
Chapter 1

AHA:
Amortized
Heap Space Usage
Analysis
– Project Paper –
Marko van Eekelen, Olha Shkaravska, Ron van Kesteren,
Bart Jacobs, Erik Poll, and Sjaak Smetsers1

Abstract: This paper introduces AHA, an NWO-funded2 344K Euro project in-
volving research into an amortized analysis of heap-space usage by functional and
imperative programs. Amortized analysis is a promising technique that can im-
prove on simply summing worst case bounds. The project seeks to combine this
technique with type theory in order to obtain non-linear bounds on heap-space
usage for functional languages and to adapt the results for the lazy functional case
and for imperative languages.

1.1 INTRODUCTION

Estimating heap consumption is an active research area as it becomes more and
more an issue in many applications. This project seems to be part of an upcom-
ing trend since a growing number of projects are addressing this as a research
topic (see section 1.6 on related work). Examples of possible application areas

1All authors are members of the Security of Systems Department, Institute for
Computing and Information Sciences, Radboud University Nijmegen, Toernooiveld 1,
Nijmegen, 6525 ED, The Netherlands; Project leader contact: marko@cs.ru.nl.

2This project is sponsored by the Netherlands Organization for Scientific Research
(NWO) under grantnr. 612.063.511.

1

include programming for small devices, e.g. smart cards, mobile phones, em-
bedded systems and distributed computing, e.g GRID. It is important to give as
accurate bounds for heap consumption as possible to avoid unnecessarily expen-
sive and even unpractical estimates for small devices and high integrity real-time
applications.

A promising technique to obtain accurate bounds of resource consumption and
gain is amortized analysis. An amortized estimate of a resource does not target a
single operation but a sequence of operations. One assigns to an operation some
amortized cost that may be higher or lower than its actual cost. For the sequence
considered it is important that its overall amortized cost covers its overall actual
cost. An amortized cost of the sequence lies between its actual cost and the simple
multiplication of the worst-case of one operation by the length of the sequence.
An amortized cost of the sequence is in many cases easier to compute than its
actual cost and it is obviously better than the worst-case estimate.

Combining amortization with type theory allows the inference of linear heap
consumption bounds for functional programs with explicit memory deallocation
[10]. The AHA project aims to adapt this method for non-linear bounds within
(lazy) functional programs and transfer the results to the object-oriented program-
ming. In this way the project both enhances fundamental theory and practical
impact.

1.1.1 Relevance

Accurate estimates of heap space consumption are directly relevant for robust-
ness, execution time and safety of programs. For instance, memory exhaustion
may cause abrupt termination of an application or invoke garbage collection. In
the latter case, heap management can indirectly slow down execution and hence
influence time complexity. A better heap space analysis will therefore enable a
more accurate estimation of time consumption. This is relevant for time-critical
applications. Analyzing resource usage is also interesting for optimizations in
compilers for functional languages, in particular optimizations of memory allo-
cation and garbage collection techniques. A more accurate estimation of heap
usage enables allocation of larger memory chunks beforehand instead of allocat-
ing memory cells separately when needed, leading to a better cache performance.

Resource usage is an important aspect of any safety or security policy for pro-
grams downloaded from external sources. It is one of the most important proper-
ties that one wants to specify and verify for Java programs meant to be executed
on (embedded) Java-enabled devices with limited amounts of memory, such as
smart-cards implementing the Java Card platform and MIDP mobile phones im-
plementing the Java 2 Micro Edition (J2ME) platform.

1.1.2 Research questions

The AHA project investigates the possibilities for analyzing heap usage for both
functional and imperative object-oriented languages, more specifically Clean and

2

Java. It aims to answer the following research questions:
– How can the existing type-based linear heap consumption analysis of func-

tional programs [10] be improved such that a wider class of resource usage bounds
can be guaranteed? The question is how complex the type-checking and inference
procedures may be. In particular, which arithmetic and constraint solvers will be
needed for which classes of function definitions?

– Can heap space analysis be done for lazy functional languages? Heap space
analysis for lazy functional languages is clearly more complicated than for strict
languages, because the heap space is also used for unevaluated expressions (clo-
sures). The amount of memory that is used at a certain moment depends on the
evaluation order of expressions, which in its turn is influenced by the strictness
analyzer in the code generating compiler.

– How successfully can one adapt the approach for object-oriented imperative
languages? The aim here is to be able to prove – or, better still, derive – properties
about the heap space consumption of Java programs. The plan is to start with a
functional subset of Java that encompasses classes admitting algebraic data type
operations, like constructors and get-field methods (corresponding to nondestruc-
tive pattern matching) and generalize from there.

1.1.3 Outline of the paper

Amortization for resource-aware program analysis is explained in section 1.2. In
section 1.3 we give an overview of the existing amortization-related type system
which is used to infer linear heap-consumption bounds for first-order functional
programs. The research questions from section 1.1.2, which concern generaliza-
tions of the type system, are to be answered according to the project plan from
section 1.4. The motivation and more detailed generalization of the type system
for non-linear heap bounds for strict languages and related results on size infer-
ence are presented in section 1.5. We finish the paper with the overview of related
projects devoted to quantitative resource analysis and define the place of AHA
amongst this variety in section 1.6.

