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What is “size analysis“?
Why do we need size analysis?

Analyse dependency of the size
of an output on the sizes of input
Example: copy : L(α)→ L(α)

We start with a simple example: an ML-style program that
creates a fresh copy of a list:

copy : L(α)→ L(α), e.g. it maps [ 1,2 ] onto [ 1,2 ].

copy(l) = match l with | nil⇒ nil
| cons(hd , tl)⇒ cons(hd , copy(tl))

Size dependency of copy
Informally: an output has the same length as its input.
Formally: it maps a list of length n onto a list of length n,
Very formal: copy is of type Ln(α)→ Ln(α)
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What is “size analysis“?
Why do we need size analysis?

Analyse dependency of the size
of an output on the sizes of input
Our formalism: annotated types

Size analysis
studies dependencies of the size of an output on the sizes of
the corresponding inputs.

Our formalism for size analysis is annotated type systems

copy : Ln(α)→ Ln(α)

append : Ln(α)× Lm(α)→ Ln+m(α)

insert : Int × Ln(Int)→ L{n+i}0≤i≤1
(Int)

etc. ...
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What is “size analysis“?
Why do we need size analysis?

Size analysis for resource management

Memory resources: heap, stack
Knowing sizes of the structures involved in a computation is
necessary:

in safety and security critical applications: to prevent
abrupt termination due to the lack of memory, because
output and intermediate structures are too large,
to optimise memory management, e.g. by allocation in
advance junks of a heap.
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What is “size analysis“?
Why do we need size analysis?

Size analysis for resource management

Time resources
Knowing sizes helps to predict computation time:

practice: in the simplest case, the bigger an input is the
longer a program runs ...
theory: termination analysis.
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Size dependency formally:
a function, a multivalued function, a relation

Size dependency may be a numerical function of the sizes
of arguments: append : Ln(α)× Lm(α)→ Lfappend (n,m)(α),
where fappend (n,m) = n + m,
It may be a multivalued numerical function of the sizes of
arguments: insert : Int × Ln(α)→ Lfinsert (n)(α), where
finsert (n) = {n,n + 1},
Size dependency may be a relation: split :
Ln(α)→ Ln1(α)× Ln2(α), where n1 + n2 = n,
Size dependency may be a function of program arguments
directly (dep. types): makelist(x) : Int → Lfmakelist (x)(Int),
where fmakelist (x) = x ,
etc. ...

10/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work

What is a size dependency?
Two problems of analysis: checking and inference
Related work

Size dependency formally:
a function, a multivalued function, a relation

Size dependency may be a numerical function of the sizes
of arguments: append : Ln(α)× Lm(α)→ Lfappend (n,m)(α),
where fappend (n,m) = n + m,
It may be a multivalued numerical function of the sizes of
arguments: insert : Int × Ln(α)→ Lfinsert (n)(α), where
finsert (n) = {n,n + 1},
Size dependency may be a relation: split :
Ln(α)→ Ln1(α)× Ln2(α), where n1 + n2 = n,
Size dependency may be a function of program arguments
directly (dep. types): makelist(x) : Int → Lfmakelist (x)(Int),
where fmakelist (x) = x ,
etc. ...

10/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work

What is a size dependency?
Two problems of analysis: checking and inference
Related work

Size dependency formally:
a function, a multivalued function, a relation

Size dependency may be a numerical function of the sizes
of arguments: append : Ln(α)× Lm(α)→ Lfappend (n,m)(α),
where fappend (n,m) = n + m,
It may be a multivalued numerical function of the sizes of
arguments: insert : Int × Ln(α)→ Lfinsert (n)(α), where
finsert (n) = {n,n + 1},
Size dependency may be a relation: split :
Ln(α)→ Ln1(α)× Ln2(α), where n1 + n2 = n,
Size dependency may be a function of program arguments
directly (dep. types): makelist(x) : Int → Lfmakelist (x)(Int),
where fmakelist (x) = x ,
etc. ...

10/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work

What is a size dependency?
Two problems of analysis: checking and inference
Related work

Size dependency formally:
a function, a multivalued function, a relation

Size dependency may be a numerical function of the sizes
of arguments: append : Ln(α)× Lm(α)→ Lfappend (n,m)(α),
where fappend (n,m) = n + m,
It may be a multivalued numerical function of the sizes of
arguments: insert : Int × Ln(α)→ Lfinsert (n)(α), where
finsert (n) = {n,n + 1},
Size dependency may be a relation: split :
Ln(α)→ Ln1(α)× Ln2(α), where n1 + n2 = n,
Size dependency may be a function of program arguments
directly (dep. types): makelist(x) : Int → Lfmakelist (x)(Int),
where fmakelist (x) = x ,
etc. ...

10/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work

What is a size dependency?
Two problems of analysis: checking and inference
Related work

Size dependency formally:
a function, a multivalued function, a relation

Size dependency may be a numerical function of the sizes
of arguments: append : Ln(α)× Lm(α)→ Lfappend (n,m)(α),
where fappend (n,m) = n + m,
It may be a multivalued numerical function of the sizes of
arguments: insert : Int × Ln(α)→ Lfinsert (n)(α), where
finsert (n) = {n,n + 1},
Size dependency may be a relation: split :
Ln(α)→ Ln1(α)× Ln2(α), where n1 + n2 = n,
Size dependency may be a function of program arguments
directly (dep. types): makelist(x) : Int → Lfmakelist (x)(Int),
where fmakelist (x) = x ,
etc. ...

