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Chapter 0

Prologue

0.1 Overview

“Between thought and expression there lies a lifetime”, Lou Reed

This book is intended to support a first level course in programming in Standard ML (SML). No previous
programming experience is required. No mathematical ability is required beyond competence at senior school
year 4 mathematics. It is assumed that you have access to a computer running SML, and know how to prepare
and modify a raw text file using an editor.

SML is a member of a family of programming languages known as the functional languages. It has many
differences to the imperative programming languages like Basic, C, Pascal and COBOL. If you have already
used one of these languages then it is important that you leave any preconceptions behind and approach SML
with an open brain.

The material is organised as a continuous argument and each chapter assumes that the previous chapters have
been understood. Thus, you should work steadily through the book rather than trying to dip in and out.
Programming is ultimately about persuading computers to run programs. As you progress through this book it
is well worth using a computer to try out the examples in the text. Each chapter is followed by exercises which
are based on the preceding material. While time should be spent on thinking about how to solve the exercises
and working out answers on paper, the use of a computer 1s fundamental.

This book has been developed from courses taught at Heriot-Watt University to lst year undergraduate BSc
Computer Science students (1993 to present) and to MSc Knowledge Based System students (1987 to present).

0.2 Approach

0.2.1 Where to start?

Learning to program is a confusing and puzzling business. It is necessary to learn simultaneously how to analyse
problems, how to design a solution, how to encode a solution in a programming language and how to use a
computer system to run and modify programs. To begin with, a great deal of elementary but vital detail must
be absorbed which often obscures more general concepts.

This book does not pretend to teach a discipline of problem analysis and design as well as programming. Trying
to cover all of these topics in one text leads either to vast books, to inadequate treatment of individual topics
or to never progressing beyond trivial problems. Rather, this book is based on the premise that the best way
to learn to program is by seeing and attempting lots of simple examples where the problem area is already well
analysed and constrained. From these examples, more general constructs and techniques are drawn out. Thus,
you will soon notice that for each new topic a couple of concrete examples are presented and a general case is
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The book explicitly draws on the distinction between programming in the small and in the large, plumping
exclusively for the former. I think that it 1s best to become competent at getting the guts of elementary
algorithms right before trying to assemble such algorithms into larger systems. Thus, there are no case studies
or large worked problems until very late on. Instead, there are lots and lots of very similar simple examples
which are used to present a variety of quite low level but nonetheless fundamental techniques. Furthermore,
there is no material here on advanced searching and sorting methods, or on data structures beyond simple
lists and unbalanced trees. T think that such subtleties are best left to a second level course concentrating on
programming in the large, where they can be tackled in conjunction with abstract data types and modular or
object oriented programming.

0.2.2 Functional programming

Functional programming has its roots in mathematical logic and computability theory from the 1930’s. Coming
to prominence as a research area in the 1970’s, it is now in the mainstream of Computing. Alas, functional
programming is still seen by many as a hard, advanced subject, bearing an unwarranted aura of mathematics
and theory. This is partly because of the manner in which it is traditionally presented.

Some texts are based on the comparative ease of deriving, proving and transforming functional programs and
seek to use these techniques to elaborate rigorous disciplines of programming. Alas, programming tends to be
overwhelmed by formal detail which is off putting for beginners. Such approaches are also unconvincing at first
level: beginners can often understand intuitively a program but lack the mathematical sophistication to get to
grips with its derivation or proof. Furthermore, the sizes of proofs and derivations explode as programs get
larger.

We teach low level imperative programming but we do not expect students to hand translate substantial high
level programs into machine code: we have compilers. In the same way, while it 1s vital for students to understand
formal approaches and to apply them by hand to small problems, we need appropriate tool sets to support both
the teaching and application of such techniques.

Other texts try to treat functional programming as paradigmatic of all computing and cover issues in semantics
and implementation as well as programming. I do not think that such an all embracing approach is appropriate
for first level teaching. Too many disparate issues are covered and their significance is lost in the absence of a
general overview of computing.

Functional programming is really just another way of constructing computer programs. Because of its theoretical
grounding it certainly has many attractive formal properties. At heart though, it is an eminently practical
activity. There is no need to have any background in or awareness of matters theoretical to learn functional
programming. Indeed, it is a positive advantage for teaching to not treat functional programming as anything
out of the ordinary. In this book there is nothing on derivation, proof and transformation. Nor are semantics
or implementation issues considered. Instead, as indicated above, the focus is solidly on practical functional
programming through examples.

0.2.3 Why start with a functional language?

There is much anecdotal evidence that, as with natural language, a first programming language colours and
clouds the learning of the second, particularly where there are substantial paradigmatic differences. It seems
appropriate to teach a simple, abstract language before a more complex, concrete one. Thus, high level impera-
tive languages are usually taught before assembly languages. Functional programming is both simpler and more
abstract than high level imperative programming and there are many advantages to learning it first. Topics
which are either presented as advanced or ignored completely in first level imperative programming courses are
a natural, indeed essential part of a functional programming course.

In functional programming, function composition and parameter passing are fundamental. Recursive data
structures are complemented directly by recursive control for repetition. The combination of case structured
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Iollow cleanly and easlly Irom a high degree ol orthogonality ol abstraction mechanlisms. Folymorphic typing
combines ease of function reuse with strong checks for type compatibility.

In contrast, the transition to a functional language after a year or two of imperative programming is much
harder. People who are used to assignment as the primary means of associating names and values often have
conceptual problems with sub-program use through parameter passing, even in imperative languages. Similarly,
those who are used to iteration as a repetition mechanism find recursion hard. In the same vein, pattern
matching seems arcane after explicit element selection from data structures. In short, people who know about
assignment miss it: hence the warning in the first section above.

Of course, functional languages are not some universal panacea for all our programming teaching ills. Functional
programming brings different misconceptions, confusions and problems. That is why so much time is spent in
this book on basic concepts, repeating and abstracting from concrete examples with stepped variations to build
up slowly and steadily layers of more general techniques.

0.2.4 Why Standard ML?

SML was originally developed in the 1970’s at the University of Edinburgh as the meta-language for the LCF
theorem prover. It is now used widely for teaching and research, and increasingly for industrial computing.

SML was one of the first languages to be defined formally, rather than retrofitted with a formal definition. This
provides a solid basis both for implementations and for program proof and transformation. Mature, robust,
stable, consistent, free implementations are available for a variety of platforms, in particular for IBM compatible
PCs and for UNIX based systems. SML is actually an imperative language with a pure functional subset. For
practical purposes it may be viewed as a functional language, the approach taken here.

Good but incompatible alternatives are Miranda (a trade mark of Research Software Ltd) and Haskell. Both are
pure functional languages. Both differ from SML not just in syntaxes but in the way that function application
is defined. To be somewhat arcane, SML is said to be strict because arguments are always evaluated before
functions are applied to them. Contrariwise, Miranda and Haskell are said to be lazy because argument
evaluation i1s delayed until the argument value is actually needed. Purists argue plausibly that this gives
Miranda and Haskell an edge over SML in that it is easier to prove some properties of programs and to
characterise particular sorts of computations. However, for first level teaching, I do not think that these are
good reasons to choose Miranda or Haskell over SML.

0.3 Contents

It is not the intention to cover full SML here. The major topics are:

basic types and operations - integer, real, boolean string
functions as values

global declarations

pattern matching with booleans, integers and strings
integer recursion

conditional expression

lists, list pattern matching and list recursion

list higher order functions

local declarations

tuples and tuple pattern matching

concrete datatypes

12



input/output
There 1s minimal mention of:

imperative constructs
abstract data types

modules
in the final chapter. There 1s no coverage of:

records

user defined operators
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Chapter 1

Introduction

1.1 Introduction

The world 1s a fiendishly complicated place. To make sense of it, we break it up into manageable chunks and
construct abstract descriptions or models of them. If those descriptions are detailed and precise enough then
they can be turned into programs to be animated by computers.

In this chapter we are going to consider various aspects of model making. This chapter is really a fairy story.
Like all fairy stories it contains nuggets of wisdom but it presents them in an idealised and simplified manner
making lots of vague assumptions along the way. Still, we have to start somewhere. The rest of the book will
firm up and amplify the ideas sketched out here.

1.2 Making models

If we want to solve a problem then one approach is to make a model which captures important aspects of the
circumstances of the problem. If the model is accurate and detailed enough then working with it should shed
further light on the problem.

Usually, a model means a simplified physical replica of something. For example, many childrens’ toys are
models of far more complex devices. Models may be constructed at differing levels of closeness to the thing
being modelled. For example, a basic toy car has four wheels so that it can be pushed across a floor. A more
complex model might have steerable wheels. An even more detailed model might have an electric motor so that
it does not need to be pushed. Finally, the model might have remote control so that its speed and direction can
be changed without direct contact.

Each level of model encapsulates more and more features of the thing being modelled. However, each level
also misses out a lot of detail which is deemed to be inessential: the detail should be appropriate for a model’s
intended use. For example, a two year old will wreck a remote controlled car while a twelve year old will be
bored by a push along wagon. Similarly, a child’s model car probably does not have leather upholstery or an
FM radio whereas a manufacturer’s model car at a motor show might have both but no engine.

Models can be made increasingly sophisticated so that they encompass more and more detail and hence provide
more and more information about what is being modelled. In civil engineering, for example, models of proposed
structures are made to very high tolerances so that measurements made on them can be scaled up directly to
the ultimate constructions. None the less, in a model road bridge it is probably not important whether the lines
in the centre of the road are white or yellow, or, indeed, if the lines are there at all. A fundamental aspect of
problem solving and model making is deciding what detail is relevant.

Models for use with computers are much more abstract than physical replicas. Computer models are programs,
that is sequences of instructions for manipulating information. The information represents static details of
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and the miormation provides detalls 1or a specilic case ol 1nterest. A physical model 1s Irozen with one set ol
properties but a computer model can be used in any circumstances which fit the general case. For example, in
using a computer program to model a bridge the information might include the dimensions of the girders and
the strength of the material they are made from, and the instructions might describe how girders of arbitrary
dimension and material bend and fracture when they bear weight. This program could then be used to model
the behaviour of bridges made from steel or concrete provided the strengths of steel and concrete beams are
known.

An important aspect of abstract model making is identifying general cases. One way to do this is to look at lots
of individual cases to try and spot regularities or common patterns in static detail and dynamic behaviour. It is
very useful to clarify how the individual cases are similar and how they differ. A general case can then be formed
by freezing the points of similarity and leaving open the points of difference. Subsequently, the general case can
be applied in a new individual case by filling in the open points with appropriate information and instructions.
The tricky thing 1s knowing what are going to be useful points of comparison, once again separating out relevant
from irrelevant detail.

For example, suppose we want to investigate the factors determining car fuel consumption. We know that cars
have a number of common features such as wheels and engines and bodies and seats and so on: all the things
that constitute “carness”. We also know that cars can be of different colours, have varying numbers of doors,
have different sized engines, travel at different speeds and have different weights. We could then measure the
fuel consumptions of lots of cars and try and relate the consumption to these different factors. It is likely that
we would find that the car colour and number of doors were not relevant to fuel consumption whereas engine
size, car weight and speed were relevant. Furthermore, we might find that fuel consumption increased in a
simple way with engine size and car weight and in a complex way with speed. We could then construct a model
which given an arbitrary car’s weight, engine size and speed would tell us its fuel consumption. We could check
the model with the original information and if we were happy with its accuracy we could then apply it to new
cars.

Of course, if we had thought a little bit more about cars we might not have bothered to see if the colour
and number of doors were important. That is, we actually already have a model in our brains based on our
experience of cars and what we have read or have been told about them. If we are totally ignorant about a
problem then we can ask someone else or read about it or see if 1t is similar to a problem that we already have
some information about. We will then incorporate a first model in our brains as a starting point. We never
approach a problem blind. Rather, we have presuppositions and we should always make them explicit. If our
presuppositions are wrong then our experimentation and model making will show that up.

1.3 Things, collections and properties

When we make an abstract model we have to actually write down its description. Above, we introduced a
distinction between static information and instructions for manipulating it. To begin with, let us assume that
information consists of collections of descriptions of things.

Note that collections are also things so we can have collections of collections. Note also that instructions are
things and so are programs, structured collections of instructions. Hence the distinction between information
and instructions is not hard and fast in our world of thingfulness, or, as we shall see, in computer programs.

Now, when we make a collection of things we do not do so arbitrarily: we have some criteria for identifying
them and grouping them together, some common properties that they all share. That is, we must have some
way of determining which things should be in the collection and which should not. For example, when we
are collecting cars to investigate fuel consumption we might specify that a car has four wheels, an engine and
enclosed seating. Thus, we should exclude bicycles, which have two wheels, no engine and are not enclosed,
motorcycles, which have two wheels, an engine and are not enclosed, and stagecoaches, which have four wheels,
no engine and are enclosed.

Note that we have become a bit more specific about descriptions of things in collections. We are now including
properties as parts of descriptions and we can define a thing itself as a group of properties. We will come back
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1 his gives us a nrst way ol representing a collection ol things as a table oI properties. For example, Tor vehicles
we might have:

name wheels engine enclosed
car 4 yes yes
motorcycle 2 yes no
stagecoach 4 no yes

At the top of the table is a row of properties. Each subsequent row is a sequence of property values for an
individual thing.

Note that a thing will often have more properties than those needed to decide if it should be in a particular
collection. For example, individual cars have particular colours but having a specific colour is irrelevant for
whether or not something is a car. For example, in the collection of cars we might want to compare engine size,
weight and speed but once again these are not properties that determine whether or not something is a car.

1.4 Properties of properties

In the above discussion of cars we introduced implicitly a number of different ways of describing properties.
Now we will tease out just how we form property descriptions.

First of all, we said that a car should have enclosed seating and should have an engine. Enclosed-seatingness
and engine-bearingness are two valued or binary properties: either a thing has or does not have enclosed seating;
either a thing has or does not have an engine. To put it another way, the questions “Does the thing have enclosed
seating?” and “Does the thing have an engine?” can both be answered yes or no. To put it yet another way,
the statements “The thing has enclosed seating.” and “The thing has an engine.” can be either true or false.
True and false are called truth values or logical values or boolean values. Boolean values are named for George
Boole, the 19th century mathematician who was one of the first people to formalise the mathematics of truth
values. He thought that he had found the answer to the ultimate question and called his book on logic “The
Laws of Thought”.

Next, we said that a car should have four wheels. We know that a wheel 1s an indivisible sort of an entity and
so wheels are counted in whole numbers. Here there is an unstated implication that in determining the number
of wheels on a thing we use a whole number, an integer value.

We also said that cars have weights and speeds. We know that these are not whole numbers of kilograms or of
metres per second but can vary to an infinitely fine degree. Hence, the implication here is that we use decimal
numbers, real values, to describe them.

Finally, we said that cars have colour. Colours have fixed names, for example “red”, “green” and “blue”. Here,
we can use the word or words for the colour name. In principle, any colour name is valid, for example “metallic
blue” or “racing green”, provided the names can be distinguished. Words are a special case of the more general
strings. Where a word is a sequence of alphabetic letters, a string is any sequence of any letters between double
quotes, including spaces and digits and punctuation marks. Thus, we can use strings to represent arbitrary
sequences of words.

These property descriptions - booleans, integers, reals and strings - are pleasingly general, certainly not specific
to car properties. We can use truth values to represent any property involving the presence or absence of
something, for example whether or not something has marmalade fur or eats fish. In the same way, we can use
integers to represent any property involving a whole number of something, for example how many marmalade
hairs something has. Similarly, we can use reals to represent any property involving a variable quantity of
something, for example how many kilograms of fish something eats. And we can use strings to represent a
property involving a fixed range of describable possibilities, for example whether something is not very, quite,
very or extremely furry.

Note that we are being somewhat luxurious in allowing so many different sorts of generalised property descrip-
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example "0° for "red” and "1 Ior “orange” and so on. kqually well, we could use strings 1o represent integers,
for example “zero” for ‘0’ and “one” for ‘1’ and so on. Or we could use pairs of integers to represent reals,
for example ‘12’ and ‘34’ for ‘12.34°. However, we gain in expressive power by separating out different general
property classes. By introducing additional general properties we can not necessarily describe more things but
we can make richer descriptions.

1.5 Types and methods

For making models, just putting things into collections is rather more involved than it seems at first. We’ve
said that for something to go into a collection it must have certain properties. Thus there must be some way
of selecting properties from the description of a thing. That suggests that there must also be some way of
constructing descriptions of things out of properties in the first place. In turn, that suggests that there must be
some way of constructing properties themselves. Similarly, once we have selected the properties from a thing’s
description there must be ways of testing them. Furthermore, we may want to make new descriptions out of old
descriptions: if those new descriptions are not just simple copies then the properties from the old descriptions
must be changed. These ways of constructing and accessing and manipulating properties and descriptions are
known as methods. As we shall see, they are the basis for the instructions in model building.

Above we looked at the use of booleans, integers, reals and strings to describe properties. Each of these general
property descriptions are more than just collections of values for us to choose from. They also come with their
own methods which we use implicitly all the time. A collection of values and associated methods 1s known as a
type. Let us now look at methods for these types in more detail.

First of all, all of these types enable two values to be compared. We can ask “Is ‘56’ the same as ‘7’?” or “Does
‘true’ equal ‘true’?” or “Is ‘3.14 different to ‘3.15’7” or “Is “tomato” identical with “tomato”?”. Note that all
of these questions require a binary answer, either ‘yes’ or ‘no’; or ‘true’ or ‘false’. That is, methods for testing
equality return boolean values.

Note that it does not really make sense to compare values from different types. When we compare two values
we assume that we are comparing “like with like” and not comparing “apples and oranges” as the old saws have
it. If two values are from different types then they are necessarily different, so there is no point in comparing
them.

For the boolean type, we can ask whether or not two values are both ‘true’. This method is called conjunction.
We can also ask if one or both of two values is ‘true’, known as disjunction. Or, we could ask if one follows
from the other. This method is called implication. As we shall see; we can build up involved logical arguments
from these methods. Note that these methods return boolean values.

For the integer and real types, we have methods to do arithmetic, that is to add or multiply two values together
or subtract one from another or divide one by another. As we shall see later, we can construct complex sums
from these methods. Note that these methods return numerical values.

We can also carry out magnitude comparisons on integer and real values to see if one is bigger or smaller than
another. We can use these methods to choose amongst things and to put things in order. Such methods return
boolean values.

For the string type, we can join two strings together to form a new string, or we can ask how many letters are
in a string, to get an integer, or we can select parts of strings to get what are effectively more strings. Once
again, we can carry out quite elaborate textual manipulation using these simple methods.

Note that methods are type specific. That is, they must be used with values of particular type and return values
of particular type. For example, it does not make sense to add an integer and a string, or to test if a real is
bigger than a boolean. As we will see, this is important for ensuring that the methods that make up programs
are fitted together correctly.
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A fundamental aspect of model making is deciding which types to use to represent properties. Above we
suggested using booleans for binary choices, integers for counting, reals for measuring and strings for words.
Note, however, that different types may be appropriate for what is apparently the same property in different
contexts.

For example, consider working with dates of the form:
day month year

First of all, suppose we want to check if two people have the same birthday. We only need compare their dates
of birth so they might be represented as strings, for example:

""24th September 1953"
or
n1/3/39n

Here we have two radically different possible ways of writing down dates but they are both represented as
strings. So long as we use consistently just one way of writing down dates as strings then we can compare them
letter by letter from left to right. Thus we can see that:

"24th July 1961"
is the same as:

"24th July 1961"
and:

"29/4/56"
is not the same as:

"24/12/58"

However, if we want to find the date of the day after someone’s birthday then the representation as a single
string 1s not very flexible. We need to add 1 to the day, suggesting representing the day as an integer. If the
new day is bigger than the number of days in the month then we need to reset it to 1 and somehow get to the
next month. This suggests representing the month as a integer between 1 and 12:

1 == January
2 == February

12 == December

which we can add 1 to. If the new month is bigger than 12 then we need to reset it to 1 for January and get to
the next year. This again suggests representing the year as an integer.

18



In general, the choice of type to represent a property should be determined by how the property is used, that is
what methods are used to manipulate it. It is important to try and find a balance between ease of manipulation
and simplicity of representation.

1.7 Characterising things and collections

Let us now begin to firm up the differences between things and collections of things. A thing is described by a
fixed number of properties. We decide once and for all which properties are needed to describe something and,
thereafter, we cannot add or remove properties. In contrast, a collection of things can have a variable number
of things in it. In particular, it can be empty. However, all the things must have common properties. As we will
see much later on, requiring things to be a fixed number of properties is not as restricting as it sounds because
some of the properties could be other things or variable sized collections of other things.

The reasons for this distinction are to do with various technical aspects of ensuring that models are correctly
constructed: we are not yet in a position to go into more details but introduce the distinction to ease presentation.
So, from now on we will distinguish fixed sized descriptions of things from variable sized collections of things.

When we want a new value from one of our basic types we just write it down or form an expression to generate
it. In the same way, we will need to have some way of writing down a thing as a fixed group of values and of
writing down a collection as a potentially variable bundle of things.

Above we saw that we can represent collections of things as tables. For example, suppose we have a collection
of vehicles each with its own name, a certain number of wheels, and the presence or absence of an engine. Thus,
we might include a Morris 1000 car with four wheels and an engine, an Elswick Ambler bicycle with two wheels
and no engine, a Honda 90 motorcycle with two wheels and an engine, a Wells Fargo stagecoach with four
wheels and no engine, and a Fiat 127 car with four wheels and an engine. The corresponding table is:

Vehicles collection

name wheels engine
"Morris 100" 4 true
"Elswick Ambler" 2 false
"Honda 90" 2 true
"Wells Fargo" 4 false
"Fiat 127" 4 true

Notice that down each column all the values are of the same type: the name is always a string, the number of
wheels i1s always an integer and the presence or absence of an engine is always a boolean. Thus, each row has
the same combination of a fixed number of types.

We have just introduced tables as a first informal representation of collections of things. However, we are going
to delay making a more definite commitment to specific representations for things and collections of things until
later chapters. Nonetheless, we can begin to consider in broad terms how we can manipulate collections of
things.

