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Introduction

From the point of view of a mathematician resource analysis of programs (function
definitions) amounts to verifying satisfiability of arithmetic predicates for checking size
dependencies and solving recurrences for inference. The exercises we are going to do should
give you a flavor of these two aspects.

At the end we will see how our methodology is extended to non-shapely programs with
polynomial lower and upper bounds.

This set of exercises is organized in three main sections. In Section 1 we will learn
how to type check shapely function definitions, i.e. function definitions for which the size
of the output can be described by a polynomial where the variables are the sizes of the
inputs. We will work with simple programs whose only data types are integer and lists,
taking the size of a list to be its length. In the Section 2 we will see how size functions
of such programs may be inferred by test-based inference procedure. Finally, Section 3 is
devoted to non-shapely programs with lower and upper polynomial size bounds. In its first
part you will see how bounds are inferred and checked for function definitions over lists
Ln(α) or matrix-like structures, like Ln(Lm(α)) etc. In its second part we will study how
the method can be extended to general programs over lists, where the sizes of internal lists
may be different. Given the limited amount of time, this section is consider optional.

Each section contains a detailed how to example and a some exercises. Exercises marks
with (*) are more challenging.
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1. Type Checking For Shapely Function Definitions

As a proof of concept we have built a simple tool to type check and infer the size-aware
type of programs written in a simple first-order functional language, whose only types are
integers and lists.

Exercise 1. Your first task is to investigate the demonstrator (demo for short). Go to
http://www.aha.cs.ru.nl/, where you can learn more about the AHA project, and follow
the link Demonstrator of polynomial size aware type checker and run-time test-based type
inference and then type-checking and type inference environment.

(1) Look through the list of examples on the right side.
(2) Investigate the options and the language.
(3) What is the option Types are annotated with size parameters for?

As you probably have noticed, in the current version of the tool the language (and the
interface) is very simple. Some tips that may be useful for the next exercises:

• There are no booleans, so the condition of an if is an integer variable,
• if statements end with fi,
• Integer operations are written in prefix form, e.g., +(2, 3) (ouch!)
• Functions are defined via letfun followed by in, and an expression to evaluate, which

can be another function-definition-expression.
• Arguments of functions must be variable, so if we want to pass an expression as

argument, we must first bind it to a variable via let.

1.1. A how to example: append. Now we will learn how checking is done in more detail,
“on a paper”. We start with a simple function append that appends two lists.

append(l1, l2) : Ln(α)× Lm(α)→ Ln+m(α) =
match l1 with | nil⇒ l2

| cons(hd , tl)⇒ let l = append(tl , l2) in cons(hd , l)
For the sake of convenience we denote the body of append via eappend.

1.1.1. Construct type derivation tree in the backward style. We explain how to do that
step-by-step, so the tree is in the verbose form:

(1) We start with the whole body of the function that defines our main goal : to prove
l1 : Ln(α), l2 : Lm(α) `Σ eappend :Ln+m(α).

A signature Σ contains the type we are checking: Σ(append) = Ln(α)× Lm(α)→
Ln+m(α). We will see how this type will be used in the recursive call.
The body of the function is a pattern-matching expression. Therefore, we have to
prove two subgoals that correspond to the nil- and cons-branches respectively.

(2) Applying the Match-rule yields first the Nil-branch subgoal:

n = 0; l1 : Ln(α), l2 : Lm(α) `Σ l2 :Ln+m(α)
(3) Continue with the nil-branch. The expression in the previous subgoal is a program

variable l2, so we apply the Var-rule, which is an axiom. We obtain the following
subgoal:
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n = 0 ` Ln+m(α) = Lm(α)
(4) Unfold the definition of a type equivalence above. We obtain a first-order entailment

n = 0 ` n+m = m

which after substitution n = 0 transforms into the trivially true entailment ` m =
m.

(5) Now follow the cons-branch defined by the Match-rule applied to eappend.

l1 : Ln(α), l2 : Lm(α) `Σ

(
let l = append(tl , l2) in cons(hd , l)

)
:Ln+m(α)

This is a let-construct, so we apply the Let-rule to obtain two subgoals, correspond-
ing to the let-binding and the let-body respectively.

(6) In the let-binding we have a subgoal

tl : Ln−1(α), l2 : Lm(α) `Σ append(tl , l2) :τ ?

where τ ? is an unknown type, which we will reconstruct on the next step using the
appropriate axiom. In the context we omit the program variables hd and l1, on
which the function call does not depend.