10/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work
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Correct size dependencies

Formally, the correctness of a size dependency is defined w.r.t.
the way, we formalise the notion of a size and a size
dependency.

A 1-variable multivalued size function f is a correct dependency
if and only if for all inputs of size n the size of the corresponding
output is in the set f (n).

For instance, for insert we have the following:
finsert (n) = n is not correct, since it gives a wrong output
size, when an element is inserted,
finsert (n) = {n,n + 1} is correct,
finsert (n) = {n,n + 1,n + 2} is correct as well, although it is
not that precise, as the previous function.
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Checking of size dependencies

A checking procedure:
Input : a program,

and its size dependency

Output : “yes” if the dependency is correct,
“no” otherwise.

E.g. a sound checker gives the answer
“yes” for the type Int × Ln(Int)→ L{n+i}0≤i≤1

(Int) for insert ,
“no” for the type Int × Ln(Int)→ Ln(Int) for insert .

As a rule, checking is reduced to checking arithmetic predicates
in (here, first-order).
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What is a size dependency?
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Inference of size dependencies

An inference procedure:
Input : a program,

(in our case: “plus” its underlying type)
Output : a correct size dependency for the program.

E.g. there are size inference procedures that generate the
annotations in the typing
insert : Int × Ln(Int)→ L{n+i}0≤i≤1

(Int) (in this or equivalent
forms).

As a rule, inference amounts to solving recurrences [2].
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What is a size dependency?
Two problems of analysis: checking and inference
Related work

Sized Types

Lars Pareto designed a type system for linear size analysis

and termination proofs.
insert : Int × Li≤n(Int)→ Li≤n+1(Int).

The typing f : Li≤n(α)→ Li≤ff (n)(α) means that a list of a length
at most n is mapped onto a list of a length at most ff (n).

See [9]

Andreas Abel: linear size analysis over orders
for termination proofs.
copy_stream : Lω(α)→ Lω(α)
See [1]
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Polynomial quasi-interpretations

This approach is developed by J.-Y. Marion, J.-Y. Moyen, G.
Bonfante, R. Amadio, for monotonic size bounds.

A program f is interpreted as a nondecreasing (piece-wise)
polynomial:

insert(l) is interpreted as LinsertM(X ) = X + 1,
sqdiff : Ln(α)× Lm(α)→ L(n−m)2(α) cannot be interpreted
still covers lots of interesting programs,
inference is decidable in reals, implemented in integers (as
far as we know) [5],
inference is decidable in integers for a subclass:
(max,+)-quasi-interpretations by Amadio [3].
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The same authors are developing amortised analysis for
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Resource recurrences generation and solving by German
Puebla’s group, [2].
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Heap consumption and sizes

Do not mix size analysis and heap consumption analysis
despite they are very related. Examples:

copy_silly : Ln(α)→ Ln(α) creates some dummy
structures during the computations that are never used.
So, it consumes more than n heap units (cons-cells). But
often intermediate structures are indeed necessary.
in-place programs consume less, like e.g. in-place
reverse : Ln(α)→ Ln(α), that consumes 0 heap units.
our copy : Ln(α)→ Ln(α) consumes exactly n heap units.
in practice we deal with compositions of these sorts of
programs, that makes heap consumption analysis a
challenging task.

What we can say in general: heap consumption often depends
on the sizes of structures involved in computations.

20/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work

Amortised heap analysis and sizes
Size analysis of 1-st order function definitions
Beyond shapely programs

Heap consumption and sizes

Do not mix size analysis and heap consumption analysis
despite they are very related. Examples:

copy_silly : Ln(α)→ Ln(α) creates some dummy
structures during the computations that are never used.
So, it consumes more than n heap units (cons-cells). But
often intermediate structures are indeed necessary.
in-place programs consume less, like e.g. in-place
reverse : Ln(α)→ Ln(α), that consumes 0 heap units.
our copy : Ln(α)→ Ln(α) consumes exactly n heap units.
in practice we deal with compositions of these sorts of
programs, that makes heap consumption analysis a
challenging task.

What we can say in general: heap consumption often depends
on the sizes of structures involved in computations.

20/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work

Amortised heap analysis and sizes
Size analysis of 1-st order function definitions
Beyond shapely programs

Heap consumption and sizes

Do not mix size analysis and heap consumption analysis
despite they are very related. Examples:

copy_silly : Ln(α)→ Ln(α) creates some dummy
structures during the computations that are never used.
So, it consumes more than n heap units (cons-cells). But
often intermediate structures are indeed necessary.
in-place programs consume less, like e.g. in-place
reverse : Ln(α)→ Ln(α), that consumes 0 heap units.
our copy : Ln(α)→ Ln(α) consumes exactly n heap units.
in practice we deal with compositions of these sorts of
programs, that makes heap consumption analysis a
challenging task.

What we can say in general: heap consumption often depends
on the sizes of structures involved in computations.