Because things and collections are so fundamental to model making, it would be very useful to have general
ways of manipulating them, that is general purpose methods. Thus, we want types for things and collections
which we can firm up for particular problems. However, just as we are evading questions of thing and collection
representation, we will also evade questions to do with the corresponding methods. We have also assumed that
we can extract properties from things. In the same way, we will assume that we have ways of putting things
into and taking them out of collections. We will also assume that we can make an empty collection and that
we can tell if a collection is empty.
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We have said that a car description is a collection of properties formed from values from general types. We
could now consider a car description to be a value in its own right. Furthermore, we could consider the function
to find a car’s name or the number of wheels or its travel distances as methods for manipulating of car values.
That is, we can use general types and abstraction over their methods to start building a new type for cars.

This is the essence of model making and programming. We analyse a problem to identify the types within it.
We then used the general types we know about already along with abstraction to represent values and methods
for new types appropriate to the problem. We then plug the methods for the new types together to solve the
problem. Once we have become adept at building new types we can then use them in turn to make yet more
types to solve further problems.

1.9 The story so far

Let us summarise the above musings. Models are abstract descriptions and are composed of static information
and dynamic instructions. Information is based on collections of things. Things are groups of properties.
Properties are values of particular types. Types are general purpose aggregates of values and methods. Methods
enable the manipulation of values of appropriate types and are the building blocks of programs, that is sequences
of instructions.

Thus, knowing what we want to model we have to decide what things are relevant, which properties are important
and how they need to be manipulated. We then choose appropriate types for describing those properties and
hence the things.

We will now turn to how we use methods to construct instructions for thing manipulation through their proper-

ties. In particular, we will look at the use of naming properties of things as a way of specifying general, abstract
instructions.

1.10 Expressions from methods

Methods seem to be very simple instructions for manipulating properties of things and returning values which
might be further properties. We can plug methods together to build up more complex instructions. However,
we must make sure that the types match up. That is, if the result of one method is to be used by another
method then the result type of the first method must be the same as the required type for the second method.
Instructions built from methods are called expressions.

For example, suppose we write * to mean integer multiplication. Then, if we know that a car travels at 110
kilometres per hour for 2 hours, then the distance covered is:

110 * 2 ==> 220

kilometres.

Note the use of:
==>

to mean that the result of the expression on the left is the value on the right.
For example, suppose we write < when we want to see if one integer is smaller than another. If we know that

one car has a top speed of 130 kilometres per hour and another has a top speed of 150 kilometres per hour then
the first car has a slower top speed than the second car because:
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For example, if we know that one car travels at 150 kilometres per hour for 2 hours and another travels at 90
kilometres per hour for 3 hours then the first car does not travel a lesser distance than the second car because:

1560 * 2 < 90 * 3 ==> false

Let us make the stages in carrying out this expression explicit. First of all, we work out the distance travelled
by the first car:

150 * 2 ==> 300

Next we work out the distance travelled by the second car:
90 * 3 ==> 270

Finally, we compare the distances travelled:
300 < 270 ==> false

Recall that * multiplies one integer by another integer to return an integer and < compares two integers. Thus,
it 1s fine to build an expression from other expressions using * to return integers for subsequent comparison by
<.

Note that there is an implicit order in which the expression is carried out. First we did the expressions involving
arithmetic methods. Then we did the expression involving a comparison method. In a complex expression,
arithmetic methods are said to have greater precedence than comparison methods. When carrying out an
expression, the expressions it is composed of are carried out in order of precedence from highest to lowest.

Notice also then after we had carried out the multiplication expressions we replaced them in the original
expression with their results. We will assume that we can always replace something with something else
provided they are equivalent.

1.11 Generalising through naming

In the above discussion we were working with specific things with specific properties. Thus, we had a first car
with a speed of 110 kilometres per hour and a duration of 2 hours. Then we had two cars with top speeds
of 130 and 150 kilometres per hour respectively. Then we had another two cars with speeds of 100 and 90
kilometres per hours and travel durations of 2 and 3 hours respectively. In all the examples, we ignored any
other properties of the cars.

All the expressions we constructed and evaluated involved those specific property values being frozen in place.
For example, we carried out three similar calculations to find the distance travelled from three cars’ speeds and
durations. Each time we wrote down a slightly different expression with the same method but different specific
values for the speed and duration. This is all very well for finding the distance travelled by 3 cars but would be
dull for 30 cars, tedious for 300 cars and mind bogglingly boring for 3000 cars. It would be much better if we
could make an expression to find the distance from the speed and duration for an arbitrary car and then reuse
that expression with lots of specific cars.

We want to be able to talk about arbitrary values of properties rather than specific values. We can do so by
naming the properties and writing expressions that refer to the names rather than the specific values.

For example, suppose we want to know how far a car travels in 2 hours given its speed. We could refer to the
speed by the name speed and write:
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We could generalise further by referring to an arbitrary duration of travel as duration, and then write:
speed * duration

This technique of generalising specific values with a name is called abstraction. As we shall see, abstraction is
central to programming. In particular, an abstracted expression is called a function.

It makes subsequent use of functions easier if we always make explicit the names that are used for abstraction.
For example, we could write something like:

replace speed
in speed * 2

to make it clear that speed needs to be replaced with a specific value. Similarly, we could write:

replace speed
replace duration
in speed * duration

to stress that first speed and then duration need to be replaced with values.

1.12 Specialising abstractions

In order to use an abstracted expression to carry out a calculation we need to replace the names with specific
values. This is called specialising an abstraction. For each name, we need to state the values that will replace
it. For example, to find the distance travelled by a car going at an average speed of 100 kilometres per hour for
2 hours using the first function above, we might write:

replace speed
in speed * 2
with 100

This tells us to replace speed with 100 giving:
100 * 2 ==> 200

Similarly, using the second function above to find the distance travelled by a car at 120 kilometres per hour for
4 hours, we might write:

replace speed
replace duration
in speed * duration
with 120
with 4

First of all, we replace speed with 120 giving:

replace duration
in 120 * duration
with 4
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120 * 4 ==> 480

Specialising an expression abstraction by replacing names with values is known as calling or applying a function.

1.13 Abstraction by comparison

We could have used the approach of case comparison for generalisation suggested above to guide us in the
abstraction. The three original calculations were:

110 * 2
150 * 2
90 * 3

If we compare the first two they have the duration 2 in common but different values for the speed. This suggests
that we might abstract for speed:

replace speed
in speed * 2

to form a function. We could abstract in the third example in the same way:

replace speed
in speed * 3

to form another function. If we now compare these two functions they have speed in common but different
values for the duration. This suggests that we might abstract for duration:

replace speed
replace duration
in speed * duration

to form a third function.

This way of comparing things and abstracting at the points where they are different is incredibly useful for
model making and programming. Indeed, this is often a good way to start solving a problem when we know
roughly what things we are interested in and how we want to manipulate them but are not clear how to proceed.
We can write down lots of individual examples, compare them, spot the common features and introduce names
at the points of difference.

1.14 Naming functions

We have just seen how we can use names to generalise values in expressions. We can also associate names with
functions so that in future when we refer to the name we know to use the associated function.

For example, we might write:

distance is replace speed
replace duration
in speed * duration
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distance
with 20
with 10

First we replace distance with the associated function:

replace speed
replace duration
in speed * duration
with 20
with 10

and then we replace speed and duration as before:

20 * 10 ==> 200

1.15 Deciding what to do next

Above, we fitted methods together to form expressions. An expression is a one off activity but often we need to
choose amongst a group of possible actions depending on the properties of the things that we are investigating.
We will now introduce a simple way of describing such decisions.

For example, suppose that any car that has a top speed of over 150 kilometres per hour is said to be fast and all
other cars are said to be slow. Consider deciding whether a car that has a top speed of 160 kilometres per hour

is fast or slow. We would like to get back the string “fast” or the string “slow” as the result of the decision.
Suppose we use the method called > to decide if one integer is bigger than another. We might write:

if 160 > 150
then "fast"
else "slow"

The intention here is that if the expression after the if has the value true then the result is whatever follows
the then. Otherwise the expression after the if must have the value false and so the result is whatever follows
the else. Thus, in the above example:

160 > 150 ==> true
so for:

if true
then "fast"
else "slow"

the result is "fast".

Note that first we worked out the value of the expression after the if which should return a boolean value. We
then replaced the expression with its value before proceeding.

For example, for a car with a top speed of 110 kilometres per hour, the fastness check is:
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else "slow"

Here, the expression after the if gives:
110 > 150 ==> false

so for

if false
then "fast"
else "slow"

the result is "slow".
This way of making a decision is called a conditional expression.

Incidentally, comparing these two conditional expressions, they are the same apart from the speed so we could
abstract over the speed to form a function:

replace speed
in if speed > 150
then "fast"
else "slow"

We could then name this function:

speedname is replace speed
in if speed > 150
then "fast"
else "slow"

and call it with, for example, a speed of 120 kilometres per hour:

speedname
with 120 ==>

replace speed
in if speed > 150
then "fast"
else "slow"
with 120 ==>

if 120 > 150

then "fast"

else "slow" ==>

if false

then "fast"

else "slow" ==> "slow"

For example, suppose that one car travels for 2 hours and another travels for 3 hours and we want to know
which duration is longer. We could write:
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else 3

that is, if the first car’s duration, 2, is bigger than the second car’s duration, 3, then the result is the first car’s
duration, 2. Otherwise the result is the second car’s duration, 3. In fact:

2 > 3 ==> false
so:

if 2 > 3
then 2
else 3 ==>

if false
then 2
else 3 ==> 3

so the second car’s duration is the longer.

Perhaps the first car has a longer duration than one which travels for 1 hour:

if 2 > 1
then 2
else 1 ==> 2

Indeed it has.

Comparing these two conditional expressions they differ in the second duration, so we could abstract to form a
function to compare the duration 2 with an arbitrary second duration called duration2:

replace duration2
in if 2 > duration2
then 2
else duration2

Now we are returning the arbitrary value duration? if it is not smaller than 2. For example, suppose the second

car travels for 3 hours:

replace duration2
in if 2 > duration2
then 2
else duration2
with 3

Replacing the name duration2 with the value 3, we get:

if 2 > 3
then 2
else 3 ==>

if false

then 2
else 3 ==> 3
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YWe could now abstract 1or the 1nirst car's duration:

replace durationi
replace duration2
in if durationl > duration2
then durationil
else duration2

to make a general purpose function to compare two durations. We could name the function:

longer is replace durationl
replace duration2
in if durationl > duration2
then durationi
else duration2

and call it, for example to find the longer of an 11 hour and 7 hour journey:

longer
with 11
with 7 ==>

replace durationi
replace duration2
in if durationl > duration2
then durationil
else duration2
with 11
with 7 ==>

replace duration2
in if 11 > duration2

then 11
else duration2
with 7 ==>
if 11 > 7
then 11
else 7 ==>
if true
then 11

else 7 ==> 11

1.16 Names are arbitrary

This new function will actually find the bigger of any two integers: it is not specific to travel durations even
though we used the names durationl and duration2. Similarly, our distance function:

distance is replace speed
replace duration
in speed * duration
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INone the less, when we make abstractions we should certainly choose names that have meanings 1or us. Uthewise
our functions can become incomprehensible. For example,

thingumywhatsit is replace yibble
replace yabble
in yibble * yabble

is just as good as:

distance is replace speed
replace duration
in speed * duration

as a way of generalising multiplication but the names thingumywhatsit, yibble and yabble tell us nothing
about their intended use for our particular problem.

Part of the art of model making is, on the one hand, choosing names that reflect the values they generalise
but, on the other hand, recognising that the resulting functions may have applications beyond the immediate
problem. For example, because the duration comparison function works with any two integers, we might use
more general names say:

bigger is replace first
replace second
in if first > second
then first
else second

Here the names tell us that we are working with two values and that we supply the values in a particular order.

Names’ meanings are significant to us because they remind us of what they are generalising in the model that we
are building. However, 1t is important to remember that the names themselves are only significant in functions
as indicators as to where replacements are to take place.

1.17 New collections from old collections

We have talked about solving a problem by starting with an initial collection of things for subsequent manipula-
tion. For a problem to be solved, we will need to construct a final collection of things satisfying various criteria
by selecting, inspecting and possibly changing things from the initial collection. The final collection may consist
of the same sorts of thing as the initial collection or it may be full of different things. The final collection may
be empty or may just have one thing in it. Indeed the initial collection may be empty or have just one thing
in it. Of course, for elaborate problems we may well start with several initial collections and finish with several
final collections, but we shall keep things simple for the moment.

Consider the following outline of solving a common simple sort of problem by creating a final collection of things
from an initial collection of things:

If the initial collection is empty then the final collection is empty.

Otherwise, manipulate the next thing from the initial collection to decide whether or not to add
something to the final collection that results from dealing with the rest of the initial collection.

That 1s, we go through the initial collection taking out things until there are none left. Next we make an empty
final collection. Then we look at each of the things that we took out of the initial collection and decide whether
or not to put something into the final collection.

28



a string, and 1ts welght, a real number. Ve might represent the cat descriptions using the following table:

Initial collection

name colour weight
"Wallace" '"tabby'" 4.0
"Mog" "black" 4.5

"Spider" ‘"tabby" 2.8

Note again that we are not making any firm commitment to representations for things or collections: rather we
note that a table is one possible representation for a collection of things.

1.18 Mapping

Suppose each cat eats 200 grammes of delicious dolphin flavoured soya cat food and we want to know how much
each one now weighs.

If the initial collection is empty then we make an empty final collection. Otherwise we take out the first cat
and add 0.2 to its weight. We then add it to the final collection from finding new weights for all the cats in the

rest of the initial collection.

Let us try this out. We start with the whole initial collection:

Initial collection

name colour weight
"Wallace" '"tabby'" 4.0
"Mog" "black" 4.5

"Spider" ‘"tabby" 2.8

The collection is not empty. After eating, the next cat:

01d next cat
"Wallace" '"tabby'" 4.0

gains weight:

New next cat
"Wallace" '"tabby'" 4.2

and we add it to the result of dealing with the rest of the collection:

Initial collection

name colour weight
"MHog" "black" 4.5
"Spider" ‘"tabby" 2.8

The collection is not empty. After eating, the next cat:

01ld next cat
"Mog" "black" 4.5

is also plumper:

29



and we add it to the result of dealing with the rest of the collection:

Initial collection
name colour weight
"Spider" "tabby" 2.8

The collection is not empty. After eating, the next cat:

01d next cat
"Spider" ‘"tabby" 2.8
s somewhat stouter:
New next cat
"Spider" ‘"tabby" 3.0
and we add it to the result of dealing with the rest of the collection:

Initial collection
name colour weight
The collection is empty so the final collection i1s empty to begin with:
Final collection
name colour weight

The new next cat is added:

Final collection
name colour weight
"Spider" "tabby" 3.0

The new next cat 1s added:

Final collection

name colour weight
"MHog" "black" 4.7
"Spider" ‘"tabby" 3.0

The new next cat 1s added:

Final collection

name colour weight
"Wallace" '"tabby'" 4.2
"Mog" "black" 4.7

"Spider" ‘"tabby" 3.0

Note that we unwound our way through the collection until it was empty, doing something to each thing. We
then made a new empty collection and wound our way back up, picking up the new things and adding them to
the new collection.

This activity is called mapping because 1t involves doing something to everything in a collection to form a new
collection. The final collection has as many things in it as the initial collection and each thing in the final
collection results from doing something to a corresponding thing in the initial collection.

It is important to note that each stage has its own distinct initial and final collections. We are not working with
one 1initial collection and one final collection which are common to all stages. Rather, we are using the rest of
the initial collection at each stage as the initial collection for the next stage. Similarly, we used the expanded
final collection from each stage as the basis of final collection for the previous stage. In the same way, each
stage had its own old and new next cats. When we moved from stage to stage we remembered the collections
and next cats for the previous stages. When we returned to a stage we picked up the appropriate collections
and cats.
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Suppose we want to find all the tabby cats from the collection we used above:

Initial collection

name colour weight
"Wallace" '"tabby'" 4.0
"Mog" "black" 4.5

"Spider" ‘"tabby" 2.8

If the initial collection is empty then we make an empty final collection. Otherwise, we take out the first cat. If
it is tabby then we add it to the final collection from finding all the tabby cats in the rest of the initial collection.
If the first cat is not tabby then we just make a final collection from all the tabby cats in the initial collection.

Once again we start with the initial collection. The collection is not empty. The next cat:

01d next cat
"Wallace" '"tabby'" 4.0

is tabby so we add it:

New next cat
"Wallace" '"tabby'" 4.0

to the result of dealing with the rest of the collection:

Initial collection

name colour weight
"MHog" "black" 4.5
"Spider" ‘"tabby" 2.8

The collection is not empty. The next cat:

01ld next cat
"Mog" "black" 4.5

is not tabby, so we ignore it and just deal with the rest of the collection:

Initial collection
name colour weight
"Spider" "tabby" 2.8

The collection is not empty. The next cat:

01ld next cat
"Spider" ‘"tabby" 2.8

is tabby so we add it:

New next cat
"Spider" ‘"tabby" 2.8

to the result of dealing with the rest of the collection:

Initial collection
name colour weight
The collection is empty so the final collection i1s empty to begin with:

Final collection
name colour weight

First we add the next cat:
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"Spider" ‘tabby" 2.8
Then we do not add the next cat:

Final collection
name colour weight
"Spider" ‘"tabby" 2.8

Finally we add the next cat:

Final collection

name colour weight
"Wallace" '"tabby'" 4.0
"Spider'" '"tabby" 2.8

Once again, we wound our way down through the collection but this time we decided whether or not to keep
each thing. When the collection was empty we started a new empty collection and wound our way back up
again, picking up things that we had kept.

This activity is known as filtering because it involves selecting things which satisfy some criterion. The final

collection does not necessarily contain as many things as the initial collection as some of the things in the initial
collection do not meet that criterion

1.20 Folding

Suppose we want to find the total weight of all the cats:

Initial collection

name colour weight
"Wallace" '"tabby'" 4.0
"Mog" "black" 4.5

"Spider" ‘"tabby" 2.8

This 1s slightly different to mapping and filtering as we want a single final thing, a value, rather than a collection
of things.

If the collection is empty then we start with a final total weight of 0.0. Otherwise, we add the weight for the
first cat in the initial collection to the total weight for all the other cats in the initial collection.

As before, we start with the whole collection. The collection is not empty so we add on the next cat’s weight:

Next cat
"Wallace" '"tabby'" 4.0

to the result of dealing with the rest of the collection:

Initial collection

name colour weight
"MHog" "black" 4.5
"Spider" ‘"tabby" 2.8

The collection is not empty so again we add on the next cat’s weight:
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to the result of dealing with the rest of the collection:

Initial collection
name colour weight
"Spider" "tabby" 2.8

The collection is not empty so add on the next cat’s weight:

Next cat
"Spider" ‘"tabby" 2.8

to the result of dealing with the rest of the collection:

Initial collection

name colour weight
The collection is empty. Here though, we are not forming a final collection but
an overall weight. We start the overall weight at 0.0:

Final weight
0.0

First we add in the next cat’s weight:

Final weight
2.8

Then we add in the next cat’s weight:

Final weight
7.3

Finally, we add in the next cat’s weight:

Final weight
11.3

As before, we wound through the collection, picking up the cats. At the end we started an overall weight and
wound back up again adding in the cats’ weights.

This activity is called folding or reducing because it involves combining together properties of all the things in
a collection to form a final value.

1.21 Checking

Suppose we want to check if every cat weighs more than 2.0 kilograms. We want either ‘true’ or ‘false’ as
the result. If the final collection is empty then we must have successfully checked every cat so the final check
is ‘true’. Otherwise, if the next cat weighs more than 2.0 kilograms then we check the rest of the collection.
Otherwise, we have found a cat which does not weigh more than 2.0 kilograms: there is no point in checking
any other cats so we stop with the final check as ‘false’.

Once again we start with the initial collection. The collection is not empty. The next cat:

01d next cat
"Wallace" '"tabby'" 4.0

weighs more than 2.0 kilograms so we check the rest of the collection:
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"Mog" "black"™ 4.5
"Spider" "tabby" 2.8

The collection is not empty. The next cat:

01ld next cat
"Mog" "black" 4.5

weighs more than 2.0 kilograms so we deal with the rest of the collection:

Initial collection
name colour weight
"Spider" "tabby" 2.8

The collection is not empty. The next cat:
01d next cat
"Spider" ‘"tabby" 2.8
weighs more than 2.0 kilograms so we deal with the rest of the collection:
Initial collection

name colour weight
The collection is empty so the final check is ‘true’ to begin with:

Final check
true
So the final check 1s ‘true’:

Final check
true

So the final check is ‘true’:

Final check
true

So the final check is ‘true’:

Final check
true

Once again, we wound our way down through the collection but this time we passed a boolean value back up.

1.22 Higher order functions

Let us summarise the mapping activity to find the weights of the fed cats:

replace initial collection
in if the initial collection is empty
then the result is an empty final collection
else the result is found by
adding a new description
*kk from adding 200 grammes to the weight ***
with the next in the initial collection
to the final collection
from dealing with the rest of the initial collection

Note that we have abstracted for the initial collection so that we could apply this function to an arbitrary
collection of cats.

Suppose we had wanted the names of all the cats. We might try:
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then the result 1s an empty final collection
else the result is found by
adding a new description
*kk from taking the name ***
with the next in the initial collection
to the final collection
from dealing with the rest of the initial collection

For example, starting with:

Initial collection

name colour weight
"Wallace" '"tabby'" 4.0
"Mog" "black" 4.5

"Spider" ‘"tabby" 2.8

The collection is not empty. The next cat’s:

01d next cat
"Wallace" '"tabby'" 4.0

name Is:

New name
"Wallace"

and we add it to the result of dealing with the rest of the collection:

Initial collection

name colour weight
"MHog" "black" 4.5
"Spider" ‘"tabby" 2.8

The collection is not empty. The next cat’s:

01ld next cat
"Mog" "black" 4.5

name Is:

New name
IIMogII

and we add it to the result of dealing with the rest of the collection:

Initial collection
name colour weight
"Spider" "tabby" 2.8

The collection is not empty. The next cat’s:

01ld next cat
"Spider" ‘"tabby" 2.8

name Is:

New name
"Spider"

and we add it to the result of dealing with the rest of the collection:
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I'he collection 1s empty so the Iinal collection 1s empty to begin with:
Final collection
name

The new name 1s added:

Final collection
name
"Spider"

The new name is added:

Final collection
name

IIMogII

"Spider"

The new name 1s added:

Final collection
name

"Wallace"

"Mog"

"Spider"

Now compare these two mapping functions:

replace initial collection
in if the initial collection is empty
then the result is an empty final collection
else the result is found by
adding a new description
from adding 200 grammes to the weight ***
with the next in the initial collection
to the final collection

from dealing with the rest of the initial collection

*kk

replace initial collection
in if the initial collection is empty
then the result is an empty final collection
else the result is found by
adding a new description
*kk from taking the name ***

with the next in the initial collection
to the final collection

from dealing with the rest of the initial collection

They are pretty much the same apart from what is done to the next thing in the collection. For heavy cats, the
action is:

adding 200 grammes to the weight
and for cat names the action is:

taking the name
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replace action
replace initial collection
in if the initial collection is empty
then the result is an empty final collection
else the result is found by
adding a new description
*okk from applying action ***
with the next in the initial collection
to the final collection
from dealing with the rest of the initial collection

When we made functions before, we abstracted by introducing names for values. Now we have abstracted by
introducing a name for a function. We have constructed a general mapping function which has no connection
whatsoever with cats or weights or colours or cat names. We can replace the names action and initial
collection with any function and collection, provided the function can be applied to things from the collection.
In other words, the function must apply to things of the same type as the things in the collection.