(7) The expression in the binding clause is a function call, so we apply FunApp, with
the known type of append, Ln(α) × Lm(α) → Ln+m(α). We substitute the sizes n
and m of the formal parameters with the sizes of the actual parameters, n− 1 and
m respectively. We obtain

` τ ? = L(n−1)+m(α)

Now the type τ ? is reconstructed and may be used in the let-body.
(8) In the let-body we have a subgoal

hd :α, l : L(n−1)+m(α) `Σ cons(hd , l) :Ln+m(α)
Again, in the context we omit the program variables tl , l1 and l2 on which the
expression in the subgoal does not depend.

(9) Applying the Cons-rule yields ` n+m = (n− 1) +m+ 1 which is trivially true.

In general, type checking shapely function definitions amounts to checking first-order
entailments of the form

. . . , g(n1, . . . , nk) = 0, . . . ` p1(n1, . . . , nk) = p2(n1, . . . , nk)
where g, p1, p2 are known polynomials.

Here consider programs where pattern matching is allowed only on program parameters
or their tails. Therefore, the polynomial g on the left-hand side of the entailment is of the
very simple form ni − ci = 0, where 1 ≤ i ≤ k and ci is an integer constant. Replacing
size variables ni with the corresponding constants on the r.h.s yields an equality of two
polynomials. Trivially, it holds if and only if the corresponding polynomial coefficients are
equal.

This restriction make type checking decidable. The procedure still works fine for many
programs that do not satisfy it, but in theory it can fail to acknowledge legitimate types.
Can you imagine why? (hint : on the l.h.s. of entailments we may get arbitrary polynomials).
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1.2. conspack. Let a function conspack, which inserts an integer into a list, be defined by
the following body

conspack(x , l) =
match l with | nil⇒ cons(x , l)

| cons(hd , tl)⇒ let y = x − hd
in if y then let l ′ = conspack(x , tl)

in cons(hd , l ′)
else cons(x , l)

The function conspack inserts an integer x before the first occurrence x ′ ∈ l , such that
x = x ′. For instance

• on 2, [ ] it returns [2],
• on 2, [1, 3] it returns [1, 3, 2],
• on 2, [1, 2, 3] it returns [1, 2, 2, 3],
• on 2, [1, 3, 2] it returns [1, 3, 2, 2].

Exercise 2.
(1) Write a code for conspack in our language. What type does it have? Check it using

the demo.
(2) Prove on a paper that the function definition for conspack has the type Int ×

Ln(Int)→ Ln+1(Int).

1.3. sqdiff. Let the function sqdiff be defined by the following body:

sqdiff(l1, l2) =
match l1 with | nil⇒ cprod(l2, l2)

| cons(hd1, tl1)⇒ match l2 with | nil⇒ cprod(l1, l1)
| cons(hd2, tl2)⇒ sqdiff(tl1, tl2)

You can find the corresponding code in the list of our demo examples.

Exercise 3. Prove on a paper that sqdiff : Ln(α)× Lm(α)→ L(n−m)2(L2(α)). The typing
cprod : Ln(α)× Lm(α)→ Lnm(L2(α)) can be assumed.

1.4. scalar prod. Let the function scalar prod that returns a scalar product of two vectors
(placed in a 1-element list) be defined by

scalar prod(l1, l2) =
match l1 with | nil⇒ match l2 with | nil⇒ cons(0, nil)

| cons(hd2, tl2)⇒ scalar prod(l1, l2) (* nontermination *)
| cons(hd1, tl1)⇒ match l2 with | nil⇒ scalar prod(l1, l2) (* nontermination *)

| cons(hd2, tl2)⇒ let l = scalar prod(tl1, tl2)
in let y = hd1 ∗ hd2

in replace(y , l)

where replace : Int× Ln(Int)→ Ln(Int) is defined by
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replace(x , l) =
match l with | nil⇒ nil

| cons(hd , tl)⇒ cons(x + hd , tl)
This function, given an integer x and a list l , replaces the head hd of the list with the sum
x + hd . For instance, on 2, [1, 4] it returns [3, 4].

Note that cons(0, nil) is the sugared presentation for let x = 0 in let l = nil in cons(x , l).
In the demo you can use sugared presentations of composed function calls, which in our basic
language is done via nested let-expressions. Nested let-expressions are more convenient to
perform checking “on-paper”.

