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1. Introduction 

1.1. Overview 
Computing involves making models of the world, to understand it and change 
it in predictable ways. We can then write programs that map the abstractions 
of a conceptual model onto the concrete behaviours of a physical computer so 
the behaviour of the program on the computer tells us about the world works.  
 
We make models by solving real world problems. And we realise models as 
programs by programming real computers. So should we separate out 
problem solving, model making and programming, or are they inextricably 
linked? We also need languages and notations to solve problems, make 
models and write programs. Should these be the same or different? And isn’t 
this all just Computing Science? 
 
I think that it’s important to distinguish Computing from Computing Science. 
Computing Science is an academic discipline which underpins all ICT, 
especially model making and tool making. Computing Science is concerned 
with the theory and practice of computations, which involves making models 
of reality from information structures and algorithms, and then animating the 
models on computers. That is, programming bridges models and computers. 
 
It’s been argued that everyone needs to learn how to program (e.g. Observer 
new Review, 1/4/12) and that somehow programming is the “new Latin”. I 
think we need to teach everyone how to think, in particular how to 
characterise a problem before realising a solution in some given hardware 
and software technology. 
 
I think we should view ICT, Computing Science and Computational Thinking, 
of which much more soon, as forming a Computing triangle: 
 

 
where: 

 Computing Science provides concepts for Computational Thinking in 
search of a praxis – that is synergy between theory and practise; 

 ICT offers problems to Computational Thinking in search of solutions 

 Computing Science responds to social needs from ICT with tools. 
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In homage to Niklaus Wirth’s Algorithms + Data Structures = Programs1 we 
might now say that: 
 
information + computations = solutions 
 
Thus, to solve problems, we can ask: 

 how do we know when the problem is solved? 

 what information is relevant to solving the problem? 

 how must the information change for the problem to be solved? 

 what computation(s) should we perform on the information to reach the 
solution? 

 
The hardest part of problem solving is characterising the problem. Short of 
asking someone else, perhaps the best approach is to look for a similar 
problem we already know how to solve. And from our slogan, a similar 
problem will have similar information and similar computations: that’s why it’s 
likely to offer similar solutions. 

1.2. Computational thinking and information 
Recently, Computational Thinking (CT) has become seen as a key approach 
to problem solving. There are several different formulation of CT. My take, 
following Kao et al2, is that it has four core techniques: 

 decomposition; 

 pattern identification3; 

 pattern generalisation/abstraction; 

 algorithm design. 
 
Decomposition is based on teasing out the basic building blocks of problems 
and involves: 

 identifying the information needed to solve the  problem; 

 breaking the problem up into smaller sub-problems; 

 identifying the sub-information needed to solve sub-problems. 
 

Pattern identification is based on finding differences and involves: 

 looking for patterns amongst problems. This requires us to think about 
whether we’ve seen a problem like this before, and, if so, how the new 
problem is different?  

 looking for patterns in the information. This requires us to consider how the 
information is structured, whether there are useful relationships within the 
information, whether we’ve seen information organised like this before, 
and, if so, how the new information is different. 

 

                                            
1
 Prentice Hall, 1973. 

2
 E. Kao, Exploring Computational Thinking at Google, CSTA Voice, May, 2011, 

https://csta.acm.org/Communications/sub/CSTAVoice_Files/csta_voice_05_2011.pdf 
3
 I used to call this “pattern recognition” until Roger Boyle pointed out that this is an image 

processing term. 

https://csta.acm.org/Communications/sub/CSTAVoice_Files/csta_voice_05_2011.pdf
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Pattern generalisation and abstraction is the inverse of pattern identification. It 
involves using these differences to: 

 find the general cases for our problem. Here we think about what does and 
doesn’t change in how the sub-problems are organised. 

 clarify the general organisation of the information? Here we consider what 
information does and doesn’t change in the overarching information 
structure? 

 
That is, we find common templates for the things that don’t change with slots 
for the things that do change. 
 
Finally, for algorithm design we think about: 

 the sequence of steps from the initial information to the problem being 
solved; 

 how the sub problems are connected; 

 how the information changes between steps. 
 
Now, it’s easy to write down these stages but harder to see how they apply in 
practical problem solving. It’s really not clear where to begin. And we already 
have tried and tested techniques for programming so why can’t we retrofit CT 
to what we do already? 
 
Here, options include: 

 programming language oriented: full strength language, pedagogic, full 
strength subset, functional, logic, object oriented, reference language. 

 simple to complex: stepwise refinement; structured programming; iterative 
prototyping. 

 component: modular programming; algorithms; data structures; types; 
classes; libraries. 

 design: flowcharts; data flow; entity relationship; state machines; UML. 
 
Really, all we can say is that fashions change. There are too many 
possibilities and none work easily beyond simple cases. More to the point, 
they all have a strong focus on the final program. Programming isn’t hard 
when you know how to solve the problem. It then becomes a matter of battling 
with the vagaries of language-specific syntax, semantics and tools. For people 
new to programming, this language specific detail can become overwhelming, 
leading to a plethora of tiny, low level concerns at the expense of 
understanding how to solve an original problem. 

1.3. Information structures 
Our familiar approaches are certainly useful at the end of problem solving 
when we come to implement a solution, but at the start it’s vital to focus on the 
problem without regard for the implementation. the key is to work out how to 
characterise the information and computations. And it’s best to start with the 
information, not the computation. 
 
We can characterise information as: 
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information = base elements + structure 
 
Note that we are not concerned with type or class, which are programming 
concepts to do with representing and implementing problem information. 
 
Here, the base elements are the names of real-world things. At simplest, 
these are represented as sequences of characters to form meaningful unitary 
entities like words and numbers. Our things may also be built out of sub-
elements, that is things themselves may be structured. 
 
Thus, we find: 

 sequences: things before and after each other, either unordered or 
ordered on some property; 

 tables: things arranged in rows of columns; 

 arrays: things accessed by indices; 

 records: things accessed by field name; 

 lists: things arranged in chains, accessed by heads and tails; 

 trees: things arranged in branching structures, accessed by branches; 

 graphs: things arranged as nodes linked by arcs. 
 
Note again that we are not concerned with data structures which are 
programming concepts to do with representing and implementing problem 
information structures. 
 
Note also that structures have equivalences. Thus, a table is an array or 
records of row/column contents; an array is a list of index/value records; a list 
ia an array of records of heads and tails. That is there are different, equally 
valid ways of characterising an information structure. Ultimately, the choice of 
structure is pragmatic: what gives the best characterisation of the problem in 
terms of, say, comprehension or abstraction. 

1.4. Finding information structures 
Alas, it’s still no clearer where we should begin. It is tempting to go back to 
good old fashioned Computer Science. But there’s no need. Rather, we 
should think about how real-world things are organised, and look at lots of 
concrete examples. Once we adopt an informational thinking approach, we 
can see information structures everywhere, often in how physical things are 
arranged but more conventionally in how data is organised.  
 
For example, try thinking about how we interact with: 

 parked cars; 

 numbered houses; 

 supermarket queues; 

 English v Scottish bank queues; 

 shopping lists; 

 receipts; 

 bills; 

 account statements; 

 itineraries; 

 diaries; 

 calendars; 

 invitation lists; 

 address books; 

 seating diagrams; 

 shop catalogues; 

 library catalogues; 
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 family trees; 

 cladistic trees; 

 decision trees; 

 underground maps; 

 road maps; 

 lottery tickets; 

 betting slips; 

 sports league tables; 

 mobile contacts; 

 browser favourites; 

 social media friends; 

 digital photo albums. 
 
To characterise the information structure we need to interrogate the 
information. We need to ask how the information is organised, that is if it is: 

 simple or composite; 

 linear or grid or branching or cyclical; 

 unordered or ordered; 

 fixed or changeable in content or size or shape. 
 
We can approach this by thinking about how to access the elements of the 
information structure by asking: 

 why do we want to access the elements? 

 which elements do we want to access? 

 how do why/which affect access? 

 where do we start the access? 

 how do we continue access? 

 how do we know if we’ve been successful or unsuccessful? 

 what do we do if we’re unsuccessful? 
 
In the same way, we can ask how, if at all, we can add or delete or modify 
elements. 

1.5. Generalising information structures 
We now have some vague inkling about to identify a concrete information 
structure that fits some specific real-world problem scenario. Applying 
computational thinking, we can now try to generalise by comparing apparently 
disparate information structures. Thus we can ask what stays the same and 
what changes. We can also look for similarities in concrete detail and in gross 
structure, ignoring the elements. In particular, are there commonalities in how 
to access, update, add and delete elements. Ultimately, we can use these 
comparisons to draw out the abstract structures we identified above. 
 
For example, what do: a car park and tables in a café, a bank statement and a 
utility bill, an allocated seat in an aircraft and in a cinema, a road map and an 
underground map, have in common? What are their differences?  What 
common abstract information structure is suitable for both of them? 
 
Finally, we can start to formalise the idea of an information structure as an 
abstract data type, with ways to:  

 make a new structure; 

 add information; 

 check if information is present; 

 find information; 
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 change information; 

 remove information. 
 
Not all information structures need have all these capabilities. For example, in 
many real world information structures, the information cannot easily be 
changed. 

1.6. From information to computation 
We can view these operations on abstract data types as being like the verbs 
of a language. We then make sentences by apply the verbs to nouns. That is, 
computation strature operations on information structures into algorithms. The 
key here is to make the structure of the computation follow the structure of the 
information. Note that we’re making algorithms; we’re not yet programming. 
 
Once again, we should be driven by the problem scenario. We know that a 
computation solves a problem by turning old information into new information. 
So in the problem scenario we need to explore the sequences of information 
change. 
 
Typically, we want to traverse the information structure, often visiting each 
element once, and stopping when some condition is met. On the way, we 
might do something to each element and accumulate some intermediate 
information. 
 
For information arranged in fixed sequences, we typically want to traverse 
from some first element to some last element. So we need a notion of the next 
or current element. This is termed bounded iteration. 
 
In other cases, we might want to continue traversal until some more general 
property is satisfied, and this might involve repeatedly visiting the same 
information or the same locations in the structure. This is termed unbounded 
iteration. 
 
In both cases, we need to know how to start, continue and end the iteration, 
and this will be intimately associated with how we access and modify the 
information structure.  
 
An alternative to iteration is recursion. Here, if we’ve got to the end of the 
structure, we stop traversal and maybe return a  final value. Otherwise, we do 
something with the current element and then traverse the rest of the structure. 
Here we can distinguish the base case, where we stop, from the recursion 
case where we do the same thing to the rest of the structure. 
 
As with iteration, we need to know how to start, continue and end the 
recursion, again closely following the information structure’s properties. 
 
Recursion and iteration are equivalent in expressive power. Alas, recursion is 
often seen as scary and advanced. In fact, in my experience, if you introduce 
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recursion before iteration, students find it natural. One way is through 
children’s counting songs like: 

 Ten green bottles; 

 On man went to mow; 

 Twelve days of Christmas. 
 
We may well come back to this in another chapter.. 
 
During information structure traversal, we often need to keep track of 
intermediate stages. We may wish to remember different positions in a 
structure, for example where we last found something, or partial results, for 
example the value of the last element we found satisfying some property. 
 
We can now introduce the idea of a variable as a general name/value 
association, where we can change the value associated with the name from a 
computation, often using the previous value. 
 
I think that introducing variables should be delayed until they are needed to 
manage the stages of information structure traversal. 
 
Coming back to accessing or changing an element in an information structure, 
we need to know how we can uniquely identify an element. Typically, we use 
what we might think of as a compound variable, for example the name of the 
structure qualified by a named field identifier or a numeric index. 
 
Sometimes, we want to change an element regardless of its properties. But 
we may only want to change it if it satisfies some criteria. So now we can 
introduce notions of condition and choice. Similarly, we may want to change 
what we do next depending on properties of elements. That is, we can use 
conditions and choice to manage the stages of traversal. 
 
Finally, we can stand back and think about whether the computation is 
necessarily: 

 iterative, or could it be recursive? 

 sequential, or could it be concurrent? 

 linear, or could it be backtracking? 

 deterministic, could it be non-deterministic? 

 bounded, or could it be unbounded? 
 

1.7. Conclusions 
I have quite deliberately talked about problem solving in very general terms, 
without using any notation. But we do need to describe all these aspects of 
solving a specific problem in a concrete, consistent manner, so why don’t we 
just use a programming language? After all, programming and seeing things 
working at an early stage are both highly motivating. 
 
One problem is that the choice of language affects what can be described. 
Furthermore, the fine detail of a specific language can get in the way of 
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understanding fundamental concepts. Finally, the techniques used to knock 
up quick hit, small programs4 usually don’t scale well to larger problems and 
this can prove frustrating and demotivating. 
 
I think that, for problem solving, we should use a neutral notation like a 
reference language. In the following material, I will use the Haggis reference 
language developed with Quintin Cutts.  
 
To conclude, I think that we should focus on problem solving not 
programming. We’ve seen that: 
 
computational thinking = decomposition+ abstraction + patterns + algorithms 
 
Now, CT is a framework not a recipe. In CT, the components overlap and 
interact. It just isn’t possible to separate out definite stages of decomposition, 
abstraction, patterns and algorithms. Finding these is itself a creative, iterative 
activity. 
 
I think that classic CT overemphasises computation over information. For me: 
 
solution= information + computation 
 
I think that we should  let the information structure the computation, and we 
should start with concrete instances of our problem scenario. We should then 
use CT to ask good questions, to tease out well known information structures 
and to guide computation design. 

1.8. Exercise 
a) Choose two very different scenarios from the list in 1.4.: 

                                            
4
 “hacking” 
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• parked cars; 
• numbered houses; 
• supermarket queues; 
• English v Scottish bank 

queues; 
• shopping lists; 
• receipts; 
• bills; 
• account statements; 
• itineraries; 
• diaries; 
• calendars; 
• invitation lists; 
• address books; 
• seating diagrams; 

• shop catalogues; 
• library catalogues; 
• family trees; 
• cladistic trees; 
• decision trees; 
• underground maps; 
• road maps; 
• lottery tickets; 
• betting slips; 
• sports league tables; 
• mobile contacts; 
• browser favourites; 
• social media friends; 
• digital photo albums. 

 
b) Choose one information structure from the list in 1.3.: 
• sequences: things before and after each other, either ordered on some 

property or unordered; 
• tables: things arranged in rows of columns; 
• arrays: things accessed by indices; 
• records; things accessed by field name; 
• lists; things arranged in chains, accessed by heads and tails; 
• trees: things arranged in branching structures, accessed by branches; 
• graphs: things arranged as nodes linked by arcs. 
 
c) Explain how to represent both scenarios from 1.4.using the structure from 
1.3. 
 
This is well suited as an activity for pairs of people. 
  



