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1. Introduction 
 
In these notes, I’m going to look at how we might elaborate object oriented 
(OO) programming concepts by: 

 starting with a procedural program to manipulate a bounded push down 
stack; 

 successively applying the Computational Thinking (CT) stages of pattern; 
identification and abstraction to both the data structure and the sub-
programs. 

 
I assume that you’re familiar with a push down stack and comfortable with 
arrays, records and sub-programs. 
 
I’m going to use the Haggis reference language which I trust will be self-
explanatory. 
 
I’d like to thank the participants at the Haggis Workshop on 11th May 2015 at 
the University of Strathclyde, with whom this material was first developed. 
 
If you spot any mistakes, please let me know! 
 
Greg Michaelson 
School of Mathematical and Computer Sciences, Heriot-Watt University 
 
G.Michaelson@hw.ac.uk 
 

2. The stack 
 
Suppose we want to make an integer stack from a: 

 size; 

 array of that size; 

 stack pointer 
 
For a new stack, we want every element set to 0, and the stack pointer to be 
set to 0 to indicate the bottom of the stack: 
 

DECLARE size INITIALLY 3 
DECLARE s IS ARRAY OF INTEGER INITIALLY [0]*size  
DECLARE sp INITIALLY 0 

 
We can visualise the initial stack as: 
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We can define the push operation as: 
 

PROCEDURE push(INTEGER v) 
   IF sp=size THEN 
      <stack overflow action> 
   ELSE 
      SET s[sp] TO v 
      SET sp TO sp+1 
   END IF 
END PROCEDURE 

 
 
 
 
 
 
 
 
 
 
 
 
 
And we can define the pop operation as: 
 

FUNCTION pop() RETURNS INTEGER 
   IF sp=0 THEN 
      <stack underflow action> 
   ELSE 
      SET sp TO sp-1 
      RETURN s[sp] 
   END IF 
END FUNCTION 

 
so: 
 
 
 
 
 
 
 
 
 
 
 
 
This code has the apparent advantage that the variables are hard coded into 
the sub-programs that manipulate them, emphasising the strong conceptual 
connection between them. 
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However, the big disadvantages are that: 

 the sub-programs can’t be used with different variables representing other 
stacks; 

 the variables are global to the whole program, so arbitrary code can 
change them with unpredictable effects.  

 

2. Two stacks 
 
Suppose we now want another stack but this time of size 4. We could just cut 
and paste the above code, rename all the variables and sub-programs, and 
change the initialisation: 
 

DECLARE size1 INITIALLY 4 
DECLARE s1 IS ARRAY OF INTEGER INITIALLY [0]*size1  
DECLARE sp1 INITIALLY 0 
 
PROCEDURE push1(INTEGER v) 
   IF sp1=size1 THEN 
      <stack overflow action> 
   ELSE 
      SET s1[sp1] TO v 
      SET sp1 TO sp1+1 
   END IF 
END PROCEDURE 
 
FUNCTION pop1() RETURNS INTEGER 
   IF sp1=0 THEN 
      <stack underflow action> 
   ELSE 
      SET sp1 TO sp1-1 
      RETURN s1[sp1] 
   END IF 
END FUNCTION 

 
Well, we certainly have two stacks.  Alas: 

 our code is every bit as insecure as before; 

 and we now have twice as much of it;  

 we have to explicitly call different sub-programs to manipulate different 
stacks. 

 

3. Patterns and abstraction 
 
Let’s compare our two chunks of code and look for patterns by identifying 
differences. First of all, for the declarations, we have a common pattern: 
 

DECLARE ? INITIALLY ? 
DECLARE ? AS ARRAY OF INTEGER INITIALLY [0]*? 
DECLARE ? INITIALLY 0 



 
Conceptually, these three variables are strongly related in our stack model so 
we could abstract by: 

 separating out the variables from their initialisations; 

 defining a unitary record structure: 
 

RECORD stack IS {INTEGER size, 
                                ARRAY OF INTEGER s, 
                                INTEGER sp} 

 

 initialising record values when they’re created: 
 

DECLARE s1 IS stack(3,[0]*3,0) 
DECLARE s2 IS stack(4,[0]*4,0) 