Further, it is easy to see that scalar prod is not defined on two lists of different length.
Assume that the type of the auxiliary function replace is given and checked.

Exercise 4.
(1) Prove using demo and on a paper that scalar prod : Ln(Int)× Ln(Int)→ L1(Int),
(2) Prove using demo and on a paper that scalar prod : Ln(Int) × Lm(Int) → L1(Int)

is type checked as well.

2. Type Inference For Shapely Function Definitions

A test-based inference method is described in detail in [5], Section 5. We start with a
how to example and then you will be inferring size dependencies.

The type inference algorithm is semi-decidable, that is if the size dependency of a
function definition is not precisely a polynomial, then the procedure does not terminate.
Moreover, the procedure does not terminate if the chosen test-points correspond to data
where the function does not terminate.

2.1. A how to example: append. We show how one infers the typing append : Ln(α) ×
Lm(α) → Ln+m(α). More precisely, we are going to infer size annotations of this typing,
assuming that the underlying typing append : L(α)× L(α)→ L(α) is already inferred.

First, go to the demo and untick Types are annotated with size parameters. Now
you are in the inference mode. Find the example uappend3, which stays for un-annotated
append3. Infer its annotation. Together with the annotation for append3 the annotation for
append will be inferred.

Now you will see how inference is done in more detail, “on a paper”.
(1) The input of the inference procedure is append : Ln(α)× Lm(α)→ Lp?(n,m)(α), that

is we supply the procedure with the underlying type and the list of the size variables,
n,m assigned to the input types of append. The task is to reconstruct p?(n,m).

(2) Here we make an assumption about the degree d of the polynomial p?: let d = 1.
Note that in the demo size variables are assigned to input types automatically in
the most obvious way: each input list type has its own size variable. However, it
can be improved, so that different options are tried or a user assigns size variables
to input types manually.

A linear polynomial (d = 1) of two variables has three coefficients: p?(n,m) =
a10n+a01m+a00. Therefore, to compute these coefficients, we must have the values
p(n1,m1), p(n2,m2), p(n3,m3) of the polynomial in some three 2-dimensional nodes,
(n1,m1), (n2,m2), (n3,m3) such that the system



6 MARKO VAN EEKELEN, OLHA SHKARAVSKA, ALEJADNRO TAMALET

a10n1 + a01m1 + a00 = p(n1,m1)
a10n2 + a01m2 + a00 = p(n2,m2)
a10n3 + a01m3 + a00 = p(n3,m3)

 (1)

where a10, a01, a00 are variables, has a unique solution.
(3) The system above has a unique solution if the nodes (n1,m1), (n2,m2), (n3,m3)

satisfy NCA-configuration [5] for three 2-dimensional nodes, that is two of them lie
on a line on the Cartesian plane and the third one lies on another line and does not
lie on the intersection of these two lines. We take (1, 1) and (2, 1) lying on y = 1
and (1, 2) lying on y = 2.

(4) Now we generate three pairs of input lists for append with lengths (1, 1), (2, 1)
and (1, 2) respectively. Since append is shapely it does not matter what we put as
elements in these lists. For instance, it may be arbitrary integer numbers. So, we
generate three input pairs:
• [1], [2] with the lengths (1, 1) resp.,
• [1, 2], [3] with the lengths (2, 1) resp.,
• [1], [2, 3] with the lengths (1, 2) resp.

(5) Now we run append on these data:

input lengths input list 1 input list 2 output of append length of the output
(1, 1) [1] [2] [1, 2] 2
(2, 1) [1, 2] [3] [1, 2, 3] 3
(1, 2) [1] [2, 3] [1, 2, 3] 3

(6) Using the table above, we generate a system of linear equations w.r.t. the coefficients
a10, a01, a00, corresponding to scheme (1):

a10 + a01 + a00 = 2
2a10 + a01 + a00 = 3
a10 + 2a01 + a00 = 3

(7) Solve the system above. The solution is a10 = a01 = 1 and a00 = 0. Therefore
p?(n,m) = n+m.

(8) Check the typing append : Ln(α)×Lm(α)→ Ln+m(α). As we have seen in Section 1,
this typing is correct.

Exercise 5. Infer the annotation for append on a paper, assuming d = 2.