15 
 

2. Pedagogy 

2.1. Overview 
Of course I’m making this all up as it goes along, but it is maybe useful to try 
and tease out what I think are the influences on the approach I’m trying to 
elaborate. Off the top of the head, I think there are four principle sources of 
ideas: 

 Paulo Freire 

 Alan Turing 

 the modern movement; 

 functional programming. 
 
Let’s briefly survey each of these in turn. 

2.2. Paulo Freire  
Paulo Freire (1921-1997) was a Brazilian educator who is justly celebrated for 
his critique of traditional education in reproducing often repressive social 
relations. In Freire’s best known book, The Pedagogy of the Oppressed5, he 
articulates an approach to teaching literacy through working with students to 
construct, and then critically reflect on, accounts of their day to day 
experiences. In so doing, his aim was to enable his students to be active and 
equal subjects of education, equipped to analyse and change society, rather 
than just passive objects who consume pre-defined knowledge. 
 
I first read Freire in the late 1970’s, coincidentally when I first started teaching 
Computing in what was then a Scottish Central Institution, now a “post-92” 
University. Much of what Freire said resonated with my own experiences at 
school, at University and then as a Lecturer. Longer term, I think Freire has 
informed and reinforced wish to make education an egalitarian and liberating 
activity for both learners and teachers. Here, however, I want to focus on 
Freire’s pedagogy rather than his politics.  
 
In Freire’s approach, there are pleasing correspondences with the 
decomposition, pattern identification and generalisation stages in 
computational thinking.  Alas, it is just not possible to do justice to these here: 
I strongly recommend Chapter 3 of Pedagogy of the Oppressed, which is a 
good read, despite both the unfamiliar terminology and the sometimes lumpy 
translation. 
 
Rather, Freire makes three striking observations which I think are strongly 
relevant to all teaching but particularly pertinent to Computing.  
 
First of all, education should be based on scenarios which are highly familiar 
to learners. For Computing this seems obvious: we should make our 
programming examples as motivating as possible by relating them to our 
students’ day to day experiences. Often, though, our conceptions of our 

                                            
5
 Penguin, 1972. 
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students’ experiences do not correspond to their own. For example, scenarios 
drawn from sports or books or films or music often reflect our misconceptions 
about what interest our students, and the specific content dates quickly. The 
scenarios in the first chapter above have been chosen to be familiar to both 
students and teachers, and to be gender and age neutral. 
 
Secondly, scenarios should be neither “too explicit or too enigmatic”. If 
scenarios are too explicit then analysing them offers no challenge. For 
example, scenarios based on, say, collections of tunes or films or books 
scream table-of-rows-of-fields-in-some-alphabetic-order as this is precisely 
how familiar apps organise them. Conversely, if scenarios are too enigmatic, 
then there is less opportunity for students to make sense of them without 
teacher intervention and guidance. Thus, above I’ve tried to choose examples 
that do not have “obvious” pre-given structures but where there is enough 
implicit structure to enable straightforward analysis .  
 
Thirdly, as suggested by Freire’s collaborator Bode, one should explore 
alternative characterisations of scenarios rather than quickly homing in a 
single “obvious” solution, as such exploration both reinforces and enhances 
development of that solution. Thus, above, I’ve suggested that it’s worth 
considering whether different information structures, however unlikely, are 
appropriate for a given scenario. 

2.3. Alan Turing 
Alan Turing (1912-1954)  is now renown as one of the founders of 
contemporary Computing and Artificial Intelligence. Turing was originally a 
mathematical logician, working on characterising the limits to mathematics. 
The title of his seminal 1936 paper, On computable numbers, with an 
application to the Entscheidungsproblem6, makes it sound like it’s going to be 
impossibly hard to comprehend: indeed, most of it is highly technical, using 
notation and terminology which has long been superseded. 
 
However, at the heart of the paper is Turing’s elegant discussion of the 
plausibility of his model of Computing, based on what are now called Turing 
machines (p249-252). Here, Turing explores the general form of his machines 
by a painstaking low level analysis of practical paper and pencil computing. 
He starts by considering “...writing certain symbols on paper. We may 
suppose this paper is divided into squares like a child’s arithmetic book.”  
 
He then systematically explores whether or not:  

 the squares need to be arranged in a grid – they don’t; 

 arbitrary many different symbols are needed  – they aren’t;  

 arbitrary many different “states of mind” are required to manipulate the 
symbols – they aren’t; 

 whether it’s necessary to change more than one symbol at a time – it isn’t;  

 and so on. 

                                            
6
 Proceedings of the London Mathematical Society, Series 2, 42 (1936-7), pp 230–

265. 

http://en.wikipedia.org/wiki/Computable_number
http://en.wikipedia.org/wiki/London_Mathematical_Society
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In effect, Turing carries out a thorough analysis of Computing in general, in 
terms of information representations and of operations, systematically 
abstracting away from concrete detail to simplify his model as far as he can. 
Again, his approach has strong resonances with computational thinking.  
 
For me, several things are germane here. First of all, Turing strongly roots his 
justification for his theoretical work in concrete human practice7. This well 
complements Freire’s requirement that scenarios should be familiar.  
 
Secondly, while Turing explicitly separates out information from its 
processing, he refines both aspects side by side. I think that far too much 
Computing teaching focuses exclusively on algorithms, often taking 
information and its organisation as given.  
 
Next, Turing is keen to derive really simple ways to represent arbitrary 
information and characterise information processing, regardless of efficiency. 
Again, I think that too much Computing teaching homes in on using rich 
information representations, which may well be efficient and give rise to 
elegant algorithms, but which are really hard for beginners to grasp. Thus, I 
think it is far better to start with simple, if sub-optimal, information 
representations and algorithms, and then explore their application and 
limitations, to motivate more sophisticated approaches. I’ve tried to do this in 
the worked example of shopping in what is currently Chapter 3.  
 
Finally, in exploring what he terms an “intuitive argument” to justify the 
properties he claims for his machines, Turing’s style is succinct yet 
approachable, avoiding formal ideas and notations. In teaching Computing, it 
is tempting to dive into a programming language as soon as possible, to 
quickly animate a model on a computer to provide motivation and 
reinforcement. In contrast, while a working program is always the ultimate 
goal, I think that learning and understanding how to get there from a problem 
scenario is of crucial importance. That is, following Turing, I think we should 
try to use clear natural language to explore scenarios systematically in fine 
detail, rather than presenting formalised, pre-digested solutions. Arguably, I 
haven’ altogether succeeded yet... 

2.4. Modern movement 
The modern movement was an international trend in architecture and 
industrial design that started in the late 19th century. Its roots lay in the new 
steel and concrete technologies that enabled the construction of buildings 
whose sizes, shapes and spans were no longer constrained by the limitations 
of stone. Now associated with stark tower blocks and sub-standard housing 
schemes, in its day, modern architecture led to the elegant and graceful 

                                            
7 Every numerate person can do sums by hand; a skill that pocket calculators, 
intelligent sales tills, and mobile apps seem to be steadily eroding. 
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skyscrapers of the early 20th century that typify the classic views of the 
Manhattan and Chicago skylines. 
 
One of the first modernist architects, Louis Sullivan8 coined the phrase: 
 

form ever follows function; 
 
that is, the principle that what something looks like should reflect its purpose. 
When taken to extremes, this can lead to a rejection of all ornamentation 
resulting in a severe functionalism. However, this was a liberating philosophy 
for Sullivan and  his contemporaries as they were no longer constrained to 
traditional designs by traditional technologies. 
 
I think that this idea is significant for computational thinking in three respects. 
First of all, it suggests that the information and computational structures of 
systems should reflect the requirements of the problem. Of course this sounds 
obvious. But it is easy to become locked into design choices early on because 
they somehow feel right rather than because they actually reflect the needs of 
the problem. CT is precisely about teasing out structures latent in problems, 
without the preconceptions of “traditional” approaches.  
 
Secondly, “form follows function”9 suggests that a system should not do more 
than solve the problem at hand. It is often tempting to over design systems 
such that they do far more than the original requirement, perhaps in an 
attempt to somehow “future proof” them. However, over engineered 
functionality often gets in the way of meeting core needs. I think that systems 
should be no more complex than required for the job as specified. For 
example, it’s all too easy to reach for a sort when there’s so little data that a 
search will suffice. Similarly, it’s often tempting to design an object or record 
structure which contains information which is only going to be relevant if the 
requirements change. 
 
Thirdly, “form follows function” implies that users should be able to quickly tell 
how to use a system because its design corresponds to their operational 
needs. This is particularly important for GUIs, where highly subjective notions 
of “user friendliness” can lead to unnecessarily confusing interfaces. Thus, 
interfaces should reflect upfront the primary uses for which the system is 
intended. One way to achieve this is to aim for simplicity in design. 

2.5. Functional programming 
Functional programming  comes out of the same 1930s world of mathematical 
logic as Turing machines. While nobody today would dream of programming 
in Turing machine style, Turing machines are commonly used as a base line 
measure of the complexity of algorithms. In contrast, functional programming 
has a significant if minority following for contemporary practical Computing, in 
particular in Haskell and Standard ML. And ideas from functional 

                                            
8
 "The Tall Office Building Artistically Considered". Lippincott's Magazine (March 1896): 403–

409 
9
 in the popular shorter version. 



19 
 

programming are now incorporated cleanly in imperative languages, for 
example anonymous and higher order functions in Ruby and Python. 
 
Alas, functional programming has been wildly over-hyped. Honestly: 

 functional programming is not the solution to the software crisis;  

 functional programming does not ease program proof;  

 it is not easy to exploit useful parallelism in functional programs;  

 functional programs can be just as opaque as they are succinct.  
 
In reality, functional programming is just another programming style with its 
own balance of theoretical and practical strengths and weaknesses.  
 
On the other hand, functional programming has an unfortunate reputation as a 
hard discipline, based on squiggly notations and really difficult ideas like: 

 recursion; 

 recursive data structures; 

 polymorphic types; 

 anonymous functions; 

 higher order functions; 

 not to mention monads, monoids and other mono-manias... 
 
In reality, functional programming is no harder than any other programming 
style, once you know how to do it.  
 
For me, the key functional programming idea is: 
 

make the structure of the program correspond to the structure of the 
data. 

 
That is, the structure of the information should come first, and strongly guide 
subsequent choices about computation structures. This fits neatly with “form 
follows function”. 
 
Functional programming encourages this approach because there is a close 
correspondence between how information and computations are represented. 
In particular, in functional languages, recursive data structures, like linked lists 
and binary trees, have direct equivalences in the ways that recursive functions 
to process them are defined. 
 
Typically, a recursive structure is either empty or has components which are 
themselves combinations of atomic values and recursive structures, all glued 
together by operators called constructors. Then, a function to process a 
recursive structure typically has a base case for an empty structure, and 
recursion cases for non-empty structures, which use patterns of constants, 
variables and constructors to match and pick up the structure’s components. 
 
The beauty of functional programming is that this close correspondence 
generalises to arbitrary information structures. That is, we can identify: 
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 a general information pattern for representing an empty or non-empty 
structure, using variables to name the significant components and 
operators to show how they fit together; 

 a corresponding computation abstraction as a function with cases for the 
empty and non-empty forms of the information pattern, operating on the 
variables for the components. 

 
In short, if we have a way of representing instances of an information 
structure, we can read off the structure of the computation from the structure 
of the information. 
 
So, if functional programming is so well aligned with CT, why isn’t this book 
based on it? Well, we’ll look at this in the forthcoming chapter on choice of 
programming language for teaching... 

2.5. Exercises 
a) Discuss the view that you can’t treat students as equals because it makes 
you look weak, so they play up and you can’t ever regain control. Instead you 
have to start hard and establish who’s boss.  
b) Discuss the view that ideas from mathematics and logic are of little 
relevance to teaching contemporary Computing. 
c) Discuss the view that if you don’t make an app look attractive then no one 
will want to use it. 
d) Every iteration has an equivalent recursive form and vice versa, so what 
are the advantages and disadvantages of teaching repetition through 
recursion before iteration? 
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3. Simple lists  

3.1. Overview 
In this activity, we’re going to think about simple lists. Here, we don’t mean 
linked lists with heads and tails, as found in declarative languages; rather the 
sort of list one might jot down on the back of an envelope. 
 
To motivate this, we’re going to consider the use of simple lists in shopping, to 
represent three specific information structures: the original shopping list, the 
shopping bill and, indeed, the shopping basket.  
 
It is important to focus on the information needed for this problem, and how it 
is organised and accessed, and not be so concerned with particular 
representations. Nonetheless, we will look at how we can systematically use 
reference language to describe, and BYOB to implement, these information 
structures. 

3.2. Introduction 
A simple list is an unordered sequence of items which is accessed by moving 
through the sequence from the first to the last item. We may start a new list, 
and then add information to the list, item by item, one after another. We may 
also check to see if an item is already present in the list. 
 
Of course, with a real list one can also cross out or change items, but we 
won’t worry about these quite yet. 
 
So our simple list operations are: 

 create empty list; 

 add item to list; 

 inspect list for presence of item; 

 get next item from list in turn; 

3.3. Shopping list 1 
To make a shopping list we: 
 
create a new shopping list 
WHILE we can still think of items DO 
 IF the item isn’t already in the list THEN 
  add item to list 
 END IF 
END WHILE 
 
We can see that making  this  information structure involves creating an 
empty structure and then adding items to it.  
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3.4. Shopping list 2 
Suppose we were making the shopping list with someone else. We might 
repeatedly ask them if they can think of another item, and if so to tell us what 
the item is. That is, we need to receive two pieces of information from the 
other person: 
 
create a new shopping list 
SEND “Any more?” TO DISPLAY 
RECEIVE more FROM KEYBOARD 
WHILE more DO 
 SEND “Next item?” TO DISPLAY 
 RECEIVE item FROM KEYBOARD 
 add item to shopping list 
 SEND “Any more” TO DISPLAY 
 RECEIVE more FROM KEYBOARD 
END WHILE 

3.5. Shopping list 3 
Sometimes when making up a shopping list, we think of the same thing twice, 
so every time we come up with a new item we should check to see if it’s on 
the list already: 
 
create a new shopping list 
SEND “Any more items for the shopping?” TO DISPLAY 
RECEIVE more FROM KEYBOARD 
WHILE more DO 
 SEND “Next item?” TO DISPLAY 
 RECEIVE item FROM KEYBOARD 
 IF item not in shopping list THEN 
  add item to shopping list 
 ELSE 
  SEND “We’ve already noted this” TO DISPLAY 
 END IF 
 SEND “Any more items for the shopping?” TO DISPLAY 
 RECEIVE more FROM KEYBOARD 
END WHILE 

3.6. Implementing the shopping list in BYOB 
Here’s the algorithm for the shopping list in BYOB:  
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The key decision is to implement our simple list as a BYOB list. Note that the 
BYOB list is much more complicated than our simple list as it also allows 
indexed access to insert, delete and replace entries. Here we are only using 
the “contains” and “add” constructs, as well as creating a new list called 
“shopping” outside of the script. 
 