1.2 INTRODUCTION TO AMORTIZATION

The term “amortization” came to computer science from the financial world.
There it denotes a process of ending a debt by regular payments into a special
fund. In computer science, amortization is used to estimate time and heap con-
sumption of programs. “Payments” in a program are done by its operations or
by the data structures that participate in the computation, see [15]. These pay-
ments must cover the overall resource usage. Methods of distribution of such
“payments” across operations or data structures form the subject of amortized
analysis.

3

1.2.1 Amortization of resources in program analysis

To begin with, consider amortized time costing. Given a sequence of operations,
one often wants to know not the costs of the individual operations, but the cost
of the entire sequence. One assigns to an operation an amortized cost, which can
be greater or less than its actual cost. All one is interested in is that the sum of
the amortized costs is large enough to cover the overall time usage. Thus, one
redistributes the run time of the entire sequence over the operations. The simplest
way to arrange such redistribution is to assign to each operation the average cost
T (n)/n, where T (n) is the overall run time and n is the number of operations. A
rich operation is an operation for which its amortized cost, say, T (n)/n, exceeds
its actual cost. Rich operations pay for “poor” ones.

Consider the Haskell-style version of the function multipop from [8] that,
given a stack S and a counter k, pops an element from the top of the stack till the
stack is empty or the counter is zero:

multipop :: Int → Stack Int → Stack Int
multipop k [] = []
multipop 0 (x:xs) = x:xs
multipop k (x:xs) = multipop (k-1) xs

To construct a stack one needs a functionpush:

push :: Int → Stack Int → Stack Int
push x s = x:s

If the actual costs of each function call (such as multipop and push) is 1 time
unit, then the actual cost of the program multipop k S is min(s,k) + 1 time
units, where s is the size of the stack S.

Assigning amortized costs for multipop and push one may think in the fol-
lowing way. Each operationpushhas actual cost 1, but it “takes care” of the future
of the element it pushes on the stack. This element may be popped out. So push
obtains the amortized cost 2 to pay for itself and for the corresponding part of a
call of multipop. Thus, the complete cost of multipop k S is paid while con-
structing the input S using push. After construction of the stack S, the amortized
cost for multipop is just 1 for the call of multipop k [] . Hence, the amortized
cost of the construction of S followed by multipop is 2s + 1, which is an upper
bound for the actual cost being s+min(s,k)+1.

The correctness of an amortized analysis for a sequence of n operations is
defined by Σ j

i=1ai ≥ Σ j
i=1ti, for all j ≤ n, ai is the amortized cost of the ith oper-

ation, and ti is its actual cost. In this way one ensures that, at any moment of the
computation, the overall amortized cost covers the overall actual cost.

1.2.2 Views to Amortization

A general understanding of amortization [17] is based on a graph representation
of programs. A program is viewed as a directed graph with states (i.e. data struc-
tures) as nodes and edges (i.e. basic operators or constructs) as transitions between

4

them. A possible computation is a path in the graph. Branching in the graph ap-
pears due to non-determinism or due to replacing if-then-else by nondeterministic
choice.

In the physicist’s view of amortization one assigns to any state s a real number
Φ(s) called the potential of the state s. We consider only non-negative potentials.
Negative potentials can never be introduced since the typing rules insist that the
potential is kept non-negative (see section 1.5.3). The first intuition behind the
potential function is that it reflects the number of resources (heap units, time ticks)
that may be discharged during a computation, starting from the state s. In the
physicist’s approach the amortized cost of an any path between some s and s′ is
the difference Φ(s′)−Φ(s).

To introduce a banker’s view we first note the following. Each edge e(s1, s2)
has its actual cost t(s1, s2) defined by the corresponding basic command or the
construct. Let it have an amortized cost a(s1, s2). The difference a(s1, s2)−
t(s1, s2) for the edge e(s1, s2) is called a surplus. If the difference a(s1, s2)−
t(s1, s2) is positive, it is called a credit, it may be used to cover the actual costs
of further computations. The actual/amortized cost of a path π, between some s
and s′, is the sum of actual/amortized costs of edges. In principle, the costs of
two paths π and π′ between the same vertices may differ. If for any two states
s and s′ it holds that a(s, s′) = t(s, s′)+ Φ(s′)−Φ(s), then the analysis is called
conservative.

It is clear that for any physicist’s view one can find a corresponding banker’s
view. The opposite transformation is more complicated. The banker’s approach
is more general than the physicist’s one, because one considers particular paths
instead of their initial and end points. However, it has been shown [17] that for any
banker’s amortization distribution a there is a “better” conservative distribution a′
and a potential function Φ for it, such that a′(s, s′) = t(s, s′) + Φ(s′)−Φ(s) (a
conservative analysis), and a′(s1, s2) ≤ a(s1, s2) for any edge e(s1, s2). Thus,
without loss of generality one can consider conservative amortized analysis only.

1.2.3 Amortization for Heap Consumption Gives Size of Live Data

Now we interpret amortization for heap consumption analysis. A potential of a
structure is a number of free heap units associated with this structure. An initial
potential is the potential of an input structure before the program runs. Any data
structure, which exists during the computation of a function, may be constructed
either from heap units taken from the initially allocated units (defined by the initial
potential function) or taken from reused heap cells (for a language with destructive
pattern matching).