For example, if we wanted to use this function to find the weights of pampered cats we would call it with a
function to make a new cat description from an old cat description by adding on the weight of food. Similarly,
to find the names of cats we would call it with a function to extract the name from a cat description.

This function is said to be higher order because it can be applied to other functions. As we shall see, higher
order functions are extremely useful for model making and programming because they enable us to reuse the
same general problem solving instructions in specific circumstances.

As we shall see, filtering and folding can also be cast as higher order functions.

1.23 Naming and recursion

In the above description of weighing fed cats, it says that the result from an initial collection which is not empty
includes:

. the final collection
from dealing with the rest of the initial collection

The intention is that in “dealing with the rest of the collection” we should in some sense “do the same again”
to the rest of the initial collection. Let us now try and make “doing the same again” a little clearer. What we
want to do again is the function itself. Suppose we associated the function with the name fed weight:

fed weight is
replace initial collection
in if the initial collection is empty

then the result is an empty final collection

else the result is found by
adding a new description
from adding 200 grammes to the weight

with the next in the initial collection

to the final collection
from dealing with the rest of the initial collection

We can then indicate “doing the same again” by referring to the function through its associated name:
fed weight is
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then the result 1s an empty final collection
else the result is found by
adding a new description
from adding 200 grammes to the weight
with the next in the initial collection
to the final collection
*kk from fed weight ***
with the rest of the initial collection

Whenever we get to fed weight on the second last line, we can replace it with all the instructions, which will
result in them being carried out all over again. Each time, the rest of the initial collection from the previous
stage becomes the initial collection for the next stage.

We can use the same approach to firm up the general mapping function. Let us call it mapping and put a
reference to mapping in the instructions:

mapping is
replace action
replace initial collection
in if the initial collection is empty
then the result is an empty final collection
else the result is found by
adding a new description
from applying action
with the next in the initial collection
to the final collection
*okk from mapping ***
with action
with the rest of the initial collection

Once again, when the name mapping is reached it should be replaced by all the instructions associated with it,
causing them to be done all over again.

Note that mapping has two abstraction points so it needs to be called with two values. The first abstraction
point is for the the generalised action action so it must be passed to the call along with the rest of the initial
collection.

This technique where a function can invoke itself by referring to a name that is associated with its own instruc-
tions is called recursion. As we shall see, recursion i1s a fundamental technique for repeatedly carrying out a
sequence of instructions.

Note that we said “a name that is associated with its instructions” not “its name”. There is no necessary
connection between a particular name and a particular sequence of instructions: the same name may be as-
sociated with different instruction sequences in different places; different names may be associated with the
same instruction sequences in different places. This holds for associations between names and things in general.
While it is often convenient to treat a name and a thing as if they are intimately connected they are really quite
separate. A name simply identifies a place where it may be replaced by a thing.

1.24 Summary

And they all lived happily ever after? Well, we are at the end of this particular fairy story and it has given us
an overview of problem solving and model making. Let us sum up what we have discussed in this chapter.

We have a bundle of tools for making models. Our basic general types - booleans, integers, reals and strings -
can be used to describe things as groups of fixed numbers of property values. These types have methods which
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methods of new types. Declsions can be made by using the values ol boolean expressions to choose between
possible actions. Collections of things can be empty or have arbitrary numbers of the same type of thing. New
collections can be constructed from old collections by repeatedly inspecting and changing things from the old
collection to make things for the new collection. Functions can be generalised as higher order by abstracting
over functions called within them. Recursion enables repetition by naming a function and then referring to the
names associated with a function in that function.

However, despite introducing some ad-hoc notation we’ve barely begun to write programs. Our models are just
about detailed enough for human use but still far too vague for a computer to animate.

A programming language may be regarded as a model making notation which computers understand. Most
programming languages provide a number of basic types like the ones we have been using, and ways of making
collections of type values. Similarly, they provide methods, often called operations, for manipulating type
values and collections. Furthermore, they provide abstraction mechanisms, that is ways of generalising through
naming and specialising by binding names to values and collections and instruction sequences. Finally, they
provide control mechanisms for making decisions and repeating instruction sequences. One way to tell different
programming languages apart and to classify them is to find out how specifically these different aspects are
supported.

The rest of this book is concerned with programming in the language Standard ML, that is using SML to make
precise models for computer animation. We will not say much more about problem solving. Instead, we will
look mostly at writing programs where the problem is well defined already. Furthermore, there are no hard
details about how computers work: we will assume that a computer is organised to accept a program and either
run it or reject it because it contains errors, without caring about how a computer is able to do this.

This book is based on the premise that the best way to learn how to write programs is to write lots of programs.
Thus, there are lots and lots of exercises at the ends of chapters and you are urged to try them out. Most

exercises are based directly on ideas that have been covered in the text or can be solved by extrapolating from
something in the text.

1.25 Book structure

The rest of the book is organised as follows.
In chapter 2 we will meet the basic SML types for booleans, integers, reals and strings, and their associated
methods or operations. Next we will look at how the methods can be plugged together to form expressions. We

will also introduce briefly the representation of things as tuples.

In chapter 3 we will look at abstraction over expressions to form functions. We will then consider how to call
functions to specialise expression abstractions.

In chapter 4 we will consider the use of pattern matching to enable the functional representation of a limited
form of collection of things. We will also look at recursion with integer values.

In chapter 5 we will meet the list type for representing collections. We will then consider a wide variety of
functions for general purpose list manipulation. Here, the focus will be on lists of basic values.

In chapter 6 we will take a further look at list processing, in particular at a number of list higher order functions.

In chapter 7 we will move on to the manipulation of collections of things as lists of tuples. Here we will extend
many of the simple list processing approaches from chapters 5 and 6.

In chapter 8 we will look at techniques for manipulating texts represented as lists of strings.

In chapter 9 we will consider a more general representation for collections called concrete datatypes which
enable collections of mixed type. We will use concrete datatypes in building lexical analysers to recognise

39



In chapter LU we will 100K at the use oI concrete datatypes to represent collections as tree structures. Alter
discussing general tree manipulation, we will build simple syntax analysers to check that symbol sequences
correspond to grammatical rules and to represent the sequences’ structures as trees. We will then consider
briefly how to manipulate such symbol sequences by traversing the equivalent trees.

In chapter 11, we will consider simple techniques for input and output to let SML programs communicate with
the outside world.

Finally, in chapter 12 we will look briefly at further aspects of SML not covered here.

Appendix A contains details of how to use a Standard ML system.

1.26 Syntax notation

In introducing SML we will need to be clear about the general form of information and instructions. To be more
formal, we will need to specify the syntax of SML constructs, that is those combinations of SML words that are
valid parts of or whole programs. In particular, we will need to refer to arbitrary instances of constructs. To
do so, we will write down the names of constructs in italics.

For example:
name

will mean an arbitrary name,
nteger

will mean an arbitrary integer,
ETPTESSION

will mean an arbitrary expression and so on.

There is a full grammar in Appendix B for the parts of SML which we will study here.

1.27 Typefaces

Different typefaces are used to distinguish different contexts.
English text is in Times Roman.

SML programs and program fragments are in Courier.
Computer responses are in Helvetica.

As noted above, the names of SML program constructs are wn italics.
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1) For each of the following descriptions of problems, identify the relevant initial collections, things and their
properties. Specify the type of each property

a) find the capital of a specified country
b) find the time of the next showing of a specified play at a specified theatre
¢) find the names of all the cacti in a plant shop

d) count how many varieties of tree in a plant shop are evergreen
e)
f)

g) find the names of all the people in the 5th form of a school with the same birthday as someone
in the 4th form of the same school

find the names of all the 6th form students over 1.5 metres tall in a school

count how many items on a fast food restaurant menu cost more than $5

h) check if someone in a specific university department was born before 1977
i) find the names of all the people in a cinema who wear glasses

j) find the names of all the varieties of fruit from Namibia in a supermarket

2) given the following table of city details:

city area country
Dundee Tayside Scotland
Brisbane Queensland Australia
Glasgow  Strathclyde Scotland

Newcastle New South Wales Australia
Victoria British Columbia Canada
Newcastle Northumbria England

describe how to solve the following problems in terms of doing something to the first entry having done something
to the rest of the entries, or doing something with no entries:

a) find all the cities

b) find all the areas and corresponding countries
¢) find all the cities in Scotland

d) find all the cities and areas in Australia

e) find all the countries with a city called Newcastle
0

g) count all the Australian entries

count all the entries

In each case, check your description by working through it by hand.

3) given the following table of people:

name sex age swims
Chris female 22 yes
Pat male 17 no
Jo female 21 yes
Chris male 20 yes
Pat female 19 no
Jo male 18 yes
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a) count how many female people swim

b) find the ages of all the male people who don’t swim

¢) find the names and sexes of all the people whose ages are at least 20
d) find the total age of all the people

e) find the total age of all the people called Jo

0

g)
h)

i) check if everyone swims

find the total age of all the female people who swim
count how many people are called Pat and are less than 20

count how many people are called Pat or called Jo
) check if everyone swims or is called Jo
k) check if everyone who is male also swims

1) check if everyone who is female is also over 19

In each case, check your description by working through it by hand.
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Chapter 2

Basic types

2.1 Introduction

In this chapter we are going to look at the boolean, integer, real and string types. We will use them to represent
property values. We will also briefly consider tuples as a way of making things as groups of fixed numbers of
property values.

2.2 Expressions and types

SML programs consist of function definitions and expressions that use the defined functions. We will see how
expressions are formed as the book progresses. At simplest, an expression may be a value from a basic type.

Types and typing are central to SML, as we shall see. They enable thorough checks on whether operations and
functions are put together correctly.

Types are described by what are called type expressions. We will see how type expressions are formed as the
book progresses. To begin with, we will note that a type expression may be the name of a basic type, also
known as a type constructor.

2.3 Basic system use

When an SML system is started up it displays a:

to prompt for input and waits for an expression to be entered followed by a ;:
— expression ;

After you enter an SML expression into the system, it carries it out and tells you its value and type, and prompts
for another expression:

— expression ;
> value :  type
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‘lhere are more detalls ol systemm use 1n AppendixX A. lease read 1t now.

2.4 Boolean type

The boolean type has the type constructor bool and has the values true and false. For example:

- true;
> true : bool

Here, the system tells us that the expression true consisting of a single boolean value has the value true and
is a bool value.

We use the boolean type to represent the presence or absence of some property.

2.5 Case sensitivity

It is important to note that SML views upper and lower case letters as distinct. If, for example, you try to use
TRUE or True instead of true then the SML system will reject them as unknown names.

In the next chapters we will see how we can introduce our own new names to generalise values. Once we have
chosen a name we must spell it consistently. Changing just one letter in a name from lower to upper case will
result in the SML system seeing it as a different name.

In general, SML’s special words like bool, true and false are all lower case.

2.6 Integer type

The integer type has type constructor int and consists of positive and negative whole numbers and zero. A
positive integer is a sequence of the digits:

1234567890
There is a convention in Computing that non-zero integers should not start with 0. For example:

- 42;
> 42 : int

Here the system tells us that the expression 42 consisting of a single integer value has value 42 and is an int
value.

Negative integers start with ~ . For example:

- "42;
> 742 : int

We use the integer type to represent properties which involve a discrete quantity.
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The real type has type constructor real and consists of negative, zero and positive real numbers, written as a
decimal number:

nteger . integer

for example:

\'4

: real

Real numbers may also be written as floating point numbers in the form:

integerl E nteger?

The idea here 1s that integeri is multiplied by 10 to the power of integer2.

For example:

- 3E3;
> 3000.0 : real

because:

3E3 ==> 3%10%10*10 ==> 3000.0

wnteger? is called the exponent.

An exponent may also be a negative integer. Then, integeri 1s divided by 10 to the power of integer?. For
example:

- 3E73;
> 0.003 : real

because:

3E"3 ==> 3/(10%10%10) ==> 0.003

Finally, real numbers may be written as floating point decimal numbers:

integerl . integer? E integerd

Here, the decimal fraction integer!.integer? is multiplied by 10 to the power of nteger3. For example:

- 4 .2E3;
> 4200.0 : real

because:
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Once again, the exponent may be a negative integer.

Negative real numbers also start with ~:

- "4 2E1;
> "42.0 : real

We use the real type to represent properties involving an effectively continuously varying amount.

2.8 Numeric precision

Its usual to think that integer and real numbers may be arbitrarily large or small. In practice, computers can
only represent numbers to a fixed number of places. Furthermore, different sorts of computer represent numbers
to different degrees of precision.

You may hear of a computer performing 32 or 64 bit integer arithmetic. The word “bit” refers to the binary
representation of integers as sequences of 1’s and 0’s. The number of bits is an indication of the range of values
that can be represented; in general, the more bits the wider the range of values. Very crudely, if a computer
performs N bit arithmetic then the biggest integer cannot be larger than 2V~! — 1, and the smallest integer
cannot be smaller than 2V—1.

Computers can represent substantially bigger and smaller real numbers than integers but nothing like as accu-
rately. Very roughly, while integers are precise, the computer represents real numbers as decimal multiples of
powers of two. This enables a much wider range of values to be covered but there are lots of gaps in the range
even with fixed precision. One real number representation effectively covers several real values both immediately
larger and smaller.

It is hard to explain this in more detail without a major digression on binary representation, which we will avoid
here. You might consult a textbook on computer organisation for more details. The point to bear in brain is

that if you get an error message referring to numeric overflow or underflow then you have tried to use a number
which is larger or smaller than those permitted.

2.9 String type

The string type has type constructor string and consists of zero or more characters between double quotes:

For example:

- "banana";
> "banana" : string

Strings may be entered over several lines, with a back slash:

at the end of each line and at the start of the next line. However, the string will be treated as if it were all on
one line. For example:
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\1ls on four\
\lines?";
> "Thisstringis on fourlines?" : string

Note that the beginning of each line abuts the end of the previous line: we should have put spaces at the ends
of the lines:

- "This \

\string \

\is on four \

\lines?";

> "This string is on four lines?" : string

A double quote can be included in a string by preceding it with a back slash:

- "double \" quote!";
> "double \" quote!" : string

A back slash can also be included in a string by preceding it with a back slash:

- "back \\ slash?";
> "back \\ slash?" : string

Finally, for an explicit end of line character:
\n

1s used. We will see the significance of this much later on when we consider input and output.

The empty string, that i1s a string with no letters, is:

We use the string type to represent properties described by words.

2.10 Tuple type

Tuples are fixed length sequences of mixed type and may be used to represent things as groups of property
values. A tuple 1s written as a sequence of values separated by ,s within ( and ).

For example, a car description might be:
("Morris 1000",4,true)

for a Morris 1000 with four wheels and an engine. This tuple consists of a string, an integer and a boolean
value.

Similarly, a cat description might be:
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for a black cat called Mog which weighs 4.0 kilogrammes. This tuple consists of a string, a string and a real
value.

For example, a given and family name might be represented as a tuple consisting of two strings.
("Donald","Duck")

For example, a department and phone number might be represented as a tuple of a string and an integer:
("Emergency",999)

For example, a volume description, consisting of a volume name, height, depth and length might be represented
by a tuple of a string and three integers:

("box",3,5,8)

Tuples may contain tuples. For example, someone’s full name and age might be represented as a tuple consisting
of a tuple, consisting of two strings, and an integer:

(("Minnie","Minx"),9)
Tuples may be nested to arbitrary depth. For example:
("Scotland", ("Glasgow", ("Caledonia","Glasgow","Paisley","Strathclyde")))

is a tuple of a string and a tuple of a string and a tuple of four strings.
The components of tuples are known as elements.

The type of a tuple is given by the types of its elements separated by #s. For a tuple:
( expressionl , expression2 , ... expressionN )
if the types of the expressions are:

expresstonl :  typel
expression? :  typel

é:z;];ression]\f 2 lypeN
then the tuple’s type is:

typel * type2 ¥ ... * typeN
For example:

- ("Morris 1000",4,true);
> ("Morris 1000",4,true) : string * int * bool
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> ("Mog","black",4.0) : string * string * real

- ("Donald","Duck");
> ("Donald","Duck") : string * string

- ("Emergency",999);
> ("Emergency",999) : string * int

- ("box",3,5,8);
> ("box",3,5,8) : string * int * int * int

- ("Minnie","Minx",9);
> ("Minnie","Minx",9) : string * string * int

For tuples with tuples as elements, the element tuple types are bracketed in the overall type expression. Compare
the last example with:

- (("Minnie","Minx"),9);
> (("Minnie","Minx"),9) : (string * string) * int

Here, the whole of the first element is a tuple so its type is in brackets.

For example:

- ("Scotland", ("Edinburgh",
("Edinburgh',"Heriot-Watt","Napier")));
> ("Scotland", ("Edinburgh",
("Edinburgh","Heriot-Watt","Napier")))
string * (string * (string * string * string))

Note that we refer to a tuple as a value even though it is made up of other values.
Tuples are known as product types. A:
typel * typel

tuple may consist of any value of typel followed by any value of type2. If there are, say, M possible typel values
and, say, N possible type2 values then there are M * N possible typel * type2 tuple values. Hence the name
“product” type.

2.11 Function type overview

As we shall see, functions are central to programming in SML.

Alas, SML systems cannot display the instructions for functions as they are converted into a special represen-
tation for use by the computer hardware. For a function, only the type is displayed:

- function ;
> function type

We saw in chapter 1 that a function has a number of named abstraction points. These are called formal
parameters or bound variables. A function is defined from a domain, determined by the types of the formal
parameters, to a range, determined by the types of the final result. Thus, a function type 1s displayed as:

49



When a function is applied to values corresponding to domain type the result is a range type.

The values a function is applied to are called its actual parameters or arguments. A function application has
the general form:

expressionl erpression?

where ezpressionl returns a function value and ezpression? returns a value of the same type as the function
value’s domain.

A function application is itself an expression.

Most SML functions are prefix, that is they are written before their arguments. However, SML provides special
syntax for type methods that are applied to two values and are usually written as infix operators between
their arguments, such as arithmetic and comparison operators. In SML, almost all such operators are disguised

functions. The arguments of infix operators are called operands.

A function application with an infix operator has the form:
expressionl operator expression?

and is also an expression.

2.12 Boolean operators

The function not negates a boolean value, that is it converts true to false and false to true. For example:

- not true;
> false : bool

In this function call, the name not is the function expression and the value true is the argument expression.

For example:

- not false;
> true : bool

not is a function from a boolean argument to a boolean result. We can enter not into the system to find its
type:

- not;
> fn : bool -> bool

This says that not has a boolean domain and a boolean range. That is, not takes a boolean argument and
returns a boolean result.

SML has a special built in operator for testing if two boolean values are true. This is known as conjunction.
The infix operator for conjunction is andalso. We can explain how andalso behaves with the following truth
table. Here X and Y stand for arbitrary truth values. The table shows all possible combinations of values of X
and Y, and the final values of X andalso Y:
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false true false
true false <false
true true true

Note that the result is true only when both X and Y are true. Otherwise, the result is false.

For example:

- true andalso false;
> false : bool

In this function application with an infix operator, the operands are true and false.

SML also provides a special built in infix operator orelse for testing if either or both of two values are true.
This is known as disjunction. orelse has the following truth table:

X Y X orelse Y
false false false
false true true

true false true

true true true

Note that the result is true unless both values are false.

For example:

- true orelse false;
> true : bool

SML systems will not display the types of andalso and orelse.

2.13 Precedence and boolean expressions

Complex boolean expressions may be built up by using expressions as arguments or operands in further expres-
sions. The order in which expressions are carried out or evaluated is determined by what is called the precedence
of their operators. In boolean expressions, function applications have higher precedence than expressions with
andalso, and expressions with andalso have higher precedence than those with orelse. Thus, the order of
evaluation is function applications, then andalso and finally orelse.

For example, in:

- not true andalso false;
> false : bool

first of all:
not true ==> false

1s evaluated and then:
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For example, in:

- true orelse not true andalso false;
> true : bool

first of all:

not true ==> false

giving:

true orelse not true andalso false ==> true orelse false andalso false

Next:

false andalso false ==> false
giving:

true orelse false andalso false ==> true orelse false
Finally:

true orelse false ==> true

Note that each time, a function is applied to the value immediately to its right and an operator is applied to
the values immediately on either side.

If we need to override the precedence of functions and operators then we can use the brackets ( and ) to group
parts of expressions together. Bracketed expressions have higher precedence than function calls, so they are
evaluated right at the beginning. For example consider a bracketed variant of the previous example:

- (true orelse not true) andalso false;
> false : bool

First of all:

true orelse not true

is evaluated because 1t is bracketed. Here, first of all:

not true ==> false

SO:

true orelse not true ==> true orelse false
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true orelse false ==> true
so for the original expression:

(true orelse not true) andalso false ==> true andalso false
Finally:

true andalso false ==> false

Putting in those brackets made (true orelse not true) be evaluated as the left operand for andalso rather
than not true.

Note that brackets are always needed if the result of an operator expression is to be the argument for an infix
operator or function. For example, in:

- not true andalso false;
> false : bool

not true is identified as a function call and evaluated first. If not is to be applied to the result of true andalso
false then the argument expression must be bracketed:

- not (true andalso false);
> true : bool

This is because function calls have higher precedence than operators in expressions.