Note also that the BYOB is much smaller than the reference language. BYOB 
effectively combines requesting and receiving input into a single “ask” 
construct and always puts the input into “answer”. Also, BYOB uses nested 
constructs where we can see graphically how nesting is bounded, rather than 
explicit end markers. 

3.7. Simplifying the algorithm? 
We could also conflate these two separate pieces of information using the 
standard computing trick of terminating a sequence of items of unknown 
length with a last item: 
 
create a new shopping list 
SEND “Next item?” TO DISPLAY 
RECEIVE item FROM KEYBOARD 
WHILE item != “last” DO 
 IF item not in shopping list THEN 
  add item to shopping list 
 ELSE 
  SEND “We’ve already noted this” TO DISPLAY 
 END IF 
 SEND “Next item?” TO DISPLAY 
 RECEIVE item FROM KEYBOARD 
END WHILE 
 
People who have studied programming will be familiar with this technique. 
However, I think that from a pedagogical perspective it is a false economy to 
start here as it does not correspond so immediately to a new learner’s 
intuitions. 
 
And from a practical perspective, the conflation can itself be the source of 
problems because we are using the same representation for two different 
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types. Here, we have to choose an end marker item name which is very 
unlikely to correspond to a real item. To be fanciful, suppose we were 
cobblers trying to buy a new last. This is more marked when inputting 
sequences of numbers, as the choice of a specific value as an end marker 
then constrains the ranges of values which can be processed.  

3.8. Shopping basket  
Suppose we’ve got to the shop and we’ve forgotten the shopping list. We 
might walk round the shop, asking the person who’s with us what we need, 
finding it on the shelves and putting it into the basket. Right now, we will only 
select one of each item. We won’t worry about exactly how we find the things 
we need quite yet.  
 
Here, we can reuse the algorithm for making the shopping list, by changing 
the name of the list and the message when we try to get something we’ve got 
already: 
 
create a new basket 
SEND “Any more items for the basket?” TO DISPLAY 
RECEIVE more FROM KEYBOARD 
WHILE more DO 
 SEND “Next item?” TO DISPLAY 
 RECEIVE item FROM KEYBOARD 
 IF item not in basket THEN 
  add item to basket  
 ELSE 
  SEND “We’ve already got this” TO DISPLAY 
 END IF 
 SEND “Any more items for the basket” TO DISPLAY 
 RECEIVE more FROM KEYBOARD 
END WHILE 

3.9. Shopping bill 
Finally, suppose that we get to the checkout and the local youth hockey team 
are collecting money for equipment by accepting donations in return 
unpacking shopping baskets. At each till, the shop assistant asks the helper 
for the name of each item and adds it to the bill. Unfortunately, the helpers are 
easily distracted and sometimes they call out the same item more than once. 
We won’t worry about the prices of items or how shop assistants find them 
right now. 
 
Here, we can again reuse the algorithm with changes to the list name and 
messages: 
 
create a new bill 
SEND “Any more items for the bill?” TO DISPLAY 
RECEIVE more FROM KEYBOARD 
WHILE more DO 
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 SEND “Next item?” TO DISPLAY 
 RECEIVE item FROM KEYBOARD 
 IF item not in bill THEN 
  add item to bill  
 ELSE 
  SEND “We’ve already  charged for this” TO DISPLAY 
 END IF 
 SEND “Any more items for the bill” TO DISPLAY 
 RECEIVE more FROM KEYBOARD 
END WHILE 

3.10. Discussion 1 
We can now draw out a number of computational thinking concepts from this 
scenario. First of all, we haven’t used a specific programming language until 
the final stage of implementation. Using a reference language enabled us to 
successively refine our initial vague shopping list algorithm without making 
any concrete commitments to a specific language’s constructs. This has made 
our algorithm a bit wordier than the BYOB implementation but it should be 
straightforward to realise it in an arbitrary language once we’ve decided how 
to represent a simple list. 
 
Secondly, because we’ve identified a common pattern of information structure 
manipulation, we’ve been able to reuse an algorithm that captures the 
manipulation. Here, reuse has been based on going in and changing 
algorithm text. It would more flexible to abstract from the algorithm as a 
procedure/method/function with parameters for the list and message. 

3.11. Procedural abstraction 
By comparing the three algorithms for constructing lists from keyboard input, 
we can see that they have three points of difference: 

 the list variable to which the next  item is added; 

 the request message; 

 the error message. 
 
We can abstract over the algorithms by introducing  a procedure with formal 
parameters which are used at these points of difference: 
 
PROCEDURE makeSimple (list, request, error) 
BEGIN PROCEDURE 
 SEND [“Any more items for the”,request,”?”] TO DISPLAY 
 RECEIVE more FROM KEYBOARD 
 WHILE more DO 
  SEND “Next item?” TO DISPLAY 
  RECEIVE item FROM KEYBOARD 
  IF item not in list THEN 
   add item to list 
  ELSE 
   SEND error TO DISPLAY 
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  END IF 
  SEND [“Any more items for the”,request,”?”] TO DISPLAY 
  RECEIVE more FROM KEYBOARD 
 END WHILE 
END PROCEDURE 
 
We can now use the procedure by calling it with actual parameters in place of 
the formal parameters: 
 
create new shopping list 
makeSimple 
 (shopping list,”shopping?”,”We’ve noted this already”) 
create new basket list 
makeSimple(basket list,“basket”,”We’ve got this already”) 
create new bill list 
makeSimple 
 (bill list,”bill”,”We’ve already charged for this”) 
 
Notice that we now create the list outside of the procedure because we want it 
to still exist once we’ve left the procedure. 

3.12. Implementing the procedure in BYOB 
 

 
 

3.13. Checking the lists 
There are checks we might want to perform at each stage of shopping, to 
make sure that we and the shop assistant haven’t made any mistakes: 
 
a) is every item on the shopping list in the basket; that is, have we bought 
everything we needed? 
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FOREACH item in the shopping list DO 
 IF item not in the basket THEN 
  SEND [item,”missing”] TO DISPLAY 
END FOREACH 
 
b) is every item in the basket on the shopping list; that is, have we bought 
anything we don’t need? 
 
FOREACH item in the basket DO 
 IF item not in the shopping list THEN 
  SEND [item,”not needed”] TO DISPLAY 
END FOREACH 
 
c) is every item in the basket on the bill; that is, have we been charged for 
everything we bought? 
 
FOREACH item in the basket DO 
 IF item not in the bill THEN 
  SEND [item,”not charged”] TO DISPLAY 
END FOREACH 
 
d) is every item on the bill from the basket; that is, have we been charged for 
anything we didn’t buy? 
 
FOREACH item in the bill DO 
 IF item not in the basket THEN 
  SEND [item,”not wanted”] TO DISPLAY 
END FOREACH 

3.14. Discussion 2 
Note that to get the effect of a next operation we’ve used the pseudo-code 
FOREACH to implicitly change the item of consideration on each iteration. 
next is actually quite a complex operation, involving the maintenance in the 
background of state information about where we are in a structure. We could 
define contains in terms of FOREACH and next. 
 
As with making the shopping list, basket and bill, these algorithms are all 
pretty much the same: check if something in one list is in another list, and if it 
isn’t then take some action, in our case by sending a warning message. Once 
again, this would be best abstracted as a procedure with parameters for the 
list and message. 
 

3.15. Implementing the check in BYOB 
The algorithm to see if everything in the shopping list is in the basket is, in 
BYOB: 
 



28 
 

 
 
BYOB does not have a FOREACH so we need to explicitly select each item 
from the shopping list in turn. We introduce a variable “next” to keep track of 
where we are in the shopping list, which we need to initialise, test for 
termination and increment. In a different language we might use a for loop 
directly. 
 
Here, the BYOB is larger than the pseudo-code. 

3.16. Exercises 
1. a) write an algorithm to display a simple list on the display; 
    b) implement the algorithm in BYOB for some simple list of your choice; 
    c) abstract the algorithm as a procedure; 
    d) implement the procedure in BYOB 
 
2. a) change algorithm 10. a), that checks if every item in the shopping list is 
in the basket, to write items from the shopping list that aren’t in the basket to a 
new simple list instead of displaying them as they are found; 
    b) implement the algorithm in BYOB followed by code to display the final 
new list; 
    c) abstract the algorithm as a procedure; 
    d) implement the procedure in BYOB. 
 
3. a) abstract over the algorithms in 10. by introducing a procedure; 
    b) write down how the procedure would be called for each of the checks; 
    c) implement the procedure in BYOB 
  
Suppose we have a new operation to drop an item from a list. 
 
4. a) write an algorithm to check that everything in the shopping list is in the 
basket and vice versa by dropping each item in the shopping list from the 
basket. At the end of the algorithm, we are left with a shopping list of items we 
didn’t put in the basket and a basket of items that weren’t in the shopping list. 
   b) implement the algorithm in BYOB followed by code to display the final 
lists; 
   c) abstract over the algorithm by introducing a procedure; 
   d) implement the procedure in BYOB. 
 
5. a) write an algorithm to check if a simple list contains an item, using 
FOREACH. 
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   b) implement the algorithm in BYOB; 
   c) abstract over the algorithm by introducing a procedure; 
   d) implement the procedure in BYOB. 
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4. Dinner party 

4.1. Introduction 
In this chapter we’re going to explore a substantial concrete problem scenario 
in a lot more detail, to tease out the CT stages from Chapter 1 in a bit more 
detail and explore their interdependencies.  
 
We’re not even going to attempt to apply CT step by step because CT doesn’t 
work like that; rather, like all problem solving methodologies, it involves 
continually moving to and from stages, making and revising decisions, 
considering several stages at the same time, endlessly iterating in search of a 
fixed point.  
 
At the end, though, we will try to rationally reconstruct what we’ve done in CT 
terms. 

4.2. Where to start? 
Ours scenario is a dinner party. And, we’re going to invite guests and they’re 
going to be seated at tables. So we have a first decomposition with two 
potential information structures:  

 guest list; 

 seating layout;  
and some sub-problems of how to: 

 construct the guest list 

 characterise the seating layout; 

 map guests to seats.  
 
We have also identified guests and seats as loci of decisions, and will need to 
work out how they may best be characterised. 
 
We can immediately see that all these are closely intertwined. Who we invite 
will be based on criteria that will also be used in part to determine where they 
sit. And the information in the guest list will be central to mapping guests to 
seats. 

4.3. Guest list 
Making a guest list generally involves a partially structured brain dump. We 
might well choose people en-masse by family or friendship group or work 
group or activity group. 
 
These feel like patterns which also start to suggest information we might 
record about guests. 
 
We will often invite people based on considerations such as: 

 we always invite X; 

 we must invite Y; 

 how about inviting all the people who Z; 
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 if we invite A we must invite B. 
 
And we have constraints on who we can invite. There are general constraints 
like the number of seating places, simple constraints like: 

 C can’t come on that date; 
and more complicated ones like: 

 if D comes then E won’t come. 
 
Let’s now have a first stab at characterising guests. For each guest, we need 
to know: 

 their name; 

 why we’re inviting them; 

 whether there are any constraints on inviting them. 
 

To return to the guest list, how about starting with a list of all the people who 
might be invited and then decide who we will and won’t invite.  Now the guest 
list has become a potential guest list, and we have decomposed again to find 
two more information structures: 

 invited list; 

 not invited list, 
and another sub-problem: 

 mapping  potential guests  to invited and not-invited guests. 
 
The not invited list might also record: 

 why someone wasn’t invited. 
 
It might seem that we don’t need the not invited list as we could just delete 
people from the potential list. But it might be useful to be able to reconcile our 
invitation decisions against the original list to ensure that we haven’t forgotten 
to consider anyone. 
 
Also, if subsequently we find that we can invite more people, say because 
someone’s dropped out, we might want to revisit the not invited list. We then 
need selection criteria which might be found through further decomposition of 
the guest invitation criteria, and an algorithm to select guests who will now be 
invited10.  
 
It is tempting to consider rank ordering the not invited list to ease selection. Or 
we might rank order the potential guest list and then select as many for the 
invited list as we have seats. But perhaps this is really an algorithmic 
consideration which we should return to later. 
 
This is getting a bit complicated. Maybe we’re being over ambitious in trying to 
codify all aspects of the problem, which is rapidly turning into an AI challenge. 
If we’re really intent on building a computerised system for organising dinner 
parties, people might well balk at having to enter so much information. 
 

                                            
10

 Uninviting people, is rare as well as unpleasant. 
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Suppose we don’t worry about detailed guest choice criteria and decide up-
front ourselves who we: 

 must invite; 

 might invite; 

 won’t invite. 
 
So now we have an alternative decomposition. For each potential guest, we 
record their: 

 name; 

 invitation status. 
 

Thus, we have three invitation lists: 

 must;  

 might; 

 won’t, 
 

and a new, trivial sub-problem of: 

 mapping  potential guests to the status lists.  
 
In principle, we don’t even need to record potential guests’ invitation statuses 
as that’s implicit in the list their in. But it might be useful if we’re shuffling 
guests bnetween lists to have some record of our first idea of how much we 
wanted to invite them: 
 
Arguably, though, simplifying things here means that later we’ll have to revisit 
more complex criteria for allocating guests to seats. 

4.3. Seating 
Let’s now think about the seating arrangements. We assume that we already 
know the venue we’re going to use. In particular, we know how many people it 
can seat, how many tables there are and how many people can sit at each 
table. 
  
How about simply numbering all the seats, without even thinking about tables, 
and then systematically allocating people from the invited list, one after 
another. So we would have a: 
• seat list 
and a trivial sub-problem  of: 
• mapping from the invited guest list to seats. 
 
Of course this is an awful solution which takes no account of who’s sitting next 
to or near to who.  
 
A better second decomposition might be to individually identify seats at tables. 
However, this is rather more complicated than at first sight. 
 
Let’s start with a map of the venue, showing each table with its seats in 
relation to other features of the venue such as the positions of the entrances 
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and the toilets and the bar and the buffet and the dance floor. Indeed, if we’re 
hiring the venue, the owners might well supply us with such a floor plan. 
 
We next need to have some way of identifying tables. We could just number 
them. Of course, when we’re actually discussing who sits where, we will talk 
in terms of the physical venue layout. So we might use names like “top table” 
or “nearest the entrance” or “next to the buffet” for specific tables. As we know 
roughly who’s coming and why, we might well pre-allocate tables to groups of 
people and then refer to the table by the group name. 
 
