False,True] — α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False] — α, β 7→ Int,Bool

map not [1, 2, 3]

1 – 8/10

Functional Programming in Haskell

A standard function:

map :: (α→ β)→ [α]→ [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

map not [True,False] = [False,True] — α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False] — α, β 7→ Int,Bool

map not [1, 2, 3] rejected at compile-time

1 – 9/10

Functional Programming in Haskell

A standard function:

map :: (α→ β)→ [α]→ [β]

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

map not [True,False] = [False,True] — α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False] — α, β 7→ Int,Bool

map not [1, 2, 3] rejected at compile-time

1 – 10/10

Another Example

reverse :: [α]→ [α]
reverse [] = []
reverse (a : as) = (reverse as) ++ [a]

2 – 11/16

Another Example

reverse :: [α]→ [α]
reverse [] = []
reverse (a : as) = (reverse as) ++ [a]

For every choice of f and l :

reverse (map f l) = map f (reverse l)

Provable by induction.

2 – 12/16

Another Example

reverse :: [α]→ [α]
reverse [] = []
reverse (a : as) = (reverse as) ++ [a]

For every choice of f and l :

reverse (map f l) = map f (reverse l)

Provable by induction.

Or as a “free theorem” [Wadler, FPCA’89].

2 – 13/16

Another Example

reverse :: [α]→ [α]

For every choice of f and l :

reverse (map f l) = map f (reverse l)

Provable by induction.

Or as a “free theorem” [Wadler, FPCA’89].

2 – 14/16

Another Example

reverse :: [α]→ [α]

tail :: [α]→ [α]

For every choice of f and l :

reverse (map f l) = map f (reverse l)

tail (map f l) = map f (tail l)

2 – 15/16

Another Example

reverse :: [α]→ [α]

tail :: [α]→ [α]

g :: [α]→ [α]

For every choice of f and l :

reverse (map f l) = map f (reverse l)

tail (map f l) = map f (tail l)

g (map f l) = map f (g l)

2 – 16/16

Some Applications

◮ Short Cut Fusion [Gill et al., FPCA’93]

3 – 17/23

Some Applications

◮ Short Cut Fusion [Gill et al., FPCA’93]

◮ The Dual of Short Cut Fusion [Svenningsson, ICFP’02]

3 – 18/23

Some Applications

◮ Short Cut Fusion [Gill et al., FPCA’93]

◮ The Dual of Short Cut Fusion [Svenningsson, ICFP’02]

◮ Circular Short Cut Fusion [Fernandes et al., Haskell’07]

◮ . . .

3 – 19/23

Some Applications

◮ Short Cut Fusion [Gill et al., FPCA’93]

◮ The Dual of Short Cut Fusion [Svenningsson, ICFP’02]

◮ Circular Short Cut Fusion [Fernandes et al., Haskell’07]

◮ . . .

◮ Knuth’s 0-1-principle and the like [Day et al., Haskell’99],
[V., POPL’08]

3 – 20/23

Some Applications

◮ Short Cut Fusion [Gill et al., FPCA’93]

◮ The Dual of Short Cut Fusion [Svenningsson, ICFP’02]

◮ Circular Short Cut Fusion [Fernandes et al., Haskell’07]

◮ . . .

◮ Knuth’s 0-1-principle and the like [Day et al., Haskell’99],
[V., POPL’08]

◮ Bidirectionalisation [V., POPL’09]

3 – 21/23

Some Applications

◮ Short Cut Fusion [Gill et al., FPCA’93]

◮ The Dual of Short Cut Fusion [Svenningsson, ICFP’02]

◮ Circular Short Cut Fusion [Fernandes et al., Haskell’07]

◮ . . .

◮ Knuth’s 0-1-principle and the like [Day et al., Haskell’99],
[V., POPL’08]

◮ Bidirectionalisation [V., POPL’09]

◮ Reasoning about invariants for monadic programs
[V., ICFP’09]

3 – 22/23

Some Applications

◮ Short Cut Fusion [Gill et al., FPCA’93]

◮ The Dual of Short Cut Fusion [Svenningsson, ICFP’02]

◮ Circular Short Cut Fusion [Fernandes et al., Haskell’07]

◮ . . .

