
Object Oriented Programming from Procedural Programming with
a little Computational Thinking
Greg Michaelson

1. Introduction

In these notes, I’m going to look at how we might elaborate object oriented
(OO) programming concepts by:

 starting with a procedural program to manipulate a bounded push down
stack;

 successively applying the Computational Thinking (CT) stages of pattern;
identification and abstraction to both the data structure and the sub-
programs.

I assume that you’re familiar with a push down stack and comfortable with
arrays, records and sub-programs.

I’m going to use the Haggis reference language which I trust will be self-
explanatory.

I’d like to thank the participants at the Haggis Workshop on 11th May 2015 at
the University of Strathclyde, with whom this material was first developed.

If you spot any mistakes, please let me know!

Greg Michaelson
School of Mathematical and Computer Sciences, Heriot-Watt University

G.Michaelson@hw.ac.uk

2. The stack

Suppose we want to make an integer stack from a:

 size;

 array of that size;

 stack pointer

For a new stack, we want every element set to 0, and the stack pointer to be
set to 0 to indicate the bottom of the stack:

DECLARE size INITIALLY 3
DECLARE s IS ARRAY OF INTEGER INITIALLY [0]*size
DECLARE sp INITIALLY 0

We can visualise the initial stack as:

0

0

2

1

0

size

s

0 sp

mailto:G.Michaelson@hw.ac.uk

We can define the push operation as:

PROCEDURE push(INTEGER v)
 IF sp=size THEN
 <stack overflow action>
 ELSE
 SET s[sp] TO v
 SET sp TO sp+1
 END IF
END PROCEDURE

And we can define the pop operation as:

FUNCTION pop() RETURNS INTEGER
 IF sp=0 THEN
 <stack underflow action>
 ELSE
 SET sp TO sp-1
 RETURN s[sp]
 END IF
END FUNCTION

so:

This code has the apparent advantage that the variables are hard coded into
the sub-programs that manipulate them, emphasising the strong conceptual
connection between them.

0

0

2

1

0

size

s

1

sp

0

2

2

1

0

size

s

1

sp

push(1) push(2)

0

2

2

1

0

size

s

1

sp

0

2

2

1

0

size

s

1 sp

SEND pop() TO DISPLAY 2 SEND pop() TO DISPLAY 1

However, the big disadvantages are that:

 the sub-programs can’t be used with different variables representing other
stacks;

 the variables are global to the whole program, so arbitrary code can
change them with unpredictable effects.

2. Two stacks

Suppose we now want another stack but this time of size 4. We could just cut
and paste the above code, rename all the variables and sub-programs, and
change the initialisation:

DECLARE size1 INITIALLY 4
DECLARE s1 IS ARRAY OF INTEGER INITIALLY [0]*size1
DECLARE sp1 INITIALLY 0

PROCEDURE push1(INTEGER v)
 IF sp1=size1 THEN
 <stack overflow action>
 ELSE
 SET s1[sp1] TO v
 SET sp1 TO sp1+1
 END IF
END PROCEDURE

FUNCTION pop1() RETURNS INTEGER
 IF sp1=0 THEN
 <stack underflow action>
 ELSE
 SET sp1 TO sp1-1
 RETURN s1[sp1]
 END IF
END FUNCTION

Well, we certainly have two stacks. Alas:

 our code is every bit as insecure as before;

 and we now have twice as much of it;

 we have to explicitly call different sub-programs to manipulate different
stacks.

3. Patterns and abstraction

Let’s compare our two chunks of code and look for patterns by identifying
differences. First of all, for the declarations, we have a common pattern:

DECLARE ? INITIALLY ?
DECLARE ? AS ARRAY OF INTEGER INITIALLY [0]*?
DECLARE ? INITIALLY 0

Conceptually, these three variables are strongly related in our stack model so
we could abstract by:

 separating out the variables from their initialisations;

 defining a unitary record structure:

RECORD stack IS {INTEGER size,
 ARRAY OF INTEGER s,
 INTEGER sp}

 initialising record values when they’re created:

DECLARE s1 IS stack(3,[0]*3,0)
DECLARE s2 IS stack(4,[0]*4,0)

Now we distinguish the variables:

s1.size, s1.s & s1.sp

from:

s2.size, s2.s & s2.sp

Similarly, for the sub-programs, we have common patterns:

PROCEDURE ?(INTEGER v)
 IF ?=? THEN
 <stack overflow action>
 ELSE
 SET ?[?] TO v
 SET ? TO ?+1
 END IF
END PROCEDURE

FUNCTION ?() RETURNS INTEGER
 IF ?=0 THEN
 <stack underflow action>
 ELSE
 SET ? TO ?-1
 RETURN ?[?]
 END IF
END FUNCTION

So, just as we abstracted our declarations with a record, we can do the same
here by:

 introducing record formal parameters:

 abstracting inside the sub-programs with variable references relative to
that record:

PROCEDURE push(stack st, INTEGER v)

 IF st.sp=st.size THEN
 <stack overflow action>
 ELSE
 SET st.s[st.sp] TO v
 SET st.sp TO st.sp+1
 END IF
END PROCEDURE

FUNCTION pop(stack st) RETURNS INTEGER
 IF st.sp=0 THEN
 <stack underflow action>
 ELSE
 SET st.sp TO st.sp-1
 RETURN st.s[st.sp]
 END IF
END FUNCTION

Now, we can push to and pop from our two stacks with:

push(s1,value) ...pop(s1)...

and

push(s2,value) ...pop(s2)...

We seem to have solved our code bloat problem but we still have insecure
code as the record variables are global. Furthermore, we’ve lost that strong
connection between the stack information and the sub-programs that
manipulate it.

4. Class = encapsulate(record + sub-programs)

It would be nice if we could somehow bundle together the record that holds
the stack variables with the sub-programs that manipulate them, so that when
we create a stack:

 the sub-programs know that they are only to work on the corresponding
variables;

 it isn’t possible to change those variables other than by using the sub-
programs.

Before we see how to do this, let’s think again about the record definition:

RECORD stack IS {INTEGER size,
 ARRAY OF INTEGER s,
 INTEGER sp}

Remember that this doesn’t actually declare anything. Rather, it’s a
specification of what a record value contains. We can think of this as being
like an architectural design for a house, which we certainly can’t live in, unless
it’s 1:1 scale and made of tent cloth, but we can use to make actual houses.

Then, when we declare a RECORD, for example:

DECLARE s1 INITIALLY stack(3,[0]*3,0)

we’re asking for a new individual stack record value to be created with the
fields initialised to the given values. We call this individual value an instance
of the record.

Note that we use the RECORD identifier as if it were the name of a function
that when calls returns an appropriate value, so we term the identifier the
constructor.

Just as a record is an abstraction for a related group of variables, a class is an
abstraction for a related group of variables and sub-programs. Here the
subprograms are called methods.

A class definition looks like a record definition with an additional section where
the methods are defined, for example:

CLASS stack IS {INTEGER size,
 ARRAY OF INTEGER s,
 INTEGER sp}
METHODS

PROCEDURE push ... END PROCEDURE

FUNCTION pop ... END FUNCTION

END CLASS

Note that different people may refer to the variables of the class as fields or
attributes or class variables.

Just as with records, a class definition doesn’t actually create anything.
Rather, it specifies how to make individual instances of the class, termed
objects.

For example:

DECLARE s3 INITIALLY stack(10,[0]*10,0)

makes a new stack object associated with the variable s3, with size set to 10,
s to [0...0] and sp to 0.

However, unlike a record value, the fields of an object can only be accessed
by the methods of the object. For example, in our program we cannot refer to
s3.size or s3.s or s3.sp.That is, the fields are private.

Nonetheless, we can access the methods of the object to manipulate the
fields, by referring to them via the associated variable name, just as we refer
to the fields of records. That is, the methods are public.

For example:

s3.push(...)

indicates that the push method for the object associated with s3 is to be
called. This is also known as message passing as it’s as if we’re asking the
object to perform the required method.