We now need a way of identifying seats relative to identified tables, so we 
need a: 

 table list 
and for each table we need a: 

 seat list. 
 

Of course, for a hired venue, the owners will have some standard way of 
identifying seats at tables, to help them plan the service. 
 
Anyway, we will characterise each seat by: 

 table; 

 seat at table11. 
 
We haven’t yet considered the shapes of the tables. If they’re circular we 
could number the seats going widdershins12 from some agreed starting point. 
If they’re rectangular then we could identify sides and then number seats 
starting from each corner. How then do we account for being next to or near 
to or opposite someone? At least let’s assume that all the tables are the same 
size and shape. 
 
We may well need to worry about where tables are in relation to each other, 
and hence whether seats at different tables are actually next to or near to 
each other. That is we may need some relative way of identifying seats at 
tables as well as an absolute way. 
 
We’re now considering patterns amongst tables and seats that capture 
proximity notions of: 

 next to; 

 opposite; 

 near to. 
 
For each seat, we could list all the seats it’s next to and opposite and near to.  
 
Or we could list all the relations between tables and tables, and seats and 
tables, and seats and seats, using some notation like Prolog facts or SQL 
relation, but that feels a bit concrete. 
 

                                            
11

 Stop thinking about 2D arrays: that’s an implementation decision. 
12

 Scots for anti-clockwise. Of course we could go clockwise... 
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Or we could represent the venue as a hierarchical connected graph, with: 

 nodes for tables and seats; 

 top level arcs between tables which are next to each other; 

 table level arcs between seats which are next to or opposite each other; 

 inter-table arcs between seats which are near each other.  
 
Or we could identify tables as coordinate positions in the venue so that can 
use arithmetic to determine notions of proximity. For example, if tables are in 
an M*N grid, then a table in coordinate X/Y is next to tables at X-1/Y, X+1/Y, 
X,Y-1, X, Y+1 with special cases when X /Y are 0 or M/N.  
 
We could work out an even more elaborate scheme for numbering seats at 
tables so that we can calculate whether seats are opposite or next to each 
other. If we’re really cunning then maybe we could use a numbering scheme 
that even lets us to calculate whether chairs at different tables are back to 
back. Again, though, this feels like an implementation consideration 
 
In all three cases, we’re trying to choose an information structure that 
captures patterns amongst relationships between seats and tables. Perhaps 
we should just stick with the floor plan, and a pencil and eraser...? 

4.4. Mapping guests to seats 
Finally, let’s think about how to map guests to seats. All through the above 
discussion of guests and seats, we’ve kept coming back to criteria for inviting 
and seating guests, and we have tried to choose characterisations that will 
help us capture these criteria. That is, we’ve constantly considered what the 
end solution will look like in deciding how to analyse the problem. 
 
We have decomposed a list of potential guests into lists of invited and not 
invited guests, with information about why we invited them. In so doing, we 
may also have captured information that is helpful for deciding how they’re to 
be seated. Oh, maybe we started with a list of potential guests and started to 
explore an algorithm based on patterns of properties to partition it into invited 
and uninvited guests. 
 
We have also decomposed the venue into, at simplest, a list of tables each 
with a list of seats. We also have some way of recording all those fiddly 
proximity patterns amongst tables and seats. 
 
In discussing how to characterise the seating, we suggested and rejected just 
allocating people to seats willy nilly. Rules for seating include:  

 put all X at same table; 

 put A and B at same table (because...); 

 put C and D next to each other (because...); 

 put E and F opposite each other (because...); 

 don’t put G and H at same table (because...) 

 don’t put I and J next to each other (because...); 

 don’t put K and L opposite each other (because...); 
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 M doesn’t mind where they sit. 
 
These rules are not necessarily absolute.  For example, “put A and B next to 
each other” may be more important to some A and B than others: maybe 
they’re happy to be opposite each other or just at the same table. Similarly, 
“don’t put C and D” at same table may not matter so much provided we “don’t 
put C and D next to/opposite each other”. 
 
So, how to proceed? We want the people at the same table to feel 
comfortable in each other’s company. If we have more seats than guests then 
it’s a wee bit easier as we can always temporarily park guests at a spare table 
while we decide where to seat them. And we can end up with less guests than 
seats at individual tables.  
 
We need to systematically work through the rules, maybe starting with those 
that seat a maximum number of people at once like “put all X at same table” 
or “put A and B at same table”.  
 
We can also use connections between rules like: 

 A is an X and put A and B at same table (even if B isn’t an X) so put B at 
the X table; 

and: 

 put A and B at same table and put B and C at same table so put A and C 
at same table. 

 
At the same time we need to think about “don’t put G and H at same table” 
and the connected forms like: 

 put A and B at same table but don’t put A and C at same table so don’t put 
B and C at same table  

and: 

 A is an X and put  A and B at same table but don’t put B and C at same 
table so either don’t put C on table X or don’t put A and B on table X 

 
We go on applying the rules to find initial seats for guests and then move 
them between tables. Eventually we’ll reach a more or less satisfactory fixed 
point where all the guests have seats and we’ve minimised putting 
incompatible guests near to each other13. 

4.5. Reflection 
Organising a dinner party is a really involved business. Working out the guest 
lists is fairly straightforward but allocating guests to seats can be really fiddly. 
Indeed, this is an example of a constraint satisfaction problem which gets 
more and more complicated as the numbers of guests and seating rules 
increase. 
 
It looks like this isn’t a very good problem for teaching Computing because it 
doesn’t end up with a neat algorithmic solution for which we can cut code. 

                                            
13

 Or we’ll decide to cancel the dinner party. 
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However, I think that’s why it’s a really good basis for thinking about how CT 
works. 
 
And, yes, school students don’t hold dinner parties. Teachers do though and 
this material is aimed at teachers. Anyway, all the above applies equally well 
to a birthday party. Or a wedding reception. Or a retirement dinner. 
 
Let’s think about what we’ve done in CT terms. We’ve used: 

 decomposition to identify information structures and sub-problems, and by 
implication broad algorithmic requirements; 

 abstraction to identify information in structures and rules for solving sub-
problems, and by implication finer algorithmic detail; 

 patterns in information to explore alternative information structures and 
algorithms; 

 
We’ve iterated amongst these stages in a messy sort of way. What’s above 
really is a structured brain dump: I’ve tried not to go back and polish the 
argument to present a perfect solution. I think it’s important for you to see that 
I’m not entirely sure what I’m doing when I’m trying to solve a brand new 
problem, just as I think it’s important for your students to understand this 
about you. 

4.6. Exercises 
Suppose we have a list of potential guests P: 
[[Ann,1], 
 [Bob,2],  
 [Carol,3], 
 [Dave,4], 
 [Ena,2], 
 [Fred,1], 
 [Gail,5]] 
 
so: 
 
P[i]  ith guest 
P[i][1]  name of ith guest 
P[i][2]  priority of ith guest – 1 == high & 5 == low 
 
1. Write pseudocode functions to: 
    a. find the priority for a named guest; 
    b. change the priority for a named guest; 
    c. check if one named guest has higher priority than another named guest; 
 
2. Write a pseudocode algorithm to allocate each guest to one of the lists 
I(nvite), M(aybe invite) and D(on’t invite). You’ll need to decide how to map 
priorities into decisions e.g. 1 == invite; 2-3 == maybe; 4-5 == don’t. 
 
Suppose we have S seats. 
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3. Write a pseudocode algorithm which moves guests from the maybe invite 
list to the invite list until there are as many invited guests as seats. If when all 
the maybe guests have been invited there are still seats free, then move 
guests from the don’t invite list. You will need to decide how to prioritise 
movements e.g. with the above example priorities, move 2 before 3 and 4 
before 5. 
 
4. In what circumstances might this priority system be unfair? 
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5. Pattern identification and abstraction 

5.1. Introduction 
We started by observing that computational thinking is based on: 
• decomposition; 
• pattern identification ; 
• pattern generalisation/abstraction; 
• algorithm design. 
 
In the last chapter, we saw how every time we make a decomposition choice, 
we are, by implication, identifying sub-problems which will require associated 
algorithms to solve them. That is, decomposition and algorithm design are 
very strongly connected. As we’ll see in this chapter, pattern identification and 
generalisation/ abstraction are also strongly linked, that is, we use pattern 
identification to find opportunities for abstractions. 
 
Let’s just remind ourselves why we like abstractions. First of all, they can 
make algorithms and hence programs more succinct. It’s important to note 
that succinct is not necessarily  the same as efficient in computer terms: 
typically, many abstractions make little or no difference to the final code 
efficiency because compilers use cunning tricks like unfolding sub-program 
calls and unrolling loops in search for optimisations. Thus abstractions help 
make programming more efficient for humans by: 

 encouraging the construction and use of general reusable artefacts; 

 making programs smaller, more elegant and hence easier to read and 
understand, though this is a somewhat subjective judgement. 

5.1. Patterns,  structures and abstraction 
It is usual to think about pattern identification as focusing on looking for 
patterns in data. However, as we’re about to explore, pattern identification is a 
key technique for generalising computational structures as well as information 
structures. 
 
I think that pattern identification is about finding structural similarities and 
differences between instances and abstraction is about generalising through 
naming. There are several ways we can do this. 
 
First of all, if we compare instances of constructs and find structural 
similarities, then we can abstract over the common structure by introducing a 
name to stand for it. We can then use the name instead of the shared 
structure. 
 
Secondly, if there are structural similarities then there must also be structural 
differences14. Then, we can abstract over the structural differences by 
generalising them, again by introducing names.  

                                            
14

 unless the instances we’re comparing are identical... 
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Now, if we’ve named an abstracted structure in which we’ve found 
differences, then we can parameterise it using the names introduced to 
generalise the structural differences. Thus, we can invoke the named 
structure with values for the parameters to create concrete instances. 
 
Finally, if we find repeated instances of constructs with structural differences, 
we can again abstract by introducing names. If we can then identify some 
principle behind the repetition in terms of the name, then we can potentially 
introduce some form of iteration to generate values for the abstracted names 
to recapitulate the repeated instances. 
 
So, this all sounds suspiciously like how to introduce sub-programs. And 
indeed it is. But it’s also about how to introduce data structures and objects. 

5.2. Functional abstraction 
Let’s start by looking at the process of finding similarities and differences in 
more detail.  We’ll do so by thinking about how to abstract functions from 
expressions, by naming both common structures and differences. 
 
Suppose we want to add 1 to 3, and 1 to 127:  
 
SET a TO 3+1; 
SET a TO 127+1 
 
These are have the common structure: ?+1. The point of difference is marked 
with a “?”. 
 
So let’s: 

 name an abstraction from this common sub-structure inc; 

 replace the point of difference with a variable n: n+1; 

 and parameterise the named sub structure: 
 
FUNCTION inc(n) 
RETURN n+1; 
END FUNCTION 
 
We can then instantiate the abstraction with concrete values: 
 
SET a TO inc(3); 
SET b TO inc(127) 
 
Suppose we want to join “Happy” to “Birthday” with a space in between, and 
“Happy” to “New Year” with a space in between: 
 
SET greeting1 TO “Happy”&” “&”Birthday”; 
SET greeting2 TO “Happy”&” “&”New Year” 
 
These have the common sub-structure: “Happy”&” “&?. So let’s: 
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 name an abstraction for the common substructure happy; 

 replace the point of difference with a variable event: “Happy”&” “&event 

 and parameterise the named substructure: 
 
FUNCTION happy(event) 
RETURN “Happy”&” “&event; 
END FUNCTION 
 
We can now instantiate this abstraction with concrete values: 
 
SET greeting1 TO happy(“Birthday”); 
SET greeting2 TO happy(“New Year”); 
 
Suppose we’ve also made an abstraction for generalising messages like 
“Good Morning” and “Good Evening”: 
 
FUNCTION good(time) 
RETURN “Good”&” “&time; 
END FUNCTION 
 
Now, let’s compare these abstractions. First of all, they have different names, 
so any common abstraction will need a new one. They both put a space in 
between two strings so let’s call the new abstraction space.  
 
Both abstractions have single parameters so the new common abstraction will 
also need a new one. This parameter is used as the second string so let’s call 
it string2. 
 
So, using this new parameter in both original abstractions: 
 
FUNCTION happy(string2) 
RETURN “Happy”&” “&string2; 
END FUNCTION 
 
FUNCTION good(string2) 
RETURN “Good”&” “&string2; 
END FUNCTION 
 
we can see that they have common structure: ?&” “&string2. So let’s: 

 replace the point of difference with a parameter string1: string1&” “&string2 

 and further parameterise the new named abstraction: 
 
FUNCTION space(string1,string2) 
RETURN string1&” “&string2; 
END FUNCTION 

5.3. Array and iteration abstractions 
Let’s now look at introducing arrays as an abstraction from variables. We’ll 
also see how to introduce iteration as an abstraction from: 
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 sequences of assignment to array elements; 

 arithmetic on sequences of array elements. 
 
Suppose we’ve run a questionnaire on whether people like programming, with 
simple Yes/No options. We want to count how many people chose each 
option, and  find the total number of responses and the percentages for each 
response.  
 
We’ll start both counts at 0. Then, so long as there are more values to input, 
we’ll increment the appropriate count. We will assume that inputs are always 
either yes or no: 
 
SET yes TO 0; 
SET no TO 0; 
WHILE more inputs DO 
 IF next input is yes THEN 
   SET yes TO yes+1 
 ELSE 
   SET no TO no+1 
 END IF 
END WHILE; 
SET total TO yes+no; 
SET yesP TO yes*100/total; 
set noP TO 100-yesP 
 
Now, let’s generalise thus a wee bit by asking for a rating for how much 
people like programming on a Lickert scale: 
0 – not at all 
1 – not much 
2 – OK 
3 – much 
4 – very much 
 
First of all we need five counts and we need to set them all to 0: 
 
SET notAtAll TO 0; 
SET notMuch TO 0; 
SET OK TO 0; 
SET much TO 0; 
SET veryMuch TO 0; 
 
Suppose we want to abstract over this. We can see that there’s a pattern: 
 
SET ? TO 0; 
 
So we could introduce a parameterised named procedural abstraction: 
 
PROCEDURE zero(i) 
SET i To 0; 
END PROCEDURE 
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and then write: 
 
zero(notAtAll); 
zero(notMuch); 
... 
zero(veryMuch); 
 
This is a very poor choice of  abstraction which, if anything, is more obscure 
than the original.  We’ve spotted the wrong difference: the pattern here is not 
in the computation but in the same treatment of a group of variables. 
 
Suppose, we rename the variables with a common name and qualifier: 
 
SET L0 TO 0; 
SET L1 TO 0; 
SET L2 TO 0; 
SET L3 TO 0; 
SET L4 TO 0 
 
We’ve lost clarity as the names no longer tell us what the variables represent. 
Nonetheless, we can now see that there’s a pattern: 
 
SET L? TO 0 
 
inviting us to abstract over the name qualifier.  
 