◮ Knuth’s 0-1-principle and the like [Day et al., Haskell’99],
[V., POPL’08]

◮ Bidirectionalisation [V., POPL’09]

◮ Reasoning about invariants for monadic programs
[V., ICFP’09]

3 – 23/23

Bidirectional Transformation

source view

s v

s ′ v ′

get

4 – 24/37

Bidirectional Transformation

source view

s v

s ′ v ′

get

update

4 – 25/37

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

4 – 26/37

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

4 – 27/37

Bidirectional Transformation

source view

s v

s v

get

=

Acceptability / GetPut

4 – 28/37

Bidirectional Transformation

source view

s v

s v

get

put

=

Acceptability / GetPut

4 – 29/37

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Consistency / PutGet

4 – 30/37

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

get

Consistency / PutGet

4 – 31/37

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

4 – 32/37

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Lenses, DSLs

[Foster et al., ACM TOPLAS’07, . . .]

4 – 33/37

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Bidirectionalisation

[Matsuda et al., ICFP’07]

4 – 34/37

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Syntactic Bidirectionalisation

[Matsuda et al., ICFP’07]

4 – 35/37

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

?

Semantic Bidirectionalisation

4 – 36/37

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

X

Semantic Bidirectionalisation

[V., POPL’09]

4 – 37/37

Semantic Bidirectionalisation

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

5 – 38/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

† “Bidirectionalization for free!”
5 – 39/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

† “Bidirectionalization for free!”
5 – 40/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

update

† “Bidirectionalization for free!”
5 – 41/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

bff tail

update

† “Bidirectionalization for free!”
5 – 42/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

† “Bidirectionalization for free!”
5 – 43/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

update

† “Bidirectionalization for free!”
5 – 44/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

bff flatten

update

† “Bidirectionalization for free!”
5 – 45/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abc”

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

† “Bidirectionalization for free!”
5 – 46/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abc”

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

update

† “Bidirectionalization for free!”
5 – 47/48

Semantic Bidirectionalisation

Aim: Write a higher-order function bff† such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abc”

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

bff (nub ◦ flatten)

update

† “Bidirectionalization for free!”
5 – 48/48

Analysing Specific Instances

Assume we are given some

get :: [α]→ [α]

How can we, or bff, analyse it without access to its source code?

6 – 49/52

Analysing Specific Instances

Assume we are given some

get :: [α]→ [α]

How can we, or bff, analyse it without access to its source code?

Idea: How about applying get to some input?

6 – 50/52

Analysing Specific Instances

Assume we are given some

get :: [α]→ [α]

How can we, or bff, analyse it without access to its source code?

Idea: How about applying get to some input?

Like:

get [0..n] =

[1..n] if get = tail

[n..0] if get = reverse

[0..(min 4 n)] if get = take 5
...

6 – 51/52

Analysing Specific Instances

Assume we are given some

get :: [α]→ [α]

How can we, or bff, analyse it without access to its source code?

Idea: How about applying get to some input?

Like:

get [0..n] =

[1..n] if get = tail

[n..0] if get = reverse

[0..(min 4 n)] if get = take 5
...

Then transfer the gained insights to source lists other than [0..n] !

6 – 52/52

Using a Free Theorem

For every

g :: [α]→ [α]

we have

map f (g l) = g (map f l)

for arbitrary f and l .

7 – 53/57

Using a Free Theorem

For every

g :: [α]→ [α]

we have

map f (g l) = g (map f l)

for arbitrary f and l .

Given an arbitrary list s of length n + 1, set g = get, l = [0..n],
f = (s !!), leading to:

map (s !!) (get [0..n]) = get (map (s !!) [0..n])

7 – 54/57

Using a Free Theorem

For every

g :: [α]→ [α]

we have

map f (g l) = g (map f l)

for arbitrary f and l .

Given an arbitrary list s of length n + 1, set g = get, l = [0..n],
f = (s !!), leading to:

map (s !!) (get [0..n]) = get (map (s !!) [0..n])
︸ ︷︷ ︸

= get s

7 – 55/57

Using a Free Theorem

For every

g :: [α]→ [α]

we have

map f (g l) = g (map f l)

for arbitrary f and l .

Given an arbitrary list s of length n + 1,

map (s !!) (get [0..n])

= get s

7 – 56/57

Using a Free Theorem

For every

g :: [α]→ [α]

we have

map f (g l) = g (map f l)

for arbitrary f and l .

Given an arbitrary list s of length n + 1,

get s = map (s !!) (get [0..n])

for every get :: [α]→ [α].