If heap management is performed via maintaining a free list, then the heap
layouts before and after the computations are presented by the scheme in Figure
1.1. One can view maintaining a free list as an ideal garbage collector: once a
location is destructed it is put on the top of the free list. A fresh cell is taken from
the top of the free list. Thus, a potential function and the size of input data define
an upper bound on the size of the live data at any moment of computation. In

5

Intact

heap

Allocated

input

Initial

potential

Allocated

output

Output

potential

Intact

heap

Free

list
Free

list

Live data

zone

execute

the program

in out

FIGURE 1.1. Heap layouts before and after the computations

general, we have the following dependency:
size(input)+Φin = size(data current)+Φcurrent = size(output)+Φout

1.3 STATE OF THE ART: A TYPE SYSTEM FOR LINEAR BOUNDS

One can implement a heap-aware amortized analysis via an annotated type sys-
tem. In this section we consider an annotated type system introduced by Hofmann
and Jost [10] for linear bounds on heap consumption. Given a first-order function
definition this system allows us to infer an upper bound (if it exists and is linear)
on the number of freshly-allocated heap units.

The operations that affect heap consumption are constructors and pattern match-
ing. The coefficients of linear bounds appear in the form of numerical annotations
(constants) for types. For instance, a function that creates a fresh copy of a list of
integers

copy :: [Int] → [Int]
copy [] = []
copy (x:xs) = x : copy xs

has the annotated signature [Int]1 0→0 [Int]0 (we adapted the notation of
[10]). It reflects the fact that for each element of an input list 1 extra heap unit
(credit) must be supplied to fix the space for its copy. Furthermore, it indicates via
a 0-annotated arrow that it is not necessary to add extra heap cells for evaluating
the function. Also, no cells at all will be released: nor a number of cells depending
on the size of the result (since a 0 is assigned to the result), nor independent of
that (since a 0 is assigned to the function arrow).

In general, the heap consumption by a function f with the credit-annotated
type [Int]k k0→k′0 [Int]k′ does not exceed k ·n+k0 heap units and at the end of

6

the computation at least k′ ·n′+k′0 heap units are available, with n and n′ the sizes
of the input and output lists, respectively. The potential of a list [Int]k of length
n is k · n. In fact, the type system above infers two (linear) potentials of a given
function: the potential of an input and the potential of an output. The potential
of the input may be discharged during evaluation of the program expression and
the potential of the output may be used in further computations. Non-zero arrow
annotations typically appear due to destructive pattern-matching.

It is possible to extend this approach for non-linear bounds. One of the aims
of the AHA project is to study such extensions.

1.4 AHA PROJECT PLAN

To answer the three research questions posed in section 1.1.2, the project is parti-
tioned into an initial step followed by two parallel research lines. The initial step
serves as a pre-requisite for the two lines and will establish the foundations of
amortized analysis with non linear bounds for strict languages. After that, a fun-
damental theoretical research line will extended this analysis to a lazy language.
A parallel practical line will transfer the theoretical results to an imperative object-
oriented setting.

In view of the breadth of the proposed research, which looks both at functional
and imperative languages, the project will use the funding for two positions, a
three year post-doc and a four year PhD student. Cooperating with the post-doc
the PhD student will not only study the more fundamental issues but the PhD
student will also be responsible for creating prototypes demonstrating the effec-
tiveness of the developed analyses. Master students will be actively encouraged
to participate in creating these demonstrators.

Ultimately, we want to implement the type systems for heap space usage to
obtain prototypes that can check whether a given (functional or imperative) pro-
gram, augmented with resource-aware type annotations, meets a given bound on
heap space usage. Ideally, we will be able to infer such bounds in many cases.

1.4.1 Amortized analysis with non-linear bounds

There are many interesting examples that require non-linear heap space, for in-
stance matrix multiplication and the Cartesian product. Also, e.g. the generation
of a sports competition programme, in which every team plays a home and an
away match against every other team, needs a non-linear amount of heap space.
The sports competition has n ·n−n matches, where n is the number of teams. So,
the program will require at least n ·n−n heap space.

Arguments and results of functions are represented as (intermediate) structures
in the heap. Sizes of results depend generally on the sizes of the arguments.
For example, the number of matches (the size of the result) in an implemented
sports competition3 depends on the number of teams (the size of the argument).

3Using amortization in section 1.5 it is shown that for a specific sports competition

7

So, deriving such size dependencies is an important first step before computing
amortized bounds that take temporary structures into account.

Methodology. To begin with, we tackle the derivation of size relations sep-
arately from heap-space usage to keep both systems as simple as possible. The
results from the derivation of the size relations are input for the amortized analy-
sis. The amortized analysis will be an extension of the existing linear analysis in
[10].

1.4.2 Amortized Heap Analysis of a Lazy Language

Applying a strict-semantic-based type system to a lazy evaluation strategy may
lead to significant mis-evaluations of heap consumption. Indeed, one may count
heap cells for a structure that is not actually allocated or allocated in a “zipped”
form, or one counts a heap consumed/released by a function that is not called.