While most programming languages won’t let us do this, pretty well all have 
the notion of an array as an indexed sequence of variables with a common 
name. So let’s introduce an array variable L with five elements, and use 
number indices on this common variable identifier instead of numbered 
qualifiers on a common name: 
 
SET L[0] TO 0; 
SET L[1] TO 0; 
SET L[2] TO 0; 
SET L[3] TO 0; 
SET L[4] TO 0 
 
Note that we’ve started at 0 rather than 1. 
 
Now we can identify the pattern difference in the indices: 
 
SET L[?] TO 0  
 
At the same time, we can identify a sequence pattern in the indices: 0 1 2 3 4. 
 
So this is an invitation to abstract with a repetition rather than a procedure: 
 
FOR i FROM 0 TO 4 DO 
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  SET L[i] TO 0 
END FOR 
 
Let’s now think about counting each preference. The generalisation of our 
yes/no example, assuming inputs are always integers between 1 and 5, is: 
 
WHILE more inputs DO 
 IF next input is 0 THEN 
   SET L[0] TO L[0]+1 
 ELSE 
 IF next input is 1 THEN 
   SET L[1] TO L[1]+1 
 ELSE 
 ... 
 ELSE 
  SET L[4] TO L[4]+1  
 END IF 
END WHILE; 
 
Looking at this ungainly chain of IFs, we can see:  

 a difference pattern in the assignment: SET L[?] TO L[?]+1 

 a sequence pattern in the assignment array indices: 0 1 2 3 4 

 a difference pattern in the test: IF next input is ? 

 a sequence pattern in the  test difference: 0 1 2 3 4  
 
We can now see that each element of the test difference sequence pattern is 
the same as the corresponding element of the assignment difference 
sequence pattern, that is whenever the test checks for next , the assignment 
modifies the array at index next. 
 
Thus we can replace the IF chain with the succinct:  
 
WHILE more inputs DO 
 SET L[next] TO L[next]+1 
END WHILE 
 
This is both more succinct and more efficient code as we have eliminated a 
repeated chain of tests. 
 
Next, let’s find the total. 
 
SET total TO L[0]+L[1]+L[2]+L[3]+L[4] 
 
This looks pretty succinct but if we added more questions we’d have to add 
more terms to the sum. Instead, let’s try finding a pattern by unwinding and 
generalising. 
 
We could start the total off at 0 and then add each count in turn: 
 
SET total TO 0; 
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SET total TO total+L[0]; 
SET total TO total+L[1]; 
... 
SET total to tota+L[4] 
 
Again, we spot the difference pattern: 
 
SET total TO total+L[?] 
 
identify the sequence pattern in the indices:0 1 2 3 4 
and abstract with a repetition: 
 
SET total TO 0; 
FOR i FROM 0 TO 4 DO 
 SET total TO total+L[i] 
END FOR 
 
While this is more succinct than the original, without optimisation, it’s less 
efficient as we are repeatedly accessing and changing total. Still, this is far 
more general, and, like all our abstractions, can easily handle different 
number of cases in our questionnaire answers. 
 
Finally, let’s find the percentages. Before, we had variables for the yes and no 
percentages. Now, let’s have an array LP of five elements: 
 
SET LP[0] TO L[0]*100/total; 
SET LP[1] TO L[1]*100/total 
... 
SET LP[4] TO L[4]*100/total 
 
Yet again, we spot the difference pattern: 
 
SET LP[?] TO L[?]*100/total 
 
identify the sequence pattern in the indices:0 1 2 3 4 
and abstract with a repetition: 
 
FOR i FROM 0 TO 4 DO 
 SET LP[i] TO L[i]*100/total 
END FOR 

5.4. Reflection 
We have seen four techniques for identifying patterns with associated 
abstractions. They all share looking for differences in common structures: 

 no differences – abstract as unparameterised function or procedure; 

 differences but no sequences – abstract as parameterisied function or 
procedure; 

 differences with assignment sequences – abstract as iteration with 
variable for difference; 
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 differences with expression sequences – abstract as iteration with variable 
for difference. 

 
We’ve also seen that abstractions can make algorithms less as well as more 
efficient. 

 
To identify the patterns, we’ve always started from a fully decomposed form; 
that is from a form where we only have individual instances, with no 
preconceptions about generalisations. Doing it blow by blow like this may 
seem like a waste of time: surely it’s obvious here that we need arrays and 
iterations. 
  
However, I think that it takes lots of experience to be able to generalise 
appropriately right from the beginning of solving a problem, and, for teaching, 
doing so makes it hard to understand retrospectively why particular  choices 
have been made. 

5.5. Exercises 
1. Why did we introduce arrays and iterations for 5 choices but not for 2? How 
about for 3  or 4 choices? 
 
2. Why would keeping a running count for the total in the input loop be less 
efficient than finding the total at the end by summing the counts? 
 
3. Why can’t we combine the loops to find the final total and then find the 
percentages? 
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6. Recursion 

6.1. Introduction 
Recursion is often thought of as a scary, advanced topic. It’s rarely covered at 
school level. Even in first level undergraduate text books on imperative 
programming, it’s often only treated briefly in a later chapter. 
 
Certainly, many people who are well used to iteration seem to find recursion 
somehow unnatural. Part of the difficulty lies in the misleading conception that 
recursion involves defining something in terms of itself. While this is not wholly 
inaccurate, it does give the impression that recursion is some sort of trick: isn’t 
defining something in terms of itself a tautology? Mutterings about the alleged 
ease of proving properties of recursive constructs in functional languages 
further contribute to the mystique. 
 
Another source of recursion’s poor reputation is the poor choice of examples, 
typically numerical, through which it is often introduced. Indeed, I suspect that 
many students come to believe that the greatest common divisor, and the 
factorial and Fibonacci sequences, were dreamed up solely to illustrate an 
otherwise pointless technique. 
 
Anyway, I said above that every recursive form has an iterative equivalent. 
So, if there’s a sequence of actions which are all pretty much the same, then 
why not just iterate through the sequence from first to last?  
 
Recursion is really straightforward. A recursive sub-program is one that calls 
itself. That’s all.  
 
The big advantage of recursion is that it can often be far more succinct than 
the equivalent iteration. With recursion, lots of detail to do with remembering 
partial results in explicit auxiliary data structures can be hidden: consider 
explaining tree traversal or even Fibonacci as an iteration. 
 
I think that recursion can come to feel even more natural than iteration, once 
we get our heads round how to spot the appropriate patterns and introduce 
the corresponding abstractions.   

6.2. Recursive function pattern and abstraction 
In chapter 5, we saw an iteration to find the total count from a sequence of 
sub-counts. We did this by finding a pattern in a sequence which ranged from 
a first value to a last value in a series of equal steps. And we then used an 
iteration abstraction: 
 
FOR i FROM 0 to 4 DO 
 SET total TO total+L[i] 
 
A key step was identifying the initialisation to precede the iteration: 
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SET total to 0 
 
Why 0? Well, we need to start with a value that won’t affect the rest of the 
computation. here the computation is based on repeated addition and 0 is an 
identity for addition:  
 
0+X = X.  
 
We would still need that initialisation even if the sequence of sub-counts were 
empty.  
 
Bearing that in brain, let’s think again about the original computation: 
 
SET total TO L[0]+L[1]+L[2]+L[3]+L[4] 
 
 
and look at how to derive a recursive form. First we’ll make the initialisation 
explicit: 
 
SET total TO 0+L[0]+L[1]+L[2]+L[3]+L[4] 
 
Now we’ll bracket the largest left-most sub-expression: 
 
SET total TO (0+L[0]+L[1]+L[2]+L[3])+L[4] 
 
so we can see that summing the first 5 in L is like summing the first 4 in L and 
adding L[4]. 
 
Let’s bracket the next largest left-most sub-expression: 
 
SET total TO ((0+L[0]+L[1]+L[2])+L[3])+L[4] 
 
Thus, summing the first 4 in L is like summing the first 3 in L and adding L[3]. 
 
Bracketing again: 
 
SET total TO (((0+L[0]+L[1])+L[2])+L[3])+L[4] 
 
Thus, summing to the first 3 in L is like summing the first 2 in L and adding 
L[2]. 
 
And again: 
 
SET total TO ((((0+L[0])+L[1])+L[2])+L[3])+L[4] 
 
Thus, summing the first 2 in L is like summing the first 1 in L and adding L[1]. 
 
Once more: 
 
SET total TO (((((0)+L[0])+L[1])+L[2])+L[3])+L[4] 
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Thus, summing the first 1in L is like summing the first 0 in L and adding L[0]. 
 
Finally, summing the first 0 in L is 0. That’s the initialisation from the original 
iteration. 
 
We can see a nested pattern of doing something to everything in the sub-
sequence until the sequence is empty: 
 
(?+L[4]); (?+L[3]) (?+L[2]); (?+L[1]); (?+L[0]) 
 
If we abstract for the index pattern: 4 3 2 1 0 
with n, then the general case is: 
 
?(n-1)+L[n] 
 
that is, summing the first n in L is like summing the first n-1 in L and then 
adding L[n]. 
 
So, we’ve found a recursive function pattern in an expression consisting of a 
sequence of the same operations where any sub-sequence from the start of 
the range has the same structure as the whole sequence. 
 
We can now  introduce a recursive function abstraction by: 
• naming the operation sequence: sum; 
• abstracting over the range values, with a parameter: n for 5 4 3 2 1; 
• abstracting over any other variables, with parameters: A for L: 
 
FUNCTION sum(A,n) 
... 
END FUNCTION 
 
The function body is built from an IF...THEN...ELSE. For the base case, 
beyond  the start of the range, the initialisation value is returned. Otherwise, in 
the recursion case, the function is called with a decremented range value to 
give a result for the rest of the range. The operator is then applied to that 
result and the end of range value. 
 
FUNCTION sum(A,n) 
   IF n<0 THEN 
    RETURN 0; 
   END IF 
   RETURN sum(A,n-1)+A[n] 
END FUNCTION 
 
We can now call this function instead of the original expression, with the end 
of range value as actual parameter: 
 
SET count TO sum(L,4) 
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Thus: 
 
sum(L,4)  sum(L,43)+L(4)  (sum(L,2)+L[3])+L[4]  
((sum(L,1)+L[2])+L[3]+L[4]  (((sum(L,0)+L[1])+L[2])+L[3])+L[4]  
((((sum(L,-1)+L[0])+L[1])+L[2])+L[3])+L[4]  
((((0)+L[1])+L[2])+L[3])+L[4]  
 
which was our bracketed original expression. 
 

6.3. Recursive procedure pattern and abstraction 
Not yet convinced...? Next, let’s look again at initialising the counts, which we 
first abstracted with the iteration: 
 
FOR i FROM 0 TO 4 DO 
  SET L[i] TO 0 
END FOR 
 
We could have used a recursive procedure here again. 
 
Starting with the original: 
 
SET L[0] TO 0; 
SET L[1] TO 0; 
SET L[2] TO 0; 
SET L[3] TO 0; 
SET L[4] TO 0 
 
let’s bracket using BEGIN...END: 
 
BEGIN 
     SET L[0] TO 0; 
     SET L[1] TO 0; 
     SET L[2] TO 0; 
     SET L[3] TO 0; 
END 
SET L[4] TO 0 
 
so setting the first 5 to 0 is like setting the first 4 to 0 and then zeroing the 5th. 
 
Bracketing again we get: 
 
BEGIN 
      BEGIN 
           SET L[0] TO 0; 
           SET L[1] TO 0; 
           SET L[2] TO 0 
     END 
     SET L[3] TO 0 
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END 
SET L[4] TO 0 
 
so setting the first 4 to 0 is like setting the first 3 to 0 and then zeroing the 4th. 
 
Bracketing again we get: 
 
BEGIN 
      BEGIN 
           BEGIN 
                SET L[0] TO 0; 
                SET L[1] TO 0 
            END 
           SET L[2] TO 0 
     END 
     SET L[3] TO 0 
END 
SET L[4] TO 0 
 
so setting the first 3 to 0 is like setting the first 2 to 0 and then zeroing the 3rd. 
 
Bracketing again we get: 
 
BEGIN 
      BEGIN 
           BEGIN 
                BEGIN 
                     SET L[0] TO 0 
                END 
                SET L[1] TO 0 
            END 
           SET L[2] TO 0 
     END 
     SET L[3] TO 0 
END 
SET L[4] TO 0 
 
so setting the first 2 to 0 is like setting the first 1 to 0 and then zeroing the 2nd. 
 
Bracketing again we get: 
 
BEGIN 
      BEGIN 
           BEGIN 
                BEGIN 
                     BEGIN 
                          do nothing 
                     END 
                     SET L[0] TO 0 
                END 
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                SET L[1] TO 0 
            END 
           SET L[2] TO 0 
     END 
     SET L[3] TO 0 
END 
SET L[4] TO 0 
 
so setting the first 0 to 0 is like doing nothing  and then zeroing the 1st. 
 
We can again see a nested pattern of doing something with everything in the 
sub-sequence until the sequence is empty. And again we can see a difference 
pattern: 
 
BEGIN ? END SET L[4] TO 0  
BEGIN ? END SET L[3] TO 0  
BEGIN ? END SET L[2] TO 0  
BEGIN ? END SET L[1] TO 0  
BEGIN ? END SET L[0] TO 0  
 
If we abstract for the index pattern: 4 3 2 1 0 
with n, then the general case is: 
 
BEGIN ?(n-1) END SET total TO total+L[n]  
 
So, we’ve found a recursive procedure pattern in a command sequence 
consisting of a sequence of the same commands where any sub-sequence 
from the start of the range has the same structure as the whole sequence. 
 
We can now  introduce a recursive procedure abstraction by: 
• naming the operation sequence: initialise; 
• abstracting over the range values, with a parameter: n for 5 4 3 2 1; 
• abstracting over any other variables, with parameters: A for L: 
 
PROCEDURE initialise(A,n) 
... 
END PROCEDURE 
 
The procedure body is built from an IF...THEN...ELSE. For the base case, 
beyond  the start of the range, nothing is done so the procedure simply 
returns. Otherwise, in the recursion case, the procedure is called with a 
decremented range value to do the commands for the rest of the range. The 
command is then applied to the end of range value. 
 
