
FOUNDATIONAL ASPECTS OF SIZE ANALYSIS:
ANSWERS FOR THE EXERCISES

OLHA SHKARAVSKA, MARKO VAN EEKELEN, AND ALEJANDRO TAMALET

Institute for Computing and Information Sciences, Radboud University Nijmegen
e-mail address: shkarav@cs.ru.nl

Institute for Computing and Information Sciences, Radboud University Nijmegen
e-mail address: marko@cs.ru.nl

Institute for Computing and Information Sciences, Radboud University Nijmegen
e-mail address: tamalet@cs.ru.nl

Exercise 1. Type checking for append: experimenting with demo and reading the
“manual” type checking from the exercise sheet.

Exercise 2. Type checking conspack : Int× Ln(Int)→ Ln+1(Int):

conspack(x , l) =
match l with | nil⇒ cons(x , l)

| cons(hd , tl)⇒ let y = x − hd
in if y then let l ′ = conspack(x , tl)

in cons(hd , l ′)
else cons(x , l)

(1) The AHA-language code for conspack is
letfun conspack(x, l) : Int L(Int, n) -> L(Int, n+1) =
match l with
| Nil -> Cons(x, l)
| Cons(h, t) ->
let w=-(x,h) in

2000 ACM Subject Classification: F.4.1[Mathematical logic and formal languages]: Mathematical logic –
Lambda calculus and related systems, Logic and constraint programming; F.2.2 [Analysis of algorithms and
problem complexity]: Non-numerical algorithms and problems; D.1.1 [Programming techniques]: Applicative
(functional) programming. General Terms: Algorithms, Verification.

Key words and phrases: Shapely Functions, Size Analysis, Type Checking, Type Inference, Diophantine
equations, Polynomial Interpolation.

This research is sponsored by the Netherlands Organisation for Scientific Research (NWO), project Amor-
tised Heap Space Usage Analysis (AHA), grantnr. 612.063.511.

c© ANSWERS
Creative Commons

1

2 ANSWERS

if w then Cons(h, conspack(x, t))
else Cons(x, l) fi

in conspack(2, Cons(1, Cons(2, Cons(3, Nil))))

(2) Manual type-checking:
(a) The body of the function is a pattern-matching expression. Therefore, we have

to prove two subgoals that correspond to the nil- and cons-branches respec-
tively.
Applying the Match-rule first yields the Nil-branch subgoal:

n = 0; x : Int, l : Ln(Int) `Σ cons(x , l) :Ln+1(Int)
(b) Continue with the nil-branch. The expression in the previous subgoal is cons(x , l),

so we apply the Cons-rule. We obtain the following subgoal:

n = 0 ` n+ 1 = n+ 1
which is trivially true.

(c) Now follow the cons-branch defined by the Match-rule applied to econspack.

x : Int, l : Ln(Int) `Σ let y = x − hd in if . . . then else :Ln(Int)

This is a let-construct, so we apply the Let-rule to obtain two subgoals, cor-
responding to the let-binding and the let-body respectively.

(d) In the let-binding we have a subgoal

x : Int, hd : Int `Σ x − hd :τ ?

where τ ? is an unknown type, which we will reconstruct on the next step using
the appropriate axiom. In the context we omit the program variables, on which
the expression in the subgoal does not depend.

(e) The expression in the binding clause is an integer expression, so we apply
BinOp. We obtain

` τ ? = Int

Now the type τ ? is reconstructed and may be used in the let-body.
(f) In the let-body we have a subgoal with an if-expression. We apply the If-rule

and obtain two subgoals corresponding the true- (when y 6= 0) and false- (when
y = 0) branches.
The “true” subgoal is

x :Int, l :Ln(Int), hd :Int, tl :Ln−1(Int) `Σ let l ′ = conspack(x , tl) in cons(hd , l ′) :Ln+1(Int)

(g) The subgoal in the let-binding is

x : Int, tl : Ln−1(Int) `Σ conspack(x , tl) :τ ?