20/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work

Amortised heap analysis and sizes
Size analysis of 1-st order function definitions
Beyond shapely programs

Heap consumption and sizes

Do not mix size analysis and heap consumption analysis
despite they are very related. Examples:

copy_silly : Ln(α)→ Ln(α) creates some dummy
structures during the computations that are never used.
So, it consumes more than n heap units (cons-cells). But
often intermediate structures are indeed necessary.
in-place programs consume less, like e.g. in-place
reverse : Ln(α)→ Ln(α), that consumes 0 heap units.
our copy : Ln(α)→ Ln(α) consumes exactly n heap units.
in practice we deal with compositions of these sorts of
programs, that makes heap consumption analysis a
challenging task.

What we can say in general: heap consumption often depends
on the sizes of structures involved in computations.

20/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work

Amortised heap analysis and sizes
Size analysis of 1-st order function definitions
Beyond shapely programs

Heap consumption and sizes

Do not mix size analysis and heap consumption analysis
despite they are very related. Examples:

copy_silly : Ln(α)→ Ln(α) creates some dummy
structures during the computations that are never used.
So, it consumes more than n heap units (cons-cells). But
often intermediate structures are indeed necessary.
in-place programs consume less, like e.g. in-place
reverse : Ln(α)→ Ln(α), that consumes 0 heap units.
our copy : Ln(α)→ Ln(α) consumes exactly n heap units.
in practice we deal with compositions of these sorts of
programs, that makes heap consumption analysis a
challenging task.

What we can say in general: heap consumption often depends
on the sizes of structures involved in computations.

20/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work

Amortised heap analysis and sizes
Size analysis of 1-st order function definitions
Beyond shapely programs

Heap consumption and sizes

Do not mix size analysis and heap consumption analysis
despite they are very related. Examples:

copy_silly : Ln(α)→ Ln(α) creates some dummy
structures during the computations that are never used.
So, it consumes more than n heap units (cons-cells). But
often intermediate structures are indeed necessary.
in-place programs consume less, like e.g. in-place
reverse : Ln(α)→ Ln(α), that consumes 0 heap units.
our copy : Ln(α)→ Ln(α) consumes exactly n heap units.
in practice we deal with compositions of these sorts of
programs, that makes heap consumption analysis a
challenging task.

What we can say in general: heap consumption often depends
on the sizes of structures involved in computations.

20/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work

Amortised heap analysis and sizes
Size analysis of 1-st order function definitions
Beyond shapely programs

Basis of AHA:
linear amortised heap analysis of Hofmann and Jost

Martin Hofmann and Steffen Jost noticed that if heap
consumption depends on the sizes of input structures linearly,
we do not need to know the sizes of structures to compute a
LINEAR upper bound on heap consumption!
They used amortisation to obtain linear bounds.

Amortisation in resource analysis
means, in particular, that you distribute consumed resource
across the input structure. E.g., informally: to compute copy
there must be at least 1 heap cell available per each input
constructor cell. Formally, using Hofmann-Jost heap-aware
type system: copy : L(α, 1)→ L(α, 0).
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Basis of AHA:
linear amortised heap analysis of Hofmann and Jost

f : L(α, k), k0 → L(α, k ′), k ′0
To begin computation we need at least k heap units per
each constructor cell and k0 heap cells on top of it,
that is, heap consumption is at least kn + k0 heap units,
where n is the length of an input list.
After the computation, per each output constructor cell we
will have at least k ′ free heap units, and we have k ′0 free
heap units on top of all the output list,
i.e., after the computation there will be at least k ′n′ + k ′0
free heap units free.
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Basis of AHA:
linear amortised heap analysis of Hofmann and Jost

f : L(α, k), k0 → L(α, k ′), k ′0
Heap consumption is at least kn + k0 heap units, where n
is the length of an input list.
After the computation there will be at least k ′n′ + k ′0 free
heap units, where n′ is the length of the output list.

Inference of linear heap consumption bounds amounts to
computing the coefficients k , k0, k ′, k ′0 in this type system.
Hofmann and Jost reduce it to solving linear programming
task, [7].
They do not need to know sizes to do that.
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Our project AHA: towards nonlinear heap bounds

Our project abbreviation stays for Amotrised Heap Analysis.
Our initial project aim: to extend Hofmann and Jost method to
non-linear heap bounds.

Sizes are necessary to obtain non-linear heap bounds
Making an initial table of n rows and m columns consumes nm
heap units:

init_table(l1, l2) : Ln(α, m)× Lm(α,0),0→ Ln(Lm(α))
match l with | nil⇒ nil

| cons(hd , tl)⇒ cons(l2, init_table(tl , l2))
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ML-like 1-st-order language over lists

Basic b ::= c | x binop y | nil | cons(z, l) | f (z1, . . . , zn)
Expr e ::= b

| let z = b in e1
| if x then e1 else e2
| match l with p nil⇒ e1

p cons(z, l ′)⇒ e2
| letfun f (z1, . . . , zn) = e1 in e2

where c ranges over integer constants, z, x , y , l denote
zero-order program variables (x and y range over integer
variables, l possibly decorated with sub- ans superscripts,
ranges over lists and z ranges over program variables when
their types are not relevant).
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We consider now only “shapely” programs

To give an idea of our approach we consider here only shapely
function definitions: the size of an output is exactly the
polynomial function of the size of the corresponding input [12].