7 – 57/57

The Constant-Complement Approach

[Bancilhon & Spyratos, ACM TODS’81]

In general, given
get :: S → V

8 – 58/63

The Constant-Complement Approach

[Bancilhon & Spyratos, ACM TODS’81]

In general, given
get :: S → V

define a V C and
compl :: S → V C

8 – 59/63

The Constant-Complement Approach

[Bancilhon & Spyratos, ACM TODS’81]

In general, given
get :: S → V

define a V C and
compl :: S → V C

such that
λs → (get s, compl s)

is injective

8 – 60/63

The Constant-Complement Approach

[Bancilhon & Spyratos, ACM TODS’81]

In general, given
get :: S → V

define a V C and
compl :: S → V C

such that
λs → (get s, compl s)

is injective and has an inverse

inv :: (V ,V C)→ S

8 – 61/63

The Constant-Complement Approach

[Bancilhon & Spyratos, ACM TODS’81]

In general, given
get :: S → V

define a V C and
compl :: S → V C

such that
λs → (get s, compl s)

is injective and has an inverse

inv :: (V ,V C)→ S

Then:

put :: S → V → S

put s v ′ = inv (v ′, compl s)

8 – 62/63

The Constant-Complement Approach

[Bancilhon & Spyratos, ACM TODS’81]

In general, given
get :: S → V

define a V C and
compl :: S → V C

such that
λs → (get s, compl s)

is injective and has an inverse

inv :: (V ,V C)→ S

Then:

put :: S → V → S

put s v ′ = inv (v ′, compl s)

Important: compl should “collapse” as much as possible.
8 – 63/63

The Constant-Complement Approach

For our setting,
get :: [α]→ [α] ,

what should be V C and

compl :: [α]→ V C ???

9 – 64/68

The Constant-Complement Approach

For our setting,
get :: [α]→ [α] ,

what should be V C and

compl :: [α]→ V C ???

To make

λs → (get s, compl s)

injective, need to record information discarded by get.

9 – 65/68

The Constant-Complement Approach

For our setting,
get :: [α]→ [α] ,

what should be V C and

compl :: [α]→ V C ???

To make

λs → (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list

9 – 66/68

The Constant-Complement Approach

For our setting,
get :: [α]→ [α] ,

what should be V C and

compl :: [α]→ V C ???

To make

λs → (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list

2. discarded list elements

9 – 67/68

The Constant-Complement Approach

For our setting,
get :: [α]→ [α] ,

what should be V C and

compl :: [α]→ V C ???

To make

λs → (get s, compl s)

injective, need to record information discarded by get.

Candidates:

1. length of the source list

2. discarded list elements

For the moment, be maximally conservative.

9 – 68/68

The Complement Function

type IntMap α = [(Int, α)]

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i ,)→ notElem i (get t)) g

in (n + 1, g ′)

10 – 69/72

The Complement Function

type IntMap α = [(Int, α)]

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i ,)→ notElem i (get t)) g

in (n + 1, g ′)

For example:

get = tail compl “abcde” = (5, [(0, ’a’)])

10 – 70/72

The Complement Function

type IntMap α = [(Int, α)]

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i ,)→ notElem i (get t)) g

in (n + 1, g ′)

For example:

get = tail compl “abcde” = (5, [(0, ’a’)])

get = take 3 compl “abcde” = (5, [(3, ’d’), (4, ’e’)])

10 – 71/72

The Complement Function

type IntMap α = [(Int, α)]

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i ,)→ notElem i (get t)) g

in (n + 1, g ′)

For example:

get = tail compl “abcde” = (5, [(0, ’a’)])

get = take 3 compl “abcde” = (5, [(3, ’d’), (4, ’e’)])

get = reverse compl “abcde” = (5, [])

10 – 72/72

An Inverse of λs → (get s, compl s)

inv :: ([α], (Int, IntMap α))→ [α]
inv (v ′, (n + 1, g ′)) = let t = [0..n]

h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

11 – 73/77

An Inverse of λs → (get s, compl s)

inv :: ([α], (Int, IntMap α))→ [α]
inv (v ′, (n + 1, g ′)) = let t = [0..n]

h = assoc† (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

† Can be thought of as zip for the moment. 11 – 74/77

An Inverse of λs → (get s, compl s)

inv :: ([α], (Int, IntMap α))→ [α]
inv (v ′, (n + 1, g ′)) = let t = [0..n]

h = assoc† (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

For example:

get = tail inv (“bcde”, (5, [(0, ’a’)])) = “abcde”