Consider, for instance, a lazy list of integers lazy_list n containing inte-
gers from n to 1. An element of this list is a record (n, r) which consist of the
integer field for n, and a reference field with r, where r is the address a of the
closure computing tail, if n > 0, and r = nil otherwise. The closure is the func-
tiontail t = λi. i f i>1 then (i-1, a) else (0 , nil). So, the size of this
structure is constant: the size of integer + the size of a pointer + the size of the
closure, whereas the size of the corresponding strict list is (the size of integer +
the size of a pointer)×n. The lazy list is unfolded once it is needed (and may be
memoized after that).

One of the ways to provide a transition from a strict semantics to a lazy one is
to augment a strict language with an explicit suspension constructor S andforce
operator, as it is done in [15]: datatypeα susp= S α. Then for the example
above one has:

val l=S(lazy_list 1000) (*the constant heap is allocated*)
· · ·
val x=force l (*proportional to 1000 cells are allocated*)

One may consider typing rules for explicit suspensions and forces, like

Γ `Σ e :τ
Γ `Σ force(Se) :τ FORCE

Amortized time analysis for call-by-need4 languages is considered in [15].
Instead of credits it uses debts to cover costs of suspensions. A closure is allowed
to be forced only after its debt is “payed off” by the operations preceding the
operation which forces the closure.

Choice of Programming Language. To consider heap usage analysis for
lazy functional programming languages, we will begin with a strict version of

programme implementation that it actually requires n · (3 ·n+3) heap space.
4Following [15] we associate call-by-value with strict languages, call-by-name with

lazy languages without memoization, and call-by-need with lazy languages with
memoization.

8

core-Clean. We have chosen Clean since Clean’s uniqueness typing [3] makes
Clean more suited as a starting point than e.g. Haskell, since with uniqueness
typing reuse of nodes can be analyzed in a sophisticated manner. For this strict
core-Clean language we will define an alternative operational semantics which
will take heap usage into account, and then formulate a type system in which
annotations in types express costs.

Methodology. Camelot [13] is an ML-like strict functional language with
polymorphism and algebraic data types. To enable analysis of heap usage, in
Camelot one can syntactically make the distinction between destructive and non-
destructive pattern matching, where destructive pattern matching allows a node of
heap space to be reclaimed. It is expected to be relatively easy to transfer such a
distinction to a language that has uniqueness typing, as this can enforce the safe
use of destructive pattern matching. Therefore, we expect that the results achieved
for Camelot will be quickly transferred to the strict version of core-Clean.

Then, we will change the strict semantics into a mixed lazy/strict semantics
and require that suspensions and forces are explicit in our input language. This
corresponds to assuming that compiler optimizations and program transforma-
tions have been performed before the analysis starts. We will investigate the con-
sequences for the operational semantics and for the type system. This is not a
big step in the dark since the heap-aware inference system from [10] already has
some flavor of the call-by-need semantics. Shared usage of variables by several
expressions is treated, for instance, in the MATCH-rule given below in Section
1.5.3 and in the SHARE-rule in [10].

1.4.3 Adaptation to Object-Orientation

Choice of Programming Language. As the object-oriented programming lan-
guages to be studied we have chosen Java. We will use the Java semantics de-
veloped in the LOOP project [11], which includes an explicit formalization of
the heap. This will first require accurate accounting of heap usage in the type-
theoretic memory model underlying the LOOP tool [5].

The Java Modeling Language JML, a specification language tailored to Java,
already provides a syntax for specifying heap usage, but this part of JML is as
of yet without any clear semantics. We want to provide a rigorous semantics for
these properties about heap space usage and then develop an associated program
logic for proving such properties.

Methodology. We will start to adjust the analysis of Section 1.5.3 by applying
it to classes that admit a functional algebraic data-type (ADT) interface. These
classes posses “basic” methods that have counterparts in functional programming.
Constructors correspond to functional constructors and get-field methods (“ob-
servers”) correspond to non-destructive pattern matching. Heap-aware program-
logic rules are to be defined for these basic methods and the language constructs
such as if-branching, sequencing and while-repetition (a-la “recursive function
call”). Then, a field assignment, for example, may be presented as a composition
of the destructive match and a constructor.

9

Next, research will be done to alleviate the restrictions. For that purpose,
we will investigate the possibility of introducing amortized variants of existing
specific analyzes (such as the non-recursive [6] and the symbolic [7] which treats
aliasing). One of the main problems for heap space analysis is aliasing. Aliasing-
aware type systems and logics presented in [1, 12] may be considered separately
from the resource-aware typing system and are to be combined with it at the very
last stage of the design of the proof system.

1.5 FIRST STEPS: NON-LINEAR BOUNDS AND SIZED TYPES

In this section we show why a more general treatment of credits (generalizing
from constants to functions) is required for non-linear heap consumption anal-
ysis. We give examples, one of which illustrates the advantage of combination
amortization with types and the other one is about non-linear heap consumption.
Further, we present an experimental type system that combines sizes and amorti-
zation. Sizes are needed to determine generalized credits and may be considered
independently. Finally, we give a summary of the first results of the project deal-
ing with strictly sized types.