Exercise 6.
(1) Code conspack in demo and infer the annotation for it in demo.
(2) Infer the annotation for conspack on a paper, assuming the degree of the size depen-

dency d = 1. If you obtain the typing conspack : Int× Ln(Int)→ Ln+1(Int), then
you do need to check it, since it has been checked. If you obtain another typing,
check it.

Exercise 7.
(1) Experiment in the demo with usqdiff.
(2) Infer the annotation for sqdiff assuming the degree of the size dependency d = 2.

If you obtain the typing sqdiff : Ln(α)× Lm(α)→ L(n−m)2(α), then you do need to
check it, since it has been checked. If you obtain another typing, check it.
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(3) Try to infer on a paper the the annotation for sqdiff assuming the degree of the size
dependency d = 1. Type check it.

Exercise 8.
(1) Infer on a paper the typing for scalar prod, based on one size variable, that is the

input for the inference procedure is scalar prod : Ln(Int) × Ln(Int) → Lp?(n)(Int).
You may start with any degree from: d = 1, 2, ....

(2) (*) Code scalar prod in demo. Infer its type. Why have you inferred the type,
scalar prod : Ln(Int) × Lm(Int) → L1(Int) but not the better one above? How
should you implement the inference, so that only the type scalar prod : Ln(Int) ×
Ln(Int)→ L1(Int) is inferred?

3. Beyond Shapely Programs

In the previous sections we have considered shapely function definitions that is function
definitions for which the size(s) of an output is exactly a polynomial function of the sizes
of the corresponding inputs. Our method was initially designed only for such programs. It
was clear that this initial setting was very restrictive, since programs with lower and upper
polynomial bounds on size dependencies were out of consideration.

In our further papers [2] and [3] (or [4] for more detail) we adopt the inference method
for function definitions with polynomial lower and upper bounds. In this section we give
two examples that informally explain how this extension works. Those who would like to
know it in more detail are referred to the mentioned papers. However, we believe, that the
examples and common sense are enough to do simple exercises on inference and checking
of lower and upper bounds.

3.1. How to infer and check lower and upper polynomial bounds for insert. It is
a simple routine to extend our initial language with the boolean type Bool. Consider a
polymorphic program insert, that given an element z :α, a predicate g : α× α→ Bool, and
a list l : Ln(α), inserts the element into the list if and only if there is no z ′ ∈ l , such that
g(z , z ′) holds:

insert(g , z , l) =
match l with | nil⇒ cons(z , nil)

| cons(hd , tl)⇒ if g(z , hd) then l else let l ′ = insert(z , tl)
in cons(hd , l ′)

For instance, with g being equality of two integers, on 2, [1, 2, 3] it returns [1, 2, 3] and on
2, [3, 4, 5] it returns [3, 4, 5, 2].

(1) At the beginning we note that in many cases (including shapely programs) while
studying size dependencies it is convenient to reduce an original program under
consideration to its size abstraction, that is to collection of (recursive) rewriting
rules for its size function.

Consider, how it is done for insert. Let finsert(n) be the size of an output if the
size of the input is n. Look at the code. The nil-branch gives that finsert(0)→ 1. In
the cons-branch there are two possibilities for computing finsert(n):
• the program returns the input list l , and then finsert(n)→ n,
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• the program recursively calls insert on the tail of l , with a size function finsert(n−
1) and then returns a cons-cell on this recursive call, that is it returns a list of
length 1 + finsert(n− 1).

To sum up, we obtain the following rewriting system for the size dependency
finsert(n);

n = 0 ` finsert(n)→ 1
n ≥ 1 ` finsert(n)→ n | 1 + finsert(n− 1)

where | separates two possible branches for computing finsert(n).
In resource analysis one often uses such abstractions of program to resource func-

tions or resource recurrences. For instance, we advice an interested reader to look
at the work of German Puebla’s group [1].

(2) Now we formulate our intention more concretely: using the fitting-polynomial method-
ology from the previous section, we can compute the lower finsert min(n) = n and the
upper finsert max(n) = n+1 bounds for finsert(n). Formally, the size function finsert is
a multivalued size function. It has the type R → 2R, where R is a chosen numerical
ring, like integers, rationals or reals. (Later, using the lower and the upper bounds,
we will obtain finsert(n) ⊆ {finsert min(n)+i}0≤i≤finsert max(n)−finsert min(n) = {n+i}0≤i≤1.)