† Can be thought of as zip for the moment. 11 – 75/77

An Inverse of λs → (get s, compl s)

inv :: ([α], (Int, IntMap α))→ [α]
inv (v ′, (n + 1, g ′)) = let t = [0..n]

h = assoc† (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

For example:

get = tail inv (“bcde”, (5, [(0, ’a’)])) = “abcde”

get = take 3 inv (“xyz”, (5, [(3, ’d’), (4, ’e’)])) = “xyzde”

† Can be thought of as zip for the moment. 11 – 76/77

An Inverse of λs → (get s, compl s)

inv :: ([α], (Int, IntMap α))→ [α]
inv (v ′, (n + 1, g ′)) = let t = [0..n]

h = assoc† (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

For example:

get = tail inv (“bcde”, (5, [(0, ’a’)])) = “abcde”

get = take 3 inv (“xyz”, (5, [(3, ’d’), (4, ’e’)])) = “xyzde”

To prove formally:

◮ inv (get s, compl s) = s

◮ if inv (v , c) defined, then get (inv (v , c)) = v

◮ if inv (v , c) defined, then compl (inv (v , c)) = c

† Can be thought of as zip for the moment. 11 – 77/77

Altogether:

type IntMap α = [(Int, α)]

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i ,)→ notElem i (get t)) g

in (n + 1, g ′)

inv :: ([α], (Int, IntMap α))→ [α]
inv (v ′, (n + 1, g ′)) = let t = [0..n]

h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

put :: [α]→ [α]→ [α]
put s v ′ = inv (v ′, compl s)

12 – 78/78

“Fusion”

Inlining compl and inv into put:

put s v ′ = let n = (length s)− 1
t = [0..n]
g = zip t s

g ′ = filter (λ(i ,)→ notElem i (get t)) g

h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

13 – 79/82

“Fusion”

Inlining compl and inv into put:

put s v ′ = let n = (length s)− 1
t = [0..n]
g = zip t s

g ′ = filter (λ(i ,)→ notElem i (get t)) g

h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [] [] = []
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of

Nothing → (i , b) : m

Just c | b == c → m

13 – 80/82

“Fusion”

Inlining compl and inv into put:

bff get s v ′ = let n = (length s)− 1
t = [0..n]
g = zip t s

g ′ = filter (λ(i ,)→ notElem i (get t)) g

h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [] [] = []
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of

Nothing → (i , b) : m

Just c | b == c → m

13 – 81/82

“Fusion”

Inlining compl and inv into put:

bff get s v ′ = let n = (length s)− 1
t = [0..n]
g = zip t s

g ′ = filter (λ(i ,)→ notElem i (get t)) g

h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [] [] = []
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of

Nothing → (i , b) : m

Just c | b == c → m

Actual code only slightly more elaborate!
13 – 82/82

The Resulting Bidirectionalisation Method in Action

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”
bff (tail ◦ flatten)

tail ◦ flatten

update

t

14 – 83/91

The Resulting Bidirectionalisation Method in Action

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”
bff (tail ◦ flatten)

v ′

s

t

14 – 84/91

The Resulting Bidirectionalisation Method in Action

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca” v ′

s

t

14 – 85/91

The Resulting Bidirectionalisation Method in Action

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca” v ′

s

t

g

14 – 86/91

The Resulting Bidirectionalisation Method in Action

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”

tail ◦ flatten

v ′

s

t

g

get t

14 – 87/91

The Resulting Bidirectionalisation Method in Action

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”

tail ◦ flatten

v ′

s

t

g

get t

h

14 – 88/91

The Resulting Bidirectionalisation Method in Action

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”

tail ◦ flatten

v ′

s

t

g

get t

h
h′

14 – 89/91

The Resulting Bidirectionalisation Method in Action

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

tail ◦ flatten

v ′

s

t

g

get t

h
h′

14 – 90/91

The Resulting Bidirectionalisation Method in Action

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

bff (tail ◦ flatten)

t

14 – 91/91

Extending the Technique

Major Problem:

◮ Shape-affecting updates lead to failure.

15 – 92/96

Extending the Technique

Major Problem:

◮ Shape-affecting updates lead to failure.

◮ For example, bff tail “abcde” “xyz” . . .

15 – 93/96

Extending the Technique

Major Problem:

◮ Shape-affecting updates lead to failure.

◮ For example, bff tail “abcde” “xyz” . . .

Analysis as to Why:
◮ Our approach to making

λs → (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

15 – 94/96

Extending the Technique

Major Problem:

◮ Shape-affecting updates lead to failure.

◮ For example, bff tail “abcde” “xyz” . . .