Example – desugared copy : Ln(α)→ Ln(α)

copy(l) = match l with | nil⇒ nil
| cons(hd , tl)⇒ let l ′ = copy(tl)

in cons(hd , l ′)

Another example – append : Ln(α)× Lm(α)→ Ln+m(α)

append(l1, l2) = match l1 with | nil⇒ l2
| cons(hd , tl)⇒ let l ′ = append(tl , l2)

in cons(hd , l ′)

27/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work

Amortised heap analysis and sizes
Size analysis of 1-st order function definitions
Beyond shapely programs

We consider now only “shapely” programs

To give an idea of our approach we consider here only shapely
function definitions: the size of an output is exactly the
polynomial function of the size of the corresponding input [12].

Example – desugared copy : Ln(α)→ Ln(α)

copy(l) = match l with | nil⇒ nil
| cons(hd , tl)⇒ let l ′ = copy(tl)

in cons(hd , l ′)

Another example – append : Ln(α)× Lm(α)→ Ln+m(α)

append(l1, l2) = match l1 with | nil⇒ l2
| cons(hd , tl)⇒ let l ′ = append(tl , l2)

in cons(hd , l ′)

27/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work

Amortised heap analysis and sizes
Size analysis of 1-st order function definitions
Beyond shapely programs

We consider now only “shapely” programs

To give an idea of our approach we consider here only shapely
function definitions: the size of an output is exactly the
polynomial function of the size of the corresponding input [12].

Example – desugared copy : Ln(α)→ Ln(α)

copy(l) = match l with | nil⇒ nil
| cons(hd , tl)⇒ let l ′ = copy(tl)

in cons(hd , l ′)

Another example – append : Ln(α)× Lm(α)→ Ln+m(α)

append(l1, l2) = match l1 with | nil⇒ l2
| cons(hd , tl)⇒ let l ′ = append(tl , l2)

in cons(hd , l ′)

27/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work

Amortised heap analysis and sizes
Size analysis of 1-st order function definitions
Beyond shapely programs

We consider now only “shapely” programs

A non-shapely program: insert : Int × Ln(α) → L{n+i}0≤i≤1
(α)

insert(x , l ′) =
match l with | nil⇒ cons(z,nil)

| cons(hd , tl)⇒ if x = hd then l
else let l ′ = insert(x , tl)

in cons(hd , l ′)

Such functions definitions are considered in [10] and [11]. We
give a bit more detail in the exercise sheet as well.
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Type System

E.g. f : Ln(α)× Lm1(Lm2(α))→ Lp(n,m1,m2)(α)

means that
if f has two inputs that are a list of length n and a list of
length m1 of lists of length m2,
then the output will be a list of length precisely
p(n,m1,m2).
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Type System

Another example: cprod : Ln(α)× Lm(α)→ Lnm(L2(α))

cprod(l1, l2) =
match l1 with | nil⇒ nil

| cons(hd , tl)⇒ let l ′ = pairs(hd , l2)
in let l ′′ = cprod(tl , l2)

in append(l ′, l ′′)
where (sugared) pairs(z, l) : α× Ln(α)→ Ln(L2(α)) =
match l with | nil⇒ nil

| cons(hd , tl)⇒ cons([z,hd ],pairs(z, tl))

E.g. it sends [1,2,1] and [3,4] to
[ [1,3], [1,4], [2,3], [2,4], [1,3], [1,4] ]
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Typing rules

CONS-rule

D ` p = p′ + 1
D; Γ, hd : τ, tl : Lp′(τ) `Σ cons(hd , tl) :Lp(τ)

CONS

MATCH-rule

p = 0, D; Γ, l : Lp(τ ′) `Σ enil :τ

hd , tl 6∈ dom(Γ)
D; Γ,hd : τ ′, l : Lp(τ ′), tl : Lp−1τ ′( ) `Σ econs :τ

D; Γ, l : Lp(τ ′) `Σ match l with | nil⇒ enil
| cons(hd , tl)⇒ econs

:τ
MATCH
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Typing rules

LET-rule

z /∈ dom(Γ)
D; Γ `Σ e1 :τz

D; Γ, z : τz `Σ e2 :τ

D; Γ `Σ let z = e1 in e2 :τ
LET
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Typing rules

FUNNAPP-rule

Σ(f ) = τ◦1 × . . .× τ◦n → τk+1
τ ′k+1 = σ(τ k+1) D ` C

〈σ,C〉 = Θ(τ◦1 × · · · × τ◦k , τ1
′ × · · · × τk

′)

D; Γ, z1 : τ1
′, . . . , zk : τk

′ `Σ f (z1, . . . , zk ) :τk+1
′ FUNAPP

where σ is a substitution of formal parameters for the actual
ones (more in [12] and the exercise sheet).
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Type checking amounts
to verifying 1st order predicates

Given a program, backward style application of typing rules
gives eventually proof obligations, that are first-order
conditional equations of polynomials:

cprod : Ln(α)× Lm(α)→ Lnm(L2(α))

Nil-branch gives n = 0 ` nm = 0
Cons-branch gives (for the outer list) ` nm = n + (n − 1)m

that are true, as we can see. (More details on this example are
given in [12], and more details on “how to” are in th exercise
sheet).
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Checking undecidable in integers in general:
reduced to 10th Hilbert problem

Check if f : Ln1(Int)× . . .× Lnk (Int)→ L1(α) for

f (x1, . . . , x2) = let l = f0(x1, . . . , xk )
in match l with | nil⇒ nil

| cons(hd , tl)⇒ cons(l ,nil)