PROCEDURE initialise(A,n) 
   IF n<0 THEN 
    RETURN; 
   END IF 
   initialise(A,n-1); 
   SET A[n] TO 0 



52 
 

END PROCEDURE 
 
We can now call this procedure instead of the original command sequence, 
with the end of range value as actual parameter: 
 
initialise(A,4); 
 
This expands as: 
 
initialise(A,4)  
 
initialise(A,3); 
SET L[4] TO 0  
 
initialise(A,2); 
SET L[3] TO 0; 
SET L[4] TO 0;  
 
initialise(A,1); 
SET L[2] TO 0; 
SET L[3] TO 0; 
SET L[4] TO 0;  
 
initialise(A,0); 
SET L[1] TO 0; 
SET L[2] TO 0; 
SET L[3] TO 0; 
SET L[4] TO 0;  
 
initialise(A,-1); 
SET L[0] TO 0; 
SET L[1] TO 0; 
SET L[2] TO 0; 
SET L[3] TO 0; 
SET L[4] TO 0;  
 
SET L[0] TO 0; 
SET L[1] TO 0; 
SET L[2] TO 0; 
SET L[3] TO 0; 
SET L[4] TO 0; 

6.4. Recursive songs 
As mentioned in Chapter 1, I’ve used counting songs to introduce recursion 
with 1st year undergraduate classes meeting programming for the first time. 
Let’s now think about three such songs. 
 
“10 Green Bottles” is a well known English-language children’s song. Here, 
though, we’ll look at the more succinct “3 Green Bottles”: 
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3 green bottles, hanging on the wall. 
3 green bottles hanging on the wall. 
And if 1 green bottle should accidentally fall, 
There’d be 2 green bottles, hanging on the wall. 
 
2 green bottles, hanging on the wall. 
2 green bottles hanging on the wall. 
And if 1 green bottle should accidentally fall, 
There’d be 1 green bottles15, hanging on the wall. 
 
1 green bottles, hanging on the wall. 
1 green bottles hanging on the wall. 
And if 1 green bottle, should accidentally fall, 
There’d be 0 green bottles hanging on the wall. 
 
First, we can see a pattern in the verse where if lines 1 & 2 refer to n bottles 
then line 4 refers to n-1 bottles: 
 
PROCEDURE verse(n) 
   SEND n&” green bottles, hanging on the wall.\n”  TO DISPLAY; 
   SEND n&” green bottles, hanging on the wall.\n”  TO DISPLAY; 
   SEND “And if one green bottle should accidentally fall\n” TO DISPLAY 
   SEND “There’d be “&n-1&” green bottles, hanging on the wall.\n”   
     TO DISPLAY 
END PROCEDURE 
 
Then we can see a nested pattern in the sequence of verses, where to sing 
the song about n bottles, we sing a verse for n bottles and then sing the song 
about n-1 bottles: 
 
PROCEDURE bottles(n) 
   IF n=0 THEN 
    RETURN; 
   END IF 
   verse(n); 
   SEND “\n” TO DISPLAY; 
   bottles(n-1); 
END PROCEDURE 
 
We call: 
 
bottles(10) 
 
for the full song. 
 

                                            
15

 yes, the singular of bottles is bottle... 
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When I show this to students before they’ve ever seen iteration, they find it 
easy to understand that if  procedures can call other procedures, then they 
can call themselves. 
 
Next, let’s consider the irritatingly non-terminating song “1 man went to mow”, 
redolent for me of excessively long car journeys as a child: 
 
1 man went to mow, went to mow a meadow. 
1 man and his dog, went to mow a meadow. 
 
2 men went to mow, went to mow a meadow. 
2 men 
1 man and his dog, went to mow a meadow. 
 
3 men went to mow, went to mow a meadow. 
3 men  
2 men 
1 man and his dog, went to mow a meadow. 
 
etc 
 
We can see that each verse contains a sub-verse that counts down, a bit like 
for “10 Green Bottles”: 
 
PROCEDURE men(n) 
  IF n=1 THEN 
   SEND “1 man and his dog, went to mow a meadow\n” TO DISPLAY 
   RETURN 
  END IF 
  SEND n&” men\n” TO DISPLAY; 
  men(n-1); 
END PROCEDURE 
 
Then the song is a sequence of a verse for n men and the song for n+1 men: 
 
PROCEDURE mow(n) 
   men(n); 
   SEND “\n” TO DISPLAY; 
   mow(n+1) 
END PROCEDURE 
 
So, we call: 
 
mow(1); 
 
to start the song. 
 
Finally, let’s try the carol “The 12 days of Christmas”: 
 
On the first day of Christmas, my true love sent to me: 



55 
 

A partridge in a pear tree. 
 
On the second day of Christmas, my true love sent to me: 
Two turtle doves and 
A partridge in a pear tree. 
 
On the third day of Christmas, my true love sent to me: 
Three French hens 
Two turtle doves and 
A partridge in a pear tree. 
 
On the twelfth day, the presents are: 
 

 Twelve drummers drumming 

 Eleven pipers piping  

 Ten lords a-leaping  

 Nine ladies dancing  

 Eight maids a-milking 

 Seven swans a-swimming  

 Six geese a-laying  

 Five golden rings  

 Four calling birds  

 Three French hens  

 Two turtle doves 

 A partridge in a pear tree 
 
We seem to have the same verse structure as in “10 men went to mow” but 
there is no discernable pattern in the presents. So we cannot simply generate 
the descending sequence of presents as integer counts slotted into a common 
line template.  
 
Also, for the song itself, each day has a different name: 
 
first second third ... twelfth 
 
Time for some computational thinking... 
 
Suppose we made an information structure for the presents: 
 
SET presents TO  
 [“A partridge in a pear tree”, 
  “Two turtle doves”, 
  ... 
  “Twelve drummers drumming”]; 
 
We could also make an information structure for the days: 
 
SET days TO [“first”,”second”,...”twelfth”]; 
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Now we can again use the descending sequence recursion. Days count from 
12 to 1 but arrays are indexed down to 0, so for day n we’ll need to access 
present n-1 on day n: 
 
PROCEDURE day(n) 
   IF n=0 THEN 
    RETURN; 
   END IF 
   SEND presents[n-1]&”\n”; 
   day(n-1) 
END PROCEDURE 
 
For the whole song, we’ll use the ascending sequence recursion again but 
stopping after day 12. As for presents, on day n the name is in days n-1: 
 
PROCEDURE christmas(n) 
   IF n>12 THEN 
    RETURN; 
   END IF 
   SEND “On the “&days[n-1]&” day of Christmas, my true love sent to me: 
   day(n); 
   christmas(n+1) 
END PROCEDURE 
 
and call: 
 
christmas(1); 

6.5. Non-terminating recursion 
What about writing recursive programs that don’t terminate? We meet lots of 
these, well lots that we would prefer not to terminate, like our computer and 
table smart phone16 operating systems. More seriously, we would really like 
heart pace makers and other medical devices not to stop unless we explicitly 
want them to. 
 
With iteration, non-termination takes the form: 
 
WHILE TRUE DO 
   <something> 
 
Non-terminating recursion is equally easy: 
 
PROCEDURE forever() 
<something> 
forever() 
END PROCEDURE 
 

                                            
16

 I wonder how soon we’ll drop the “smart”? 
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We just call the procedure without any test for a base case. 
 
We can find non-termination in popular culture. There’s a famous advert for 
salt which shows a wee boy chasing hen with a box of salt which shows a 
wee boy chasing a hen with a box of salt which shows a wee boy chasing a 
hen with a box of salt which shows a wee boy, and so on. This is a nice 
example, because it captures the nested17 nature of recursion: each picture is 
inside another picture. 
 
Finally, many cultures share a non-terminating recursive  folk tale where a 
magical entity offers someone three wishes. They ask for health, and 
happiness, and for three more wishes.  So long as they always remember to 
ask for more wishes with the third wish, they’ll never run out.        

6.6. Reflection 
We have seen two new patterns: 

 nested expression sequence; 

 nested command sequence; 
 
and explored how to use them to find the corresponding abstractions: 

 recursive function; 

 recursive procedure. 
 
As in the previous chapter, we started with a fully decomposed form but we 
then exposed nesting using bracketing: 

 (...) for expression sequences; 

 BEGIN...END for command sequences. 
 
When there was nothing more to bracket, we had found what became the 
base case for the recursion. The generalisation of the difference and 
sequence patterns then gave us the recursion case. 
 
I hope that this has also given some flavour of the equivalence between 
recursion and iteration. 
 
If you still don’t feel comfortable with recursion or don’t find this convincing 
then please tell me why. 

6.6. Exercises 
1. Derive recursive procedures for:  
 
i) FOR i FROM 0 TO 4 DO 
    SET LP[i] TO L[i]*100/total 
   END FOR 
 
ii) WHILE more inputs DO 

                                            
17

 boom boom... 
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      SET L[next] TO L[next]+1 
    END WHILE 
 
Hint: for the base case, do nothing if there are no more inputs. 
 
2. Derive a recursive procedure from: 
 
SEND LP[0] TO DISPLAY 
SEND LP[1] TO DISPLAY 
SEND LP[2] TO DISPLAY 
SEND LP[3] TO DISPLAY 
SEND LP[4] TO DISPLAY 
 
3. Derive iterative functions for: 
 
i) FUNCTION fib(n) 
    IF n=0 || n=1 THEN 
     RETURN 1; 
    END IF 
   RETURN fib(n-1)+fib(n-2) 
 END FUNCTION 
 
ii) FUNCTION gcd(x,y) 
     IF y=0 THEN 
      RETURN x; 
     END IF 
     RETURN gcd(y,x%y) 
    END FUNCTION 
 
4. Change the bottles procedure to output “bottle” for 1 bottle and “bottles” 
otherwise. 
 
5. Change the mow procedure to terminate after m men. 
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7. Sequences and patterns 

7.1. Introduction 
In teaching how to find algorithms from patterns in information, it is often 
tempting to start with sequences with known properties. We’re going to now 
look at some concrete examples to tease out two approaches. 
 
First of all, suppose we want to find the first N odd integers. We can write 
them down: 
 
1 3 5 7 9 11... 
 
and think about how each element is related to the next. We can spot that, 
apart from the initial 1: 
 
3 = 1+2 
5 = 3+2 
7 + 5+2 
9 = 7+2 
11 = 9+2 
 
so each element is 2 more than the previous element. If we name the 
elements: 
 
O1 O2 O3... 
 
then: 
 
Oi+1 = Oi+2 
 
We can turn this into an algorithm with an accumulator variable O that will 
take on the values of successive elements. We use: 
 
O1 = 1 
 
to initialise the variable: 
 
SET O TO 1 
 
and a FOR loop to find each element in turn: 
 
FOR I FROM 2 TO N 
 SEND O TO DISPLAY 
 SET O TO O+2 
END FOR 
 
We could now generalise this to construct an iterative function to find the Nth 
odd integer. We won’t bother to output the intermediate values and will just 
return the final value: 
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FUNCTION ODD(N) 
 SET O TO 1 
 FOR I FROM 2 TO N DO 
   SET O TO O+2 
 END FOR 
END FUNCTION 
 
Incidentally, if we look at this a bit more closely, we can see that we have 
actually implemented a close relation of multiplication by repeated addition. 
We’ve added 2 to 1, N-1 times. So we could simplify this to: 
 
FUNCTION ODD(N) 
 RETURN 1+2*(N-1) 
END FUNCTION 
 
or even: 
 
FUNCTION ODD(N) 
 RETURN 2*N-1 
END FUNCTION 
 
because: 
 
1+2*(N-1) == 1+2*N-2 == 2*N-1 

7.2. Powers of 2 
Next, suppose we want to find the first N powers of 2. We write down: 
 
2 4 8 16 32... 
 
We can see that, apart from the initial 1, we have:  
 
4 = 2*2 
8 = 2*4 
16 = 2*8 
32 = 2*16 
... 
 
so each element in the sequence is double the previous element. If we named 
the original sequence of elements: 
 
P21 P22 P23 ... 
 
then the abstracted pattern is: 
 
P21 = 2 
P2i+1 = 2*P2i 
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So, our algorithm might be: 
 
SET P2 TO 2 
FOR 2 FROM 2 TO N 
  SEND P2 TO DISPLAY 
  SET P2 TO 2*P2 
END FOR 
 
As we odd integers, we can realise finding the Nth power of 2 as an iterative 
algorithm, by dropping the output and returning the final value: 
 
FUNCTION POW2(N) 
 SET P2 TO 2 
 FOR I FROM 2 TO N DO 
   SET P2 TO 2*P2 
 END FOR 
 RETURN P2 
END FUNCTION 
 
Now, we could have just started from a formal definition of power of 2: 
 
21 = 2 
2N = 2*2N-1 

 
without looking at the sequence in any detail, to construct a recursive 
algorithm: 
 
FUNCTION POW2(N) 
 IF N= 1 THEN 
  RETURN 2 
 ELSE  
   RETURN 2*POW2(N-1) 
 END IF 
END FUNCTION 
 
But then all we’d have learnt would have been how to turn a recursive formula 
into a recursive algorithm, rather than how to derive the algorithm from the 
information. 

7.3. Squares 
Let’s now look at a case where finding a relationship between members of a 
sequence doesn’t seem to work so well. Suppose we want to find the first N 
squares: 
 
1 4 9 16 25 36... 
 
Can we find a pattern? There’s no obvious summing or multiplication. How 
about looking at the literal difference: 
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4-1 = 3 
9-4 = 5 
16-9 = 7 
25-16 = 9 
36-25 = 11 
... 
 
or: 
 
4 = 1+3 
9 = 4+5 
16 = 9+7 
25 = 16+9 
36 = 25+11 
... 
 
On the right hand side, we can see the original sequence: 
 
1 4 9 16 25 36... 
 
and a familiar sequence: 
 
3 5 7 9 11... 
 
So the i+1th square is the ith square plus the i+1th odd integer. We know that 
the i+1th odd integer is 2 more than the ith odd integer. If the squares are: 
 
S1 S2 S3 ...  
 
then: 
 
S1 = 1 
Si+1 = Si+Oi+1 
 
Thus, an algorithm to generate squares is: 
 
SET S TO 1 
SET O TO 3 
FOR I FROM 1 TO N 
 SEND S TO DISPLAY 
 SET S TO S+O 
 SET O TO O+2 
END FOR 
 
This does seem a wee bit opaque for what is really quite a simple problem18.  

                                            
18

 Curiously, though, the accumulation of successive differences was the basis of Charles 
Babbage’s revolutionary mid-Victorian Difference Engine, an intricate mechanical device 
which was intended to generate mathematical table. 
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7.4. Generation from sequence indices 
Let’s start again. We might observe that we have: 
 
1 = 1*1 
4 = 2*2 
9 = 3*3 
16 = 4*4 
25 = 5*5 
... 
 
and we can line the sequence up against indices as: 
 
index:  1 2 3 4   5  ... 
square:  1 4 9 16 25... 
 
so the ith square is the ith sequence index times itself. This cries out for the 
pleasingly simple: 
 
FOR I FROM 1 TO N 
 SEND I*I TO DISPLAY 
END FOR 
 
The algorithm involves a FOR loop to generate the indices and an expression 
to find the sequence elements. 
 