1.5.1 Towards non-linear upper bounds on the size of live data

It is convenient to measure the potentials of data structures in terms of their sizes.
For instance, the potential of a list of length n may be a function of n, that is
Φ(n). In general, one assigns a potential to an overall data structure. In other
words, a potential is assigned to the abstract state that is the collection of the
sizes of the structures existing in a given concrete state. Now, consider a function
of type ([String32]n, [String32]m) → [(Int, Int)]n·m that creates an initial
table from input lists of length n and m of strings of fixed length (say 32). We
use superscripts for sizes and subscripts for credits. It is natural to assume that for
the input of type ([String32]n, [String32]m) the potential Φ(n, m) depends on
n and m.

The system assigns a credit to each constructor of a data structure. For in-
stance, in [10] each constructor of a list of type [α]k has a constant credit k, and
thus the potential of the list is k ·n, where n is its length.

In general the credit of a node may be a function. It may depend on the po-
sition of the node in the list, and/or on the size of the list, as well as on the
size of “neighboring” data structure, etc. For instance, in the table-creating func-
tion the annotated type of its input may be ([String32]nk , [String32]m0), where
k(position, n, m) = m.

In the linear heap-consumption analysis of [10] these dependencies are not
taken into account. This makes the analysis very simple, because it reduces to
solving a linear programming task. It covers a large class of functional programs
with linear heap consumption, where coefficients of linear functions are credits of
constructors.

Introducing dependencies will significantly increase the complexity of type

10

remove add
1

2

3 4

5

6

xs ys

FIGURE 1.2. Adding to the queue.

checking and inference. We will study classes of function definitions for which
type checking and inference of non-linear bounds are decidable.

1.5.2 Examples: going on with amortization-and-types

The linear heap-consumption analysis shows that amortization and types can be
combined naturally. In this section we consider 2 examples. One example illus-
trates the advantages of this combination. The other one motivates the study of
annotated types for non-linear heap consumption.

Type systems bring modularity to amortized analysis

In the following example the naive worst-case analysis significantly overestimates
the real heap consumption and the precise analysis is relatively complicated. We
show that with the help of types annotated with credits, one obtains a very good
upper bound for a “reduced price”: types make the analysis modular and, thus,
simpler and more suitable for automated checking or inference.

Consider queues (“first-in-first-out” lists) presented as pairs of lists in the usual
way. A queue q is represented by a pair (xs, ys), such that q is xs++(reverse ys).
The head of the list xs is the first element of the queue, and the head of ys is the last
element of the queue. For instance, the queue [1, 2, 3, 4, 5] may be presented as
([1, 2, 3], [5, 4]). One adds elements to the queue by pushing them on the head
of ys, see Figure 1.2 below. After adding 6 the resulting queue is presented by
([1, 2, 3], [6, 5, 4]). The function “remove from the queue”, will pop 1 from xs.
Consider the code forremove, wherereverse creates a fresh copy of the reversed
list:

remove :: ([Int] , [Int]) → (Int, ([Int] , [Int]))
remove ([] , []) = error
remove ([] , ys) = remove (reverse ys, [])
remove (x:xs, ys) = (x, (xs, ys))

We assume that input pairs and output triples are not boxed, that is, two input
pointer values are taken from the operand stack and in the case of normal ter-

11

mination three values will be pushed on the operand stack. (This helps to avoid
technical overhead with heap consumption for pairs and triples creation.)

Let n denote the length ofremove’s first argument and m denote the length of
the second argument. If n = 0, then remove consumes m heap cells, otherwise
remove does not consume cells at all.

The annotated type forremove looks as follows:
([Int]n0, [Int]m1) 0→0 (Int, ([Int]p1

0 , [Int]p2
1))

where p1 and p2 are defined piece-wise: if n = 0 then p1 = m− 1, p2 = 0; oth-
erwise p1 = n− 1, p2 = m. As for the credits: if n = 0 then the potential of the
second argument 1 ·m is spent byreverse and the potential of the second list on
the r.h.s. is 0 = 1 · p2. If n > 0 then the second argument and its potential 1 ·m are
intact, and the potential of the second list on the r.h.s. is m = 1 · p2.

So, amortization keeps track of the resources that are left after computation
and that may be used afterwards. The effect of combining amortization with types
may be seen at the composition ofremovewithcopy3 that returns a fresh copy of
the third argument. The type ofcopy3 is (Int, [Int]n0, [Int]m1) 0→0 [Int]m0 .

The naive worst-case analysis consists in summation of two worst-case heap
consumption estimations: forremove it is m, and for copy3 it is m. So, the naive
worst-case forcopy3(remove(xs, ys)) is 2 ·m.

The precise worst-case analysis requires detailed abstract program analysis
of the entire composition and leads to a piecewise definition of the consumption
function, which is later simplified to a linear function p(n, m) = m:

n m
remove
consumes p2

copy3
consumes

copy3(remove(-))
consumes

0 m m 0 p2 = 0 m+0 = m
> 0 m 0 m p2 = m 0+m = m

The type (Int, [Int]n0, [Int]m1) 0→0 [Int]m0 of copy3(remove(-)) is
easily obtained by composition. It means that the composition consumes 1 ·m
heap units. Type derivation for remove is done once and forever and the type is
applicable for any other composition yielding a modular amortized analysis.

Example of the use of nonlinear bounds

We illustrate the kind of types we plan to derive by the following small example.
Consider the function definition that given two lists of strings, of length n and

m respectively, creates the initial n×m table of pairs of integer numbers filled with
(−1,−1). This function is used for creating the initial table for a tournament, like
a round in a soccer championship.