Decidability is reduced to the satisfiability of the predicate
pf0(n1, . . . ,nk ) = 0 ` 1 = 0.
It may be that the l.h.s. pf0(n1, . . . ,nk ) = 0 never holds, so a
checker should answer “yes”. But then such a checker should
have been able to answer the question if an arbitrary polynomial
has natural roots or not. This is undecidable in general.
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Condition of decidability

We want to avoid solving complex Diophantine equations like
p(n1, . . . ,nk ) = 0.
The simplest way is to consider only programs where pattern
matching is done only on program parameters or their tails.
Then l.h.s. conditions D in proof obligations will be conjunctions
of very simple equations of the form n − c = 0. They are
trivially solved n = c and substituted to the r.h.s.
Lots of functions definitions (e.g. all primitive recursive
functions) may be written so, that they satisfy this
condition,which we call informally “no-let-before-match”.
However, there are milder conditions that proved decidability of
type checking in this type system ...
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Inference is semidecidable
(for “no-let-before-match” programs)

The idea: fit a polynomial (by finite number of points) and
check.

Fitting a polynomial

A polynomial is defined by a finite number of points on its graph,
that define a system of linear equations w.r.t. its coefficinets.
E.g. a linear function p(n) = an + b is defined by any two
different points, (n1,p(n1)) and (n2,p(n2)):{

n1 ∗ a + b = p(n1)
n2 ∗ a + b = p(n2)

The similar holds for any other polynomial of a finite degree d and a
finite number of variables s : you must know as many points on the
graph as many coefficients the polynomial has, i.e.

(d+s
d)

)
.
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Inference: how it works, by example cprod

Let us want to reconstruct polynomials fcprod 1(n,m) and
fcprod 2(n,m) in the typing

cprod : Ln(α)× Lm(α)→ Lfcprod 1(n,m)(Lfcprod 2(n,m)(α))

First, we must help our inference procedure and tell it a
possible (maximal) degree of the size functions fcprod 1 and
fcprod 2. Let’s for simplicity d = 2 for both.
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Inference: how it works, by example cprod

A polynomial of s = 2 variables of degree d = 2 as(d+s
d

)
=
(4

2

)
= 6 coefficients:

p(n,m) = a20n2 + a02m2 + a11nm + a10n + a01m + a00

Our task now is to find these coefficients by constructing
and solving the linear system for them:

a20n2
1 + a11n1m1 + a02m2

1 + a10n1 + a01m1 + a00 = f1
a20n2

2 + a11n2m2 + a02m2
2 + a10n2 + a01m2 + a00 = f2

a20n2
3 + a11n3m3 + a02m2

3 + a10n3 + a01m3 + a00 = f3
a20n2

4 + a11n4m4 + a02m2
4 + a10n4 + a01m4 + a00 = f4

a20n2
5 + a11n5m5 + a02m2

5 + a10n5 + a01m5 + a00 = f5
a20n2

6 + a11n6m6 + a02m2
6 + a10n6 + a01m6 + a00 = f6


where fi = fcprod (ni ,mi), with 1 ≤ i ≤ 6.
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Inference: how it works, by example cprod

Now, we must chose test points (ni ,mi) in such a way that
the system above has a unique solution. This solution is
exactly the collections of the coefficients for p(n,m).
From interpolation theory it is known that it is sufficient,
that points satisfy NCA-configuration, in our case – on the
plane. The full definition and references are given in [12].
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Inference: how it works, by example cprod

Here we describe its partial case: if you need to pick up(d+2
d

)
points, on the plane that satisfy NCA-configuration,

you choose d + 1 parallel lines, and pick up d + 1 points on
the first line, d points on the second line, ... and 1 point on
the last line.
In our example we choose these lines to be parallel to the
y = 0 axis, so the lines are y = 1,2,3 and points are
(n1,m1) = (1,1) (n2,m2) = (2,1) (n3,m3) = (3,1)
(n4,m4) = (1,2) (n5,m5) = (2,2)
(n6,m6) = (1,3)
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Inference: how it works, by example fcprod(n, m)

Now, we construct a collection of 6 input pairs of lists, that
have the sizes (ni ,mi) and run cprod on these data:

(n,m) Input lists cprod fcprod 1
i = 1 (1,1) [1], [1] [ [1,1] ] 1
i = 2 (2,1) [1,2], [1] [ [1,1], [2,1] ] 2
i = 3 (3,1) [1,2,3], [1] [ [1,1], [2,1], [3,1] ] 3
i = 4 (1,2) [1], [1,2] [ [1,1], [1,2] ] 2
i = 5 (2,2) [1,2], [1,2] [ [1,1], [2,1], [1,2], [2,2] ] 4
i = 6 (1,3) [1], [1,2,3] [ [1,1], [1,2], [1,3] ] 3
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Inference: how it works, by example cprod

Now, construct the linear system form the data above:

a20 + a11 + a02 + a10 + a01 + a00 = 1
4a20 + 2a11 + a02 + 2a10 + a01 + a00 = 2
9a20 + 3a11 + a02 + 3a10 + a01 + a00 = 3
a20 + 2a11 + 4a02 + a10 + 2a01 + a00 = 2
4a20 + 4a11 + 4a02 + 2a10 + 2a01 + a00 = 4
a20 + 3a11 + 9a02 + a10 + 3a01 + a00 = 3