2.14 Integer operators

SML provides a variety of infix integer operators. The addition operator is:

for example:

- 22+420;
> 42 : int

The subtraction operator is:

for example:

- B5-13;
> 42 : int
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for example:

- 3%14;
> 42 : int

The division operator 1is:

div

for example:

- 126 div 3;

> 42 : int
Finally:

mod

which is short for “modulo” finds the remainder after division. For example:

- 171 mod 43;
> 42 : int

The prefix integer negation function is ~. These operators may again be used with the brackets ( and ) to build

up complex expressions.

The precedence of brackets and operators in decreasing order is:

...

function call

* div mod
+ —

so bracketed expressions are evaluated before function calls which are evaluated before negation which is eval-
uated before multiplication, division and remainder which are evaluated before addition and subtraction.

For example, in:

~ 3+4%5;
> 23 : int
first of all:
45 ==> 20

SO:
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However in:

- (3+4)%*5;
> 35 : int

because first:

3+4 ==> 7

SO:

(3+4)*5 ==> T*5 ==> 35

For example, in:

- 16-9 mod b;
> 12 : int
first of all:

9 mod 5 ==> 4

SO:

16-9 mod 5 ==> 16-4 ==> 12

However in:

- (16-9) mod 5;
> 2 : int

first of all:
16-9 ==> 7

SO:

(16-9) mod 5 ==> 7 mod 5 ==> 2

When operators of the same precedence are used they are evaluated from left to right. For example:

- 6 div 3%2;
> 4 : int

because:
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so:
6 div 3%2 ==> 2%2 ==> 4

This left to right order of evaluation is important because a different order can give a different result. For
example, we could get the effect of evaluating the previous expression from right to left with some judicious
brackets:

- 6 div (3%2);
> 1 : int

The same operator may be repeated in an expression without bracketing. As with operators of the same
precedence, expressions involving a repeated operator are evaluated from left to right. For example:

- 1+2+3;
> 6 : int

This is significant for -, div and mod. For example for left to right:

- 6-4-2;
> 0 : int

but for right to left:

- 6-(4-2);
> 4 : int

For reasons which will become apparent later, SML cannot display the types of ~, +, — and *. We will see how

to display the types of div and mod below.

2.15 Tuple type operators

div and mod are really special SML notation for operators which apply to tuples of two integers. The function
op is used to convert such special operators into functions on tuples. For example:

- (op div) (126,3);
> 42 : int

1s the same as:

- 126 div 3;
> 42 : int
Similarly:

- (op mod) (97,55);
> 42 : int
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- 97 mod 55;
> 42 : int

Thus, we can use op to convert such operators into functions and thence display their types. For example:

- op div;
> fn : int * int -> int

and:

- op mod;
> fn : int * int -> int

shows that op div and op mod are functions from int * int domains to int ranges.

2.16 Real operators

SML provides a variety of infix real operators. The real addition operator is:

for example:

- 3.3+38.7;
> 42.0 : real

The real subtraction operator 1s:

for example:

- 81.7-39.7;
> 42.0 : real

The real multiplication operator is:

for example:

- 8.0%5.25;
> 42.0 : real

The real division operator is:
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for example:

- 189.0/4.5;
> 42.0 : real

As for integers, the prefix real negation operator 1s ~.

These operators may be used with the brackets ( and ) to build up complex expressions.

The precedence of operators and brackets in decreasing order is:

...

function call

* /
+_

For example:

- 3.2%11.0+6.8;
> 42.0 : real

because:

3.2%11.0 ==> 35.2

s0:
3.2%11.046.8 ==> 35.2+6.8 ==> 42.0
However:
- 3.2*%(11.0+6.8);
> 56.96 : real
because:
11.0+6.8 ==> 17.8
s0:
3.2%(11.046.8) ==> 3.2%17.8 ==> £6.96
For reasons that we will consider next, SML cannot display the types of +, - and *. However using op:

- op /;
> fn : real * real -> real

shows that op / is a function from a tuple of two reals to a real:

- (op /) (126.0,3.0);
> 42.0 : real
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Operators which apply to different types are said to be overloaded. Thus +, — and * are called overloaded
operators because they apply to two integers or to two reals. Similarly, ~ is overloaded because it applies to

an integer or a real. SML cannot display the types of overloaded operators as it can not tell which version is
required. Some languages provide different operators to distinguish integer and real operations. Instead, SML
uses the same operator for both cases.

2.18 Mixed type arithmetic

In SML, mixed type expressions are not allowed. The overloaded operators +, - and * must always be applied
to either two integers or two reals. div and mod can only be used with integers. / can only be used with reals.

To enable mixed type arithmetic SML provides conversion functions.

The function real converts an integer to a real. For example:

real 42;
> 42.0 : real

real is a function with type:

- real;
> fn : int -> real

The function floor returns the largest integer not greater than a real argument. For example:

- floor (84.6/2.0);
> 42 : int

floor is a function with type:

- floor;
> fn : real -> int

real and floor must be used to carry out mixed mode arithmetic to ensure type consistency.

For example, to multiply an integer by a real to get an integer:

- 3%(floor 14.1);
> 42 : int

For example, to multiply a real by an integer to get a real:

- 3.0%(real 14);
> 42.0 : real

2.19 String operators

There are fewer operators for strings than for the other basic types. The function size returns the number of
characters in a string as an integer. For example:
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Thus, size’s type 1is:

- size;
> fn : string -> int

The infix operator ~ joins two strings end to end. For example:

- "fish"""finger";
> "fishfinger" : string

Thus, ~’s type is:

—_— op h;
> fn : string * string —-> string

~s may be repeated in expressions. For example:

—_ Ilfishll"ll Ilﬁllfingerll;
> "fish finger" : string

2.20 Comparison operators

SML provides overloaded infix operators for comparing values of the same type. The operator:

checks 1f two values are the same and:
<>

checks if two values are different. These return boolean values and are defined for most types of values. Note
that = and <> are not defined for functions.

For example:

2=2;
> true : bool

"“"chalk'"="cheese";
> false : bool

For tuples, corresponding elements are compared. The tuples are the same if the corresponding elements are
the same. For example:

(42,42.0)=(42,42.0);
> true : bool

("forty","two")=("forty","three");
> false : bool
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‘lhese operators may have expressions as operands as well as values. both operands must be oI the same type.
The comparison operators have lower precedence than boolean, arithmetic, real and string expressions so they
are carried out after such operands. For example:

- 2=1+1;
> true : bool

because:

2=1+1 ==> 2=2 ==> true

For example:

- size "fish"=3;
> false : bool

because:

size "fish'"=3 ==> 4=3 ==> false

For example:

- floor 42.23=42;
> true : bool

because:

floor 42.23=42 ==> 42=42 ==> true

For example:

- real (size "haddock")=6.0;
> false : bool

because:

real (size "haddock")=6.0 ==> real 7=6.0 ==> 7.0=6.0 ==> false

There are also overloaded infix comparison operators for testing orderings on values of the same type. They
are:

to see if one value 1s less than another:

to see if one value is less than or equal to another:

61



to see if one value is greater than or equal to another and:

to see if one value is greater than another.

These return boolean values and are defined for integers and reals. For example:

- 42 <= 41;
> false

Many SML systems also allow order comparisons on strings which test for alphabetic order. For example:

- "haggis'<"oatcake";
> true : bool

As with = and <>, these operators may have expressions as operands provided they return values of the same
type. These operators also have lower precedence than integer, real and string expressions so they are evaluated
last. For example:

- real 42>41.5;
> true : bool

because:

real 42>41.5 ==> 42.0>41.5 ==> true

For example:

—_ Iltll"llhisll<lltll"Ilhatll;
> false : bool

because:

lltll*llhisll<lltl|'~llhatll ==> llthisll<lltll'~llhatll ==> ”this”<”that” ==> false

Note that these comparison operators return boolean values so they can be used to make expression operands
for andalso and orelse. For example:

—_ llall<llbll andalso Ilbll<llcll;
> true : bool

because:
"a"<"b" andalso "b"<"c" ==> true andalso "b"<"c" ==>

true andalso true ==> true
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Note that a boolean expression returns a boolean value so there 1s never any point in comparing the result of a
boolean expression with a boolean value. Consider:

boolean expression = true

where boolean expression is any expression returning a boolean value.

When boolean expression is true then:
boolean expression = true

is true. When boolean expression is false then:
boolean expression = true

is false. Either way, the result of the comparison is the same as the result of boolean expression alone so the
comparison with true is not needed. Thus:

boolean expression = true
is the same as:
boolean expression
Similarly:
boolean expression = false
is true when boolean expression is false and false when boolean expression is true. Thus:
boolean expression = false
is the same as:

not ( boolean expression )

2.22 Real comparison

Real numbers may be stored in a computer to more places than they are represented. This can lead to problems
when trying to compare real values.

Consider calculating:
20.0/6.0
by hand:
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The 3 repeats endlessly. However, the computer can only hold a fixed number of decimal places and there are
rounding errors for real arithmetic. Furthermore, the computer may display real numbers to less places than
are actually held.

For example, with:

- 20.0/6.0;
> 3.33333333333333 : real

the result is displayed to 14 decimal places.

Now consider:

- 20.0/6.0=3.33333333333333;
> false : bool

Here, the comparison of 20.0/6.0 with its assumed value accurate to 14 decimal places fails because the result
of the calculation is actually held internally to more places than are displayed.

In general comparisons of real expressions and real values should be avoided. Instead, such a comparison should
be recast as a subtraction and the result should be tested to see if it within an acceptable margin of a real value.
If reals are displayed to N places then the acceptable margin is half the NV + 1th place. Thus, here the margin
1s 0.000000000000005. For example, the above comparison could be recast as:

- 20.0/6.0-3.33333333333333<0.000000000000005 orelse
3.33333333333333-20.0/6.0<0.000000000000005 ;
> true : bool

We do not know whether 20.0/6.0 is going to be slightly bigger or slightly smaller than 3.33333333333333 so
we test for both possibilities.

We could avoid doing the main calculation twice by abstracting at those points.

2.23 Division and remainder with a negative operand

The behaviours of div and mod with one negative operand are somewhat counter-intuitive. First of all, for
division, the result is rounded down to the nearest integer. For example:

- 7 div 3;

> 2 : int
but in:

- 7 div “3;

> "3 : int
and:

- 77 div 3;

> "3 : int

64



Secondly, for integer ¢ and divisor d, SML requires that div and mod satisfy:

idiv d = ¢ (quotient) i mod d = r (remainder)
d* g+ r=1
so:r=1-d* ¢

where:

0<=r<dord< r<=1(

so the remainder with mod always has the same sign as the divisor.

Hence, for mod, because the quotient is rounded down, the remainder with one negative operand may be bigger
or smaller than with two positive or two negative operands. For example:

- 7 mod 3;

> 1 : int
but:

- 7 mod “3;

> "2 : int
because:

7 div "3 ==> "3
s0:

7 - "3 % "3 ==>7 -9 ==> "2
Similarly:

- 77 mod 3;

> 2 : int
because:

"7 div 3 ==> "3
s0:

"7 - 3 % "3 ==> "7 - "9 ==> 2

Thus, you should be careful when using mod or div with one negative operand as the result may not be what
you expect.
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Tuples can be constructed from operator expressions as well as values. Each expression is evaluated and the
final value placed in the tuple.

For example:

- (real 2,floor 2.8);
> (2.0,2) : real * int

- (”Cat”””food”,3.0*0.2,”Mog”<”Spider”);
> ("catfood",0.6,true) : string * real * bool

2.25 Function composition

Function calls may be nested together by making the result of one call the argument in another call. This is
called function composition. For example, to find the real value equivalent to the integer length of a string:

- real (size "brolga");
> 6.0 : real

Here, size is applied to a string and returns an integer for real which returns a real:
real (size "brolga") ==> real 6 ==> 6.0

Functions may be composed to arbitrary depth.

In SML, the infix operator o may be used to compose functions. In general:
( functionl o function2 ) expression

is the same as:
functionl ( function2 expression )

Thus, we could have written:

- (real o size) "bunyip";
> 6.0 : real

2.26 Introducing exceptions

Sometimes things can go badly wrong in a computer program and the system has to stop running it. The
normal sequence of evaluation 1s halted, the system displays an error message and returns to a state where the
user can correct the fault and reinitiate evaluation.

Consider the div operator for dividing one integer by another. In arithmetic, dividing by 0 is a special case

and is often said to return infinity. However, many programming languages cannot process infinity as a value.
Instead, the system halts the program after an attempt to divide by 0.
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then 1t will halt evaluation and return to the system prompt alter displaying a message. Ior example, 1I an
attempt i1s made to divide by 0, the SML system will automatically raise an exception and stop evaluation. On
the SML system I use, the effect is:

- 11 div 0;
uncaught exception Div

We will see later on that we can define our own exceptions as a way of dealing with awkward situations.

2.27 Summary

In this chapter we met the SML basic types for booleans, integers, reals and strings and introduced the use of
tuples to represent things as groups of property values. Then we looked at various operators for these basic
types and their use in forming expressions. We saw that we could build up more involved expressions by using
expressions as operands of other expressions. Operators have precedence which determines the order in which
parts of expressions are evaluated and brackets are used to change the evaluation order. Some operators are
overloaded and can be used with different types but mixed type expressions require explicit type conversion.
Next, we discussed comparison operators and noted problems with real comparison. We considered building
tuples from expressions. We also looked at function composition for nested function calls. Finally, we met
exceptions as a way of halting evaluation in dubious circumstances.

It 1s very important that you now tackle the exercises at the end of this chapter and run your solutions on a
Standard ML system: the best way to learn to program is by doing it! Appendix A contains suggestions for
Standard ML system use.

2.28 Exercises

1) Identify the types of the following values:

a) 5

b) 5.0

c) "five"

d) true

e) 5.0E0

f) BE5

g) 75

h) BE"5

i) (5,5,5)

j) (5,5.0)

k) ("five",5.0,5)

1) (true,5,"true",5.0)

m) (1,(1,1))

n) ((2,2),2)

o) (1.0,(2.0,3.0),4.0)

p) ("one",(1,1.0))

q) (("one",1),("two",2))

r) ((1.0,("one",1)),(2.0,("two",2)))
s) ((1,true),("one",false),(1.0,true))
t) ((1,1,1),(2,4,8),(3,6,9))

u) ((1,1),(1.1,1.1),("one","one"))
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a) true orelse false

b) true andalso false

¢) not true andalso false

d) not (true andalso false)

e) not true orelse false

f) not (true orelse false)

g) false andalso false orelse true
h) false andalso (false orelse true)
i) true orelse false andalso false
j) (true orelse false) andalso false

3) Find the values and types of the following expressions:

a) 6%3+4

b) 6%(3+4)

c) 6.0%3.0+4.0

d) 6 mod 7%8

e) 6 mod (7*8)

f) floor 4.2E5

g) floor 4.2E°5

h) real 77

i) real 42*real 42
j) floor (real 42)
k) real (floor 42.42))

4) Find the values and types of the following expressions:

a) size "barnacle"

b) size ""

c) "blistering" "barnacles"

d) "thundering"~" "“"typhoons"

e) size ("Red"""Rackham")

f) real (size "Unicorn")

g) floor (real (size ("Marlin"“"spike'")))

5) Find the values and types of the following expressions:

a) "alphabetic'<="order"

b) "alphabetic'"<>"order"

c) "alpha'">"alphabet"

d) "iv<n2r

e) 100000000.0=1.0E8

f) 1<>1 orelse 1=1

g) 1<2 andalso "one"<"two"
h) "1"<"2" andalso "3'"<"4"
i) not ((size "wingnut'")<3)
j) (1,"one")<>(1,"won"

k) (true,"true")=(false,"false") orelse (true,"true")=(true,'"true")

6) Find the values and types of the following expressions:

a) (Ilall s Hguenpy s Ilall’*llbll"llcll)
b) ("eleven",size "eleven",real (size "eleven'"))
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e) (not,size,real,floor)
7) Write expressions to:

a) check if "mulga'" has more than 5 letters
b) check if the integer part of 6.54 is smaller than 7
¢) check if 99 as a real is bigger than 89.9

d) join "fish" and "finger" with a space in between them
e

)
f)
g) find the cost of 77 wattle trees at $120.23 each, as an integer

h) find the cost of 93 heath banksia bushes at $98.75 each with an additional sales tax at 15%, as a
real

i) find the cost of 37 jacaranda trees at $246.64 each with an additional sales tax at 17.5%, as an
integer
j) find the cost of 29 myrtle trees at $23.79 each, with a discount of 20%, as a real

k) find the cost of 74 paper bark trees at $147.9 each, with a discount of 12% and an additional
sales tax at 12%, as an integer

check if ;" comes either before "a" or after "z" in alphabetic order

find the cost of 55 snow gum trees at $100.55 each, as a real

8) Explain why the following expressions are incorrectly formed:

a) real "three"

b) real 3.0

c¢) floor 7

d) size 33E33

e) false andalso "true"
f) 6.0+size "grapefruit"
g) 72.4 div 4

h) 48 mod 7.0

i) 126/3

j) size "Red""'"Rackham"
k) not 3<4

1) real 4+5

m) floor 6.2+7.3

n) 1 (not =) 2

o) op +
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Chapter 3

(Global declarations and functions

3.1 Introduction

In chapter 1 we saw that abstraction is based on generalisation through the introduction of names. Specialising
an abstraction then involves replacing the names with particular values. Abstraction mechanisms are central
to programming languages and provide a way of classifying and distinguishing between different classes of
languages.

In this chapter we are going to start to look at how we can introduce names and associate them with values
in SML. SML provides a variety of ways of associating names with values and we will discuss four in this
book. Global declarations, which we will meet shortly, are a simple way of associating names and values for
the duration of an SML session. Functions, which we will consider in some detail for most of this chapter, are
expression abstractions where a formal parameter, a name, identifies the abstraction point. A function call then
associates the formal parameter, the abstraction name, with the actual parameter, the argument value, for the
duration of that call. Local declarations and let expressions, which we will discuss in later chapters, are useful
for structuring programs.

To begin with we will use rather long winded notations for function descriptions and use. In the next chapter

we will see more succinct notations which are short hand for the long winded notations. However, we will start
with the longer notations to help to clarify the underlying concepts of function use.

3.2 Names

In SML, at simplest, a name may be a sequence of alphabetic, numeric and underbar characters, starting with
an alphabetic character. For example:

x banana legs_11 M90 Highway_61

As we shall see later, names starting with ’ are used to abstract over types, that is to name type variables.

Recall from chapter 1 that a name serves both to identify an abstraction and to remind us of the intention
behind the abstraction. The use of meaningful names is very important for clear programming. However, there
is a need for a judicious balance between the meaningfulness and length of names. Very long names clutter up

programs.

It is sometimes tempting to introduce ad-hoc name shortening conventions which are perfectly understood by
the person that introduces them but incomprehensible to other people. For example, compare:

initial_value init_val initval ival iv
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“lmage vector” lor picture processing and SO on.

The use of such conventions is appropriate in programming if it is made clear what the conventions are and the
conventions are applied consistently. Thus, we will adopt some conventions here to simplify presentation. We
will sometimes use:

i il i2 i3
or a name preceded or followed by an i for names associated with integers,
rrlr2rzr3
or a name preceded or followed by a r for names associated with reals and
s s1 s2 s3
or a name preceded or followed by a s for names associated with strings. We will also use:
v vl v2 v3
for names associated with arbitrary values and
11112 13

for names associated with arbitrary lists.

Names are also known as i1dentifiers.

3.3 Reserved words

There are a number of names which are of special significance in SML. These are known as reserved words.
They are:

abstype and andalso as case do datatype else end eqtype exception fn

fun functor handle if in include infix infixr let local nonfix of op open
orelse raise rec sharing sig signature struct structure then type val
with withtype while

Reserved words should not be used as names in programs as the system will always assume that they have the
special SML significance.

3.4 Global declarations

A global declaration associates a name and a value for the duration of an SML session and takes the form:

val name = expression
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> val name = value : type

For example, to associate the name pay and the integer 12000:

- val pay 12000;
> val pay = 12000 : int

For example, to associate the tuple:

("Dennis","Menace")

and the name name

- val name ("Dennis","Menace");

> val name = ("Dennis","Menace'") : string * string

The name is then said to be globaly declared.

Any subsequent mention of a globaly declared name returns the associated value. For example:

- pay;
12000 : int

\'4

- name;
("Dennis","Menace") : string * string

\'4

Names from global declarations may be used in expressions in place of constants and are effectively replaced by
the associated values.

For example, to subtract a tax allowance of 4000 from the value in pay:

- pay—-4000;
> 8000 : int

For example, to calculate tax at 25% on the value in pay and associate the resulting value with the name tax:

- val tax = pay * 25 div 100;
> val tax = 3000 : int

For example, to associate payslip with a tuple of the values from name, pay, tax and the net pay after tax of
tax on pay:

- val payslip = (name,pay,tax,pay-tax);
> val payslip
(("Dennis","Menace"),12000,3000,9000)
(string * string) * int * int * int

A typical SML program consists of a sequence of global declarations, followed by expressions that use them.
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Functions are used to abstract over expressions. The formal parameters make explicit the names that are used
for generalisation. They are then used in the function body. When a function is called with actual parameters,
the body is evaluated with the formal parameters replaced with the actual parameter values. Thus, defining a
function abstracts over an expression and calling a function specialises an abstracted expression.

A function value has the form:

fn name => expression

This says:

replace name in expression.

The name 1s the formal parameter, also known as the bound variable. The ezpression is known as the body.

If the name can be associated with values of type typel and the ezpression returns a value of type type2 then
the function’s type is:

typel => type?2

In other words, the function is a mapping from a domain of type typel to a range of type type?.

If the final result of an expression is a function then its type is displayed as:

- function ;
> fn @ d{ype

An important aspect of SML is that the system can often deduce the type of the bound variable from the way
it is used in the body.