(h) Applying function-application rule yields τ ? = L(n−1)+1(Int).
(i) The subgoal in the let-body is

l ′ : L(n−1)+1(Int), hd : Int `Σ cons(hd , l ′) :Ln+1(Int)

ANSWERS 3

(j) Applying cons-rule yields ` n+ 1 = (n− 1) + 1 + 1 which is trivially true.
(k) The “false” subgoal is

x : Int, l : Ln(Int) `Σ cons(x , l) :Ln+1(Int)

(l) Applying the Cons-rule yields

` n+ 1 = n+ 1
which is trivially true.

Exercise 3. Type checking sqdiff : Ln(α)× Lm(α)→ L(n−m)2(L2(α)):

sqdiff(l1, l2) =
match l1 with | nil⇒ cprod(l2, l2)

| cons(hd1, tl1)⇒ match l2 with | nil⇒ cprod(l1, l1)
| cons(hd2, tl2)⇒ sqdiff(tl1, tl2)

Manual type-checking:

(1) The body of the function is, again, a pattern-matching expression. We consider two
subgoals that correspond to the nil- and cons-branches respectively.

Applying the Match-rule first yields the Nil-branch subgoal:

n = 0; l1 : Ln(α), l2 : Lm(α) `Σ cprod(l2, l2) :L(n−m)2(L2(α))
(2) Continue with the nil-branch. The expression in the subgoal the function call

cprod(l2, l2), so we apply the function-call rule and obtain the following equations:

n = 0 ` (n−m)2 = m2

n = 0 ` 2 = 2
which are trivially true.

(3) Now follow the cons-branch defined by the Match-rule applied to ecprod. This is
again a pattern matching. Consider its nil-branch:

m = 0; l1 : Ln(α), l2 : Lm(α) `Σ cprod(l1, l1) :L(n−m)2(L2(α))
(4) Continue with this nil-branch. The expression in the previous subgoal the func-

tion call cprod(l1, l1), so we apply the function-call rule and obtain the following
equations:

m = 0 ` (n−m)2 = n2

m = 0 ` 2 = 2
which are trivially true.

(5) The subgoal in the cons-branch is

tl1 : Ln−1(α), tl2 : Lm−1(α) `Σ cprod(tl1, tl2) :L(n−m)2(L2(α))
(6) Applying function-application rule yields two equations

` (n−m)2 = ((n− 1)− (m− 1))2

` 2 = 2
which are obviously true.

4 ANSWERS

Exercise 4. Type checking of scalar prod:

scalar prod(l1, l2) =
match l1 with | nil⇒ match l2 with | nil⇒ cons(0, nil)

| cons(hd2, tl2)⇒ scalar prod(l1, l2) (* nontermination *)
| cons(hd1, tl1)⇒ match l2 with | nil⇒ scalar prod(l1, l2) (* nontermination *)

| cons(hd2, tl2)⇒ let l = scalar prod(tl1, tl2)
in let y = hd1 ∗ hd2

in replace(y , l)

where replace : Int× Ln(Int)→ Ln(Int) is defined by

replace(x , l) =
match l with | nil⇒ nil

| cons(hd , tl)⇒ cons(x + hd , tl)

(1) The AHA-language presentation of these programs, for type checking scalar prod :
Ln(Int)× Ln(Int)→ L1(Int), is
letfun replace(x, l): Int L(Int, n) -> L(Int, n) =

match l with
| Nil -> Nil
|Cons(h, t) -> Cons(+(x,h), t)
in
letfun scalarprod(l, ll) : L(Int, n) L(Int, n) -> L(Int, 1) =
match l with
| Nil ->
match ll with
| Nil -> Cons(0, Nil)
| Cons(hh, tt) -> scalarprod(l, ll)
| Cons(h, t) ->
match ll with
| Nil -> scalarprod(l, ll)
| Cons(hh, tt) -> replace(*(h, hh), scalarprod(t, tt))
in scalarprod(Cons(3, Nil), Cons(2, Nil))

Manual type checking:
(a) Applying the match-rule to the body of scalar prod yields two subgoals. The

first one corresponds to the nil-branch, which is in its turn, again, a pattern
matching. We apply the match-rule again and obtain two subgoals. In the
nil-branch we have

n = 0; l1 : Ln(Int), l2 : Ln(Int) `Σ cons(0, nil) :L1(Int)
(b) The expression cons(0, nil) is the sugared version of the let-bindings

let l ′ = nil in let x = 0 in cons(x , l ′)

One can easily show that its type is L1+0(Int). Therefore, we obtain the
trivially true equation ` 1 = 1 + 0.