Solving this system gives that a11 = 1 and the rest of the
coefficients are zero. Thus, fcprod 1(n,m) = nm.
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Now, construct the linear system form the data above:

a20 + a11 + a02 + a10 + a01 + a00 = 1
4a20 + 2a11 + a02 + 2a10 + a01 + a00 = 2
9a20 + 3a11 + a02 + 3a10 + a01 + a00 = 3
a20 + 2a11 + 4a02 + a10 + 2a01 + a00 = 2
4a20 + 4a11 + 4a02 + 2a10 + 2a01 + a00 = 4
a20 + 3a11 + 9a02 + a10 + 3a01 + a00 = 3


Solving this system gives that a11 = 1 and the rest of the
coefficients are zero. Thus, fcprod 1(n,m) = nm.
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Inference: how it works, by example cprod

Similarly we obtain that fcprod 2(n,m) = 2. Note, that if we
choose the test data in such a way that the length of the
outer list of the output is fcprod 1(n′i ,m

′
i ) = 0, then the length

of the inner list is undefined: L0(L???(α)).
E.g. it may happen if one of the input lists is empty:
n′1 = 0,m′1 = 1 and on the inputs [ ], [1] the program cprod
produces [ ], on which fcprod 2 is undefined.
In this case we run a program a bit more times (on other
data), so that we can fully define the “inner” polynomial. It
is treated in details in [12].
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Inference: how it works, by example cprod

The last step is to check the obtained polynomials by sending
the annotated typing to a type checker. E.g. our typing
cprod : Ln(α)× Lm(α)→ Lnm(L2(α)) is accepted.
If the typing is not accepted, then it may be due to the following
reasons:

the proposed degree d is lower than the degree of the
actual size function – then you can repeat the procedure
with a higher degree,
you have chosen bad set of size variables for input types –
then you may change the assignment of size variables to
annotated input types and repeat the procedure,
the program under consideration is not shapely (either not
a precise dependency, or no polynomial bounds at all) –
then the inference procedure does not terminate.
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Programs with lower and upper polynomial bounds:
insert

Consider polymorphic version of insert :

insert : (α× α→ Bool)× α× Ln(α)→ L{n+i}0≤i≤1
(α)

insert(g, z, l) =
match l with | nil⇒ cons(z,nil)

| cons(hd , tl)⇒ if g(z,hd) then l
else

let l ′ = insert(z, tl)
in cons(hd , l ′)

For instance, with g being equality of two integers,
on 2, [1,2,3] it returns [1,2,3],
and on 2, [3,4,5] it returns [3,4,5,2].
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Programs with lower and upper polynomial bounds:
insert , IFL’08 paper, [10]

The first improvement from IFL’08 paper, [10]: in many cases
(including shapely programs) while studying size dependencies
it is convenient to reduce an original program under
consideration to its size abstraction, that is to collection of
(recursive) rewriting rules for its size functions.

Example: rewriting rules for insert

nil-branch n = 0 ` finsert (n)→ 1
cons-branch n ≥ 1 ` finsert (n)→ n | 1 + finsert (n − 1)

where | denotes two options in computing finsert corresponding
to the true- and false-branches of the if-expression, resp.
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Programs with lower and upper polynomial bounds:
insert , IFL’08 paper, [10]

We want to compute a lower finsert min(n) and an upper
finsert max(n) bounds for insert .

Assume that bounds depend on the size variable n, and,
the degree d = 1 for both.
A polynomial of one variable of the degree 1 (linear) is
given by two coefficients. Thus

finsert min(n) = amin 1n + amin 0
finsert max(n) = amax 1n + amax 0

are defined by two nodes (1-dimensional points).
Let these nodes are n = 1,2.

49/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work

Amortised heap analysis and sizes
Size analysis of 1-st order function definitions
Beyond shapely programs

Programs with lower and upper polynomial bounds:
insert , IFL’08 paper, [10]

We want to compute a lower finsert min(n) and an upper
finsert max(n) bounds for insert .

Assume that bounds depend on the size variable n, and,
the degree d = 1 for both.
A polynomial of one variable of the degree 1 (linear) is
given by two coefficients. Thus

finsert min(n) = amin 1n + amin 0
finsert max(n) = amax 1n + amax 0

are defined by two nodes (1-dimensional points).
Let these nodes are n = 1,2.

49/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work

Amortised heap analysis and sizes
Size analysis of 1-st order function definitions
Beyond shapely programs

Programs with lower and upper polynomial bounds:
insert , IFL’08 paper, [10]

We want to compute a lower finsert min(n) and an upper
finsert max(n) bounds for insert .

Assume that bounds depend on the size variable n, and,
the degree d = 1 for both.
A polynomial of one variable of the degree 1 (linear) is
given by two coefficients. Thus

finsert min(n) = amin 1n + amin 0
finsert max(n) = amax 1n + amax 0

are defined by two nodes (1-dimensional points).
Let these nodes are n = 1,2.