 
Now we distinguish the variables: 
 

s1.size, s1.s & s1.sp 
 
from: 
 

s2.size, s2.s & s2.sp 
 
Similarly, for the sub-programs, we have common patterns: 
 

PROCEDURE ?(INTEGER v) 
   IF ?=? THEN 
      <stack overflow action> 
   ELSE 
      SET ?[?] TO v 
      SET ? TO ?+1 
   END IF 
END PROCEDURE 
 
FUNCTION ?() RETURNS INTEGER 
   IF ?=0 THEN 
      <stack underflow action> 
   ELSE 
      SET ? TO ?-1 
      RETURN ?[?] 
   END IF 
END FUNCTION 

 
So, just as we abstracted our declarations with a record, we can do the same 
here by: 

 introducing record formal parameters: 

 abstracting inside the sub-programs with variable references relative to 
that record: 

  
PROCEDURE push(stack st, INTEGER v) 



   IF st.sp=st.size THEN 
      <stack overflow action> 
   ELSE 
      SET st.s[st.sp] TO v 
      SET st.sp TO st.sp+1 
   END IF 
END PROCEDURE 
 
FUNCTION pop(stack st) RETURNS INTEGER 
   IF st.sp=0 THEN 
      <stack underflow action> 
   ELSE 
      SET st.sp TO st.sp-1 
      RETURN st.s[st.sp] 
   END IF 
END FUNCTION 

 
Now, we can push to and pop from our two stacks with: 
 

push(s1,value) ...pop(s1)... 
 
and 
 

push(s2,value) ...pop(s2)... 
 
We seem to have solved our code bloat problem but we still have insecure 
code as the record variables are global. Furthermore, we’ve lost that strong 
connection between the stack information and the sub-programs that 
manipulate it. 
 

4. Class = encapsulate(record + sub-programs) 
 
It would be nice if we could somehow bundle together the record that holds 
the stack variables with the sub-programs that manipulate them, so that when 
we create a stack: 

 the sub-programs know that they are only to work on the corresponding 
variables; 

 it isn’t possible to change those variables other than by using the sub-
programs. 

 
Before we see how to do this, let’s think again about the record definition: 
 

RECORD stack IS {INTEGER size,  
                                ARRAY OF INTEGER s,  
                                INTEGER sp} 

 
Remember that this doesn’t actually declare anything. Rather, it’s a 
specification of what a record value contains. We can think of this as being 
like an architectural design for a house, which we certainly can’t live in, unless 
it’s 1:1 scale and made of tent cloth, but we can use to make actual houses. 



 
Then, when we declare a RECORD, for example: 
 

DECLARE s1 INITIALLY stack(3,[0]*3,0) 
 
we’re asking for a new individual stack record value to be created with the 
fields initialised to the given values. We call this individual value an instance 
of the record. 
 
Note that we use the RECORD identifier as if it were the name of a function 
that when calls returns an appropriate value, so we term the identifier the 
constructor.  
 
Just as a record is an abstraction for a related group of variables, a class is an 
abstraction for a related group of variables and sub-programs. Here the 
subprograms are called methods. 
 
A class definition looks like a record definition with an additional section where 
the methods are defined, for example: 
 

CLASS stack IS {INTEGER size,  
                            ARRAY OF INTEGER s,  
                            INTEGER sp} 
METHODS 
 
PROCEDURE push ... END PROCEDURE 
 
FUNCTION pop ... END FUNCTION 
 
END CLASS 

 
Note that different people may refer to the variables of the class as fields or 
attributes or class variables. 
 
Just as with records, a class definition doesn’t actually create anything. 
Rather, it specifies how to make individual instances of the class, termed 
objects.  
 
For example: 
 

DECLARE s3 INITIALLY stack(10,[0]*10,0) 
 
makes a new stack object associated with the variable s3, with size set to 10, 
s to [0...0] and sp to 0. 
 
However, unlike a record value, the fields of an object can only be accessed 
by the methods of the object. For example, in our program we cannot refer to 
s3.size or s3.s or s3.sp.That is, the fields are private.  
 



Nonetheless, we can access the methods of the object to manipulate the 
fields, by referring to them via the associated variable name, just as we refer 
to the fields of records. That is, the methods are public. 
 