ANSWERS 5

(c) The cons-branch of the nil-branch of the body of scalar prod is the function call
scalar prod(l1, l2), which yields the non-terminating computation. In any case,
we have to check its type either. Applying the function-call rule we obtain

n = 0 ` L1(Int) = L1(Int)
which is trivially true.

(d) Now consider the cons-branch of the body of scalar prod. It is, again, a pattern-
matching. First we type check its nil-branch, which yields a non-terminating
computation.

n = 0; l1 : Ln(Int), l2 : Ln(Int) `Σ scalar prod(l1, l2) :L1(Int)

(e) Applying the function-application rule to the subgoal above we obtain, as ear-
lier, n = 0 ` L1(Int) = L1(Int), which is trivially true.

(f) Consider the subgoal in the cons-branch of the cons-branch of the body:

l1 : Ln(Int), l2 : Ln(Int),
tl1 : Ln−1(Int), tl2 : Ln−1(Int),
hd1 : Int, hd2 : Int

 `Σ

let l = scalar prod(tl1, tl2)
in let y = hd1 ∗ hd2

in replace(y , l)

 :L1(Int)

(g) The binding in the outer let-expression generates the subgoal

tl1 : Ln−1(Int), tl2 : Ln−1(Int) `Σ scalar prod(tl1, tl2) :τ ?

(h) Applying the function application rule we obtain τ ? := L1(Int).
(i) The binding in the inner let-expression generates the subgoal

hd1 : Int, hd2 : Int `Σ hd1 ∗ hd2 :τ ′?

(j) Applying the binary-operation rule we obtain τ ′? := Int.
(k) For the let-body we have the subgoal

l : L1(Int), y : Int `Σ replace(y , l) :L1(Int)
(l) The function-application rule yields ` L1(Int) = L1(Int), which is trivially

true.
(2) The AHA-language presentation for type checking scalar prod : Ln(Int)×Lm(Int)→

L1(Int), is the same as for the typing scalar prod : Ln(Int) × Ln(Int) → L1(Int),
except the letfun row, where scalar prod is defined. Of course, now it is
letfun scalarprod(l, ll) : L(Int, n) L(Int, m) -> L(Int, 1)

The manual type-checking is similar to the one for the typing scalar prod : Ln(Int)×
Ln(Int)→ L1(Int):
(a) Applying the match-rule to the body of scalar prod yields two subgoals. The

first one corresponds to the nil-branch, which is in its turn, again, a pattern
matching. We apply the match-rule again and obtain two subgoals. In the
nil-branch we have

n = 0,m = 0; l1 : Ln(Int), l2 : Lm(Int) `Σ cons(0, nil) :L1(Int)

6 ANSWERS

(b) The expression cons(0, nil) is the sugared version of the let-bindings

let l ′ = nil in let x = 0 in cons(x , l ′)

One can easily show that its type is L1+0(Int). Therefore, we obtain the
trivially true equation n = 0,m = 0 ` 1 = 1 + 0.

(c) The cons-branch of the nil-branch of the body of scalar prod is the function call
scalar prod(l1, l2), which yields the non-terminating computation. In any case,
we have to check its type either. Applying the function-call rule we obtain

n = 0 ` L1(Int) = L1(Int)
which is trivially true.

(d) Now consider the cons-branch of the body of scalar prod. It is, again, a pattern-
matching. First we type check its nil-branch, which yields a non-terminating
computation.

m = 0; l1 : Ln(Int), l2 : Lm(Int) `Σ scalar prod(l1, l2) :L1(Int)

(e) Applying the function-application rule to the subgoal above we obtain, as ear-
lier, m = 0 ` L1(Int) = L1(Int), which is trivially true.