Let us look at functions in more detail through some examples. Consider finding income tax on 10000 at 25%;

- 10000%25 div 100;
> 2500 : int

Now consider finding income tax on 12000 at 25%:

- 12000%25 div 100;
> 3000 : int

These two expressions are the same except for the sum of money. We can abstract over the sum of money by
introducing a name sum to stand for an arbitrary sum of money:

sum*25 div 100

We then specify that sum is the bound variable, the abstraction point, for this expression:

fn sum => sum*25 div 100
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- fn sum => sum*25 div 100;
> fn : int -> int

the system tells us that we have entered a function and deduces that the domain is an integer and the range
is an integer. Remember that * must have two integer or two real operands. 25 is an integer so in sum*25 the
name sum must stand for an integer as well. Hence the domain is an integer. Furthermore, if sum is an integer
then:

sum*25 div 100

is an integer value as * returns an integer and div takes two integers and returns an integer. Hence the range
is an integer.

A function is called (or “applied”) with an expression of the following form:
function_expression argument_expression

First the function_expression is evaluated to return a function value, say:
fn name => expression

of type:
typel => type?2

Next the argument_expression is evaluated to return a value, say
value

which must be of type:
typel

the same as the function’s domain type.

Finally, all occurrences of the bound variable name in the body ezpression are replaced by the argument value
value and the body is then evaluated to return a result value of type:

type?

This is known as applicative order or strict or eager evaluation or call by value.
If the function expression is a function value or call then it must be in brackets.
If the argument expression is a function call, operator expression or function then it must be in brackets.

For example, to find tax at 25% on 10000:

- (fn sum => sum*25 div 100) 10000;
> 2500 : int
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10000%25 div 100

which is then evaluated.

For example, to find tax at 25% on 12000:

- (fn sum => sum*25 div 100) 12000;
> 3000 : int

sum 18 replaced with 12000 in the body:

12000%25 div 100

which is then evaluated.

For example, consider making the word "banana'" plural by putting an "s" on the end:

—_ Ilbananall"llsll .
3
> "bananas" : string

For example, consider making the word "fishcake" plural by putting an "s'" on the end:

- "fishcake" " "s";
> "fishcakes" : string

These expressions are the same except for the word. We can abstract by using the name word to stand for an
arbitrary word:

word~'"s"

We then make it explicit that word is the abstraction point:

fn word => word~'s"

The type of this function is:

- fn word => word~"s";
> fn : string -> string

The operator ~ applies to two strings so word must be a string. Hence the domain is a string. The operator
returns a string so the range must be a string. We can now apply this function to make a plural for "banana':

- (fn word => word~"s") "banana";
> "bananas" : string

The bound variable word is replaced with the argument in the body:

"panana' " "s"
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Unce again, to make a plural 1or "Ilshcake™:

- (fn word => word~"s") "fishcake";
> "fishcakes" : string

The bound variable word is replaced with the argument in the body:

"fishcake" " "s"

which is then evaluated.

For example, the age for voting in the UK is 18 years. Consider checking whether or not someone of age 17 can
vote in the UK:

- 17 >= 18;
> false : bool

For example, consider checking whether or not someone of age 19 can vote in the UK:

- 19 >= 18;
> true : bool

These expressions are the same apart from the age being checked. We abstract over the age using the name
age:

age >= 18

We then make the abstraction point explicit:

fn age => age >= 18

The type of this function is:

- fn age => age >= 18;
> fn : int -> bool

The operator >= must have two arguments of the same type. 18 is an integer so age must be an integer. Thus
the domain is an integer. Similarly, >= returns a boolean so the range must be a boolean.

For example, to check if someone age 17 can vote:

- (fn age => age >= 18) 17;
> false : bool

Here, age is replaced with 17:

17 >= 18

which is then evaluated.
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Global declarations may be used to associate names with functions. For the global declaration:

- val name = function

where function is a function, the system will respond:

> val name = fn : {ype

to show that name 1s associated with a function of the given type.

For example, to name the tax at 25% function:

- val tax = fn sum => sum*25 div 100;
> val tax = fn : int -> int

For example, to name the plural function:

- val plural = fn word => word™"s";
> val plural = fn : string -> string

For example, to name the voter check function:

- val voter = fn age => age >= 18;
> val voter = fn : int —> bool

A name associated with a function value may then be used as the function expression in a function call. Whenever
a globaly declared name appears in an expression, it is replaced by the associated value. For example, to use
the tax function:

- tax 20000;
> 5000 : int

Here, tax is replaced by fn sum => sum*25 div 100 giving:

(fn sum => sum*25 div 100) 20000

Next, sum is replaced by 20000 giving:

20000%25 div 100 ==> 5000

Similarly, the plural function:

- plural "bat";
> "bats" : string

and the voter function:
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can be called by mentioning the associated names.

In SML, something must be declared before it can be referred to. Thus, if one function calls another function by
referring to its associated name then the declaration for the called function must appear before the declaration
for the calling function. Sometimes several functions need to call each other: we will see how to deal with this
in chapter 9.

3.7 Comments

SML allows textual comments to appear in programs. These may be used to clarify what is going on. A
comment consists of text within the comment brackets (* and *). Comments may appear anywhere and are
ignored by the SML system. Comments may extend over several lines.

It is good practise to precede function declarations with comments to say briefly what the functions do. For
example:

- (* find 25% of an integer *)
val tax = fn sum => sum*25 div 100;
> val tax = fn : int -> int

- (* add "s" after a string *)
val plural = fn word => word™"s";
> val plural = fn : string -> string

- (* check if an integer is more than 18 *)
val voter = fn age => age >= 18;
fn : int -> bool

> val voter

In these examples, the comments seem unnecessary because the functions are so simple and we have associated
the functions with meaningful names. Nonetheless, it is worth commenting functions as you develop them both
to help other people understand what they do and to remind yourself.

It can also be helpful to place comments on the right hand side of each line of longer functions to clarify what
each step does.

It is a very common mistake to forget the closing comment bracket #)!

3.8 Making the bound variable type explicit

Suppose we try to define a function to find the square of an integer:
fn x => x*x;

The system cannot type this function because * is overloaded. That is * can be used with either two reals or
two integers and the system has no way of telling which x is. We have to specify the type of x explicitly.

In general, a function’s bound variable type may be specified by:
fn ( name : type ) => expression
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For example, 1or the above tunction we need to make 1t explicit that x 18 an integer:

- (* square an integer *)
val sq = fn (x:int) => x*x;
> val sq = fn : int -> int

Here, because x is nominated as int then the integer version of * must be intended.
If the system cannot deduce the type of a formal parameter from its use then its type must be stated explicitly.

In fact, in SML any expression can be typed anywhere by bracketing it with a type. However, it is considered
good style to type bound variables when they are first introduced as abstraction points. That way, the reader
knows their types immediately.

It is arguable as to whether it is sensible to always type all bound variables even where the system can deduce
their types. On the one hand, that certainly provides lots of information to someone who might want to reuse a
function somewhere else and is unsure as to what types of values the function may be used with. On the other
hand, as with long names, explicit type information can clutter up function declarations. Here, we will tend to
only specify a type explicitly if it is needed.

3.9 Abstraction over functions

So far, we have abstracted over an expression to form a function. Now we will look at abstracting over a function
to form a function that returns a function as result.

Consider the function to find tax at 25%:

- fn sum => sum*25 div 100;
> fn : int -> int

Consider the function to find tax at 30%:

- (* find 30% of an integer *)
fn sum => sum*30 div 100;
> fn : int -> int

These are the same apart from the rate of tax. We can abstract for tax with a new bound variable tax:

fn sum => sum*tax div 100

and then make the abstraction point explicit:

fn tax => fn sum => sum*tax div 100

Now we have a function whose body is a function. The type of

fn sum => sum*25 div 100

1s:
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SO:

fn tax => fn sum => sum*tax div 100

must be:

int -> int -> int

This is a function from an integer to a function from an integer to an integer:

- (* find tax’% of an integer *)
val taxdue = fn tax => fn sum => sum*tax div 100;
> val taxdue = fn : int -> int -> int

This function will find the tax at any rate tax on any sum sum by calling it first with a value for tax to get a
new function which is then called with a value for sum.

For example, to find tax at 40% on 20000:

- (taxdue 40) 20000;
> 8000 : int

First of all, the function expression:

taxdue 40

is evaluated. taxdue is replaced with the associated function giving:

(fn tax => fn sum => sum * tax div 100) 40

This is evaluated so tax is associated with 40 giving:

fn sum => sum * 40 div 100

The original application is now:

(fn sum => sum*40 div 100) 20000

so sum 1s assoclated with 20000 and:

20000%40 div 100

is evaluated giving 8000.

For example, to find tax at 50% on 30000:

- (taxdue 50) 30000;
> 15000 : int
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taxdue 50

is evaluated. taxdue is replaced giving:

(fn tax => fn sum => sum * tax div 100) 50

This is evaluated so tax is associated with 50 giving:

fn sum => sum*50 div 100

The original application is now:

(fn sum => sum*50 div 100) 30000

sum 1s assoclated with 30000 and:

30000%50 div 100

is evaluated giving 15000.

We can use taxdue to define functions to find the tax at specific rates. For example, to find tax at 20% we
want a function like taxdue but with tax set to 20:

- (* find 20% of an integer *)
val tax20 = taxdue 20;
> val tax20 = fn : int -> int

Note that taxdue is:

int -> int -> int

and 20 is int so:

taxdue 20

1s:

int -> int

because tax has been frozen to the int value 20.
Thus, tax20 is like taxdue but with tax set to 20.

For example, in:

- tax20 10000;
> 2000 : int
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(fn tax => fn sum => sum*tax div 100) 20

0, in effect, the expression:

((fn tax => fn sum => sum*tax div 100) 20) 10000

1s evaluated as above.

For example, to find tax at 60% we want a function like taxdue but with tax set to 60:

- (* find 60% of an integer *)
val tax60 = taxdue 60;

> val tax60 = fn : int -> int

- tax60 10000;

> 6000 : int

Now, tax60 is like taxdue with tax set to 60.

Let us now look at another example. Consider the function to add an "s" on the end of a word:

- fn word => word~"s";
> fn : string -> string

Consider the function to add "ed" on the end of a word:

- fn word => word~"ed";
> fn : string -> string

These functions are the same apart from the ending. We can abstract over the ending by introducing a new
bound variable to stand for it:

fn ending => fn word => word"ending

Once again we have a function whose body is a function. The type of:

fn word => word~'s"

1s:

string -> string

so the type of:

fn ending => fn word => word"ending

1s:

string —-> string —> string
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- (* put string ending after string word *)
val endword = fn ending => fn word => word~ending;
> val endword = fn : string -> string -> string

For example, to add "ing" to "walk":

- (endword "ing'") "walk";
> "walking" : string

First of all the function expression:

endword "ing"

is evaluated. endword is replaced giving:

(fn ending => fn word => word”ending) "ing"

This is evaluated so ending is associated with "ing" giving:

fn word => word™'"ing"

Next:

(fn word => word"'"ing") "walk"

is evaluated. word is associated with "walk" giving:

"walk"""ing" ==> "walking"

For example, to add "ed" to "fish":

- (endword "ed") "fish";
> "fished" : string

First of all the function expression:

endword "ed"

is evaluated. endword is replaced giving:

(fn ending => fn word => word~ending) "ed"

ending is associated with "ed" giving:

fn word => word~"ed"
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(fn word => word~'"ed") "fish"
which is evaluated. word is associated with "fish" giving:
"fish""'"ed" ==> "fished"
We can use endword to define functions to add specific endings to words. For example, to add "ed":

- (* put "ed" after a string *)
val ended = endword '"ed";
> val ended = fn : string -> string

ended is like endword but with ending set to "ed":

- ended "talk";
> "talked" : string

For example, to add "s":

- (* put "s" after a string *)
val ends = endword "s";
> val ends = fn : string -> string

ends is like endword but with ending set to "s":

- ends "swim";
> "swims" : string

3.10 Introducing higher order functions

The last two functions were formed by abstracting over constants in the bodies of functions. Higher order
functions can be formed by abstracting over an operation in the bodies of functions. The abstraction point
must then be specialised with a function value.

Let us look at another example. Suppose we have the squaring function:

- val sq = fn (x:int) => x*x;

> val sq = fn : int -> int
- 8q 3;
> 9 : int

and the cubing function:

- (* cube an integer *)
val cube = fn (x:int) => x*kx*x;

> val cube = fn : int -> int
- cube 3;
> 27 : int
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- (* double the square of an integer *)
val doublesq = fn n => 2*sq n;

> val doublesq = fn : int -> int

- doublesq 3;

> 18 : int

Consider finding double the cube of an integer:

- (* double the cube of an integer *)
val doublecube = fn n => 2*cube n;

> val doublecube fn : int -> int

- doublecube 3;

> b4 : int

These functions are the same apart from the function applied to the argument. We can abstract over this

function:
fn func => fn (n:int) => 2*func n
func’s type 1s:
int -> int
because n is an integer and * with 2 must have another integer argument. Thus, the new function is:

- (* double the result of applying a function to an integer *)
val doublefunc = fn func => fn (n:int) => 2*func n;
> val doublefunc = fn : (int -> int) -> int -> int

As we shall see later, we do not actually need to specify explicitly that n is of type int but it eases the
presentation.

This is a function from a function from an integer to an integer, to a function from an integer to an integer.
That is, it expects its argument to be an integer to integer function.

We can use doublefunc to find two times the square of 4:

- (doublefunc sq) 4;
> 32 : int

First of all the function expression:
doublefunc sq
is evaluated. doublefunc is replaced giving
(fn func => fn (n:int) => 2*func n) sq

func is associated with the argument giving:
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The original function application is now:

(fn (n:int) => 2*sq n) 4

n 1s associated with 4 giving:

2*sq 4 ==> 32

Note that to simplify presentation we have left sq in place in fn (n:int) => 2#sq n instead of replacing it
with fn (x:int) => x*x.

We can use doublefunc to find two times the cube of 4:

- (doublefunc cube) 4;
> 128 : int

First of all the function expression:

doublefunc cube

is evaluated. doublefunc is replaced giving:

(fn func => fn (n:int) => 2*func n) cube

func is associated with the argument giving:

fn (n:int) => 2*cube n

The original function application is now:

(fn (n:int) => 2%cube n) 4

n 1s associated with 4 giving:

2*%cube 4 ==> 128

We can use doublefunc to define doublesq:

- val doublesq = doublefunc sq;
> val doublesq = fn : int -> int

doublesq is like doublefunc but with func set to sq.

For example, in:

- doublesq 3;
> 18 : int
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((fn func => fn (x:int) => 2*func x) sq) 3 ==>
(fn (x:int) => 2%sq x) 3 ==> 2x%sq 3 ==> 18

Similarly, we can use doublefunc to define doublecube:

- val doublecube = doublefunc cube;
> val doublecube = fn : int -> int

doublecube is like doublefunc but with func set to cube:

- doublecube 3;
> b4 : int

We will now look at another simple higher order function. Consider applying sq twice to a value to raise it to
a fourth power:

- (* find the fourth power of an integer *)
val fourth = fn n => sq (sq n);
> val fourth = fn : int -> int

sq 1s of type int -> int and is applied to n so n must be of type int and the result must also be of type int.
Note the brackets round the argument (sq n).

For example:

- fourth 2;
> 16 : int

because:
fourth 2
is the same as:
sq (sq 2) ==> sq 4 ==> 16
Consider applying cube twice to an integer to raise it to a 9th power:

- (* find the ninth power of an integer *)
val ninth = fn n => cube (cube n);
> val ninth = fn : int -> int

cube is an int -> int function so n and the result must both be of type int. For example:

- ninth 3;
> 729 : int

because:
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1s like:

cube (cube 3) ==> cube 27 ==> 729

Now, compare the functions associated with fourth and ninth

fn n => sq (sq n)
fn s => cube (cube s)

These are almost the same apart from the function which is applied twice; sq in fourth and cube in ninth

We could abstract over this function:

fn f => fn (n:int) => £ (£ n);

1’s type is:

int -> int

because n is an integer and the result of the inner use of £:

(f n)

is the argument for the outer call of £:

f (f n)

1’s result type must be the same as its argument’s. Thus, the new function is:

- (* apply a function twice to an integer *)
val twice = fn f => fn (n:int) => £ (f n);
> val twice = fn : (int -> int) -> int -> int

This is a function from a function from an integer to an integer, to a function from an integer to an integer. We
can use twice to find 4 to the fourth:

- (twice sq) 4;
> 266 : int

First of all the function expression:

twice sq

is evaluated. twice is replaced giving:

(fn £ => fn (n:int) => £ (£ n)) sq
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fn (n:int) => sq (sq n)

The original function application is now:

(fn (n:int) => sq (sq n)) 4

n 1s associated with 4 giving:

sq (sq 4) ==> sq 16 ==> 258

We can use twice to define fourth:

- val fourth = twice sq;
> val fourth = fn : int -> int

fourth is like twice but with f set to sq:

- fourth 3;
> 81 : int

We can use twice to define ninth:

- val ninth = twice cube;
> val ninth fn : int -> int

ninth is like twice but with £ set to cube:

- ninth 2;
> 512 : int

3.11 Introducing polymorphism

Consider the function that doubles the result of applying a function to an integer:

- val doublefunc = fn func => fn (n:int) => 2*func n;
fn : (int -> int) -> int -> int

> val doublefunc

Here func must be a function that takes an integer argument and returns an integer result.
Suppose that we wanted func to be able to take an argument of any type and return an integer result. For
example, we might want to find double the integer value of a real so func would be set to real. We might want

to find double the length of a string so func would be set to size.

At present, func is applied to n and n is specified as int so we might try dropping the int requirement:

- (* double the result of applying a function *)
val doublefunc = fn func => fn n => 2%func n;
> val doublefunc = fn : (’a -> int) -> ’a —-> int
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‘a 1s a type variable. Just as an mteger bound variable can be associated with any integer value and a string
bound variable can be associated with any string value, a type variable can be associated with any type.

Traditionally, Greek letters are used as the names of type variables:

o == alpha
[ == beta

4 == gamma
0 == delta

However, most keyboards and displays do not support directly the Greek alphabet so quoted Roman letters are
used to stand for the equivalent Greek letter in alphabetical order:

‘la== «
b == 6
‘c == 0
'd ==

In doublefunc, n is not used as argument or operand for any type specific function or operation so it can be
any type, say ’a. func has n as argument, so func’s domain must be ’a for consistency.

For example:

- (* double the floor of a real *)
val doublefloor = doublefunc floor;
> val doublefloor = fn : real -> int

will double the integer value from a real value. Here, func is associated with the function from floor. floor
Is a:

real -> int
function and func is an:
’a -> int

function so for the types of func and sq to match, >a must be set to real. n is also of type ’a in doublefunc
so n must also be of type real in doublefloor.

For example:

- doublefloor 3.3;
> 6 : int

doublefloor is like doublefunc floor so:
doublefloor 3.3 ==> (doublefunc floor) 3.3

Replacing doublefunc gives:
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SO:

(doublefunc floor) 3.3 ==>
(fn n => 2*floor n) 3.3 ==> 2% floor 3.3 ==> 6

Suppose we wanted a function to find double the length of a string. We could replace func with size:

- (* double the size of a string *)
val doublesize = doublefunc size;
> val doublesize = fn : string -> int

Here, func is associated with the function from size. size is a:

string —> int

function and func is an:

’a -> int

function so for the types of func and size to match, >a must be set to string. n is also of type *ain doublefunc
so n must also be of type string in doublesize.

For example:

- doublesize "banyan";
> 12 : int

doublesize is like doublefunc size so:

doublesize "banyan" ==> (doublefunc size) "banyan"

Replacing doublefunc gives:

doublefunc size ==> (fn func => fn n => 2*func n) size ==>
fn n => 2%size n

SO:

(doublefunc size) "banyan' ==
(fn n => 2*size n) "banyan" ==> 2% size "banyan'" ==> 12

In doublefunc, n is said to be a polymorphic variable. Polymorphic comes from the Greek and means “many
forms”. A polymorphic variable can be associated with an argument of any type. By extension, func could
be said to be polymorphic because it can be associated with any function from an arbitrary type argument to
an integer result. Thus, doublefunc could be said to be a polymorphic function, because 1ts argument func is
polymorphic.

It is important to distinguish polymorphism from overloading. A polymorphic function can be applied in some
sense to argument values of any type. However, an overloaded operation can only be applied to operand values
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Let us look at another example. Consider:

- val twice = fn f => fn (n:int) => £ (f n);
> val twice = fn : (int -> int) -> int -> int

Suppose we drop the requirement that n is integer:

- (* apply a function twice *)
val twice = fn f => fn n => f (f n);
> val twice = fn : (Pa -> ’a) —> ’a -> ’a

This is an extremely polymorphic function! First of all, n is not used in any typed operation so it can be any
type, say ’a. Next, £ has n as argument so its domain must be of type *a. (£ n) is an argument for £ and we
know that £ has an ’a argument so the result of (£ n) must also be an ’a. Hence, £ must be an:

‘a —=> ’a

function. Finally, the result of twice is £ (f n). f returns an ’a so twice must also return an ’a. Thus,
twice is a function from a function from some type to that type, to a function from that type to that type.

For example, we know that plural puts a "s'" on the end of a string so to put two "s'"s on the end of a string:

- (* follow a string with "ss'" *)
val double_s = twice plural;
> val double_s = fn : string -> string

In twice, f is an:

’a => ’a

function and plural is a:

string -> string

function so for consistency, ’a must be string. Hence in double_s both n and the result must be string.

For example:

- double_s "lo";
> "loss" : string

First of all:

double_s "lo" ==>
(twice plural) "lo"

Next:
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fn n => plural (plural n)
sO:

(twice plural) "lo" ==>
(fn n => plural (plural n)) "lo" ==>
plural (plural "lo") ==> plural "los" ==> "loss"

3.12 Function composition function

We will now look at a very general polymorphic function. Consider applying function £ to the result of applying
function g to some value x. The only constraint is that the range of g must be the same as the domain of £:
that is the result of g must be the same type as the argument of £:

- (* apply f to the result of applying g *)
val compose = fn f => fn g => fn x => £ (g x);
> val compose = fn : (b -> ’¢c) -> (Pa -> ’b) -> ’a -> ‘¢

No typed operations are performed on x so let us suppose it has arbitrary type ’a.

g is applied to x so it must have domain ’a. We do not know what sort of type g returns so let us suppose it is
the arbitrary type *b. Note that we use a different type variable: we have no reason to assume that the domain
and range of g are the same. Thus, g is an:

'a => b

function. £ is applied to g’s result so its domain must be *b. We do not know what sort of type £ returns so
let us suppose it is the arbitrary type ’c.