The initial table is used as follows. During a round, each team plays two
games – at home and as a guest. Let, for instance, “PSV Eindhoven” be number 1
in the list and play in Eindhoven with “AZ Alkmaar” being number 3 withe result
2−1. Then one places (2, 1) in the position (1, 3) in the table. This may be done
in non-destructive or destructive (in-place update) way. At the end of the round

12

the table, except the diagonal, is filled with the results.
We need an auxiliary initializing function init_row. Note, that a node of a

list of pairs of integers allocates 3 heap units: one per each integer and one for
the reference to the next element. The main “working” function is init_table.
Finally, the functioninit_round creates the initial tournament table.
init_row :: [String32]n3 0→0 [(Int, Int)]n0
init_row [] = []
init_row (h:t) = (-1, -1) : init_row t

init_table :: ([(Int, Int)]n0, [String32]m3n) 0→0 [[(Int, Int)]n0]m0
init_table row [] = []
init_table row (h:t) = copy row : init_table t

init_round :: [String32]n3n+3 0→0 [[(Int, Int)]n0]n0
init_round teams = init_table (init_row teams) teams

The size dependency (superscripts in types) indicates that the result is of size
n ·n. One might have expected size n ·(n−1) but the program does not remove the
superfluous diagonal. Taking into account credits (subscripts in types) for the in-
termediate structure produced byinit_rowwe derived that te heap consumption
ofinit_round is: n · (3n+3).

1.5.3 Experimental Type System

We start with a type system for a first-order call-by-value functional language
over integers and polymorphic lists. First we consider only shapely function defi-
nitions, that is definitions for which the size of the output (polynomially) depends
on the sizes of input lists. Below, we sketch the basic ideas of such a type system.

Language and Types

The abstract syntax of the language is defined by the following grammar, where
c ranges over integer constants, x and y denote zero-order program variables, and
f denotes a function name:

Basic b ::= c | nil | cons(x,y) | f (x1, . . . ,xn)
Expr e ::= letfun f (x1, . . . ,xn) = e1 in e2

| b | let x = b in e | if x then e1 else e2
| match x with p nil⇒ e1 p cons(xhd,xtl)⇒ e2

We have been studying a type and effect system in which types are annotated
with size expressions and credit functions.

Size expressions that annotate types are polynomials representing lengths of
finite lists and arithmetic operations over these lengths (at a later stage this may
be extended to piecewise-defined polynomial functions):

SizeExpr p ::= IN | n | p+p | p−p | p∗p

13

where n, possibly decorated, denotes a size variable, which ranges over integer
numbers. Semantics for lists with negative sizes is not defined: these lists are
ill-formed.

In the simplest case, the intuition behind a credit function k : IN→ R + is that
k(i) is the credit, that is, a number of free heap units, assigned to the i-th cons-cell
of a given list. Note that we count cons-cells from nil, that is the head of a list of
length n has credit k(n). Fractional credits may be used to achieve more flexibility
in defining distribution of extra heap cells across an overall data structure.

As we have noticed in 1.5.1, credits may depend not only on the position of
a cons-cell, but also on other parameters, like the length of the outer list or the
sizes of “neighboring” lists. In general, a credit function is of type IN× . . .× IN→
(IN → R +). However here, for the sake of simplicity, we consider typing rules
with the simplest credits of type k : IN→ R +, and k denotes a parametric credit
function.

Zero-order types are assigned to program values, which are integers and an-
notated finite lists:

Types τ ::= Int | α | [τ]pk α ∈ TypeVar

where α is a type variable. For now, lists represent matrix-like structures and must
have size expressions at every position in the “nested-list” type.

First-order types are assigned to shapely function definitions over zero-order
types. Let τ◦ denote a zero-order type where all the size annotations are size
variables. First-order types are defined by:

FTypes τ f ::= τ◦1× . . .× τ◦n → τn+1
such that FVS(τn+1)⊆ FVS(τ◦1)∪·· ·∪FVS(τ◦n)

where FVS(τ) denotes free size variables of a type τ and K, K′ are non-negative
rational constants. Here, we abstracted from a few technical details concerning
the equivalence of empty lists, like [[α]p]0 ≡ [[α]q]0. Full definitions are in [18].

Typing rules

Consider a few typing rules that generalize the type system of Hofmann and Jost
[10] using credit functions in stead of credit constants.

A typing judgment is a relation of the form D; Γ; K `Σ e : τ; K′, where D
is a set of Diophantine equations (i.e. equations with integer coefficients with
variables varying over natural numbers) used to keep track of the size information.
The signature Σ contains the type assumptions for the functions to be checked.

In the typing rules, D ` p = p′ means that p = p′ is derivable from D in first-
order logic. D ` τ = τ′ is a shorthand that means that τ and τ′ have the same
underlying type and equality of their credit and size annotations is derivable.

The type system allows non-negative potentials only. The credit functions k
and the constants K and K′ are always non-negative. Due to the side conditions
(like K ≥K′+1+k(p′+1) below) the typing rules guarantee that potentials fully
cover the cost of computation. For the rule below the side condition guarantees
that there will be enough heap cells to evaluate CONS.