We now have a second strategy for finding patterns in sequences. As well as 
looking at the elements themselves, think about the relationship between the 
elements and their indices.  
 
Let’s apply this to finding odd integers: 
 
index:   1 2 3 4 5  6... 
element:  1 3 5 7 9 11... 
 
If we start with the indices, we can see that: 
 
3 = 2*2-1 
5 = 2*3-1 
7 = 2*4-1 
9 = 2*5-1 
... 
 
so the ith element is 2 times the index minus 1: 
 
Oi = 2*i-1 
 
The algorithm is now: 
 
FOR I FROM 1 TO N DO 
 SEND 2*I-1 TO DISPLAY 
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END FOR 
 
We also found this by thinking about our original: 
 
SET O TO 1 
FOR I FROM 1 TO N 
 SEND O TO DISPLAY 
 SET O TO O+2 
END FOR 
 
which we found from looking for a sequence relationship. 

7.5. Filtering from generated sequences 
Yet another approach is to start with all the integers: 
 
1 2 3 4 5 6... 
 
and choose those that satisfy some criterion, maybe having modified them 
first. 
 
For example, for odd integers, we could choose every integer which doesn’t 
divide exactly by 2; that is every integer whose remainder is 1 when divided 
by 2: 
 
FOR I FROM 1 TO N DO 
 IF N mod 2 = 1 THEN 
  SEND N TO DISPLAY 
 END IF 
END FOR 
 
This wouldn’t work very well for finding squares, though. We’d have to find the 
square root of every integer and multiply it by itself to see if we got the original 
integer. If we didn’t then we’d know that taking the square root hadn’t given an 
exact integer and had been rounded down, so the integer was a proper 
square to begin with. 

7.6. Reflection 
We have seen a number of ways to find a pattern in a sequence and hence 
derive an algorithm. 
 
First of all, we looked at the relationship between successive elements. We: 

 worked out a general case in terms of element i+1 and element i; 

 wrote down an initial case; 

 used the initial case to initialise a variable; 

 used a FOR loop and the general case to change the variable. 
 
Second, we looked at the relationship between each element and its index. 
We: 
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 worked a general case for element i. This might be a simple function of i 
(generation) or involve applying some criterion (filtering). 

 used a FOR loop and the general case to find the ith element. 
 
The first approach really does involve finding a pattern between elements of a 
sequence. But it can lead to non-intuitive solutions. 
 
The second approach can feel like a bit of a cheat.  If we know in advance 
how to characterise the important properties of each element, we seem to 
wind up coding rather than problem solving. 

7.7. Exercises 
For each of the following sequences: 
 
a) find a pattern by considering the relationship between successive 
elements; 
b) write an algorithm from a) to generate successive elements; 
c) write an iterative and a recursive function from b) to find the value of 
element i; 
d) find a pattern by considering the relationship between each element and its 
index; 
e) write an algorithm from d) to generate successive elements; 
f) write a function from e) to find the value of element i. 
 
The sequences are: 
 
a) 2 4 6 8 10 12... 
b) 1 3 7 13 21 31 43... 
c) (1) 1 2 3 5 8 13 21 34... 
d) for some X: X1 X2 X3 X4 X5 ... 
e) 1 2 3 5 7 11 13... 
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8. Imperative and object oriented programming 

8.1. Introduction 
 
I’m now going to look at how we might elaborate object oriented (OO) 
programming concepts by: 

 starting with a procedural program to manipulate a bounded push down 
stack; 

 successively applying the Computational Thinking (CT) stages of pattern; 
identification and abstraction to both the data structure and the sub-
programs. 

8.2. The stack 
 
Suppose we want to make an integer stack from a: 

 size; 

 array of that size; 

 stack pointer 
 
For a new stack, we want every element set to 0, and the stack pointer to be 
set to 0 to indicate the bottom of the stack: 
 

DECLARE size INITIALLY 3 
DECLARE s IS ARRAY OF INTEGER INITIALLY [0]*size  
DECLARE sp INITIALLY 0 

 
We can visualise the initial stack as: 
 
 
 
 
We can define the push operation as: 
 

PROCEDURE push(INTEGER v) 
   IF sp=size THEN 
      <stack overflow action> 
   ELSE 
      SET s[sp] TO v 
      SET sp TO sp+1 
   END IF 
END PROCEDURE 
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And we can define the pop operation as: 
 

FUNCTION pop() RETURNS INTEGER 
   IF sp=0 THEN 
      <stack underflow action> 
   ELSE 
      SET sp TO sp-1 
      RETURN s[sp] 
   END IF 
END FUNCTION 

 
so: 
 
 
 
 
 
 
 
 
 
 
 
 
This code has the apparent advantage that the variables are hard coded into 
the sub-programs that manipulate them, emphasising the strong conceptual 
connection between them. 
 
However, the big disadvantages are that: 

 the sub-programs can’t be used with different variables representing other 
stacks; 

 the variables are global to the whole program, so arbitrary code can 
change them with unpredictable effects.  

 

8.3. Two stacks 
 
Suppose we now want another stack but this time of size 4. We could just cut 
and paste the above code, rename all the variables and sub-programs, and 
change the initialisation: 
 

DECLARE size1 INITIALLY 4 
DECLARE s1 IS ARRAY OF INTEGER INITIALLY [0]*size1  
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DECLARE sp1 INITIALLY 0 
 
PROCEDURE push1(INTEGER v) 
   IF sp1=size1 THEN 
      <stack overflow action> 
   ELSE 
      SET s1[sp1] TO v 
      SET sp1 TO sp1+1 
   END IF 
END PROCEDURE 
 
FUNCTION pop1() RETURNS INTEGER 
   IF sp1=0 THEN 
      <stack underflow action> 
   ELSE 
      SET sp1 TO sp1-1 
      RETURN s1[sp1] 
   END IF 
END FUNCTION 

 
Well, we certainly have two stacks.  Alas: 

 our code is every bit as insecure as before; 

 and we now have twice as much of it;  

 we have to explicitly call different sub-programs to manipulate different 
stacks. 

 

8.4. Patterns and abstraction 
 
Let’s compare our two chunks of code and look for patterns by identifying 
differences. First of all, for the declarations, we have a common pattern: 
 

DECLARE ? INITIALLY ? 
DECLARE ? AS ARRAY OF INTEGER INITIALLY [0]*? 
DECLARE ? INITIALLY 0 

 
Conceptually, these three variables are strongly related in our stack model so 
we could abstract by: 

 separating out the variables from their initialisations; 

 defining a unitary record structure: 
 

RECORD stack IS {INTEGER size, 
                                ARRAY OF INTEGER s, 
                                INTEGER sp} 

 

 initialising record values when they’re created: 
 

DECLARE s1 IS stack(3,[0]*3,0) 
DECLARE s2 IS stack(4,[0]*4,0) 
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Now we distinguish the variables: 
 

s1.size, s1.s & s1.sp 
 
from: 
 

s2.size, s2.s & s2.sp 
 
Similarly, for the sub-programs, we have common patterns: 
 

PROCEDURE ?(INTEGER v) 
   IF ?=? THEN 
      <stack overflow action> 
   ELSE 
      SET ?[?] TO v 
      SET ? TO ?+1 
   END IF 
END PROCEDURE 
 
FUNCTION ?() RETURNS INTEGER 
   IF ?=0 THEN 
      <stack underflow action> 
   ELSE 
      SET ? TO ?-1 
      RETURN ?[?] 
   END IF 
END FUNCTION 

 
So, just as we abstracted our declarations with a record, we can do the same 
here by: 

 introducing record formal parameters: 

 abstracting inside the sub-programs with variable references relative to 
that record: 

  
PROCEDURE push(stack st, INTEGER v) 
   IF st.sp=st.size THEN 
      <stack overflow action> 
   ELSE 
      SET st.s[st.sp] TO v 
      SET st.sp TO st.sp+1 
   END IF 
END PROCEDURE 
 
FUNCTION pop(stack st) RETURNS INTEGER 
   IF st.sp=0 THEN 
      <stack underflow action> 
   ELSE 
      SET st.sp TO st.sp-1 
      RETURN st.s[st.sp] 
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   END IF 
END FUNCTION 

 
Now, we can push to and pop from our two stacks with: 
 

push(s1,value) ...pop(s1)... 
 
and 
 

push(s2,value) ...pop(s2)... 
 
We seem to have solved our code bloat problem but we still have insecure 
code as the record variables are global. Furthermore, we’ve lost that strong 
connection between the stack information and the sub-programs that 
manipulate it. 
 

8.5. Class = encapsulate(record + sub-programs) 
 
It would be nice if we could somehow bundle together the record that holds 
the stack variables with the sub-programs that manipulate them, so that when 
we create a stack: 

 the sub-programs know that they are only to work on the corresponding 
variables; 

 it isn’t possible to change those variables other than by using the sub-
programs. 

 
Before we see how to do this, let’s think again about the record definition: 
 

RECORD stack IS {INTEGER size,  
                                ARRAY OF INTEGER s,  
                                INTEGER sp} 

 
Remember that this doesn’t actually declare anything. Rather, it’s a 
specification of what a record value contains. We can think of this as being 
like an architectural design for a house, which we certainly can’t live in, unless 
it’s 1:1 scale and made of tent cloth, but we can use to make actual houses. 
 
Then, when we declare a RECORD, for example: 
 

DECLARE s1 INITIALLY stack(3,[0]*3,0) 
 
we’re asking for a new individual stack record value to be created with the 
fields initialised to the given values. We call this individual value an instance 
of the record. 
 
Note that we use the RECORD identifier as if it were the name of a function 
that when calls returns an appropriate value, so we term the identifier the 
constructor.  
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Just as a record is an abstraction for a related group of variables, a class is an 
abstraction for a related group of variables and sub-programs. Here the 
subprograms are called methods. 
 
A class definition looks like a record definition with an additional section where 
the methods are defined, for example: 
 

CLASS stack IS {INTEGER size,  
                            ARRAY OF INTEGER s,  
                            INTEGER sp} 
METHODS 
 
PROCEDURE push ... END PROCEDURE 
 
FUNCTION pop ... END FUNCTION 
 
END CLASS 

 
Note that different people may refer to the variables of the class as fields or 
attributes or class variables. 
 
Just as with records, a class definition doesn’t actually create anything. 
Rather, it specifies how to make individual instances of the class, termed 
objects.  
 
For example: 
 

DECLARE s3 INITIALLY stack(10,[0]*10,0) 
 
makes a new stack object associated with the variable s3, with size set to 10, 
s to [0...0] and sp to 0. 
 
However, unlike a record value, the fields of an object can only be accessed 
by the methods of the object. For example, in our program we cannot refer to 
s3.size or s3.s or s3.sp.That is, the fields are private.  
 
Nonetheless, we can access the methods of the object to manipulate the 
fields, by referring to them via the associated variable name, just as we refer 
to the fields of records. That is, the methods are public. 
 
For example: 
 

s3.push(...) 
 
indicates that the push method for the object associated with s3 is to be 
called. This is also known as message passing as it’s as if we’re asking the 
object to perform the required method. 
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We say that an object encapsulates variables and sub-programs. We have 
achieved both code reuse through object creation, and code security through 
private class variables. 
 

8.6. Madness in the methods 
 
Let’s now return to the methods. First of all, we no longer need to pass the 
class variables as parameters. Any variable mentions inside a method can 
only be to class variables, if not to formal parameters of local variables.  
 
However, we don’t just use the class variables themselves. Rather, we make 
use of the generic class variable THIS which always refers to the current 
object. 
 
Thus, in our stack example, we might write 
 

CLASS stack IS {INTEGER size,  
                            ARRAY OF INTEGER s,  
                            INTEGER sp) 
METHODS 
 
PROCEDURE push(INTEGER v) 
   IF THIS.sp=THIS.size THEN 
      <stack overflow action> 
   ELSE 
      SET THIS.s[THIS.sp] TO v 
      SET THIS.sp TO THIS.sp+1 
   END IF 
END PROCEDURE 
 
FUNCTION pop() RETURNS INTEGER 
   IF THIS.sp=0 THEN 
      <stack underflow action> 
   ELSE 
      SET THIS.sp TO THIS.sp-1 
      RETURN THIS.s[THIS.sp] 
   END IF 
END FUNCTION 
 
END CLASS 

 
So when we call, say: 
 

s3.push(42) 
 
it’s as if we’ve replaced every occurrence of THIS in push with s3. 
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Frankly, I was alarmed when I first saw this style of coding as I’d been long 
used to structured programming where it’s deemed wrong for sub-programs to 
manipulate global variables. But, with encapsulation, this is wholly appropriate 
as only the methods of an object can change its class variables. 
 
Anyway, let’s create another stack object: 
 

DECLARE s4 INITIALLY stack(5,[0,0,0,0,0],0) 
 
Now let’s push three values onto s3, and then pop them off and push them 
onto s4 in reverse order: 
 

FOR i FROM 1 TO 3 DO 
   s3.push(i) 
END FOR 
FOR i FROM 1 TO 3 DO 
   s4.push(s3.pop()) 
END FOR 

 
Notice that when we call s3.push(i) and s3.pop() we’re asking s3 to change its 
own s and sp, with reference to its own size. That is, for these calls THIS 
means s3. And when we call s4.push(i), we’re asking s4 to change its own s 
and sp, again with reference to its own size. That is, for this call THIS means 
s4. 

 

8.7. Overloading constructors 
 
Right now, when we make a stack, we have to explicitly nominate the size, 
the initial stack contents, and the initial stack pointer. We do this by calling the 
implicit constructor via the class identified. But we said we’d like every stack 
element to be initialised to 0 and to start with the stack pointer set to 0, so it 
would be nice if we could just supply the stack size and have standard code to 
set the stack contents and pointer.  
 
We can define an explicit constructor: 
 

CONSTRUCTOR (INTEGER sz) 
   DECLARE THIS.size INITIALLY sz 
   DECLARE THIS.s INITIALLY [0]*size 
   DECLARE THIS.sp INITIALLY 0 
END CONSTRUCTOR 

 
In general, we can have multiple constructors without ambiguity provided they 
can be distinguished by the number and/or types of formal parameters. Here 
we are said to have overloaded the constructor. Note that the implicit 
constructor is still valid. 
 
Note that an overloaded constructor: 
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 must declare and initialise all the class variables; 

 doesn’t have an identifier. 
 
Now, we can create a stack with: 
 

DECLARE s5 INITIALLY stack(30) 
 
which will have the same effect as: 
 

DECLARE s5 INITIALLY stack(30,[0]*30,0) 
 

8.8. Summary 
 
Let’s draw things together by thinking about how we’ve represented stacks at 
each stage. 
 