(f) Consider the subgoal in the cons-branch of the cons-branch of the body:

l1 : Ln(Int), l2 : Lm(Int),
tl1 : Ln−1(Int), tl2 : Lm−1(Int),
hd1 : Int, hd2 : Int

 `Σ

let l = scalar prod(tl1, tl2)
in let y = hd1 ∗ hd2

in replace(y , l)

 :L1(Int)

(g) The binding in the outer let-expression generates the subgoal

tl1 : Ln−1(Int), tl2 : Lm−1(Int) `Σ scalar prod(tl1, tl2) :τ ?

(h) Applying the function application rule we obtain τ ? := L1(Int).
(i) The binding in the inner let-expression generates the subgoal

hd1 : Int, hd2 : Int `Σ hd1 ∗ hd2 :τ ′?

(j) Applying the binary-operation rule we obtain τ ′? := Int.
(k) For the let-body we have the subgoal

l : L1(Int), y : Int `Σ replace(y , l) :L1(Int)
(l) The function-application rule yields ` L1(Int) = L1(Int), which is trivially

true.

Exercise 5. Infer the size annotations for append for d = 2.

(1) The input of the inference procedure is append : Ln(α) × Lm(α) → Lp?(n,m)(α),
that is we supply the procedure with the underlying type and the list of the size
variables, n,m assigned to the input types of append. The task is to reconstruct
p?(n,m), assuming that the degree d of the polynomial p? is d = 2.

ANSWERS 7

(2) A quadratic polynomial (d = 2) of two variables has six coefficients: p?(n,m) =
a20n

2 +a02m
2 +a11nm+a10n+a01m+a00. Therefore, to compute these coefficients,

we must have the values p(n1,m1), . . . , p(n6,m6) of the polynomial in some six 2-
dimensional nodes, (n1,m1), . . . , (n6,m6) such that the system

a20n
2
1 + a02m

2
1 + a11n1m1 + a10n1 + a01m1 + a00 = p(n1,m1)

.
a20n

2
6 + a02m

2
6 + a11n6m6 + a10n6 + a01m6 + a00 = p(n6,m6)


where a20, a02, a11, a10, a01, a00 are variables, has a unique solution.

(3) The system above has a unique solution if the nodes (n1,m1), . . . , (n6,m6) satisfy
the NCA-configuration for six 2-dimensional nodes. E.g. three of them lie on a line
on the Cartesian plane, two of them lie on another line, which is parallel to the first
line, and the third one lies on yet another parallel line. We take (1, 1), (2, 1), (3, 1)
lying on y = 1, then (1, 2), (2, 2) lying on y = 2 and (1, 3) lying on y = 3.

(4) Now we generate six pairs of input lists for append with these pairs of lengths:
• [1], [2] with the lengths (1, 1) resp.,
• [1, 2], [3] with the lengths (2, 1) resp.,
• [1, 2, 3], [4] with the lengths (3, 1) resp.,
• [1], [2, 3] with the lengths (1, 2) resp.,
• [1, 2], [3, 4] with the lengths (2, 2) resp.,
• [1], [2, 3, 4] with the lengths (1, 3) resp.

(5) Now we run append on these data:

input lengths input list 1 input list 2 output of append length of the output
(1, 1) [1] [2] [1, 2] 2
(2, 1) [1, 2] [3] [1, 2, 3] 3
(3, 1) [1, 2, 3] [4] [1, 2, 3, 4] 4
(1, 2) [1] [2, 3] [1, 2, 3] 3
(2, 2) [1, 2] [3, 4] [1, 2, 3, 4] 4
(1, 3) [1] [2, 3, 4] [1, 2, 3, 4] 4