14

K ≥ K′+1+ k(p′+1)
D ` p = p′+1

D; Γ, hd : τ, tl : [τ]p
′

k ; K `Σ cons(hd, tl) : [τ]pk ; K′ CONS

The non-destructive pattern-matching rule takes into account that a list and its
tail are shared and, therefore, they share the potential. In the simplified version
below all, but the head-cell’s, potential is transferred to the tail. The head-cell’s
credit is “opened” for usage:

p = 0, D; Γ, x : [τ′]p
k ; K `Σ enil :τ; K′

D; Γ,hd : τ′, x : [τ′]p
0 , tl : [τ′]p−1

k ; K + k(p) `Σ econs :τ; K′

D; Γ, x : [τ′]pk ; K `Σ match x with | nil⇒ enil

| cons(hd, tl)⇒ econs

:τ; K′ MATCH

The function application rule for a function f may be viewed as a generaliza-
tion of the CONS-rule with f instead of cons and the function’s arguments instead
of hd, tl. Note that the precondition requires the information Σ(f) about the type
of the function. In this way, one achieves the finiteness of the derivation tree if the
function is recursive. The information may be not complete, that is, the type may
have unknown parameters in annotations. Type inference for the annotated types
consists in finding these parameters.

To deal with inter-structural exchange of resources, one needs rules like
D ` K ≥ Σp

i=1k′(i)
D; Γ, x : [τ]p

k ; K `Σ e :τ′; K′

D; Γ, x : [τ]p
k+k′ ; K−Σp

i=1k′(i) `Σ e :τ′; K′ SHUFFLEIN

This rule is non-syntax driven and increases complexity of type-checking. We
plan to establish conditions that define how such inference rules must be applied.

1.5.4 First Results: Sized Types

Whilst exploring possible research directions, it became clear that an important
aspect of any advanced amortized analysis is static derivation of the sizes of data
structures. More specifically, the relation between the sizes of the argument and
the size of the result of a function has to be known. The size of a data structure,
for now, is the number of nodes it consists of.

As a first result we have designed a pure size-aware type system, which is
obtained from the one presented in section 1.5.3 by erasing credit functions and
resource constants [18]. This type system treats non-monotonic polynomial size
dependencies. We have shown that, in general, type-checking for this system
is undecidable. Indeed, consider the matching rule. Its nil-branch contains the
Diophantine equation that reflects the fact that the list is empty. At the end of type
checking one may need to determine if a branch is going to be entered or not.
To check this, the Diophantine equations have to be solved. So, type-checking is
reducible to Hilbert’s tenth problem (i.e. existence of an algorithm which given
any Diophantine equation decides if it has roots or not). Hilbert’s tenth problem
is shown to be undecidable [14]. Thus, type checking is undecidable in general.

15

We have identified a syntactical restriction such that the equations to solve are
trivially decidable: let-expressions are not allowed to contain pattern matching as
a sub-expression.

It is not known whether type inference is decidable for the size-aware system.
Technically, it amounts to solving systems of polynomial equations that may be
non-linear. So, to infer types we propose an altogether different approach [18].
The idea is simple. First, note that the size dependencies are exact and polyno-
mial. From interpolation theory it is known that any polynomial of finite degree
is determined by a finite number of data points. Hence, if a degree of the polyno-
mial is assumed and enough pairs of input-output sizes are measured by running
the function on test-data a hypothesis for the size equations can be determined. If
size dependency has indeed the type assumed, checking the hypothesis in the type
system gives a positive result. By repeating the process for increasing degrees,
the sized type for a function definition will eventually be found, if the function is
typable. In case it does not exist, or the function does not terminate, the procedure
does not terminate. Thus, the sized-type inference problem is semi-decidable for
terminating functions. Complete shape-checking and inference procedures, even
for the expressions subject to the syntactic condition, cannot exist. So, the type
system is incomplete, non-termination due to absence of a type means either that
the function is not shapely, or shapely, but not typable. However, a large non-
trivial class of shapely functions is typable in the system.

A further development of this system would, amongst others, include an adap-
tation to upper and lower bounds and support for other data structures.

1.6 RELATED WORK

The presented combination of amortization and types generalizes the approach
from [10] which forms the foundational basis of the EU funded project Mobile
Resource Guarantees, [16]. The project has developed the infrastructure needed
to endow mobile code with independently verifiable certificates describing its re-
source behavior (space, time). Its functional language Camelot is an implemen-
tation of the underlying language from [10]. A Camelot program is compiled
into Grail, which a structured version of the Java Byte Code. The high-level type
system is mirrored in a specialized heap-aware Hoare logic for the byte-code.

The AHA project can be considered as one of the successors of MRG. Firstly,
it is aimed to extend the high-level type system of MRG to type-systems for non-
linear heap consumption bounds. Secondly, applications of the methodology to
object-oriented programming will involve MRG experience with the byte-code:
one considers imperative object-oriented structures that have counterparts in func-
tional programming. Finally, soundness of the type systems, type-checking and
inferences procedures, object-oriented extensions will be implemented in an en-
vironment similar to the program-logic environment designed for MRG.

MRG has a few other successors. First, one should mention a large consortium
Mobius [4], which, as well as MRG, runs under EU framework Global Comput-
ing. Its aim is to design a byte-code verification tool that allows to employ a large

16

variety of formal methods. The byte-code properties of interest include informa-
tion flows and resource consumption.