Analysis as to Why:
◮ Our approach to making

λs → (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

◮ Being maximally conservative this way often does not
“collapse enough”.

15 – 95/96

Extending the Technique

Major Problem:

◮ Shape-affecting updates lead to failure.

◮ For example, bff tail “abcde” “xyz” . . .

Analysis as to Why:
◮ Our approach to making

λs → (get s, compl s)

injective was to record, via compl, the following information:

1. length of the source list
2. discarded list elements

◮ Being maximally conservative this way often does not
“collapse enough”.

◮ For example:

get = tail put “abcde” “xyz” fails precisely because
compl “abcde” = (5, [(0, ’a’)])

15 – 96/96

Assuming Shape-Injectivity

So assume there is a function

shapeInv :: Int→ Int

with, for every source list s,

length s = shapeInv (length (get s))

16 – 97/99

Assuming Shape-Injectivity

So assume there is a function

shapeInv :: Int→ Int

with, for every source list s,

length s = shapeInv (length (get s))

Then:

compl :: [α]→ (Int, IntMap α)
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i ,)→ notElem i (get t)) g

in (n + 1, g ′)

16 – 98/99

Assuming Shape-Injectivity

So assume there is a function

shapeInv :: Int→ Int

with, for every source list s,

length s = shapeInv (length (get s))

Then:

compl :: [α]→ IntMap α

compl s = let n = (length s)− 1
t = [0..n]
g = zip t s

g ′ = filter (λ(i ,)→ notElem i (get t)) g

in g ′

16 – 99/99

Assuming Shape-Injectivity

inv :: ([α], (Int, IntMap α))→ [α]
inv (v ′, (n + 1, g ′)) = let t = [0..n]

h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

17 – 100/105

Assuming Shape-Injectivity

inv :: ([α], IntMap α)→ [α]
inv (v ′, g ′) = let n = (shapeInv (length v ′))− 1

t = [0..n]
h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

17 – 101/105

Assuming Shape-Injectivity

inv :: ([α], IntMap α)→ [α]
inv (v ′, g ′) = let n = (shapeInv (length v ′))− 1

t = [0..n]
h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

But how to obtain shapeInv ???

17 – 102/105

Assuming Shape-Injectivity

inv :: ([α], IntMap α)→ [α]
inv (v ′, g ′) = let n = (shapeInv (length v ′))− 1

t = [0..n]
h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

But how to obtain shapeInv ???

One possibility: provided by user.

17 – 103/105

Assuming Shape-Injectivity

inv :: ([α], IntMap α)→ [α]
inv (v ′, g ′) = let n = (shapeInv (length v ′))− 1

t = [0..n]
h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

But how to obtain shapeInv ???

One possibility: provided by user.

Another possibility: determined statically (dependent types?).

17 – 104/105

Assuming Shape-Injectivity

inv :: ([α], IntMap α)→ [α]
inv (v ′, g ′) = let n = (shapeInv (length v ′))− 1

t = [0..n]
h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

But how to obtain shapeInv ???

One possibility: provided by user.

Another possibility: determined statically (dependent types?).

Just for experimentation:

shapeInv :: Int→ Int
shapeInv l = head [n + 1 | n← [0..], (length (get [0..n])) == l]

17 – 105/105

Not Quite There, Yet

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”

18 – 106/111

Not Quite There, Yet

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”, using
compl “abcde” = [(0, ’a’)]

18 – 107/111

Not Quite There, Yet

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”, using
compl “abcde” = [(0, ’a’)]

But not so in others:

get = init put “abcde” “xyz” fails

18 – 108/111

Not Quite There, Yet

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”, using
compl “abcde” = [(0, ’a’)]

But not so in others:

get = init put “abcde” “xyz” fails, because
compl “abcde” = [(4, ’e’)]

18 – 109/111

Not Quite There, Yet

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”, using
compl “abcde” = [(0, ’a’)]

But not so in others:

get = init put “abcde” “xyz” fails, because
compl “abcde” = [(4, ’e’)]

The problem: by keeping indices around, compl still does
not “collapse enough”.

18 – 110/111

Not Quite There, Yet

Works quite nicely in some cases:

get = tail put “abcde” “xyz” = “axyz”, using
compl “abcde” = [(0, ’a’)]

But not so in others:

get = init put “abcde” “xyz” fails, because
compl “abcde” = [(4, ’e’)]

The problem: by keeping indices around, compl still does
not “collapse enough”.

Note: even without these indices, λs → (get s, compl s)
would be injective.