(6) Using the table above, we generate a system of linear equations w.r.t. the coefficients
a10, a01, a00:

a20 + a02 + a11 + a10 + a01 + a00 = 2
4a20 + a02 + 2a11 + 2a10 + a01 + a00 = 3
9a20 + a02 + 3a11 + 3a10 + a01 + a00 = 4
a20 + 4a02 + 2a11 + a10 + 2a01 + a00 = 3
4a20 + 4a02 + 4a11 + 2a10 + 2a01 + a00 = 4
a20 + 9a02 + 3a11 + a10 + 3a01 + a00 = 4

(7) Solve the system above. The solution is a10 = a01 = 1 and a20 = a02 = a11 = a00 =
0. Therefore, as for d = 1, we obtain p?(n,m) = n + m. We have already checked
that append : Ln(α)× Lm(α)→ Ln+m(α) is a correct type.

Exercise 6. Inferring annotations for conspack.

8 ANSWERS

(1) The presentation of conspack in the AHA-language for inferring its size annotations
in the demo is the same as the code for type checking, except that we delete size
variables from types, so we have only underlying types in the signatures.

(2) Manual inference.
(a) Assign the size variable n to the input list and assume the degree d = 1 of the

polynomial size function of conspack. Therefore, the polynomial size function
is of the form p(n) = an+ b and we need to find its coefficients a and b.

(b) The polynomial p(n) = an + b is defined by two different points on its graph.
Let, e.g., n1 = 0 and n2 = 1.

(c) Generate two pairs input data where the length of the input lists are n1 = 0
and n2 = 1 respectively. E.g. take as the first input the pair 1, [] and as the
second input the pair 1, [1].

(d) “Run” the program on these pairs. The program outputs [1] of the length 1 on
the first pair and [1, 1] of the length 2 on the second pair.

(e) Based on the size information from the tests, construct the system of linear
equations w.r.t. a, b:

b = 1
a+ b = 2

(f) Solving this system gives a = 1 and b = 1, therefore p(n) = n+ 1.
(g) Type check conspack : Int × Ln(Int) → Ln+1(Int). As we have seen earlier,

this type is accepted.

Exercise 7. Inferring annotations for sqdiff.

(1) Inferring annotations for sqdiff in the inference part of demo (there it is called
usqdiff).

(2) Manual inference of annotations for sqdiff, assuming d = 2.
(a) The inference is very similar to the annotation inference for append, assuming

that d = 2, where d is the degree of the corresponding polynomial size function.
The input of the inference procedure is

sqdiff : Ln(α)× Lm(α)→ Lp?(n,m)(Lp?
2(n,m)(α))

that is we supply the procedure with the underlying type and the list of the size
variables, n,m assigned to the input types of append. The task is to reconstruct
p?(n,m) and p?

2(n,m) assuming that the degree d of the polynomials p? and p?
2

is d = 2.
(b) A quadratic polynomial (d = 2) of two variables has six coefficients: p?(n,m) =

a20n
2 + a02m

2 + a11nm + a10n + a01m + a00. Therefore, to compute these
coefficients, we must have the values p(n1,m1), . . . , p(n6,m6) of the polynomial
in some six 2-dimensional nodes, (n1,m1), . . . , (n6,m6) such that the system
a20n

2
1 + a02m

2
1 + a11n1m1 + a10n1 + a01m1 + a00 = p(n1,m1)

.
a20n

2
6 + a02m

2
6 + a11n6m6 + a10n6 + a01m6 + a00 = p(n6,m6)


where a20, a02, a11, a10, a01, a00 are variables, has a unique solution. Similar
holds for p?

2.

ANSWERS 9

(c) The system above has a unique solution if the nodes (n1,m1), . . . , (n6,m6)
satisfy NCA-configuration for six 2-dimensional nodes. E.g. three of them lie
on a line on the Cartesian plane, two of them lie on another line, which is
parallel to the first line, and the third one lies on yet another parallel line. We
take (1, 1), (2, 1), (3, 1) lying on y = 1, then (1, 2), (2, 2) lying on y = 2 and
(1, 3) lying on y = 3.