We started with global variables manipulated directly by global sub-programs: 
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push pop 

program 
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Next, we introduced records accessed by global variables, manipulated 
indirectly as parameters by global sub-programs: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

program 

s1
33 

size 

s 

3 
 

sp 0 

0 0 

2 0 

push pop 

 

s2
33 

size 

s 

4 
 

sp 0 

0 0 

3 0 

st st 

record 

record 
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Finally, we encapsulated the record and sub-programs to give objects 
accessed by global variables, with local variables manipulated directly by local 
methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note how the objects in the final stage have the same structure as the whole 
program in the initial stage. 
  

s3
33 

size 

s 

10 
 

sp 0 

0 0 

9 0 

push pop 

s4
33 

size 

s 

5 
 

sp 0 

0 0 

4 0 

push pop 

object 

object 

program 
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9. Basic algorithms and data structures 

9.1. Linear array  

9.1.1. Linear Search 
 

FUNCTION linearSearch(ARRAY OF INTEGER a, 

                      INTEGER length, 

                      INTEGER v) RETURNS INTEGER 

   DECLARE I INITIALLY 0 

   DECLARE found INITIALLY FALSE 

   WHILE NOT found AND i<length DO 

      IF v=a[i] THEN 

         SET found TO TRUE 

      ELSE 

         SET i TO i+1 

      END IF 

   END WHILE 

   RETURN i 

END FUNCTION 

9.1.2. Binary search – ascending order - iterative 
 
FUNCTION binarySearch(ARRAY OF INTEGER a, 

                      INTEGER length, 

                      INTEGER v) RETURNS INTEGER 

   DECLARE left INITIALLY 0 

   DECLARE right INITIALLY length-1 

   DECLARE middle INITIALLY 0 

   DECLARE result INITIALLY -1 

   DECLARE found INITIALLY FALSE 

   WHILE NOT found AND left <= right DO 

      SET middle TO (left+right)/2 

      IF a[middle]=v THEN 

         SET result TO middle 

         SET found TO TRUE 

      ELSE 

         IF a[middle]>v THEN 

            SET right TO middle-1 

         ELSE 

            SET left TO middle+1 

         END IF 

      END IF 

   END WHILE 

   RETURN result 
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END FUNCTION 

9.1.3. Binary search – ascending order – recursive 
 
FUNCTION recBinarySearch(ARRAY OF INTEGER a, 

                         INTEGER left, 

                         INTEGER right, 

                         INTEGER v) RETURNS INTEGER 

   DECLARE middle INITIALLY (left+right)/2 

   IF left>right THEN 

      <not found action> 

   ELSE 

      IF a[middle]=v THEN 

         RETURN middle 

      ELSE 

         IF a[middle]<v THEN 

            RETURN recBinarySearch(a,left,middle,v) 

         ELSE 

            RETURN recBinarySearch(a,middle+1,right,v) 

         END IF 

      END IF 

   END IF 

END FUNCTION 

9.1.4. Swap 
 

PROCEDURE swap(ARRAY OF INTEGER a, 

                INTEGER i, 

                INTEGER j) 

    DECLARE temp INITIALLY a[i]    

    SET a[i] TO a[j] 

    SET a[j] TO temp 

 END PROCEDURE  

9.1.5. Bubble sort – ascending order 
 

PROCEDURE bubbleSort(ARRAY OF INTEGER a, 

                     INTEGER length) 

   FOR i FROM length-2 TO 0 STEP -1 DO 

      FOR j FROM 0 TO i DO 

         IF a[j]>a[j+1] THEN 

            swap(a,j,j+1) 

         END IF 

      END FOR 

   END FOR 

END PROCEDURE 
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9.1.6. Bubble sort – ascending order - with success check 
 

PROCEDURE fastBubbleSort(ARRAY OF INTEGER a, 

                         INTEGER length) 

   DECLARE swaps INITIALLY true 

   DECLARE i INITIALLY length-2 

   WHILE swaps AND i>=0 DO 

      SET swaps TO false 

      FOR j FROM 0 TO i DO 

         IF a[j]> a[j+1] THEN 

            swap(a,j,j+1) 

            SET swaps TO true 

         END IF 

      END FOR 

      SET i TO i-1 

   END WHILE 

END PROCEDURE 

 

9.1.7. Quicksort – ascending order 
 

PROCEDURE quickSort(ARRAY OF INTEGER a, 

                    INTEGER left, 

                    INTEGER right) 

   IF left<right THEN 

      DECLARE middle INITIALLY partition(a,left,right) 

      quickSort(a,left,middle) 

      quickSort(a,middle+1,right) 

   END IF 

END PROCEDURE 

 

FUNCTION partition(ARRAY OF INTEGER a, 

                   INTEGER left, 

                   INTEGER right) RETURNS INTEGER 

   DECLARE l INITIALLY left 

   DECLARE r INITIALLY right 

   DECLARE pivot INITIALLY a[l] 

   WHILE l<r DO 

      WHILE a[l]<pivot DO 

         SET l TO l+1 

      END WHILE 

      WHILE a[r]>pivot DO 

         SET r TO r-1 

      END WHILE 

      IF l<r THEN 

         swap(a,l,r) 

         SET l TO l+1 

         SET r TO r-1 

      END IF 

   END WHILE 
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   RETURN l 

END FUNCTION 

9.1.8. Insert – ascending order 
 
PROCEDURE insert(ARRAY OF INTEGER a, 

                 INTEGER next, 

                 INTEGER length, 

                 INTEGER v) 

   DECLARE i INITIALLY 0 

   IF next=length THEN 

      <array full action> 

   ELSE 

      WHILE i<next AND v>a[i] DO 

         SET i TO i+1 

      END WHILE 

      FOR j FROM next TO i+1 STEP -1 DO 

         SET a[j] TO a[j-1] 

      END FOR 

      SET a[i] TO v 

      SET next TO next+1 

   END IF 

END PROCEDURE 

9.1.9. Delete – ascending order 
        

PROCEDURE delete(ARRAY OF INTEGER a, 

                 INTEGER next, 

                 INTEGER v) 

   DECLARE i INITIALLY 0 

   DECLARE found INITIALLY false 

   WHILE NOT found AND i<next DO 

      IF v=a[i] THEN 

         SET found TO true 

      ELSE 

         SET i TO i+1 

      END IF 

   END WHILE 

   IF found THEN 

      FOR j FROM i TO next-2 DO 

         SET a[j] TO a[j+1] 

      END FOR 

      SET next TO next-1 

   ELSE 

      <not found action> 

   END IF 

END PROCEDURE 
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9.2. Stack 
 

CLASS stack IS {ARRAY OF INTEGER s,  

               INTEGER sp,  

               INTEGER size} 

METHODS 

 

CONSTRUCTOR (INTEGER sz) 

   DECLARE THIS.size INITIALLY size  

   DECLARE THIS.s INITIALLY [0]*size 

   DECLARE THIS.sp INITIALLY 0    

END CONSTRUCTOR 

9.2.1. Push 
 

PROCEDURE push(INTEGER V) 

   IF THIS.sp=THIS.size THEN 

      <stack overflow action> 

   ELSE 

      SET THIS.s[THIS.sp] TO v 

      SET THIS.sp TO THIS.sp+1 

   END IF 

END PROCEDURE 

9.2.2. Pop 
 

FUNCTION pop() RETURNS INTEGER 

   IF THIS.sp=0 THEN 

      <stack underflow action> 

   ELSE 

      SET THIS.sp TO THIS.sp-1 

      RETURN THIS.s[THIS.sp] 

   END IF 

END FUNCTION 

 

END CLASS 

9.3. Queue 
 
CLASS queue IS {ARRAY OF INTEGER q,  

                INTEGER qp,  

                INTEGER size} 

METHODS 

 

CONSTRUCTOR (INTEGER sz) 

   DECLARE size INITIALLY sz  

   DECLARE q INITIALLY []*size 

   DECLARE qp INITIALLY 0 
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END CONSTRUCTOR 

9.3.1. Join 
 

PROCEDURE join(INTEGER v) 

   IF THIS.qp=THIS.size THEN 

      <queue overflow action> 

   ELSE 

      SET THIS.q[THIS.qp] TO v 

      SET THIS.qp TO THIS.qp+1 

   END IF 

END PROCEDURE 

9.3.2. Leave 
 

FUNCTION leave() RETURNS INTEGER 

   DECLARE result INITIALLY <whatever> 

   IF THIS.qp=0 THEN 

      <queue underflow action> 

   ELSE 

      SET result TO THIS.q[0] 

      FOR i FROM 0 TO THIS.qp-2 DO 

         SET THIS.q[i] TO THIS.q[i+1] 

      END FOR 

      SET THIS.qp TO THIS.qp-1 

      RETURN result 

   END IF 

END FUNCTION 

 

END CLASS 

9.4. Linked list – iterative/update 
 
RECORD cell IS {INTEGER value,  

                cell next} 

 

CLASS list IS {cell first} 

METHODS 

9.4.1. Show 
 

PROCEDURE show() 

   DECLARE f INITIALLY THIS.first 

   WHILE f!=[] DO 

      SEND f.value TO DISPLAY 

      SET f TO f.next 
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   END WHILE 

END PROCEDURE 

9.4.2. Insert – ascending order  
 

PROCEDURE insert(INTEGER v) 

   IF THIS.first=[] THEN 

      SET THIS.first TO cell(v,[]) 

   ELSE 

      IF v<THIS.first.value THEN 

         SET THIS.first TO cell(v,THIS.first) 

      ELSE 

         DECLARE f INITIALLY THIS.first 

         DECLARE done INITIALLY false 

         WHILE NOT done DO 

            IF f.next=[] THEN 

               SET f.next TO cell(v,[]) 

               SET done TO true 

            ELSE 

               IF v<f.next.value THEN 

                  SET f.next TO cell(v,f.next) 

                  SET done TO true 

               ELSE 

                  SET f TO f.next 

               END IF 

            END IF 

         END WHILE 

      END IF 

   END IF 

END PROCEDURE 

9.4.3. Delete- ascending order 
 

PROCEDURE delete(INTEGER v) 

   IF first=[] THEN 

      <not found action> 

   ELSE 

      IF THIS.first.value=v THEN 

         SET THIS.first TO THIS.first.next 

      ELSE 

         DECLARE f INITIALLY THIS.first 

         DECLARE done INITIALLY false 

         WHILE NOT done DO 

            IF f.next=[] THEN    

               <not found action> 

            ELSE 

               IF f.next.value=v THEN 

                  SET f.next TO f.next.next 

                  SET done TO true 
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               ELSE 

                  SET f TO f.next 

               END IF 

            END IF 

         END WHILE 

      END IF 

   END IF 

END PROCEDURE 

       

END CLASS 

9.5. Linked list – recursive/copy 
         

CLASS recList WITH {INTEGER value, recList next} 

METHODS 

9.5.1. Show 
 

PROCEDURE show() 

   IF THIS!=[] THEN 

      SEND THIS.value TO DISPLAY 

      THIS.next.show() 

   END IF    

END PROCEDURE 

9.5.2. Insert – ascending order 
 

FUNCTION insert(INTEGER v) RETURNS recList 

   IF THIS=[] THEN 

      RETURN recList(v,[]) 

   ELSE 

      IF v<THIS.value THEN 

         RETURN recList(v,THIS) 

      ELSE 

         RETURN recList(THIS.value,THIS.next.insert(v)) 

      END IF 

   END IF 

END FUNCTION 

9.5.3. Delete – ascending order 
 

FUNCTION delete(INTEGER v) RETURNS recList  

   IF THIS=[] THEN 

      <not found action> 

   ELSE 

      IF THIS.value=v THEN 

         RETURN THIS.next 
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      ELSE 

         RETURN recList(THIS.value,THIS.next.delete(v)) 

      END IF 

   END IF 

END FUNCTION 

9.5.4. Sort – ascending order 
   

FUNCTION sort() RETURNS recList    

   IF THIS=[] THEN 

      RETURN [] 

   ELSE  

      RETURN (THIS.next.sort()).insert(THIS.value) 

   END IF 

END FUNCTION 

 

END CLASS     

9.6. Exercises 
For each of the following, trace the changes to the variables and associated 
data structures: 

9.6.1. Linear array 
 
1. DECLARE b INITIALLY [1,2,3,4,5,6,7,8,9,10] 
2. DECLARE r INITIALLY 0 
3. SET r TO linearSearch(b,10,5) 
4. SET r TO linearSearch(b,10,11) 
5. SET r TO binarySearch(b,10,9) 
6. SET r TO binarySearch(b,10,11) 
7. SET r TO recBinarySearch(b,0,9,9) 
8. SET r TO recBinarysearch(b,0,9,11) 

 
9. DECLARE c INITIALLY [4,1,3,2,5] 
10. bubbleSort(c,5) 

11. fastBubbleSort(c,5)  # with original c 

12. quickSort(c,0,4)        # with original c 

 

13. DECLARE d INITIALLY []*4 

14. DECLARE n INITIALLY 0 

15. insert(d,n,4,4) 

16. insert(d,n,4,1) 

17. insert(d,n,4,3) 

18. insert(d,n,4,4) 

19. insert(d,n,5,5) 

20. delete(d,n,2) 

21. delete(d,n,5) 
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9.6.2. Stack 
 
1. DECLARE ss INITIALLY stack(3) 
2. ss.push(2) 
3. ss.push(1) 
4. ss.push(3) 
5. ss.push(4) 
6. SET r TO ss.pop() 
7. SET r TO ss.pop() 
8. SET r TO ss.pop() 
9. SET r TO ss.pop() 

9.6.3. Queue 
 
1. DECLARE qq INITIALLY queue(3) 
2. qq.join(2) 
3. qq.join(1) 
4. qq.join(3) 
5. qq.join(4) 
6. SET r TO qq.leave() 
7. SET r TO qq.leave() 
8. SET r TO qq.leave() 
9. SET r TO qq.leave() 

9.6.4. Linked list – iterative/update 
 
1. DECLARE l1 INITIALLY list([]) 
2. l1.insert(1) 
3. l1.insert(4) 
4. l1.insert(2) 
5. l1.insert(3) 
6. l1.show() 
7. l1.delete(4) 
8. l1.delete(1) 
9. l1.delete(5) 

9.6.5. Linked list – recursive/copy 
 
1. DECLARE l2 initially recList([]) 
2. SET l2 TO l2.insert(1) 
3. SET l2 TO l2.insert(4) 
4. SET l2 TO l2.insert(2) 
5. SET l2 TO l2.insert(3) 
6. l2.show() 
7. SET l2 TO l2.delete(4) 
8. SET l2 TO l2.delete(1) 
9. SET l2 TO l2.delete(5) 
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Appendix A. Haggis Pseudocode 