18 – 111/111

Eliminating Indices

compl :: [α]→ [(Int, α)]
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i ,)→ notElem i (get t)) g

in g ′

19 – 112/116

Eliminating Indices

compl :: [α]→ [α]
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i ,)→ notElem i (get t)) g

in map snd g ′

19 – 113/116

Eliminating Indices

compl :: [α]→ [α]
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i ,)→ notElem i (get t)) g

in map snd g ′

inv :: ([α], [(Int, α)])→ [α]
inv (v ′, g ′) = let n = (shapeInv (length v ′))− 1

t = [0..n]
h = assoc (get t) v ′

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

19 – 114/116

Eliminating Indices

compl :: [α]→ [α]
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i ,)→ notElem i (get t)) g

in map snd g ′

inv :: ([α], [α])→ [α]
inv (v ′, c) = let n = (shapeInv (length v ′))− 1

t = [0..n]
h = assoc (get t) v ′

g ′ = zip (filter (λi → notElem i (get t)) t) c

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

19 – 115/116

Eliminating Indices

compl :: [α]→ [α]
compl s = let n = (length s)− 1

t = [0..n]
g = zip t s

g ′ = filter (λ(i ,)→ notElem i (get t)) g

in map snd g ′

inv :: ([α], [α])→ [α]
inv (v ′, c) = let n = (shapeInv (length v ′))− 1

t = [0..n]
h = assoc (get t) v ′

g ′ = zip (filter (λi → notElem i (get t)) t) c

h′ = h ++ g ′

in seq h (map (λi → fromJust (lookup i h′)) t)

Now:

get = init put “abcde” “xyz” = “xyze”
19 – 116/116

More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : (sieve cs)
sieve = []

20 – 117/122

More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : (sieve cs)
sieve = []

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

20 – 118/122

More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : (sieve cs)
sieve = []

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

put [1..8] [2,−4, 6] = [1, 2, 3,−4, 5, 6]

20 – 119/122

More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : (sieve cs)
sieve = []

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

put [1..8] [2,−4, 6] = [1, 2, 3,−4, 5, 6]

put [1..8] [2,−4, 6, 8, 10, 12] = [1, 2, 3,−4, 5, 6, 7, 8,⊥, 10,⊥, 12]

20 – 120/122

More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : (sieve cs)
sieve = []

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

put [1..8] [2,−4, 6] = [1, 2, 3,−4, 5, 6]

put [1..8] [2,−4, 6, 8, 10, 12] = [1, 2, 3,−4, 5, 6, 7, 8,⊥, 10,⊥, 12]

However:

put [1..8] [0, 2,−4, 6, 8] = [1, 0, 3, 2, 5,−4, 7, 6,⊥, 8]

20 – 121/122

More Examples

Let get = sieve with:

sieve :: [α]→ [α]
sieve (a : b : cs) = b : (sieve cs)
sieve = []

Then:

put [1..8] [2,−4, 6, 8] = [1, 2, 3,−4, 5, 6, 7, 8]

put [1..8] [2,−4, 6] = [1, 2, 3,−4, 5, 6]

put [1..8] [2,−4, 6, 8, 10, 12] = [1, 2, 3,−4, 5, 6, 7, 8,⊥, 10,⊥, 12]

However:

put [1..8] [0, 2,−4, 6, 8] = [1, 0, 3, 2, 5,−4, 7, 6,⊥, 8]

Whereas we might have preferred:

put [1..8] [0, 2,−4, 6, 8] = [⊥, 0, 1, 2, 3,−4, 5, 6, 7, 8]

20 – 122/122

Conclusion

Types:

◮ constrain the behaviour of programs

21 – 123/131

Conclusion

Types:

◮ constrain the behaviour of programs

◮ thus lead to interesting theorems about programs

21 – 124/131

Conclusion

Types:

◮ constrain the behaviour of programs

◮ thus lead to interesting theorems about programs

◮ enable lightweight, semantic analysis methods

21 – 125/131

Conclusion

Types:

◮ constrain the behaviour of programs

◮ thus lead to interesting theorems about programs

◮ enable lightweight, semantic analysis methods

On the practical side:

◮ efficiency-improving program transformations

21 – 126/131

Conclusion

Types:

◮ constrain the behaviour of programs

◮ thus lead to interesting theorems about programs

◮ enable lightweight, semantic analysis methods

On the practical side:

◮ efficiency-improving program transformations

◮ applications in specific domains (more out there?)