49/75



Motivation
Size analysis: an overview

Size analysis in AHA project
Summary

Future work

Amortised heap analysis and sizes
Size analysis of 1-st order function definitions
Beyond shapely programs

Programs with lower and upper polynomial bounds:
insert

Differently to the initial version of our method we do not
need to generate test data, if we have a rewriting system
for a size function. We compute the values of a size
function directly on concrete sizes.
Thus, in our example we compute
finsert (1)→ 1 | 1 + finsert (0) = {1,1 + 1} = {1,2}
finsert (2)→ 2 | 1 + finsert (1) = {2,1 + 1,1 + 2} = {2,3}

Now, we see that

finsert min(1) = 1 finsert min(2) = 2
finsert max(1) = 2 finsert max(2) = 3
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Programs with lower and upper polynomial bounds:
insert

So we have two systems of linear equations, for the lower
and upper bounds respectively:

amin 1 + amin 0 = finsert min(1) = 1
2amin 1 + amin 0 = finsert min(2) = 2

}
amax 1 + amax 0 = finsert max(1) = 2
2amax 1 + amax 0 = finsert max(2) = 3

}
Solving these systems gives amin 1 = 1, amin 0 = 0 and
amax 1 = 1, amax 0 = 1. That is,

finsert min(n) = n
finsert max(n) = n + 1
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Programs with lower and upper polynomial bounds:
insert

So, finsert (n) ⊆ {finsert min(n) + i}0≤i≤finsert max(n)−finsert min(n)

⊆ {n + i}0≤i≤1

Now we have to check, if indeed,
insert : (α× α→ Bool)× α× Ln(α)→ L{n+i}0≤i≤1

(α).
The checking extends the checking procedure for shapely
functions. Here, the output annotation should contain all
the values of the size function in any branch of the
computations: ...
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Programs with lower and upper polynomial bounds:
insert

...
the nil-branch we have the following inclusion:
n = 0 ` {n + i}0≤i≤1 ⊇ {1},
for the true-branch in the cons-branch we have
n ≥ 1 ` {n + i}0≤i≤1 ⊇ {n},
for the false-branch
n ≥ 1 ` {n + i}0≤i≤1 ⊇ {1}+ {(n − 1) + i ′}0≤i′≤1

where + is lifted to sets and defined as pairwise addition of
the sets’ elements.
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Programs with lower and upper polynomial bounds:
insert

The inclusions above are turned into the first-order
predicates by unfolding the definition of a set inclusion :

n = 0⇒ ∃ i . 0 ≤ i ≤ 1 ∧ n + i = 1,
n ≥ 1⇒ ∃ i . 0 ≤ i ≤ 1 ∧ n + i = n,
∀ n i ′. 0 ≤ i ′ ≤ 1 ∧ n ≥ 1⇒ ∃ i . 0 ≤ i ≤ 1 ∧ n + i =
1 + (n − 1) + i ′

It is easy to check that i may be instantiated as i = 1, i = 0
and i = i ′ for each of the branches respectively.
In general for checking one have to instantiate existential
quantifiers in the first-order arithmetics. This is, in general,
undecidable in integers (but still, decidable e.g. for linear size
functions). It is decidable in reals, however real arithmetics has
some disadvantages which we do not discuss here.
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Programs with polynomial bounds
over nested lists (submitted TFP’09)

In types like L(L(α)) the internal lists may be of different length:
e.g. [ [1,2], [3,4,5], [ ] ].
Formally, this fact may be expressed by introduction of length
functions λ k .M(k) that express the lengths of internal lists,
where

M(0) is the length of the head list,
M(1) is the length of the element following the head,
... etc.

In the example above M(0) = 2, M(1) = 3, M(2) = 0 and M(k)
is arbitrary for k ≥ 3.
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Programs with polynomial bounds
over nested lists

It leads to higher-order size functions, since size variables may
represent functions.

Example: conc : Ln(LM(α))→ Lfconc(n,M)(α)

Given a list of lists it returns the concatenation of its elements:

conc(l) =
match l with | nil⇒ nil

| cons(hd , tl)⇒ let l ′ = conc(tl)
in append(hd , l ′)

For instance, on our list [ [1,2], [3,4,5], [ ] ] it returns
[ 1,2,3,4,5 ].
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Programs with polynomial bounds
over nested lists

We start with generating the collection of the rewriting rules
computing the size function fconc(n,M).

conc is called recursively on the tail of the list argument.
So, we need to express the length function of the tail, M ′,
via the length function M of the whole list:
M ′(k) = M(k + 1).
E.g., for our list [ [1,2], [3,4,5], [ ] ] we have M ′(0) = 3,
M ′(1) = 0 and M(k) is arbitrary for k ≥ 2.
We will denote the left shift of M via M+1, so M ′ = M+1.
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Programs with polynomial bounds
over nested lists

We parse the body of conc and obtain the following
rewriting system for its size function:
n = 0 ` fconc(n,M)→ 0
n ≥ 1 ` fconc(n,M)→ M(0) + fconc(n − 1,M+1)

As in the case of insert , the rewriting system is not our end
result in size analysis, but is just a tool to compute closed,
i.e. recursion free, forms of lower and upper bounds on the
size function of conc.
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Programs with polynomial bounds
over nested lists

What to do with the higher-order parameter M? We
introduce a fresh usual size variable for it, m, meaning that
for all k ≥ 0 we have 0 ≤ M(k) ≤ m.
We want to obtain a typing of the following form
conc : Ln(L{i}0≤i≤m

(α))→
L{fconc min(n,m)+i}0≤i≤fconc max(n,m)−fconc min(n,m)