(3) Again, assume that the bounds depend on the size variable n, and, for the sake of
convenience, let the degree d = 1 for both. A polynomial of one variable of the degree
1 (linear) is given by two coefficients. Thus finsert min(n) = amin 1n + amin 0 and
finsert max(n) = amax 1n+ amax 0 are defined by two nodes (1-dimensional points).

(4) Let these nodes are n = 1, 2.
(5) Differently to the initial version of our method we do not need to generate test data,

if we have a rewriting system for a size function. We compute the values of a size
function directly on concrete sizes. Thus, in our example we compute finsert(1) and
finsert(2):

n finsert(n)
1 finsert(1)→ 1 | 1 + finsert(0) = {1, 1 + finsert(0)} = {1, 1 + 1} = {1, 2}
2 finsert(2)→ 2 | 1 + finsert(1) = {2, 1 + finsert(1)} = {2, 1 + 1, 1 + 2} = {2, 3}

(6) Now, we see that

finsert min(1) = 1 finsert min(2) = 2
finsert max(1) = 2 finsert max(2) = 3

So we have two systems of linear equations, for the lower and upper bounds respec-
tively:

amin 1 + amin 0 = finsert min(1) = 1
2amin 1 + amin 0 = finsert min(2) = 2

}
amax 1 + amax 0 = finsert max(1) = 2
2amax 1 + amax 0 = finsert max(2) = 3

}
(7) Solving these systems gives amin 1 = 1, amin 0 = 0 and amax 1 = 1, amax 0 = 1.

That is, finsert min(n) = n and finsert max(n) = n+ 1. Thus, for finsert(n) we have

finsert(n) ⊆ {finsert min(n) + i}0≤i≤finsert max(n)−finsert min(n) = {n+ i}0≤i≤1
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(8) Now we have to check, if indeed, insert : (α×α→ Bool)×α×Ln(α)→ L{n+i}0≤i≤1
(α).

The checking extends the checking procedure for shapely functions. Here, the output
annotation should contain all the values of the size function in any branch of the
computations (but not necessary be equal, as for shapely programs):
• the nil-branch n = 0 ` finsert(n) → 1 gives rise to the following inclusion:
n = 0 ` {n+ i}0≤i≤1 ⊇ {1},
• for the true-branch in the cons-branch we have n ≥ 1 ` {n+ i}0≤i≤1 ⊇ {n},
• for the false-branch in the cons-branch we have n ≥ 1 ` {n+ i}0≤i≤1 ⊇ {1}+
{(n− 1) + i′}0≤i′≤1

where + is lifted to sets and defined as pairwise addition of the sets’ elements.
(9) By unfolding the definition of a set inclusion, the inclusions above are trivially

turned into the first-order predicates:
• n = 0⇒ ∃ i. 0 ≤ i ≤ 1 ∧ n+ i = 1,
• n ≥ 1⇒ ∃ i. 0 ≤ i ≤ 1 ∧ n+ i = n,
• ∀ n i′. 0 ≤ i′ ≤ 1 ∧ n ≥ 1⇒ ∃ i. 0 ≤ i ≤ 1 ∧ n+ i = 1 + (n− 1) + i′

In this example it is easy to check that i may be instantiated as i = 1, i = 0 and
i = i′ for each of the branches respectively. In general one have to instantiate the
existential quantifiers in the first-order arithmetics. This is, in general, undecidable
in integers (but still, decidable for linear size functions). It is decidable in reals,
however real arithmetics has some disadvantages which we do not discuss here.

Exercise 9. Infer (and check), on a paper, polynomial lower and upper bounds for the
function filter : (α→ Bool)× Ln(α)→ Lffilter(n)

(α):

filter(g , l) =
match l with | nil⇒ nil

| cons(hd , tl)⇒ let l ′ = filter(g , tl)
in if g(hd) then cons(hd , l ′) else l ′

Given a unary predicate g and a list l , it returns the list of elements of l , that satisfy g .
For instance if g is even then on [1, 2, 3] it returns [2].

3.2. How to deal with programs over nested lists. In general, in structures of the type
L(L(α)) the internal lists may be of different length, like, for instance, in [ [1, 2], [3, 4, 5], [ ] ].
Formally this fact may be expressed by introduction of length functions λ k.M(k) that
express lengths of internal lists, where M(0) is the length of the head list, M(1) is the
length of the element following the head, etc. For instance, in the example above M(0) = 2,
M(1) = 3, M(2) = 0 and M(k) is arbitrary for k ≥ 3.