21 – 127/131

Conclusion

Types:

◮ constrain the behaviour of programs

◮ thus lead to interesting theorems about programs

◮ enable lightweight, semantic analysis methods

On the practical side:

◮ efficiency-improving program transformations

◮ applications in specific domains (more out there?)

Bidirectionalisation in particular:

◮ hot topic (databases, models community, . . .)

21 – 128/131

Conclusion

Types:

◮ constrain the behaviour of programs

◮ thus lead to interesting theorems about programs

◮ enable lightweight, semantic analysis methods

On the practical side:

◮ efficiency-improving program transformations

◮ applications in specific domains (more out there?)

Bidirectionalisation in particular:

◮ hot topic (databases, models community, . . .)

◮ need a way to inject/exploit “user knowledge”

21 – 129/131

Conclusion

Types:

◮ constrain the behaviour of programs

◮ thus lead to interesting theorems about programs

◮ enable lightweight, semantic analysis methods

On the practical side:

◮ efficiency-improving program transformations

◮ applications in specific domains (more out there?)

Bidirectionalisation in particular:

◮ hot topic (databases, models community, . . .)

◮ need a way to inject/exploit “user knowledge”

On the programming language side:

◮ push towards full programming languages

21 – 130/131

Conclusion

Types:

◮ constrain the behaviour of programs

◮ thus lead to interesting theorems about programs

◮ enable lightweight, semantic analysis methods

On the practical side:

◮ efficiency-improving program transformations

◮ applications in specific domains (more out there?)

Bidirectionalisation in particular:

◮ hot topic (databases, models community, . . .)

◮ need a way to inject/exploit “user knowledge”

On the programming language side:

◮ push towards full programming languages

◮ aim for exploiting more expressive type systems

21 – 131/131

References I

F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557–575, 1981.

N.A. Day, J. Launchbury, and J. Lewis.
Logical abstractions in Haskell.
In Haskell Workshop, Proceedings. Technical Report
UU-CS-1999-28, Utrecht University, 1999.

J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A.
Schmitt.
Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem.
ACM Transactions on Programming Languages and Systems,
29(3):17, 2007.

22 – 132/136

References II

J.P. Fernandes, A. Pardo, and J. Saraiva.
A shortcut fusion rule for circular program calculation.
In Haskell Workshop, Proceedings, pages 95–106. ACM Press,
2007.

A. Gill, J. Launchbury, and S.L. Peyton Jones.
A short cut to deforestation.
In Functional Programming Languages and Computer

Architecture, Proceedings, pages 223–232. ACM Press, 1993.

P. Johann and J. Voigtländer.
Free theorems in the presence of seq.
In Principles of Programming Languages, Proceedings, pages
99–110. ACM Press, 2004.

23 – 133/136

References III

P. Johann and J. Voigtländer.
A family of syntactic logical relations for the semantics of
Haskell-like languages.
Information and Computation, 207(2):341–368, 2009.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions.
In International Conference on Functional Programming,

Proceedings, pages 47–58. ACM Press, 2007.

F. Stenger and J. Voigtländer.
Parametricity for Haskell with imprecise error semantics.
In Typed Lambda Calculi and Applications, Proceedings,
volume 5608 of LNCS, pages 294–308. Springer-Verlag, 2009.

24 – 134/136

References IV

J. Svenningsson.
Shortcut fusion for accumulating parameters & zip-like
functions.
In International Conference on Functional Programming,

Proceedings, pages 124–132. ACM Press, 2002.

J. Voigtländer.
Much ado about two: A pearl on parallel prefix computation.
In Principles of Programming Languages, Proceedings, pages
29–35. ACM Press, 2008.

J. Voigtländer.
Bidirectionalization for free!
In Principles of Programming Languages, Proceedings, pages
165–176. ACM Press, 2009.

25 – 135/136

References V

J. Voigtländer.
Free theorems involving type constructor classes.
In International Conference on Functional Programming,

Proceedings. ACM Press, 2009.

P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer

Architecture, Proceedings, pages 347–359. ACM Press, 1989.

26 – 136/136

Another Interesting Example (involving Eq type class)

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

? “xbc”
bff (nub ◦ flatten)

nub ◦ flatten

update

27 – 137/142

Another Interesting Example (involving Eq type class)

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

? “xbc”

27 – 138/142

Another Interesting Example (involving Eq type class)

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

? “xbc”

nub ◦ flatten

27 – 139/142

Another Interesting Example (involving Eq type class)

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

? “xbc”

nub ◦ flatten

27 – 140/142

Another Interesting Example (involving Eq type class)

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

? “xbc”

nub ◦ flatten

27 – 141/142

Another Interesting Example (involving Eq type class)

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

27 – 142/142

Why g (map f l) = map f (g l), intuitively

◮ g :: [α]→ [α] must work uniformly for every instantiation
of α.