Note that again we use a different type variable: we have no reason to suppose that f’s range is the same as
either g’s domain or range. Thus, £ is a:

' => ’c

function. Finally, compose returns whatever f returns so compose’s range is also ’c.

For example, to convert the size of a string to a real:

- ((compose real) size) "whisky";
> 6.0 : real

In compose, £ is of type:
b —> ¢
and real is of type:

int -> real
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compose real ==>
(fn £ => fn g => fn x => f (g x)) real ==>
fn g => fn x => real (g x)

which is:

(’a -> int) -> ’a -> real

Now, in:

(compose real) size

g is of type:

’a -> int

and size is of type:

string —> int

so ’a must be string.

Thus:

(compose real) size ==>
(fn g => fn x => real (g x)) size ==>
fn x => real (size x)

which 1is a:

string —> real

function.

Finally:
((compose real) size) "whisky" ==>
(fn x => real (size x)) "whisky'" ==>

real (size "whisky") ==> 6.0

Note that compose can be used with any two functions provided that the domain of the first is the same as the
range of the second.

SML provides compose as the standard infix operator o:

( compose functionl ) function2 ==>
functionl o function2

For example:

94



because:

(real o floor) 4.2 ==>
((compose real) floor) 4.2 ==>
real (floor 4.2) ==>

real 4 ==>

4.0

3.13 Scope

We need to be a bit clearer about precisely where we can use names. We saw above that for a function:
fn name => expression

the bound variable name 1s to be replaced in the body expression.

However, we have also seen that we can nest functions. Thus there might be problems if nested functions share
the same bound variable. For example, in:

fn x => fn x => 2%x
the x in:
2%Xx

might at first sight appear to correspond to either the outer function’s or the inner function’s bound variable.

In programming languages, names are said to have scopes that determine where they can be referred to. In
SML, the scope rule is that an outer bound variable is overriden by the introduction of an inner bound variable
with the same name. That 1s, in:

fn name => expression

name is in scope 1n ezrpression except where another function introduces the same name as a bound variable.
Another way of expressing this is that a name in an expression corresponds to the bound variable of the
innermost enclosing function to introduce it.

Thus, in
fn x => fn x => 2*x

the x in 2*x 1s the inner function’s x. Thus, in:
((fn x => fn x => 2*x) 2) 3

x should be set to 2 in:
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However, this function also introduces x overriding the outer function so there is nowhere corresponding to the
outer x to be replaced. The 2 is discarded leaving:

(fn x => 2%x) 3 ==> 2%3 ==> 6
For example, consider:
(fn x => ((fn x => 2*x) 3)+x) 4

Here, the outer bound variable x is in +x in the body of the outer function but not in the body of the inner
function. It is replaced by 4 giving:

((fn x => 2%x) 3)+4 ==> 2*3+4 ==> 10

It 1s generally safest to avoid nested introductions of the same bound variable name. Where they are unavoidable,
look to the left from a use of a name to find the first place where it is introduced as a bound variable.

3.14 Illustrating function application

In the above worked examples of function applications we have:

i) evaluated the function expression to get a function
ii) evaluated the argument expression to get a value
ii1) replaced all occurrences of the bound variable in the function’s body with the argument value

iv) evaluated the body

We are using this replacement of bound variables in function bodies with argument values as a way of illustrating
or animating function applications. However it should not be thought that this is how SML systems actually
implement function application. What they do is certainly equivalent to our approach but very different in
practise.

Furthermore, while we have been exact so far about the order in which replacement and evaluation are carried
out, as examples become larger we will become less rigorous. Sometimes we will delay evaluating parts of
expressions in order to make what is going on more explicit. At other times, we will apparently evaluate
different parts of an expression at the same time to simplify the presentation.

One of the pleasing properties of pure functional languages, like the SML subset we are studying here, 1s that
some aspects of the order of evaluation need not be prescribed rigidly. For example, with arithmetic operators
the order of operand expression evaluation is not important. Similarly, with nested function applications it is
legitimate to evaluate all the argument expressions at the same time rather than in strict sequence as each nested
layer 1s evaluated. Provided we are consistent in always evaluating function arguments before the function body
then we will get the same result.

3.15 Testing

A vital aspect of programming is testing. You may think that a function looks all right on paper but testing
it will often show up problems or inconsistencies. It is not good enough to check out a function with just one
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Tunction with a representative sample ol values. II a Tunction consists ol nested tfunctions then you should try
out different combinations of argument values for each layer.

Use the types of the arguments to guide testing. Check for limiting as well as typical cases. If the function has
a string argument then check that it works with the empty string "' as well as non-empty strings. For example,
for:

- val plural = fn word => word™"s";
> val plural = fn : string -> string

we might try:

- plural "hat";

> "hats" : string
and:

- plural "";

> "s" : string

If a function has an integer argument then try it with 0 and negative values as well as positive values. For
example, for:

- val tax fn sum => sum*25 div 100;
> val tax = fn : int -> int

we might try:

tax 10000;
> 2500 : int

and:

- tax 0;

> 0 : int
and:

- tax "2000;

> "B00 : int

For example, for:

- val endword = fn ending => fn word => word“ending;
> val endword = fn : string -> string -> string

we might try:

- (endword "fish") "ed";
> "fished" : string
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- (endword "push") "'";
> "push" : string

and:

- (endword "") "ing";
> "ing" : string

If a function has a boolean expression then try it with values to make the expression both true and false. For
example, for:

- val voter = fn age => age>=18;
> val voter = fn : int —> bool

we might try:

- voter 19;
> true : bool

and:

- voter 18;

> true : bool
and:

- voter O;

> false : bool
and:

- voter "19;
> false : bool

You might also see what your function does with very big values as well as very small ones. For example, for:

- val tax = fn sum => sum*25 div 100;
> val tax = fn : int -> int

we might try:

- tax 2000000000000000;
Error: integer too large

whoops...!
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In this chapter we have focused on abstraction. First we considered how to associate names and values through
global declarations, to use an SML system like a souped up desk calculator. Next we looked at how to con-
struct functions by generalising expressions through name introduction. We then saw how to call functions to
specialise the names. We next discussed the construction of functions that return functions as values as a way
of introducing multiple abstraction points for values in expressions. This was then extended to higher order
functions by abstracting over operations. Finally, we met polymorphism which enables the construction of very
general functions for manipulating values of arbitrary type.

In the next chapter we are going to discuss pattern matching as a technique for structuring functions according
to the information that they manipulate. We will also look at recursion as a means of dealing with a range of
values.

3.17 Exercises

1) Identify the types of the following functions:

a) fn x => x div 2
b) fn x => x/2.0
c) fn x => x=2

d) fn x => fn y => x mod y

e) fn s1 => size s1*10

f) fn s => s~"?"

g) fn s => fn t => s™" "¢

h) fn s1 => fn s2 => size si<size s2
i) fn bl => fn b2 => not bl orelse b2
j) fn s => fn
k) fn x => fn

1l
v

size s<=n
floor x+y

1l
v

n
y
1) fn s => fn x => floor s*size x
m) fa f => fn x => f x div x
n) fn f => fn x => x orelse f x
o) fn £ => fn x => x/f x
p) In £ => fn x => f x+size x
q) fn f => fn x => not (f (floor x))
r) fn £ => fn x => 1+f x
s) fn f => fn x => size (f x)
t) fn £ => fn x => not (f x)
u) fn f => fn x => f (x+1)
v) fn £ => fn x => f (not x)
w) fn £ => fn x => f x
x) fn f => fn x => fn y => (f x) y
y) fn £ => fn x => fn y => fn z => ((f x) y) z
z) fn f => fn g => fn x => fn y => (f x) mod (g y)
A) fn £ => fn g => fn x => fn y => size (f x"g y)
B) fn x => x
C) fn x => fn y => x
x

D) fn x => fn y => y

2) Explain why the following functions are incorrectly formed:

a) fn x => x+x

b) fn x => fn y => x*y

c) fn x => fn y => x>y

d) fn a => fn b => not a >= b
s

e) fn s1 => fn s2 => size s17s2

99



h) fn £ => fn x => x*f x

3) Write and test the following functions. Identify the type of each function:

a) find half of integer x

- half 4;
> 2 : int

b) find double real y

- double 2.1;
> 4.2 : real

¢) join string s onto itself
- twice "very'";
> "veryvery" : string

4) Write and test the following functions. Identify the type of each function:

a) find net pay on gross pay gross after tax at 20%:

- net20 20000;
> 16000 : int

b) find net pay on gross pay gross after tax at 30%:

- net30 20000;
> 14000 : int

¢) find net pay on gross pay gross after tax at tax%:

- (net 20) 20000;
> 16000 : int

d) use net from c) above to define functions which find tax at

i) 20% ii) 30%

5) Write and test the following functions. Identify the type of each function:

a) put the string "Happy " before a string s:

- happy "Birthday";
> "Happy Birthday'" : string

b) put the string "Merry " before a string s:

- merry "Xmas";
> "Merry Xmas'" : string

¢) put one string before another:

- (sbefore "Jolly ") "good!";
> "Jolly good!" : string

d) use sbefore from c) above to define functions to put
i) "Merry " ii) "Happy "

before a string
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a) return a boolean to indicate whether or not string s comes before neutral in alphabetic order:

- lessneutral "banana';
> true : bool

b) return a boolean to indicate whether or not string s comes before ”z00” in alphabetic order:

- lesszoo '"zoo";
> false : bool

¢) return a boolean to indicate whether or not a second string comes before a first string:

- (less "guava") '"avocado";
> true : bool

d) use less from c) above to define a function which returns a boolean to indicate whether or not
a string comes before

i) "neutral" ii) "zoo"

7) Write and test the following functions. Identify the type of each function:

a) for integer n return a tuple consisting of n and a boolean which indicates whether or not it is
greater than 0:

- (more0 22);
> (22,true) : int * bool

b) for string s return a tuple consisting of s and its plural, found by adding "s" on the end:

- (plural "goat");
> ("goat","goats") : string * string

¢) for integer n return a tuple consisting of n, its square and its cube:

- powers 3;
> (3,9,27) : int * int #* int

8) Write and test the following functions. Identify the type of each function:

a) evaluate:
a*xx*x+b*x+c
for integer values a, b, ¢ and x:

x*x+2*%x+1 with x=3 ==

- (((quad 1) 2) 1) 3;
> 16 : int

b) use quad from a) above to define functions to return the values of
1) x*x+4*x+4
il) 2*x*x+3*x-3

for unknown x

9) Write and test the following functions. Identify the type of each function:
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- (((sentence "the") "cat") "sat on") "the") "mat"
> "the cat sat on the mat" : string

b) use sentence from a) above to define functions to start sentences with:

i) "the mouse ran to" ii) "the cat ate"
10) Write and test the following functions. Identify the type of each function:

a) return a boolean to indicate whether or not string s is longer than integer 1 characters:

- (longer 3) "huge";
> true : bool

b) return a boolean to indicate whether or a string is shorter than a second string:

- (shorter "long") '"short";
> true : bool

using longer from a) above
11) Write and test the following functions. Identify the type of each function:

a) find if integer i1 is less than or equal to integer i2 without using <=:

- (less_or_eq 2) 3;
> true : bool

b) find if string s1 is the same as string s2 without using = or <>:

- (same '"precise'") "precise";
> false : bool

12) Write and test the following functions. Identify the type of each function:

a) find the real cost of n items at real price p with discount of d real percent and additional sales
tax of t real percent:

- (((cost 5) 12.6) 20.0) 10.0;
> 55.44 : real

b) use the function from a) above to define a function to find the cost of an unknown number of
items at unknown price and discount with additional sales tax of 12.5%

¢) use the function from a) above to define a function find the cost of an unknown number of items
at unknown price and additional sales tax with discount of 15%

13) Write and test the following functions. Identify the type of each function:

a) check if real value v1 is no more than error greater or less than real value v2:

- ((close 12.01) 0.01) 12.00;
> true : bool

b) use the function from a) above to define a function to check if two real values are within 0.0005
of each other.
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Chapter 4

Pattern matching and recursion

4.1 Simplified notations

As you may have noticed, the full notations for associating names with function values and for calling functions
are extremely long winded. We have used them so far to emphasise functions as values. We will now consider
some simplifications. First of all, a function definition:

val namel = fn name? => expression

may be simplified. val is changed to fun, the = and fn are dropped, and => is replaced with = giving:

fun namel namel = expression

For example, some of the functions from the previous chapter become:

- fun
> val

- fun
> val

- fun
> val

- fun
> val

- fun
> val

s0:
- fun
> val

Similarly:

- fun

tax sum = sum*25 div 100;
tax = fn : int -> int

plural word = word™"s';
plural = fn : string -> string

voter age = age >= 18;
voter = fn : int -> bool

sq (x:int) = x*x;
sq = fn : int -> int

taxdue tax = fn sum => sum*tax div 100;
taxdue = fn : int -> int -> int

taxdue tax sum = sum*tax div 100;
taxdue = fn : int -> int -> int

endword ending word = word“ending;
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— fun doublefunc func (n:1int) = 2*%func n;
> val doublefunc = fn : (int -> int) -> int -> int

Note that fun is a shorthand for an association between a name and an explicit function value using val. The
val form must be retained to associate a name and the value of an expression, even when the expression returns
a function value. For example:

fun ending = endword "ing"

is incorrect because the expression:

endword "ing"

is not an explicit function value even though it returns one. The correct form is still:

- val ending = endword '"ing";
> val ending = fn : string -> string

Function calls may also be simplified by dropping strict bracketing around function expressions. Thus:

( ( function argumentl ) argument? ) argument3

becomes:

function argumentl argument? arguments

which is evaluated from left to right.

For example:

- endword "jump" "ing";
> "jumping" : string

However, bracketing is essential when a function call or operator expression is an argument to another function.
Consider:

sq sq 3

This is interpreted as:

(sq sq) 3

which fails because sq requires an integer rather than a function as its argument. Instead:

- sq (sq 3);
> 81 : int

should be used.
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In chapter 1, we looked at the use of tables to represent collections of things. In a table, each thing has a fixed
number of properties across the rows. While a table might in principle be any size, in practise it consists of
a fixed number of things at any given moment. Each thing is distinct and there is not necessarily any way of
finding one of its properties from its other properties.

Consider the special case where the things are pairs of properties, for example cats and colours:

name colour
Wallace tabby
Mog black

Spider tabby

We can use this table to find the colour of a cat from its name. We look down the column of names until we
find the required name and then look across the row to find the associated colour.

In chapter 3 we looked at making functions which performed calculations on general values abstracted through
bound variables. A table of pair associations is like a function in that we look up an argument value in one
column to find the result value in another column. However, a table of associations is rather more restrictive
than than the sorts of functions we have considered so far. A function can find the result from arbitrary values
through calculation whereas a table can only be used with specific values. That is, with a table we can find result
values for individual cases but there is no general way to find the result for an arbitrary case. In particular, it
is not clear what we should do when we get to the end of a column without finding the required value. In the
above example, while a name could be absolutely any sequence of letters, we only know the associated colour
in the three specific cases of “Wallace”, “Mog” and “Spider”. In general, there is no way of calculating a cat’s
colour from its name.

On the other hand, as yet we have no way of dealing with specific cases in SML functions. For example, consider
finding the past tense for an English verb. We can often put “ed” on the end of a verb, for example “walked”

for “walk” and “fished” for “fish”. However, there are specific exceptions to this rule, for example, “stood” for
“stand”, “swam” for “swim” and “ate” for “eat”. We could use a table to represent the special cases:

verb  past
stand stood
swim swam
eat ate

but we do not have any obvious way of including the general case in a table.

4.3 Pattern matching

SML enables the use of functions to deal with individual as well as general cases through what is called pattern
matching. In the last chapter, we saw that a function has the form:

fn name => expression

A function may also be defined with a number of optional cases, each with a distinct pattern rather than a
single bound variable:

fn patternl => expressiond |
pattern? => expression? |

patternN => expressionN
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ywhen the Tunction 18 called, the argument 18 matched against each pattern in turn. Vvhen a match succeeds
the corresponding expression 1s evaluated. For a constant pattern, the argument must have the same value for
the match to succeed. A variable pattern will match any value and take on that value.

The patterns must all be of the same type and the expressions must all return the same type of value.

Note that there must be a case for every possible value of the pattern type. Usually, there will be a sequence
of constant cases and then a variable case to match all the other values. If you miss out a possible case then
the system will give an “exhaustiveness check” warning message but still allow you to use the function. If you
then call the function with an unknown case then the system will stop running the calling expression with an

€rror message.

There i1s a simplified form of definition for multiple case functions:

val name = fn patternl => expressionl |
pattern? => expression? |

patternN => expressionN
becomes:

fun name patternl = expressiond |
name pattern? = expression? |

name patternN = expressionN

Pattern matching is a powerful programming technique which enables the structure of a function to reflect the
structure of the data that it processes. This results in surprisingly small programs as conditional expressions
are not needed to discriminate between different argument values. It also results in very readable programs
because the program structure corresponds closely to the data.

4.4 Pattern matching with strings

For example, consider the table of past tenses:

verb past
stand stood
sSwim swam
eat ate

which augments the general rule of putting “ed” on the end of a verb. We can represent this in SML as a
function from a string verb to a string past tense. We will have a constant pattern for each individual case in
the table and a string bound variable for the general case:

- (* find regular and irregular past tenses *)

fun past "stand" = "stood" |
past "swim" = "swam'" |
past "eat" = "ate" |

past v = v "ed";
> val past = fn : string -> string

Consider:
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"eat" 1s matched with "stand" which fails. "eat" is matched with "swim" which fails. "eat" is matched with
"eat" which succeeds so "ate" is returned.

Consider:

- past "talk";
> "talked" : string

"talk" is matched with "stand" which fails. "talk" is matched with "“swim' which fails. “talk' is matched
with "eat" which fails. Finally, the bound variable v, which matches anything, 1s set to "talk" so:

"talk"""ed" ==> "talked"

1s returned.

For example, let us make a function for the table:

name colour
Wallace tabby
Mog black

Spider tabby

fun colour "Wallace" = "tabby" |
colour "Mog" = "black" |
colour '"Spider" = "tabby" |

We need to deal with a cat name which is unknown to us. All the specific cases return a string value so we
could match the unknown name to a bound variable and return a string message to say that we don’t know
that name:

- (* find cat colour from name *)

fun colour "Wallace' = "tabby" |
colour "Mog" = "black" |
colour "Spider'" = "tabby" |

colour name = name”" unknown";

Consider:

- colour "Fritz";
> "Fritz unknown'" : string

"Fritz" fails to match "Wallace". "Fritz" fails to match "Mog". "Fritz" fails to match "Spider". name is
bound to "Fritz" so:

"Fritz""" unknown" ==> "Fritz unknown"

1s returned.

For example, consider UK traffic light sequences:
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red & amber green
green amber
amber red

We can model light states as strings and the light sequence as a function from strings to strings:

- (* find next traffic light state *)

fun change "red" = "red & amber" |
change "red & amber'" = '"green" |
change '"green" = "amber'" |
change "amber" = "red" |

change s = "illegal light: "“s;
> val change = fn : string -> string
- change ''green';

> "amber" : string

Again note the catch all variable s in case of a string argument which is not a light state:

- change '"banana';
> "illegal light: banana" : string

4.5 Raising exceptions

In chapter 2 we met the idea of an exception as a way of changing the flow of evaluation, in particular to halt
evaluation. When an exception is raised, the system will catch it, stop evaluation and display a message to
say that the exception has happened. We can define our own exceptions and raise them when we want to halt
evaluation.

At simplest, an exception is defined by:
- exception name ;
to which the system responds:
> exception name
Then to raise the exception:
raise name
may be used in place of an expression. The system will stop evaluation and display:
uncaught exception name
For example, we could define an exception for traffic lights:

- exception Bad_light;
> exception Bad_light
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- (* traffic light change with exception *)

fun change "red" = "red & amber" |
change "red & amber'" = '"green" |
change '"green" = "amber'" |
change "amber" = "red" |

change s = raise Bad_light;

> val change = fn : string -> string

Now, if change is called with an arbitrary string:

- change '"concertina';
uncaught exception Bad_light

evaluation stops.
There are also ways to catch a raised exception and continue processing, and to pass back information when
raising an exception. This is known as handling an exception. The message uncaught exception means that

there is not a user defined handler to catch the exception so the system ended up catching it. We will look at
how to handle exceptions in a later chapter.

4.6 Wildcard pattern matching

Consider the table of cats and weights:

name weight
Wallace 4.0
Mog 4.5
Spider 2.8

We could use this as the basis of a function to find the weight from a name:

fun weight "Wallace" =
weight "Mog" = 4.5
weight "Spider" = 2.8 |

4.0 |
I

So far this function is:
string —> real

We need to decide what to do if the function is applied to an unknown name. We cannot return a string as all
the specific cases return reals. Instead, we could raise an exception as above:

- exception Cat;

> exception Cat

- (* find cat weight from name *)

fun weight "Wallace" = 4.0 |

weight "Mog'" = 4.5 |
weight "Spider" = 2.8 |
weight n = raise Cat;

> val weight = fn : string -> real
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oML provides the wildcard pattern:

(underscore) which will match any argument value and effectively discard it. Here, we could use it instead of n:

- (* cat weight with exception *)
fun weight "Wallace" = 4.0 |
weight "Mog'" = 4.5 |
weight "Spider" = 2.8 |
weight _ = raise Cat;

> val weight = fn : string -> real
For example:

- weight "Fritz";
uncaught exception Cat

Here, "Fritz" fails to match "Wallace", "Mog" and "Spider". Finally, "Fritz" is matched by the wildcard
pattern, ignored and the cat exception is raised.

In general, if a bound variable in a pattern is not used on the right hand side of a function definition then it can
be replaced by the wildcard pattern. Subsequently, during pattern matching the wildcard pattern will match
any value in an argument in the corresponding position. That value is then ignored. In general a variable should

only be used in a pattern if the value it will be matched with will be needed later on. Otherwise, the wildcard
pattern should be used instead.

4.7 Pattern matching and boolean operations

The boolean type has the values true and false so we can define boolean functions of the form:

fn true => true option expression
false => false option expression

When such a function is applied to true then the value of the true option expression 1s returned. When it is
applied to false the value of the false option expression is returned.