The aims of the EmBounded project [9] are to identify, to quantify and to cer-
tify resource-bounded code in Hume, a domain-specific high-level programming
language for real-time embedded systems. The project develops static analyzes
for time and space consumption, involving size and effect type systems. The
foundational results have realistic applications for embedded systems.

The ReQueSt project [2], funded by UK government’s agency EPSRC, aims
to prevent abrupt lack-of-memory termination of an expensive user’s request in a
GRID application.

Together, these projects seem to constitute an upcoming resource consumption
trend in functional programming research.

1.7 ACKNOWLEDGEMENTS

We would like to thank Martin Hofmann for the foundational results that inspired
this project and the anonymous reviewers for their helpful comments and sugges-
tions.

1.8 CONCLUSION

The AHA project aims to contribute to the analysis of the resource consumption
by improving the state of the art in inferring upper bounds for heap-space us-
age. Improvements lie in the complexity of the bounds and the applicability to
widely used languages. Ultimately, we want to implement both a type checking
and a type inference system for heap space usage bounds of lazy functional and
imperative programs.

REFERENCES

[1] D. Aspinalll and M. Hofmann. Another type system for in-place update. In
ESOP’2002, volume 2305 of LNCS, pages 36 – 52, 2002.

[2] R. Atkey and K. MacKenzie. Request: Resource quantification for e-science tech-
nologies. In International Workshop on Proof-Carrying Code, 2006.

[3] E. Barendsen and S. Smetsers. Uniqueness typing for functional languages with
graph rewriting semantics. Mathematical Structures in Computer Science, 6:579–
612, 1996.

[4] G. Barthe, L. Beringer, P. Crégut, B. Grégoire, M. Hofmann, P. Müller, E. Poll,
G. Puebla, I. Stark, and E. Vétillard. Mobius: Mobility, ubiquity, security. Objec-
tives and progress report. In TGC 2006: Proceedings of the second symposium on
Trustworthy Global Computing, LNCS. Springer-Verlag, 2007. To appear.

[5] J. van den Berg, M. Huisman, B. Jacobs, and E. Poll. A type-theoretic memory model
for verification of sequential Java programs. In D. Bert and C. Choppy, editors, Recent
Trends in Algebraic Development Techniques (WADT’99), volume 1827 of LNCS.
Springer, 2000.

17

[6] V. Braberman, D. Garbervetsky, and S. Yovine. A static analysis for synthesizing
parametric specifications of dynamic memory consumption. Journal of Object Tech-
nology, 5(5):31–58, June 2006.

[7] W.-N. Chin, H. H. Nguen, S. Qin, and M. Rinard. Predictable memory usage for
object-oriented programs. Technical report, National University of Singapore, Mas-
sachusetts Institute of Technology, 2004.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and Cliff Steinet. Introduction to algo-
rithms. MIT press, 2001.

[9] K. Hammond, R. Dyckhoff, Ch. Ferdinand, R. Heckmann, M. Hofmann, S. Jost, H.-
W. Loidl, G. Michaelson, R. Pointon, N. Scaife, J.Sérot, and A. Wallace. Project start
paper: The embounded project. In Marko van Eekelen, editor, Trends in Functional
Programming, volume 6, pages 195–210. Intellect.

[10] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order func-
tional programs. In Proceedings of the 30th ACM Symposium on Principles of Pro-
gramming Languages, volume 38-1, pages 185–197. ACM Press, 2003.

[11] B. Jacobs and E. Poll. Java program verification at Nijmegen: Developments and
perspective. In International Symposium on Software Security (ISSS’2003), Tokyo,
Japan, LNCS, pages 134–153. Springer, 2004.

[12] M. Konechny. Typing with conditions and guarantees for functional in-place up-
date. In TYPES 2002 Workshop, Nijmegen, volume 2646 of LNCS, pages 182 – 199.
Springer, 2003.

[13] H.-W. Loidl and K. MacKenzie. A Gentle Introduction to Camelot, September 2004.
http://groups.inf.ed.ac.uk/mrg/camelot/Gentle-Camelot/.

[14] Yu. Matiyasevich and J. P. Jones. Proof of recursive unsolvability of Hilbert’s tenth
problem. American Mathematical Monthly, 98(10):689–709, October 1991.

[15] Ch. Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

[16] D. Sanella, M. Hofmann, D. Aspinall, S. Gilmore, I. Stark, L. Beringer, H.-W. Loidl,
K. MacKenzie, A. Momigliano, and O. Shkaravska. Project evaluation paper: Mobile
resource guarantees. In Marko van Eekelen, editor, Trends in Functional Program-
ming, volume 6, pages 211–226. Intellect.

[17] B. Schoenmakers. Data Structures and Amortized Complexity in a Functional Setting.
PhD thesis, Eindhoven University of Technology, September 1992.

[18] O. Shkaravska, R. van Kesteren, and M. van Eekelen. Polynomial size analysis for
first-order functions. In S. Ronchi Della Rocca, editor, Typed Lambda Calculi and
Applications (TLCA’2007), Paris, France, volume 4583 of LNCS, pages 351 – 366.
Springer, 2007.

18