(α)
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Programs with polynomial bounds
over nested lists

We assume the degree of lower and upper bounds:
let it be d = 2.
A polynomial of degree two of two variables is defined by
six coefficients, so we need to know the values of fconc min
and fconc max in six 2-dimensional points, satisfying
NCA-configuration. Then we will have to solve the linear
systems for the coefficients of fconc min and fconc max. (The
systems will have the form as for cprod .)
We choose the nodes as for cprod
(n1,m1) = (1,1) (n2,m2) = (2,1) (n3,m3) = (3,1)
(n4,m4) = (1,2) (n5,m5) = (2,2)
(n6,m6) = (1,3)
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over nested lists

Now we need to compute fconc max (resp. fconc min) in these
nodes. We transform the rewriting system for the
higher-order function fconc into a rewriting system for the
function f ′conc over numerical sets (and numbers):
n = 0 ` f ′conc(n, {i}0≤i≤m)→ {0}
n ≥ ` f ′conc(n, {i}0≤i≤m)→ {i}0≤i≤m+

f ′conc(n − 1, {i}0≤i≤m)
The second argument in the recursive call is the same as
the second argument of the function f ′conc : this is because
the elements of the tail have the same length bounds as
the elements of the list. It easy to see that
f ′conc(n,m) ⊇ fconc(n,M) if M(k) ≤ m for all k .
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Now we can compute all possible values of f ′conc in the
given nodes using the new rewriting system:
f ′conc(1, {0,1}) → {0,1}+ f ′conc(0, {0,1})→ {0,1}
f ′conc(2, {0,1}) → {0,1}+ f ′conc(1, {0,1})→ {0,1,2}
f ′conc(3, {0,1}) → {0,1}+ f ′conc(2, {0,1})→ {0,1,2,3}
f ′conc(1, {0,1,2}) → {0,1,2}+ f ′conc(0, {0,1,2})→ {0,1,2}
f ′conc(2, {0,1,2}) → {0,1,2}+ f ′conc(1, {0,1,2})→ {0,1,2,3,4}
f ′conc(1, {0,1,2,3}) → {0,1,2,3}+ f ′conc(0, {0,1,2,3})→ {0,1,2,3}
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over nested lists

Now, pick up the maximal elements of each set. They
constitute the r.h.s of the linear system for the coefficients
of fconc max:
amax 20 + amax 11 + amax 02 + amax 10 + amax 01 + amax 00 = 1
4amax 20 + 2amax 11 + amax 02 + 2amax 10 + amax 01 + amax 00 = 2
9amax 20 + 3amax 11 + amax 02 + 3amax 10 + amax 01 + amax 00 = 3
amax 20 + 2amax 11 + 4amax 02 + amax 10 + 2amax 01 + amax 00 = 2
4amax 20 + 4amax 11 + 4amax 02 + 2amax 10 + 2amax 01 + amax 00 = 4
amax 20 + 3amax 11 + 9amax 02 + amax 10 + 3amax 01 + amax 00 = 3

Solving this system gives that amax 11 = 1 and the rest of
the coefficients are zero. Thus, fconc max(n,m) = nm.
Similarly, fconc min(n,m) = 0.
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The length of the output on an input of the type Ln(LM(α))
should be in the set
{fconc min(n,m) + i}0≤i≤fconc max(n,m)−fconc min(n,m) = {i}0≤i≤nm

To check if the computed bounds fconc max(n,m) = nm and
fconc min(n,m) = 0 are indeed correct, we need to check
the following typing:
conc : Ln(L{i}0≤i≤m

(α))→ L{i}0≤i≤nm
(α)
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Following the computation scheme for f ′conc , defined by its
rewriting rules, we conclude that the following inclusions
must hold
n = 0 ` {i}0≤i≤nm ⊇ {0}
n ≥ 1 ` {i}0≤i≤nm ⊇ {i}0≤i≤m + {i}0≤i≤(n−1)m

Unfolding the definition of set inclusions we obtain the
following first-order entailments:
∀ n m ≥ 0.n = 0⇒ ∃ i .0 ≤ i ≤ nm ∧ i = 0
∀ n m i ′ i ′′ ≥ 0.n ≥ 1 ∧ i ′ ≤ m ∧ i ′′ ≤ (n − 1)m⇒

∃ i . 0 ≤ i ≤ nm ∧ i = i ′ + i ′′
These entailments hold.
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Conclusion:
we have derived and proven the correctness of the lower
fconc min(n,m) = 0 and the upper fconc max(n,m) = nm
polynomial size bounds for conc, given the internal lists of an
input do not contain more than m elements.
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Summary

We can infer and check bounds for shapely programs,
[12]. We know the syntactic condition sufficient for
checking to be decidable in integers.
We have extended this technique for algebraic data
types [13].
We have adopted the inference procedure for programs
with lower and upper polynomial bounds, over matrix-like
structures [10].
We have been extending the method for programs over
arbitrary nested lists, [11].
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Future work

We have been working on what we call a stopping
criterion: analyse a size recurrence and find d such that if
the recurrence has a polynomial solution, then it is of a
degree at most d .
Extend the method to lower and upper polynomial bounds
for programs over algebraic data types.
Study lazy languages: how to measure closures?
Transfer results to an object-oriented setting.
Study higher-order programs of types like
(an → bf (n))× cm → dF (f ,m)
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