For example, consider the boolean negation operation, defined by the following truth table:

X NOT X
true false
false true

We can write this as:

- val NOT = fn true => false |
false => true;
> val NOT = fn : bool -> bool

or:
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> val NOT = fn : bool -> bool

Then, for:

- NOT true;
> false : bool

true matches true so false 1s returned. For:

- NOT false;
> true : bool

false does not match true. false matches false so true is returned.

In chapter 2 we met the SML andalso conjunction operator which returns true for two true operands and
false otherwise. We can express this with the following table:

X Y X andalso Y
false false false

false true false

true false false

true true true

Effectively, each thing in this table is a triple of an X, Y and X AND Y value. To use the table we need values for
both X and Y and we have to find a row corresponding to both values to get the result of X AND Y.

We can write this as two cases for X each with two cases for Y:

- val AND = fn false => (fn false => false |

true => false) |

true => (fn false => false |
true => true);

> val AND = fn : bool -> bool -> bool

Thus, if AND is applied to false then the first case for Y 1s applied:

- AND false true;
> false : bool

and if AND is applied to true then the second case is applied:

— AND true true;
> true : bool

This can be simplified to:

- (* logical conjunction *)
fun AND false = (fn false => false |
true => false) |
AND true = (fn false => false |
true => true);
> val AND = fn : int -> int -> int
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- (*# conjunction as table *)
fun AND false false = false |
AND false true = false |
AND true false = false |
AND true true = true;
> val AND = fn : bool -> bool -> bool

which 1is just like the table.

There is a further simplification. When X 1s false, the answer is always false and when X is true the answer
is the same as Y:

- (* conjunction through factorisation *)
fun AND false Y = false |
AND true Y = Y;
> val AND = fn : bool -> bool -> bool

Here, we have explicit cases for X and a catch all bound variable for Y.

Note that the system deduces that ¥ is bool. Where the first case returns false, the second case returns Y and
the results of all function cases must have the same type.

Note that Y is not used in the first case so it can be replaced by the wildcard pattern:

- fun AND false _ = false |
AND true Y = Y;
> val AND = fn : bool -> bool -> bool

In chapter 2 we also looked at the boolean disjunction operator orelse. This returns true if either or both
operands are true and false otherwise. We can express this with the following table:

X Y X orelse Y
false false false
false true true
true false true
true true true

This can be written as a function of two cases for X with two cases each for Y:

- (* logical disjunction *)
val OR = fn false => (fn false => false
true => true)
true => (fn false => true

true => true);

> val OR = fn : bool -> bool -> bool

OR true false;

> true : bool

Once again, this can be simplified to:

- (*# disjunction as table *)
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OR true false = true |
OR true true = true;
> val OR = fn : bool -> bool -> bool

Now, note that if X 1s false then the answer is Y and if X is true then the answer is true. Thus, we can again
introduce a catch all bound variable for Y:

- (* disjunction through factorisation *)
fun OR false Y = Y |
OR true Y = true;
> val OR = fn : bool -> bool -> bool

Again, note that Y is not used in the second case so it can be replaced by the wildcard pattern:

- fun OR false Y = Y |
OR true _ = true;
> val OR = fn : bool -> bool -> bool

4.8 Recursion with integers

As we discussed in chapter 1, recursion is used in functional languages, for repetitive processing of data.
Recursion is based on a function invoking itself, which in turn creates new instances of the bound variables with
new values.

In a recursive function, it is useful to distinguish base cases from recursion cases. For a base case, some property
of the arguments is satisfied, recursion stops and a value 1s returned. For a recursion case, that property is not
satisfied and the function is called again to process some modification of its arguments. The simplest property
for an argument to have is that it is some value. Thus, pattern matching with constants can often be used for
base cases. For a recursion case, arguments are modified and reused. Thus for recursion case patterns bound
variables are often used.

Recursion is usually defined over a range of values and some values, typically at the top or bottom of the range,
are nominated as the base cases which terminate the recursion. Thus, for recursion to terminate there must be

at least one base case.

To begin with, we will look at recursion with integer values. Consider the non-negative integers starting at 0:
012345678910 ...

In this sequence, each value is one more than the one before 1t. That 1s each value is the successor of the one
before it. Now, note that:

1 == 140

2 == 1+1 == 1+1+0

3 == 1+2 == 1+1+1 == 1+1+1+0

4 == 143 == 1+142 == 1+1+1+1 == 1+1+1+1+0

In general, any positive number is a finite number of successors of 0. We can use this to give a formal definition
of a (non-negative) integer:

0 is an integer
14N is an integer if N is an integer
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1 == 140 is an integer
2 == 1+1 is an integer
3 == 1+2 is an integer

This is a recursive definition: being an integer 1s defined in terms of being an integer with 0 as the base case.
Many algorithms involving integers can be defined recursively in terms of a base case for 0 and a recursion case
for a positive value. Then, an important component of a typical recursion case is to take the predecessor of the
positive value and call the function again. Thus, by repeatedly subtracting 1 the base case is reached.

In general, to do something 0 times, do not do it and to do something N times do it once and then do it N-1
times. We can express this as:

fun namel 0 = base case expression |
namel name2 =
recursion case erpression using name?2 - 1

For example, consider finding the sum of the first n numbers. The sum of the first 0 numbers is 0. The sum of
the first n numbers is n added to the sum of the first n-1 numbers:

- (* sum integers from 1 to n *)
fun sum 0 = 0 |
sum n = n+sum (n-1);
> val sum = fn : int -> int

n must be an integer because the pattern 0 is an integer. The result is an integer because the result of the base
case, 0, is an integer.

Thus:

- sum 4;
> 10 : int

because:

sum 4 ==> 4+sum 3 ==> 4+3+sum 2 ==> 4+3+2+sum 1 ==>
4+3+2+1+sum 0 ==> 4+3+2+1+0 ==> 10

For example, consider finding 2 to the power n. 2 to the 01s 1. For 2 to the n, multiply 2 by 2 to the n-1:

- (* 2 to the power n *)
fun power2 0 = 1 |
power2 n = 2*power2 (n-1);
> val power2 = fn : int -> int

n must be an integer because the pattern 0 1s an integer. The function returns an integer because the base case,
1,1s an integer.

Thus:

- power2 3;
> 8 : int
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power2 3 ==> 2%power2 2 ==> 2*2%power2 1 ==>
2*2%2*power2 0 ==> 2%2*2%1 ==> §

This function can be generalised to find the value of any number to the power of another number. For x to the
power n, x to the 0 1s 1 and x to the n is x times x to the n—-1: Thus, we can replace 2 with x:

- (* x to the power n *)
fun power x 0 = 1 |
power x n = x*power x (n-1);
> val power = fn : int -> int -> int

The function returns an integer because the base case, 1, is an integer. n must be an integer because the pattern
0 is an integer. x must be an integer because power must return an integer and x is multiplied by power’s result.

Note that x is not used in the base case so it can be replaced by the wildcard pattern:

1
x*xpower x (n-1);
fn : int -> int -> int

- fun power _ 0
power
> val power

[
1]

For example:

- power 4 4;
> 266 : int

because:

power 4 4 ==> 4*power 4 3 ==> 4*4xpower 4 2 ==>
4x4x4*power 4 1 ==> 4*4*x4x4*power 4 0 ==> 4*4*4*x4x]1 ==> 256

We can use power to define functions to find powers of given integers, for example 3:

- val power3 = power 3;
> val power3 = fn : int -> int

power3 is like power with x set to 3;

- power3 3;
> 27 : int

Consider multiplying x by y. x times 0 is 0. x times y is x added to x times y-1:

- (* multiply integers through addition *)
fun mult x 0 = 0 |
mult x y = x+mult x (y-1);
> val mult = fn : int -> int -> int

The function must return an integer because the base case, 0, is an integer. y must be an integer because the
pattern 0 is an integer. x is an integer because it is added to the result of the function.

Note that x is not used in the base case so it can be replaced by the wildcard pattern:
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> val mult = fn : 1nt -> 1nt -> 1int

Thus:

- mult 5 2;
> 10 : int

because:

mult 5 2 ==> b+mult 5 1 ==> b+b+mult 5 0 ==> 5+5+0 ==> 10

We can use mult to define functions to multiply by specific integers, for example 3:

- (* multiply by 3 *)
val threetimes = mult 3;
> val threetimes = fn : int -> int

threetimes is like mult with x set to 3:

- threetimes 8;
> 24 : int

Consider adding x and y. x plus 0 is x. x plus y is one more than x plus y-1:

- (* add integers through incrementing and decrementing *)
fun add x 0 = x |
add x y = 1+add x (y-1);
> val add = fn : int -> int -> int

The function returns an integer because in the recursion case 1 is added to the function value. y is an integer
because the pattern 0 is an integer. x is an integer because it is returned from the base case and must have the
same type as the recursion case.

Thus:

- add 4 3;
> 7 : int

because:

add 4 3 ==> 1+add 4 2 ==> 1+1+add 4 1 ==> 1+1+1+add 4 0 ==>
1+1+1+44 ==> 7

We can use add to define functions to add specific integers to other integers, for example 5:

- (% add 5 *)
val add5 = add b5;
> val add5 = fn : int -> int

add5b is like add with x set to 5:

- addb 6;
> 11 : int
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Consider the function to find the sum of the squares of the first n integers. The sum of the squares of the first
0 integers is 0. The sum of the squares of the first n integers is n squared plus the sum of the squares of the
first n—1 integers:

- (* sum of squares from 1 to n *)
fun sumsq 0 = O |
sumsq n = sq n+sumsq (n-1);
> val sumsq = fn : int -> int
- sumsq 3;
> 14 : int

because:

sumsq 3 ==> sq 3+sumsq 2 ==> sq 3+sq 2+sumsq 1 ==>
sq 3+sq 2+sq 1l+sumsq O ==> sq 3+sq 2+sq 1+0 ==>
9+4+1+40 ==> 14

Consider the function to find the sum of the doubles of the first n integers. The sum of the doubles of the first
0 integers is 0. The sum of the doubles of the first n integers is n doubled plus the sum of the doubles of the
first n-1

- (* double an integer *)

fun double x = 2%x;
- val double = fn : int -> int
- (* sum of doubles from 1 to n *)

fun sumdouble O = 0 |

sumdouble n = double n+sumdouble (n-1);

> val sumdouble = fn : int -> int
- sumdouble 3;
> 12 : int

because:

sumdouble 3 ==> double 3+sumdouble 2 ==>

double 3+double 2+sumdouble 1 ==>

double 3+double 2+double 1+sumdouble 0 ==>
double 3+double 2+double 1+0 ==> 6+4+2+0 ==> 12

These functions are the same apart from the function applied to the argument n. sumsq uses sq and sumdouble
use double; both are of type:

int -> int

We can generalise sumsq and sumdouble to a function which finds the sum of applying an arbitrary int ->
int function to the first n integers:

- (* sum function f from 1 to n *)
fun sumfunc f 0 = 0 |
sumfunc f n = f n+sumfunc £ (n-1);
= fn : (int -> int) -> int -> int

> val sumfunc
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the 1nteger n and 1t must return an i1nteger for the addition 1n the recursion case because sumfunc returns an
integer.

Note that £ is not used in the base case so it could be replaced by the wildcard pattern:
o1

f n+sumfunc £ (n-1);
> val sumfunc = fn : (int -> int) -> int -> int

- fun sumfunc _ O
sumfunc f n

For example:

- sumfunc sq 3;
> 14 : int

because:

sumfunc sq 3 ==> sq 3+sumfunc sq 2 ==>
sq 3+sq 2+sumfunc sq 1 ==> sq 3+sq 2+sq 1+sumfunc sq 0 ==>
sq 3+sq 2+sq 140 ==> 9+4+1+0 ==> 14

For example:

- sumfunc double 3;
> 12 : int

because:

sumfunc double 3 ==> double 3+sumfunc double 2 ==>
double 3+double 2+sumfunc double 1 ==>

double 3+double 2+double 1+sumfunc double 0 ==>
double 3+double 2+double 1+0 ==> 6+4+2+0 ==> 12

We can use sumfunc to define sumsq. sumsq is like sumfunc with £ set to sq:

- val sumsq = sumfunc sq;
> val sumsq = fn : int -> int

Note that sumfunc is a:

(int -> int) -> int -> int

function and sq 1s a:

int -> int

function so:

sumsq == sumfunc sq : int -> int
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- sumsq 3;
> 14 : int

because:
sumsq 3 ==> sumfunc sq 3 ==> ... ==> 14
Similarly, we can define sumdouble to be like sumfunc with £ set to double:

- val sumdouble = sumfunc double;
> val sumdouble = fn : int -> int
- sumdouble 3;

> 10 : int

sumfunc is another higher order function because it takes a function as argument and returns a function as
result.

4.10 Conditional expression

Pattern matching is used to discriminate between values but can only identify their presence or absence. When
other properties must be checked, the conditional expression is used. This has the form:

if expressionl
then expression?
else expressiond

erpression] must return a boolean value.
expression? and expressiond must return values of the same type.

If expressionl is true then the value of ezpression? is returned. If ezpressionl is false then the value of
expressiond is returned.

For example, suppose we want to find the absolute value of an integer, that is the value without regard for
whether it is negative. If it is greater than or equal to zero then leave it alone. Otherwise negate it to make it
positive:

- (* absolute value of an integer *)
fun abs x = if x>=0
then x
else "x;
- val abs = fn : int -> int

x 18 integer because it is compared with 0.

Thus:

- abs 73;
> 3 : int
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For example, to ind the longer oI strings sl and sZ, we compare their sizes. 11 the nrst string 1s longer than
the second then we return the first. Otherwise we return the second string:

- (* longer of two strings *)
fun max sl s2 = if size sl>size s2
then si
else s2;
> val max = fn : string -> string -> string

Note that size has a string argument so s1 and s2 must be strings. Note that size returns an integer so >
must be integer comparison.

Thus:

- max "big" "small";
> "small" : string

4.11 Conditional expressions and boolean values

This is a good place to reiterate that the result of a boolean expression is a boolean value. Thus there is no
need to test a boolean expression to return explicitly a boolean value. For example, in:

fun positive n = if n>0
then true
else false

whenever n is greater than 0 then n>0 i1s true and whenever n is not greater than 0 then n>0 is false so the
conditional expression is redundant. Hence:

- (* is integer n positive? *)
fun positive n = n>0;
> val positive = fn : int -> bool

1s all that is needed.

There is never any need to build a conditional expression which returns true from the then case and false
from the else case. Instead, the boolean expression alone will do. In general:

if boolean expression
then true
else false

is the same as:
boolean expression
Similarly:

if boolean expression
then false
else true
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not ( boolean expression )

4.12 Pattern matching with real values

As we saw in chapter 2, real arithmetic is not precise and comparison of real values is unreliable. Similarly,
pattern matching with real values, though allowed in SML, i1s not recommended. For example, pattern matching
with a case for 0.0 may not succeed even when a value is so small that it might as well be zero.

Instead, with reals conditional expressions may be used to test whether potential result values are within
acceptable error ranges of a required values. In particular, conditional expressions should used for recursion
with real values.

For example, consider finding the sum of all the reals between n and 0.0 in steps of 0.1. Each time, n is added
to the result of finding the sum from 0.0 to 0.1 less than n:

- (* bad attempt to sum from 0.0 to n by pattern matching 0.0 *)
fun rsum 0.0 = 0.0 |
rsum n = n+rsum (n-0.1);
> val rsum = fn : real -> real

The recursion is supposed to stop when the argument 1s 0.0.

Running:
- rsum 8.0;

on the SML system I use ... it runs out of memory! Because of inaccuracies in real arithmetic, n is never exactly
0.0 and so recursion continues with n becoming more and more negative.

Instead, an explicit test should be used, for example to see if n is equal to or less than 0.00000000000005:

- (* sum from 0.0 to n with acceptable bound for 0.0 *)
fun rsum n = if n<=0.000000000000005
then 0.0
else nt+rsum (n-0.1);
> val rsum = fn : real -> real

Now, running:

- rsum 8.0;
> 324.000000000001 : real

the answer should be 324.0 so an error of 0.000000000001 has accumulated. By printing out values of n as
the calculation proceeds (a technique we will look at in a later chapter) we get the series:

8.07.97.87.77.67.67.47.37.27.17.06.96.8
6.50000000000001 6.40000000000001 6.30000000000001
1.00000000000001 0.900000000000012 0.800000000000012 ...
0.200000000000012 0.100000000000012 1.16850973341798E" 14

so the value of n drifts more and more as the error from n-0.1 mounts up. The last term is effectively
0.00000000000001, close to 0.0 but not close enough for the pattern match in our first attempt at rsum.
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In the last chapter we wrote functions which carried out simple calculations. Testing them involved trying
out representative test cases. We have now seen a number of ways of structuring functions by cases and with
conditional expressions. When testing such functions, it 1s important to ensure that they behave correctly on
all possible paths through them.

Thus, when you are testing a simple case structured function, you should really try it with argument values for
every case. If there are a lot of cases for which the action is similar then try out a small set of them. If the

function has a catch all case or an exception case then check these out as well.

For example, to test:

- fun past "stand" = "stood" |
past "swim" = "swam'" |
past "eat" = "ate" |

past v = v "ed";
> val past = fn : string -> string

We might try the typical cases:

- past '"stand";

> "stood" : string
- past "eat";
> "ate" : string

and the special case:

- past "walk";
> "walked" : string

For example, to test:

- fun OR false Y = Y |
OR true _ = true;
> val OR = fn : bool -> bool -> bool

we might try:

OR false false;
> false : bool

and:

OR true true;
> true : bool

We have seen that recursive functions have base and recursion cases. Thus, you should test a recursive function
with values to test all the base and recursion cases.

For example, to test:
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> val power = In : 1nt -> int -> 1int

we might try the recursion cases:

- power 2 3;
> 8 : int

and:

- power 0 3;
> 0 : int

and the base case:

- power 3 O;
> 1 : int;

We might try:

- power 0 O;
> 1 : int

Do we want 0 to the power of 0 to be 1...7
We also looked at the use of conditional expressions. When a function has conditional expressions it should
be tested with different values that will make the condition both true and false. If the function has nested

conditional expressions then test values should be chosen to try out all possible paths.

For example, for:

- fun max sl s2 = if size si>size s2
then s1
else s2;
> val max = fn : string -> string -> string

we might try:

- max '"enormous" "tiny";
> "enormous" : string

where the condition is true, and:

- max "big" "small";
> "small" : string

where the condition is false. We could also try empty string arguments:

- max "y Ilhugell;
> "huge" : string

- max Ilvastll LLE L
3
> "vast" : string
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- max "tiny" "vast';
> "vast" : string

Here, do we really want the second argument as the result...?

Thus, testing throws up effects that we may not have considered when we wrote the function.

4.14 Summary

In this chapter we looked at how to use pattern matching to identify different cases for a function’s argument, in
particular to represent simple association tables as case structured functions. We saw how the wildcard pattern
is used to ignore unknown cases. We then considered pattern matching on booleans and saw how to represent
tables where two columns are consulted to return a result. We discussed recursion as a way of repeating an
activity by referring to a function through an associated name in that function’s body. In particular, we looked
at processing descending ranges of integers. We constructed base cases for constants when repetition stops
and recursion cases where an argument is modified before being passed to the next stage. Finally, we met the
conditional expression which is used when properties other than specific values are needed to distinguish cases.

The tables we represented in this chapter were of fixed size. In the next chapter we will meet the list type which
we can use to represent collections of varying size.

4.15 Exercises

1) Identify the types of the following functions:

a) fun f1 "a" = 1 |
fi Ilbll = 2 |
fi1 c=0

b) fun f2 0 = "zero" |

f2 1 = "one" |
f2 n = "777"
c) fun f3 1 = ("one",1.0) |

£3 2 = ("two",2.0) |
f3 n = ("?777",0.0)

d) fun f4 1 1 = true |
f4 2 2 = true |
f4 n1 n2 = false

e) fun f5 "one" 1 = "o" |
f5 "one" 2 = "n" |
f5 "one" 3 = "e" |
£5 s n = "7t

f) fun f6 1 = 1 |
fé6 n = f6 (n-1)

g) fun f7 m 0 = m |
f7mn = £f7 m (n-1)
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i) fun f9 x = if x<1
then "small"
else "big"

j) fun £10 x = if x>0.0
then (x,"pos")
else (x,"not pos")

k) fun f11 x y = if x<y

then x
else f11 (x-0.1) y

2) Explain why the following functions are badly formed:

a) fun f1 1 = "one"
f1 1.0 = "one" |
f1i n = "not one"
b) fun f2 1 = "true"
f2 n = false
c) fun £3 "real" = 1.0 |
£3 "int" =1 |
£3 "string" = "one" |

£f3 n = false

d) fun f4 x y = if x>y
then '"yes"
else "no"

e) fun f5 x = if x>3
then true
else "no"

f) fun 6 x y = if x<y
then x
else f6 (x-y) y

x |
17 (x-y) y (=-1)

g) fun f7 x
f7 x y =z

-
(@]
1]

3) Write and test the following functions. Identify the type of each function:

a) In general, the plural of an English word is found by following it with "s". However, there are a
number of exceptions, for example:

singular plural
sheep sheep

mouse mice
fish fish
datum data
louse lice

Write a case structured function plural which given a string word returns it with "s" on the end,
unless it is one of the above special cases in which case the appropriate plural should be returned.

b) The following table might be used to translate between English and Spanish colour words:
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white blanca

red roja
yellow amarilla
blue azul

green  verde
Write case structured functions to convert colour words from:

i) English to Spanish
ii) Spanish to English

In both cases, how do you deal with an unknown colour word?

¢) The following table might be used to find the number of legs for various creatures:

animal legs
whale O
swan 2
drunk O
goat 4
spider 8
ant 6
Silver 1

Write a case structured function to return the number of legs for a given creature. How do you deal
with an unknown creature?