(d) Now we generate six pairs of input lists for sqdiff with these pairs of lengths:
• [1], [2] with the lengths (1, 1) resp.,
• [1, 2], [3] with the lengths (2, 1) resp.,
• [1, 2, 3], [4] with the lengths (3, 1) resp.,
• [1], [2, 3] with the lengths (1, 2) resp.,
• [1, 2], [3, 4] with the lengths (2, 2) resp.,
• [1], [2, 3, 4] with the lengths (1, 3) resp.

(e) Now we run sqdiff on these data:

input
lengths input list 1 input list 2 output of sqdiff

the outer
length

of the
output

the inner
length

of the
output

(1, 1) [1] [2] [] 0 ?
(2, 1) [1, 2] [3] [[2, 2]] 1 2
(3, 1) [1, 2, 3] [4] [[2, 2], [2, 3], [3, 2], [3, 3]] 4 2
(1, 2) [1] [2, 3] [[3, 3]] 1 2
(2, 2) [1, 2] [3, 4] [] 0 ?
(1, 3) [1] [2, 3, 4] [[3, 3], [3, 4], [4, 3], [4, 4]] 4 2

(f) Using the table above, we generate a system of linear equations w.r.t. the
coefficients a10, a01, a00:

a20 + a02 + a11 + a10 + a01 + a00 = 0
4a20 + a02 + 2a11 + 2a10 + a01 + a00 = 1
9a20 + a02 + 3a11 + 3a10 + a01 + a00 = 4
a20 + 4a02 + 2a11 + a10 + 2a01 + a00 = 1
4a20 + 4a02 + 4a11 + 2a10 + 2a01 + a00 = 0
a20 + 9a02 + 3a11 + a10 + 3a01 + a00 = 4

(g) Solve the system above. The solution is a10 = a01 = a00 = 0 and a20 = a02 = 1,
a11 = −2. Therefore, we obtain p?(n,m) = n2 +m2 − 2nm = (n−m)2.

(h) To complete computations for the inner-size function p?
2(n,m) we need to per-

form two more tests instead of the ones that deliver undefinedness for p?
2(n,m).

Let us run the program on the pairs of length (4, 1) and (3, 2). Proceed as
above (for p?(n,m)) to obtain p?

2(n,m) = 2.
(i) We have already checked that sqdiff : Ln(α) × Lm(α) → L(n−m)2(L2(α)) is a

correct type.

(3) Inferring annotations for sqdiff assuming that d = 1 (should fail).
(a) The input of the inference procedure is sqdiff : Ln(α)×Lm(α)→ Lp?(n,m)(Lp?

2(n,m)(α)),
that is we supply the procedure with the underlying type and the list of the
size variables, n,m assigned to the input types of sqdiff assuming d = 1.

10 ANSWERS

A linear polynomial (d = 1) of two variables has three coefficients: p?(n,m) =
a10n + a01m + a00. Therefore, to compute these coefficients, we must have
the values p(n1,m1), p(n2,m2), p(n3,m3) of the polynomial in some three 2-
dimensional nodes, (n1,m1), (n2,m2), (n3,m3) such that the system
a10n1 + a01m1 + a00 = p(n1,m1)
a10n2 + a01m2 + a00 = p(n2,m2)
a10n3 + a01m3 + a00 = p(n3,m3)


where a10, a01, a00 are variables, has a unique solution. Similar holds for
p?

2(n,m).
(b) The system above has a unique solution if the nodes (n1,m1), (n2,m2), (n3,m3)

satisfy NCA-configuration for three 2-dimensional nodes. E.g. two of them lie
on a line on the Cartesian plane and the third one lies on another line and does
not lie on the intersection of these two lines. We take (1, 1) and (2, 1) lying on
y = 1 and (1, 2) lying on y = 2.

(c) Now we generate three pairs of input lists for sqdiff with lengths (1, 1), (2, 1)
and (1, 2) respectively. Since sqdiff is shapely it does not matter what we put
as elements in these lists. For instance, it may be arbitrary integer numbers.
So, we generate three input pairs:
• [1], [2] with the lengths (1, 1) resp.,
• [1, 2], [3] with the lengths (2, 1) resp.,
• [1], [2, 3] with the lengths (1, 2) resp.