28 – 143/151

Why g (map f l) = map f (g l), intuitively

◮ g :: [α]→ [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

28 – 144/151

Why g (map f l) = map f (g l), intuitively

◮ g :: [α]→ [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

28 – 145/151

Why g (map f l) = map f (g l), intuitively

◮ g :: [α]→ [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

◮ The only means for this decision is to inspect the length of l .

28 – 146/151

Why g (map f l) = map f (g l), intuitively

◮ g :: [α]→ [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

◮ The only means for this decision is to inspect the length of l .

◮ The lists (map f l) and l always have equal length.

28 – 147/151

Why g (map f l) = map f (g l), intuitively

◮ g :: [α]→ [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

◮ The only means for this decision is to inspect the length of l .

◮ The lists (map f l) and l always have equal length.

◮ g always chooses “the same” elements from (map f l) for
output as it does from l ,

28 – 148/151

Why g (map f l) = map f (g l), intuitively

◮ g :: [α]→ [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

◮ The only means for this decision is to inspect the length of l .

◮ The lists (map f l) and l always have equal length.

◮ g always chooses “the same” elements from (map f l) for
output as it does from l , except that in the former case it
outputs their images under f .

28 – 149/151

Why g (map f l) = map f (g l), intuitively

◮ g :: [α]→ [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

◮ The only means for this decision is to inspect the length of l .

◮ The lists (map f l) and l always have equal length.

◮ g always chooses “the same” elements from (map f l) for
output as it does from l , except that in the former case it
outputs their images under f .

◮ g (map f l) is equivalent to map f (g l).

28 – 150/151

Why g (map f l) = map f (g l), intuitively

◮ g :: [α]→ [α] must work uniformly for every instantiation
of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l .

◮ The only means for this decision is to inspect the length of l .

◮ The lists (map f l) and l always have equal length.

◮ g always chooses “the same” elements from (map f l) for
output as it does from l , except that in the former case it
outputs their images under f .

◮ g (map f l) is equivalent to map f (g l).

◮ That is what we wanted to prove!

28 – 151/151

Revising Free Theorems

[Wadler, FPCA’89] : for every g :: (α→ Bool)→ [α]→ [α],

g p (map f l) = map f (g (p ◦ f) l)

29 – 152/156

Revising Free Theorems

[Wadler, FPCA’89] : for every g :: (α→ Bool)→ [α]→ [α],

g p (map f l) = map f (g (p ◦ f) l)

◮ if f strict (f ⊥ = ⊥).

29 – 153/156

Revising Free Theorems

[Wadler, FPCA’89] : for every g :: (α→ Bool)→ [α]→ [α],

g p (map f l) = map f (g (p ◦ f) l)

◮ if f strict (f ⊥ = ⊥).

[Johann & V., POPL’04] : in presence of seq, if additionally:

◮ p 6= ⊥,

◮ f total (∀x 6= ⊥. f x 6= ⊥).

29 – 154/156

Revising Free Theorems

[Wadler, FPCA’89] : for every g :: (α→ Bool)→ [α]→ [α],

g p (map f l) = map f (g (p ◦ f) l)

◮ if f strict (f ⊥ = ⊥).

[Johann & V., POPL’04] : in presence of seq, if additionally:

◮ p 6= ⊥,

◮ f total (∀x 6= ⊥. f x 6= ⊥).

[Johann & V., I&C’09] : taking finite failures into account

29 – 155/156

Revising Free Theorems

[Wadler, FPCA’89] : for every g :: (α→ Bool)→ [α]→ [α],

g p (map f l) = map f (g (p ◦ f) l)

◮ if f strict (f ⊥ = ⊥).

[Johann & V., POPL’04] : in presence of seq, if additionally:

◮ p 6= ⊥,

◮ f total (∀x 6= ⊥. f x 6= ⊥).

[Johann & V., I&C’09] : taking finite failures into account

[Stenger & V., TLCA’09] : taking imprecise error semantics into
account

...

29 – 156/156

	Haskell
	Free Theorems
	Bidirectional Transformation
	Semantic Bidirectionalisation
	A Constant-Complement Perspective
	Extending the Technique
	Conclusion
	References