It looks rather natural and simple, however it leads to higher-order size functions,
since size variables may represent functions. Consider, for instance, the program conc :
Ln(LM (α)) → Lfconc(n,M)(α), that given a list of lists returns the concatenation of its ele-
ments:

conc(l) =
match l with | nil⇒ nil

| cons(hd , tl)⇒ let l ′ = conc(tl)
in append(hd , l ′)

For instance, on our list [ [1, 2], [3, 4, 5], [ ] ] it returns [ 1, 2, 3, 4, 5 ]. We start with generating
the collection of the rewriting rules computing the size function fconc(n,M).
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(1) Sure, in this case the rewriting rules are higher-order. First, we note that conc
is called recursively on the tail of the list argument. So, we need to express the
length function of the tail, M ′, via the length function M of the whole list. It is not
difficult to see that M ′ is just the left-shift of M : M ′(k) = M(k + 1). Indeed, the
0-th element of the tail is the first element of the list, the 1-st element of the tail is
the second element of the list, etc. For instance, for our list [ [1, 2], [3, 4, 5], [ ] ] we
have M ′(0) = 3, M ′(1) = 0 and M(k) is arbitrary for k ≥ 2.

We will denote the left shift of M via M+1, so M ′ = M+1.
(2) Similarly to the example insert, we parse the body of conc and obtain the following

rewriting system for its size function:

n = 0 ` fconc(n,M)→ 0
n ≥ 1 ` fconc(n,M)→M(0) + fconc(n− 1,M+1)

(3) As in the case of insert, the rewriting system is not our end result in size analysis,
but is just a tool to compute closed, i.e. recursion free, forms of lower and upper
bounds on the size function of conc. Again, we are interested in usual polynomial
bounds, not higher-order ones.

(4) What to do with the higher-order parameter M? We introduce a fresh usual size
variable for it, m, meaning that for all k ≥ 0 we have 0 ≤M(k) ≤ m. So, we want
to obtain a typing of the following form

conc : Ln(L{i}0≤i≤m
(α))→ L{fconc min(n,m)+i}0≤i≤fconc max(n,m)−fconc min(n,m)

(α)

(5) Again, we assume the degree of lower and upper bounds. For the sake of simplicity,
let it be d = 2. A polynomial of degree two of two variables is defined by six coeffi-
cients, so we need to know the values of fconc min and fconc max in six 2-dimensional
points, satisfying NCA-configuration. Then we will have to solve the linear systems
for the coefficients of fconc min and fconc max. For fconc max (which is nontrivial in
this case), the system is:

amax 20n
2
1 + amax 11n1m1 + amax 02m

2
1 + amax 10n1 + amax 01m1 + amax 00 = fconc max(n1,m1)

amax 20n
2
2 + amax 11n2m2 + amax 02m

2
2 + amax 10n2 + amax 01m2 + amax 00 = fconc max(n2,m2)

amax 20n
2
3 + amax 11n3m3 + amax 02m

2
3 + amax 10n3 + amax 01m3 + amax 00 = fconc max(n3,m3)

amax 20n
2
4 + amax 11n4m4 + amax 02m

2
4 + amax 10n4 + amax 01m4 + amax 00 = fconc max(n4,m4)

amax 20n
2
5 + amax 11n5m5 + amax 02m

2
5 + amax 10n5 + amax 01m5 + amax 00 = fconc max(n5,m5)

amax 20n
2
6 + amax 11n6m6 + amax 02m

2
6 + amax 10n6 + amax 01m6 + amax 00 = fconc max(n6,m6)

The system for fconc min is similar.
(6) We choose the following nodes:

(n1,m1) = (1, 1) (n2,m2) = (2, 1) (n3,m3) = (3, 1)
(n4,m4) = (1, 2) (n5,m5) = (2, 2)
(n6,m6) = (1, 3)

Now we need to compute fconc max (resp. fconc min) in these nodes.
(7) We transform the rewriting system for the higher-order function fconc into a rewrit-

ing system for the function f ′conc over numerical sets (and numbers):
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n = 0 ` f ′conc(n, {i}0≤i≤m)→ {0}
n ≥ 1 ` f ′conc(n, {i}0≤i≤m)→ {i}0≤i≤m + f ′conc(n− 1, {i}0≤i≤m)

where + is a pairwise addition of sets’ elements. Note, that the second argument
in the recursive call is the same as the second argument of the function f ′conc: this
is because the elements of the tail have the same length bounds as the elements of
the list. It easy to see that f ′conc(n,m) ⊇ fconc(n,M) if M(k) ≤ m for all k.