(d) Now we run sqdiff on these data:

input lengths input list 1 input list 2 output of sqdiff outer length of the output
(1, 1) [1] [2] [] 0
(2, 1) [1, 2] [3] [[2, 2]] 1
(1, 2) [1] [2, 3] [[3, 3]] 3

(e) Using the table above, we generate a system of linear equations w.r.t. the
coefficients a10, a01, a00:

a10 + a01 + a00 = 2
2a10 + a01 + a00 = 3
a10 + 2a01 + a00 = 3

(f) Solve the system above. The solution is a10 = a01 = 1 and a00 = 0. Therefore
p?(n,m) = n+m.

(g) Check the typing sqdiff : Ln(α) × Lm(α) → Ln+m(L2(α)). Type checking fails.
E.g. in the nil-branch of the body of sqdiff, applying the function-application
rule on cprod(l2, l2), we obtain n = 0 ` n+m = m2 which is not valid.

Exercise 8. Inferring the size annotations for scalar prod.

(1) Manual inference of the typing scalar prod : Ln(Int) × Ln(Int) → L1(Int) is very
similar to the inference for conspack.
(a) Assign the size variable n the input list and assume the degree d = 1 of the

polynomial size function of scalar prod. Therefore, the polynomial size function
is of the form p(n) = an+ b and we need to find its coefficients a and b.

ANSWERS 11

(b) The polynomial p(n) = an + b is defined by two different points on its graph.
Let, e.g., n1 = 0 and n2 = 1.

(c) Generate two pairs of input lists where the length of the input lists are n1 = 0
and n2 = 1 respectively. E.g. take as the first input the pair [], [] and as the
second input the pair [1], [2].

(d) “Run” the program on these pairs. The program outputs [0] of the length 1 on
the first pair and [2] of the length 1 on the second pair.

(e) Based on size information from the tests, construct the system of linear equa-
tions w.r.t. a, b:

b = 1
a+ b = 1

(f) Solving this system gives a = 0 and b = 1, therefore p(n) = 1.
(g) Type check scalar prod : Ln(Int)×Ln(Int)→ L1(Int). As we have seen earlier,

this type is accepted.
(2) The AHA-language presentation for scalar prod for the inference part of the demo is

the same as for its checking part, except that we remove the size annotations from the
types. We have inferred the less precise typing scalar prod : Ln(Int) × Lm(Int) →
L1(Int), because the implemented procedure assigns automatically different vari-
ables n and m to the first and the second input lists respectively and starts with
the degree d0 = 0 ≤ 2.

How to force the inference procedure not to infer the less precise type scalar prod :
Ln(Int) × Lm(Int) → L1(Int) and infer the precise type scalar prod : Ln(Int) ×
Ln(Int)→ L1(Int)?

First, force the inference procedure to start with the degree d ≥ 1. Then then
the inference procedure will not find any test data, which lengths satisfy NCA con-
figuration and on which the program terminates. This is because all 2-dimensional
points where scalar prod terminates lie on one line, m = n. Thus, the less precise
type may not be inferred.

Second, to infer the precise type scalar prod : Ln(Int) × Ln(Int) → L1(Int), we
may allow a user to assign size variables to input types manually.

Exercise 9. Inferring and checking the size annotations for filter.

(1) First, parsing the code for filter, we obtain the rewriting rules for its size function:

` ffilter(0)→ 0
n ≥ 1 ` ffilter(n)→ 1 + ffilter(n− 1) | ffilter(n− 1)

(2) We assume the degree d = 1 for a polynomial lower pfilter min(n) and an upper
pfilter max(n) bounds of ffilter(n). Thus we need to know values of pfilter min(n) =
aminn+ bmin and pfilter max(n) = amaxn+ bmax in two different points. Let it be the
points n1 = 1, n2 = 2.

(3) Compute ffilter(n) in these points.
First, ffilter(1) = {1 + ffilter(0), ffilter(0)} = {1, 0}.
Second, ffilter(2) = {1 + ffilter(1), ffilter(1)} = {2, 1, 0}.