For example: 
 

s3.push(...) 
 
indicates that the push method for the object associated with s3 is to be 
called. This is also known as message passing as it’s as if we’re asking the 
object to perform the required method. 
 
We say that an object encapsulates variables and sub-programs. We have 
achieved both code reuse through object creation, and code security through 
private class variables. 
 

5. Madness in the methods 
 
Let’s now return to the methods. First of all, we no longer need to pass the 
class variables as parameters. Any variable mentions inside a method can 
only be to class variables, if not to formal parameters of local variables.  
 
However, we don’t just use the class variables themselves. Rather, we make 
use of the generic class variable THIS which always refers to the current 
object. 
 
Thus, in our stack example, we might write 
 

CLASS stack IS {INTEGER size,  
                            ARRAY OF INTEGER s,  
                            INTEGER sp) 
METHODS 
 
PROCEDURE push(INTEGER v) 
   IF THIS.sp=THIS.size THEN 
      <stack overflow action> 
   ELSE 
      SET THIS.s[THIS.sp] TO v 
      SET THIS.sp TO THIS.sp+1 
   END IF 
END PROCEDURE 
 
FUNCTION pop() RETURNS INTEGER 
   IF THIS.sp=0 THEN 
      <stack underflow action> 
   ELSE 
      SET THIS.sp TO THIS.sp-1 
      RETURN THIS.s[THIS.sp] 
   END IF 
END FUNCTION 



 
END CLASS 

 
So when we call, say: 
 

s3.push(42) 
 
it’s as if we’ve replaced every occurrence of THIS in push with s3. 
 
Frankly, I was alarmed when I first saw this style of coding as I’d been long 
used to structured programming where it’s deemed wrong for sub-programs to 
manipulate global variables. But, with encapsulation, this is wholly appropriate 
as only the methods of an object can change its class variables. 
 
Anyway, let’s create another stack object: 
 

DECLARE s4 INITIALLY stack(5,[0,0,0,0,0],0) 
 
Now let’s push three values onto s3, and then pop them off and push them 
onto s4 in reverse order: 
 

FOR i FROM 1 TO 3 DO 
   s3.push(i) 
END FOR 
FOR i FROM 1 TO 3 DO 
   s4.push(s3.pop()) 
END FOR 

 
Notice that when we call s3.push(i) and s3.pop() we’re asking s3 to change its 
own s and sp, with reference to its own size. That is, for these calls THIS 
means s3. And when we call s4.push(i), we’re asking s4 to change its own s 
and sp, again with reference to its own size. That is, for this call THIS means 
s4. 

 
6. Overloading constructors 
 
Right now, when we make a stack, we have to explicitly nominate the size, 
the initial stack contents, and the initial stack pointer. We do this by calling the 
implicit constructor via the class identified. But we said we’d like every stack 
element to be initialised to 0 and to start with the stack pointer set to 0, so it 
would be nice if we could just supply the stack size and have standard code to 
set the stack contents and pointer.  
 
We can define an explicit constructor: 
 

CONSTRUCTOR (INTEGER sz) 
   DECLARE THIS.size INITIALLY sz 
   DECLARE THIS.s INITIALLY [0]*size 
   DECLARE THIS.sp INITIALLY 0 
END CONSTRUCTOR 



 
In general, we can have multiple constructors without ambiguity provided they 
can be distinguished by the number and/or types of formal parameters. Here 
we are said to have overloaded the constructor. Note that the implicit 
constructor is still valid. 
 
Note that an overloaded constructor: 

 must declare and initialise all the class variables; 

 doesn’t have an identifier. 
 
Now, we can create a stack with: 
 

DECLARE s5 INITIALLY stack(30) 
 
which will have the same effect as: 
 

DECLARE s5 INITIALLY stack(30,[0]*30,0) 
 

7. Summary 
 
Let’s draw things together by thinking about how we’ve represented stacks at 
each stage. 
 
We started with global variables manipulated directly by global sub-programs: 
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Next, we introduced records accessed by global variables, manipulated 
indirectly as parameters by global sub-programs: 
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Finally, we encapsulated the record and sub-programs to give objects 
accessed by global variables, with local variables manipulated directly by local 
methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note how the objects in the final stage have the same structure as the whole 
program in the initial stage. 
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