We say that an object encapsulates variables and sub-programs. We have
achieved both code reuse through object creation, and code security through
private class variables.

5. Madness in the methods

Let’s now return to the methods. First of all, we no longer need to pass the
class variables as parameters. Any variable mentions inside a method can
only be to class variables, if not to formal parameters of local variables.

However, we don’t just use the class variables themselves. Rather, we make
use of the generic class variable THIS which always refers to the current
object.

Thus, in our stack example, we might write

CLASS stack IS {INTEGER size,
 ARRAY OF INTEGER s,
 INTEGER sp)
METHODS

PROCEDURE push(INTEGER v)
 IF THIS.sp=THIS.size THEN
 <stack overflow action>
 ELSE
 SET THIS.s[THIS.sp] TO v
 SET THIS.sp TO THIS.sp+1
 END IF
END PROCEDURE

FUNCTION pop() RETURNS INTEGER
 IF THIS.sp=0 THEN
 <stack underflow action>
 ELSE
 SET THIS.sp TO THIS.sp-1
 RETURN THIS.s[THIS.sp]
 END IF
END FUNCTION

END CLASS

So when we call, say:

s3.push(42)

it’s as if we’ve replaced every occurrence of THIS in push with s3.

Frankly, I was alarmed when I first saw this style of coding as I’d been long
used to structured programming where it’s deemed wrong for sub-programs to
manipulate global variables. But, with encapsulation, this is wholly appropriate
as only the methods of an object can change its class variables.

Anyway, let’s create another stack object:

DECLARE s4 INITIALLY stack(5,[0,0,0,0,0],0)

Now let’s push three values onto s3, and then pop them off and push them
onto s4 in reverse order:

FOR i FROM 1 TO 3 DO
 s3.push(i)
END FOR
FOR i FROM 1 TO 3 DO
 s4.push(s3.pop())
END FOR

Notice that when we call s3.push(i) and s3.pop() we’re asking s3 to change its
own s and sp, with reference to its own size. That is, for these calls THIS
means s3. And when we call s4.push(i), we’re asking s4 to change its own s
and sp, again with reference to its own size. That is, for this call THIS means
s4.

6. Overloading constructors

Right now, when we make a stack, we have to explicitly nominate the size,
the initial stack contents, and the initial stack pointer. We do this by calling the
implicit constructor via the class identified. But we said we’d like every stack
element to be initialised to 0 and to start with the stack pointer set to 0, so it
would be nice if we could just supply the stack size and have standard code to
set the stack contents and pointer.

We can define an explicit constructor:

CONSTRUCTOR (INTEGER sz)
 DECLARE THIS.size INITIALLY sz
 DECLARE THIS.s INITIALLY [0]*size
 DECLARE THIS.sp INITIALLY 0
END CONSTRUCTOR

In general, we can have multiple constructors without ambiguity provided they
can be distinguished by the number and/or types of formal parameters. Here
we are said to have overloaded the constructor. Note that the implicit
constructor is still valid.

Note that an overloaded constructor:

 must declare and initialise all the class variables;

 doesn’t have an identifier.

Now, we can create a stack with:

DECLARE s5 INITIALLY stack(30)

which will have the same effect as:

DECLARE s5 INITIALLY stack(30,[0]*30,0)

7. Summary

Let’s draw things together by thinking about how we’ve represented stacks at
each stage.

We started with global variables manipulated directly by global sub-programs:

size

s

3

sp 0

0 0

2 0

push pop

program

Next, we introduced records accessed by global variables, manipulated
indirectly as parameters by global sub-programs:

s1
33

size

s

3

sp 0

0 0

2 0

push pop

s2
33

size

s

4

sp 0

0 0

3 0

st st

program

record

record

Finally, we encapsulated the record and sub-programs to give objects
accessed by global variables, with local variables manipulated directly by local
methods.

Note how the objects in the final stage have the same structure as the whole
program in the initial stage.

s3
33

size

s

10

sp 0

0 0

9 0

push pop

s4
33

size

s

5

sp 0

0 0

4 0

push pop

object

object

program