(8) Now we can compute all possible values of f ′conc in the given nodes using the new
rewriting system:

f ′conc(1, {0, 1}) → {0, 1}+ f ′conc(0, {0, 1})→ {0, 1}+ {0} = {0, 1}
f ′conc(2, {0, 1}) → {0, 1}+ f ′conc(1, {0, 1})→∗ {0, 1}+ {0, 1} = {0, 1, 2}
f ′conc(3, {0, 1}) → {0, 1}+ f ′conc(2, {0, 1})→∗ {0, 1}+ {0, 1, 2} = {0, 1, 2, 3}
f ′conc(1, {0, 1, 2}) → {0, 1, 2}+ f ′conc(0, {0, 1, 2})→ {0, 1, 2}+ {0} = {0, 1, 2}
f ′conc(2, {0, 1, 2}) → {0, 1, 2}+ f ′conc(1, {0, 1, 2})→∗ {0, 1, 2}+ {0, 1, 2} = {0, 1, 2, 3, 4}
f ′conc(1, {0, 1, 2, 3}) → {0, 1, 2, 3}+ f ′conc(0, {0, 1, 2, 3})→ {0, 1, 2, 3}+ {0} = {0, 1, 2, 3}

(9) Now, pick up the maximal elements of each set. They constitute the r.h.s of the
linear system for the coefficients of fconc max:

amax 20 + amax 11 + amax 02 + amax 10 + amax 01 + amax 00 = 1
4amax 20 + 2amax 11 + amax 02 + 2amax 10 + amax 01 + amax 00 = 2
9amax 20 + 3amax 11 + amax 02 + 3amax 10 + amax 01 + amax 00 = 3
amax 20 + 2amax 11 + 4amax 02 + amax 10 + 2amax 01 + amax 00 = 2
4amax 20 + 4amax 11 + 4amax 02 + 2amax 10 + 2amax 01 + amax 00 = 4
amax 20 + 3amax 11 + 9amax 02 + amax 10 + 3amax 01 + amax 00 = 3

(10) Solving this system gives that amax 11 = 1 and the rest of the coefficients are zero.
Thus, fconc max(n,m) = nm.

(11) Similarly, fconc min(n,m) = 0.
(12) Further, the length of the output on an input of the type Ln(LM (α)) should be in

the set {fconc min(n,m) + i}0≤i≤fconc max(n,m)−fconc min(n,m) = {i}0≤i≤nm.
(13) To check if the computed bounds fconc max(n,m) and fconc min(n,m) = 0 are indeed

correct, we need to check the following typing:

conc : Ln(L{i}0≤i≤m
(α))→ L{i}0≤i≤nm

(α)

(14) Following the computation scheme for f ′conc, defined by its rewriting rules, we con-
clude that the following inclusions must hold

n = 0 ` {i}0≤i≤nm ⊇ {0}
n ≥ 1 ` {i}0≤i≤nm ⊇ {i}0≤i≤m + {i}0≤i≤(n−1)m

(15) Unfolding the definition of set inclusions we obtain the following first-order entail-
ments:

∀ nm ≥ 0. n = 0⇒ ∃ i.0 ≤ i ≤ nm ∧ i = 0
∀ nm i′ i′′ ≥ 0.n ≥ 1 ∧ i′ ≤ m ∧ i′′ ≤ (n− 1)m⇒ ∃ i. 0 ≤ i ≤ nm ∧ i = i′ + i′′
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These entailments hold (and easily provable even in integer arithmetics, since they
are linear).

(16) Conclusion: we have derived and proven the correctness of the lower fconc min(n,m) =
0 and the upper fconc max(n,m) = nm polynomial size bounds for conc, given the
internal lists of an input do not contain more than m elements.

Exercise 10. (*) Infer and check, on a paper, lower and upper bounds for the size
functions ftails 1(n) and ftails 2(n) of the program tails : Ln(α)→ Lftails 1(n)(Lftails 2(n)(α)):

tails(l) =
match l with | nil⇒ nil

| cons(hd , tl)⇒ let l ′ = tails(tl)
in cons(l , l ′)

This program, given a list, returns the list of its nonempty tails. For instance, on [1, 2, 3] it
returns [ [1, 2, 3], [2, 3], [3] ]
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