(4) We have that pfilter min(1) = 0, pfilter min(2) = 0, pfilter max(1) = 1, pfilter max(2) = 2.

12 ANSWERS

(5) Using the obtained pair of points on the graph of pfilter min we obtain that pfilter min(n) =
0. Using the obtained pair of points on the graph of pfilter max we obtain that
pfilter max(n) = n.

(6) Now we need to check that pfilter min(n) = 0 and pfilter max(n) = n are correct lower
and upper bounds. Proof of that amounts to proof of correctness of the following
typing:

filter : (α→ Bool)× Ln(α)→ L{i}0≤i≤n
(α)

(7) The proof of correctness reduces to the proof of the following predicates:
• n = 0 ` ∃i. 0 ≤ i ≤ n ∧ i = 0 (from the nil-branch),
• n ≥ 1, 0 ≤ i′ ≤ n− 1 ` ∃i. 0 ≤ i ≤ n ∧ i = 1 + i′ (from the true-branch),
• n ≥ 1, 0 ≤ i′ ≤ n− 1 ` ∃i. 0 ≤ i ≤ n ∧ i = i′ (from the false-branch).

It is easy to see that these predicates holds.

Exercise 10. Inferring and checking the size annotations for tails.

(1) First, parsing the code for tails, we obtain the rewriting rules for its size functions:

` ftails 1(0)→ 0
n ≥ 1 ` ftails 1(n)→ 1 + ftails 1(n− 1)

and
n ≥ 1 ` ftails 2(n)→ ftails 2(n− 1) (∗the sizes of lists in the tail of the output∗)
n ≥ 1 ` ftails 2(n)→ n (∗alternatively, the size of the head of the output∗)

(2) We assume the degree d = 1 for a polynomial lower ptails 1 min(n) and an upper
ptails 1 max(n) bounds of ftails 1(n). Thus we need to know values of ptails 1 min(n) =
a1 minn+ b1 min and ptails 1 max(n) = a1 maxn+ b1 max in two different points. Let
it be the points n1 = 1, n2 = 2.

The similar holds for ftails 2(n).
(3) Compute ftails 1(n) in these points.

First, ftails 1(1) = 1 + ftails 1(0) = 1 + 0 = 1.
Second, ftails 1(2) = 1 + ftails 1(1) = 1 + 1 = 2.

(4) Now, compute ftails 2(n) in these points.
First, ftails 2(1) = 1.
Second, ftails 2(2) = {ftails 2(1), 2} = {1, 2}.

(5) For ftails 1(n) (from its values in two points) we compute that ptails 1 min(n) =
ptails 1 max(n) = ftails 1(n) = n.

(6) For the inner-size function, we have that ptails 2 min(1) = 1, ptails 2 min(2) = 1,
ptails 2 max(1) = 1, ptails 2 max(2) = 2.

(7) Using the obtained pair of points on the graph of ptails 2 min we obtain that ptails 2 min(n) =
1. Using the obtained pair of points on the graph of ptails 2 max we obtain that
ptails 2 max(n) = n.

(8) Now we need to check if we obtained correct upper and lower bounds. Proof of that
amounts to proof of correctness of the following typing:

tails : Ln(α)→ Ln(L{i}0≤i≤n
(α))

(9) The proof of correctness reduces to the proof of the following predicates:

ANSWERS 13

• n = 0 ` n = 0 (from the nil-branch),
• n ≥ 1 ` n = 1 + (n − 1) (from the cons-branch, for the outer-size function
ftails 1),
• n ≥ 1, 1 ≤ i′ ≤ n − 1 ` ∃i. 1 ≤ i ≤ n ∧ i = i′ (from the cons-branch, for the

inner-size function ftails 2, the sizes if the lists in the tail of an output).
• n ≥ 1 ` ∃i. 1 ≤ i ≤ n∧ i = n (from the cons-branch, for the inner-size function
ftails 2, the size of the head of an output).

It is easy to see that these predicates holds.