4) Write and test the following functions. Identify the type of each function:

a) The truth table for the boolean IMPLIES operator is

X Y X IMPLIES Y
false false true
false true true
true false false
true true true

Write a case structured function for IMPLIES

i) with 4 cases directly from the truth table
ii) with 2 cases by finding a pattern within the truth table

b) The truth table for the boolean NAND operator is

X Y X NAND Y
false false true
false true true
true false true
true true false

Write a case structured function for NAND

i) with 4 cases directly from the truth table
ii) with 2 cases by finding a pattern within the truth table
5) Write and test the following functions. Identify the type of each function:
a) The first 7 terms of the factorial sequence are:
n 0 1 2 3 4 5 6

n!1 1 2 6 24 120 720 ...
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-

n! == n*x(n-1)!
Write a function to calculate n factorial for arbitrary non-negative integer n. Do not use a conditional
expression.
b) Consider x-y. If y is zero then the result is x. Otherwise the result is the difference between the
predecessor of x and the predecessor of y:

x-0 == x

x-y == (x-1)-(y-1)

9-6 == 8-5 == 7-4 == -3 == 5-2 == 4-1 == 3-0 ==
Given:
- fun pred n = n-1;
> val pred = fn : int -> int
write a recursive function to subtract one integer from another, without using - other than for

subtracting 1. Do not use a conditional expression.

¢) The first 10 terms of the Fibonacci series are:

6 7 8 9 10

n o 1 2 .
1 8 13 21 34 55 ...

3 4 5
fibn 0 1 2 3 5

In general, the nth term is found by adding together the n-1th and n-2th terms.

Write a recursive function to return the nth term of the Fibonacci series for non-negative integer n.
Do not use a conditional expression.

6) Write and test the following functions. Identify the type of each function:

a) Write a recursive function to join string s onto itself non-negative integer n times:

- sjoin 3 "very'";
> "veryveryvery" : string

Do not use a conditional expression.

b) Use sjoin from a) above to define a function to join a string onto itself the same number of times
as its length:

- ljoin '"huge";
> "hugehugehugehuge" : string

¢) Write a function to join string s1 onto the end of string s2 integer n times:

- rjoin "!'" "Help" 3;
> "Help!!!" : string

If n is O then return s2. Otherwise join s1 onto the result of joining s1 onto the end of s2 n-1 times.

7) Use the following function

fun sumfunc _ O o |

sumfunc f n = f n+sumfunc £ (n-1)
to define functions to find the sum of the first n

i) cubes
ii) factorials
iii) integers
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a) Write a function to find the bigger of two integers:

- max 4 b;
> 5 : int

b) Write a function to find the biggest of three reals:

- max3 1.2 3.4 3.2;
> 3.4 : real

9) Write a function of an integer n which returns a string as follows:

n < 0 == "negative"
n =0 == "zero"
n > 0 == "positive"

Indentify the function’s type.

10) Write and test the following functions. Identify the type of each function:

a) Write a function to divide integer x by integer y, by repeated subtraction and addition of 1, given
that:

x div 0 == error
x div y == 1+(x-y) div y if x>=y
== if x<y

9 div 2 == 147 div 2 == 1+1+5 div 2 == 1+1+1+3 div 2 ==
1+1+1+1+1 div 2 == 1+1+1+1+0 ==
For example:

- DIV 12 5;
> 2 : int

Do not use div.

b) Write a function to find the remainder on dividing integer x by integer y without using mod or
div:

- MOD 15 4;
> 3 : int

Each time, subtract y from x until x is smaller than y:

15 mod 4 == 11 mod 4 == 7 mod 4 == 3 mod 4 ==
11) Write and test the following functions. Identify the type of each function:

a) Write a function which given two strings repeatedly joins spaces onto the end of the first to make
it the same length as the second:

- extend_space '"cat'" "catamaran';
> "cat " : string

b) Write a function which given three strings repeatedly joins the first onto the end of the second
to make it at least the same length as the third:

- extend "." "cat'" '"catapult";
> "cat..... " : string

You may assume that the first string has only one letter.

¢) Use the function from b) to define the function from a).
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Chapter 5

Introducing lists

5.1 Introduction

In chapter 1 we saw that models are made out of variable sized collections of things and that things are fixed
size groups of properties. In the last three chapters we have looked at how we can represent properties as
values from basic types and how we can start to use operations on basic types to build functions which serve as
methods for the things so represented. In this and the next chapter we are going to discuss the representation
of variable sized collections of individual values. In chapter 7, we will at last be able to manipulate collections
of multi-valued things.

5.2 Basic list properties

SML provides the list type as one way of representing collections. A list is a variable length sequence of elements
which are all of the same type. We can think of a list as being made up of cells with two fields:

CELL HEAD TAIL

known as the head and the tail. If the head is a value of any type then the tail must be a list with elements of
the same type as the head value.

Lists always end with the empty list, also known as the null list, which 1s written as:

nil

or:

Lists are formed using the infix constructor operator ::, sometimes called “cons”. For:
erpressionl :: expression?

expression? must be a list of the same type as ezpressionl.
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For example:

1::[]

which we could draw as the cell:

1 []

is an integer list with 1 in the head and the empty list in the tail. Similarly:

2::(1::[1)

which we could draw as:

is an integer list with 2 in the head and the integer list 1::[] in the tail. Thus:

3::(2::(1:: )

which we could draw as:

3 2 1 []

is an integer list with 3 in the head and the integer list 2::(1::[]1) in the tail.

For example:

llapell: : []

drawn as:

||ape|| []

is a string list with ”ape” in the head and [] in the tail. Similarly:

"bat"::("ape"::[]1)

drawn as:

"pat" ||ape|| [:l

is a string list with "bat'" in the head and the string list "ape':: [] in the tail. Thus:
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drawn as:

"eat" "pat" ||ape|| [:l

is a string list with "cat" in the head and the string list "bat":: ("ape"::[]) in the tail.

There are two simplifications to the list notation. First of all, if the tail of a list is a list then it need not be
bracketed so:

expressionl :: ( expression? :: expressions )

simplifies to:

exrpresstonl :: expression? :: expressiond

For example:

3::(2::(1:: )

simplifies to:

and:

"cat"::("bat"::("ape"::[1))

simplifies to:

"cat'::'"bat'"::"ape"::[]

Secondly, lists that end in the empty list may be written within square brackets, with elements separated by
commas, without the empty list at the end. Thus:

expression] :: expression? :: ... :: expressionN ::[]

may be written as:

[ expressionl , expression? , ... ,expressionN ]

For example:

1s the same as:
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and:

"cat'::'"bat'"::"ape"::[]

1s the same as:

["cat"::"bat"::"ape"]

SML systems print list values using the [...] form.

Lists can be made of elements of any type including tuples, functions and lists. For example, the list of names:

[("Donald","Duck"), ("Mickey",'"Mouse"), ("Pluto","Pup")]

is a list of string * string tuples.

For example:

[fn (x:int) => x*x,fn (x:int) => x*x*x,fn (x:int) => x*x*x*x]

is a list of int —-> int functions.

For example:

(f1,1,11,02,4,8]1,[3,9,27]1]

drawn as:

[]

is a list of integer lists of numbers and their powers:

Note that:

[ expression ]

is a one element list of the same type as expression. For example:

["dog"]

drawn as:

”dOg” [:l
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Lhe [1st type 1s a polymorphic type; that 1s l1sts may have any type as element. Duppose ’a 1s any type. lhen
a list of that type of element has type:

’a list

list is the type constructor for lists. ::’s type is:

- (op ::);
> fn : (Pa * ’a list) -> ’a list

so :: takes one argument of any type ’a and another argument of a list of that type, a list, and returns a
list of that type.

For example, an integer list:

- 1::2::3::[1;
> [1,2,3] : int list

and a string list:

- nan::nbn::ncn::m;
> ["a","b","c"] : string list

For example, a list of tuples of integers and strings:

- [(1,"one"),(2,"two"), (3,"three")];
> [(1,"one"),(2,"two"),(3,"three")] : (int * string) list

Note that because the list element type is a tuple it 1s bracketed in the list expression: list has greater
precedence in type expressions than *. In contrast:

int * string list

is a tuple of an integer and a string list, for example:

- (1,[”yes”,”ja”,”si”]);
> (1,["yes","ja","si"]) : int * string list

For example, a list of integer to integer functions:

- [fn (x:int) => x*x,fn (x:int) => x*x*x,fn (x:int) => x*x*x*x];
> (int -> int) list

Note that again the function element type is bracketed because 1ist has greater precedence than -> in type
expressions. In contrast:

int -> int list

is a function from a function to an integer list, for example:

133



> val three = fn : 1nt -> 1int list
- three 3;
> [3,3,3] : int list

For example, a list of integer lists:

- [[1,1,1],[2,4,8],[3,9,271];
> [[1,1,1],[2,4,8],[3,9,27]1] : int list list

So far we have concentrated on lists with values as elements. Lists may have expressions as elements, not just
values, so long as those expressions must all return the same types. Like ::, the , in the bracketed list notation
has lower precedence than arithmetic expressions and function calls so they need not be bracketed. For example:

- [2.0,2.0%2.0,2.0%2.0%2.0,2.0%2.0%2.0%2.0] ;
> [2.0,4.0,8.0,16.0] : real list

For example:

- [size "fish",floor 42.24,sq 3];
> [4,42,9] : int list

Note that some SML systems may not display all of very long lists. For example, on the system I use:

- [1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0];
> [1,2,3,4,5,6,7,8,9,0,1,2,...] : int list

only the first 12 elements are displayed.

5.3 Pattern matching with lists

A formal definition of a list is:

[1 is a list
if expression] 1s an ’a and expression?is an ’a list
then ezpressioni :: expression2is an ’a list

For recursive functions of lists we can now use [] for the base case and recursion cases with list patterns. These
are formed from :: or [...,...] with constants, lists and names.

fun name [1 = base case |
name ( head :: tail) =
recursion case using head and tail

Here, head and tail are both constants or names or list patterns.

For matching a list pattern, the argument must have the same structure as the pattern, with constants in the
same positions. Names in the list pattern match with and are set to values in the argument in the same position.

To begin with we will use patterns of the form:
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so h will match the head of a list argument and t will match the tail.
Note that a list pattern using :: must be bracketed.

For example, consider finding the length of a list. The empty list has no length. Otherwise, the length is one
more than the length of the tail:

- (* length of list *)
fun length [1 = 0 |
length (h::t) = 1+length t;
> val length = fn : ’a list —> int

This is a polymorphic function: 1t will find the length of a list of any type. No operations are performed on the
list elements apart from pattern matching so the list’s type is irrelevant.

Note that h is not used in the recursion case so 1t can be replaced by the wildcard pattern:

- fun length [1 = 0 |
length (_::t) = 1+length t;
> val length = fn : ’a list —> int

For example:

- length ["c","b","a"];
> 3 : int

because:

length ["c","b","a"] ==> match _ with "c"
take t as ["b","a"]

1+length ["b","a"] ==> match _ with "b"
take t as ["a"]

1+1+length ["a"] ==> match _ with "a"
take t as to []

1+1+1+length [] ==>

1+1+1+40 ==> 3

Consider, for example, adding the elements of an integer list together. The sum of the elements of an empty
list 1s 0. The sum of the elements of a non-empty list is the head added to the sum of the tail:

- (* sum an integer list *)
fun sum [] = 0 |
sum (h::t) = h+sum t;
> val sum = fn : int list -> int

sum returns an integer because 0 is integer. The argument is an integer list because h is an integer because h is
added to the result of sum.

For example:
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because:

sum [9,7,5,3] ==> take h as 9
take t as [7,5,3]

9+sum [7,5,3] ==> take h as 7
take t as [5,3]

9+7+sum [5,3] ==> take h as 5
take t as [3]

9+7+5+sum [3] ==> take h as 3
take t as []

9+7+5+3+sum [] ==>

9+7+5+3+0 ==> 24

Consider, for example, counting how often 0 appears in an integer list. If the list is empty then 0 appears 0
times. Otherwise, if 0 is the head then add 1 to the count for the tail. Otherwise, count 0 in the tail:

- (* count 0 in an integer list *)
fun count0 [] = 0 |
count0 (0::t) 1+count0 t |
count0 (h::t) = countO t;
> val countO = fn : int list -> int

The argument is an integer list because 0 in 0::t is an integer. The result is an integer because the base case
is 0.

Note that h is not used in the second recursion case so it can be replaced by the wildcard pattern:

- fun count0 [] =0
count0 (0::t) 1+count0 t |
count0 (_::t) = countO t;

> val countO = fn : int list -> int

For example:

- count0 [1,0,2,0,0,1];
> 3 : int

because:

count0 [1,0,2,0,0,1] ==> match _ with 1
take t as [0,2,0,0,1]

count0 [0,2,0,0,1] ==> match O
take t as [2,0,0,1]

1+count0 [2,0,0,1] ==> match _ with 2
take t as [0,0,1]
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take t as LO,1]

1+1+count0 [0,1] ==> match O
take t as [1]

1+1+1+count0 [1] ==> match _ with 1
take t as []

1+1+1+count0 [] ==>

1+1+1+40 ==> 3

5.4 Equality types

Consider counting how often value v appears in a list. v appears in the empty list 0 times. If the head of the
list is v then add 1 to the count of v in the tail. Otherwise, count v in the tail:

- (* count value in list *)
fun count v [] = 0 |
count v (h::t) = if v=h
then 1+count v ¢t
else count v t;
> val count = fn : ’’a -> ’’a list -> int

Here, the type involves the variable ’’a rather than the usual ’a.

In length above, we saw that no operations were performed on the list elements so they could be any type.
We represented such a polymorphic type with an ’a. Here, the operation performed on v and h is an equality
comparison with =. Hence, v and h must be the same type and that type may be any for which equality is
defined - an equality type. This is a slight restriction on a polymorphic type and so the variable is written with

two primes in front of the alphabetic identifier instead of one prime for a fully polymorphic type. Hence the
use of ’?a in the type here:

’’a -> ?’a 1list -> int
For example:

—_ COunt Ilashll [Iloakll’Ilashll’Ilelmll’llashll’lloak”] ;
> 2 : int

because:

count "ash" ["oak","ash","elm","ash","oak"] ==> take h as "oak"
take t as ["ash"...]

count "ash" ["ash","elm",6"ash",6"oak'"] ==> take h as "ash"
take t as ["elm"...]

1+count "ash" ["elm'",'"ash'",'"oak'"] ==> take h as "elm"
take t as ["ash","oak"]

1+count "ash'" ["ash",'"oak"] ==> take h as "ash"
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1+1+count "ash'" |"oak"] ==> take h as '"oak"
take t as []

1+1+count "ash" [] ==>

1+1+0 ==>2

This 1s a polymorphic function and may be used to count occurrences of any type of value in a list of appropriate
type. It may also be used to define functions to count specific values in lists of specific types. For example, to
count O in integer lists:

- val countO0 = count O;
> val count0 = fn : int list -> int

countO is like count with v set to 0.
Note that the type ’ ’a in count has been specialised to int, an equality type, in count0. v has been associated

with an integer value. v was of type ’’a so all occurrences of ’’a must become int for consistency. Similarly,
n:

- (* count "ash'" in string list *)
val countash = count "ash";
> val countash = fn : string list -> string

to count occurrences of "ash'", ’’a has been specialised to string.

5.5 General list operations

There are a number of useful general list operations which we will now consider. These are polymorphic and
form the basis of many list functions.

5.5.1 Add to end of list

Consider adding a value to the end of a list. For example:

- add 5 [1,2,3,4];
> [1,2,3,4,5] : int list

To add a value to an empty list, make a new list with the value as the only element. Otherwise, put the head
of the list onto the front of adding the value to the end of the tail of the list:

- (* put value on the end of list *)
fun add v [1 = [v] |
add (h::t) = h::add v t;
> val add fn : ’a -> ’a list -> ’a list

n <

Suppose v is of unknown type ’a. Then the result of add is an ’a list because the base case returns a list
with v as head. Then h must be of type ’a because it 1s joined onto the front of the result of add so the list
argument is an ’a list.

For example:
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because:

add lldll [llall’llbll’”c”] ==> take h as llall
take t as ["b","c"]

llall: :add lldll [llbll’”cll] ==> take h as llbll
take t as ["c"]

"a"::"b"::add "d" ["c"] ==> take h as "c"
take t as []

"al::"b"::"c"add "d" [1 ==>
"alii "M ["q"] ==>
aliivb"i: e, "a"] ==>
"ali: [, e, " a"] ==>

[nan s "pt s nen s lldll]

This is a common technique: the list 1s unwound to the required point and then wound back up again.

5.5.2 Append two lists end to end

Consider joining two lists end to end:

- append [1,2,3] [4,5,6];
> [1,2,3,4,5,6] : int list

Just using :: will not work. In:
[1,2,3]::[4,5,6]

the head is an int list and so is the tail. Instead, we have to unwind the head and join it from the back onto
the tail:

append [1,2,3] [4,5,8] ==>
1::append [2,3] [4,5,6] ==>
1::2::append [3] [4,5,8] ==>
1::2::3::append []1 [4,5,6] ==>
1::2::3::[4,5,8] ==>
1::2::[3,4,5,8] ==>
1::[2,3,4,5,6] ==>

[1,2,3,4,5,6]
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- (* append a list onto the end of another *)
fun append [] 12 = 12 |
append (h::t) 12 = h::append t 12;
> val append = fn : ’a list -> ’a list -> ’a list

Suppose the first argument is an *a list. Then h is of type ’a so the result is an >a list because h is joined
onto it. 12 must also be an >a list because it is the base case result. For example:

append [”a”,”b”,”c”] [”d”’”e”’”f”] ==> take h as "a"
take t as ["b","c"]

”a”::append [”b”,”C”] [”d”,”e”,”f” ==> take h as "b"
take t as ["c"]

”a”::”b”::append [”C”] [”d”’”e”’”f”] ==> take h as "c¢"
take t as []

"al::"b"::"c"::append [1 ["d","e","f"] ==>
taiib e [Man, e, "] ==>
taiibi:[Met,dr, e, "] ==>
"at:i:["b,cm,dr, e, " E] ==>

[Ilall s "pt s nen s nqe s nat s llfll]

SML systems provide the append function as the infix operator @:

- op ©;
> fn : ’a list * ’a list -> ’a list

For example:

- ["alpha","beta"]@["gamma","delta","epsilon"];
> ["alpha",'beta",'"gamma",'"delta'","epsilon"] : string list

@ is a function and may not appear in patterns. In contrast, :: is a constructor and may appear in patterns.

Expressions containing bracketed sequences of @ may be simplified by dropping the brackets:

( valuel @ value2 ) @ wvalue3d ==>
valuel @ value2 @ valued

For example:

- [1,2,3]e[4,5,6]@[7,8,9];
> [1,2,3,4,5,6,7,8,9] : int list

@ has the same precedence as the list constructor ::.
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Consider inserting value v1 before the first occurrence of value v2 in a list:

- insertb Henougn ["a","b","d"];
> ["a","b","c","d"] : String llSt

If the list is empty then there are no occurrences of v2. If the list starts with v2 then put vi on the front of
the list. Otherwise put the head of the list onto the result of inserting v1 before the first occurrence of v2 in
the tail of the list:

- (* insert value v1 before value v2 in list *)
fun insertb vi v2 [1 = [1 |
insertb vi v2 (h::t) = if h=v2
then vi::h::t
else h::insertb vl v2 t;
> val insertb = fn : ’’a -> ’’a -> ’’a list -> ’’a list

No operations are performed on h and v2 apart from an equality comparison. Hence they must be equality
types, say ’’a. Then the result must be ’>’a 1list because h is at the start of a result list. v1 must be of type
>?a because it is in that result list and starts a result list. Thus h::t must be a ’>’a 1list because it starts
with a *’a.

Note that v1 and v2 are not used in the base case so they can be replaced by the wildcard pattern:

- fun insertb _ _ [1 = [1 |
insertb vi v2 (h::t) = if h=v2
then vi::h::t
else h::insertb vl v2 t;
> val insertb = fn : ’’a -> ’’a -> ’’a list -> ’’a list

For example:

- insertb 3 4 [1,2,4];
> [1,2,3,4] : int list

because:

insertb 3 4 [1,2,4] ==> take h as 1
take t as [2,4]

1::insertb 3 4 [2,4] ==> take h as 2
take t as [4]

1::2::insertb 3 4 [4] ==> take h as 4
take t as []

1::2::3::4::[] ==>
[1,2,3,4]

Consider inserting value v1 before all occurrences of value v2 in a list:

- insertball 0 1 [1,2,1,3];
> [0,1,2,0,1,3] : int list
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Iront ol the new list. OUtherwise, put the head of the l1st onto the result ol mserting v1 belore all occurrences
of v2 in the tail of the list:

- (* insert vl before all v2 in list *)
fun insertball 0=10 |

insertball vi v2 (h::t) = if h=v2
then vi::h::insertball vi v2 t
else h::insertball vi v2 t;
> val insertball = fn : ’’a -> ’’a -> ’’a list -> ’’a list

For example:

—_ insertball Hat upn [”b”,”c”,”d”,”b”];
> [”a”,”b”,”C”,”b”,”a”,”b”] : String list

because:

insertball "a" "b" [”b”,”C”,”d”,”b”] ==> take h as "b"
take t as [”C”,”d”,”b”]

llall : : llbll : : insertball llall llbll [”C” s lldll s llbll] ==> take h as ”C”
take t as ["d","b"]

"a"::"b"::"c"::insertball "a" "b" ["d","b"] ==> take h as "4d"
take t as ["b"]

"a::"b"::"c"::"d": :insertball "a" "b" ["b"] ==> take h as "b"
take t as []

”a”::”b”::”c”::”d”::”a”::”b”::insertball g npn [] ==>
”a”::”b”::”c”::”d”::”a”::”b”::[] ==>

[”a”,”b”,”C”,”d”,”a”,”b”]

5.5.4 Delete value from list

Consider deleting value v from a list of appropriate type:

- delete 3 [1,2,3,4];
> [1,2,4] : int list

If the list is empty then nothing can be deleted so return the empty list. Otherwise, if v is the head of the list
then return the tail. Otherwise, put the head onto the result of deleting v from the tail:

- (* delete value from list *)
fun delete 0=10 |

delete v (h::t) = if v=h

then t
else h::delete v t;
> val delete = fn : ’’a -> ’’a list -> ’’a list
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delete 3 [1,2,3,4] ==> take h as 1
take t as [2,3,4]

1::delete 3 [2,3,4] ==> take h as 2
take t as [3,4]

1::2::delete 3 [3,4] ==> take h as 3
take t as [4]

1::2::[4] ==> 1::[2,4] ==> [1,2,4]

Consider deleting all occurrences of value v in a list:

- deleteall 0 [1,0,2,0,3];
> [1,2,3] : int list

If the list is empty then there are no occurrences. If the list starts with v then delete all occurrences in the tail.
Otherwise, put the head onto the result of deleting all occurrences of v in the tail:

- (* delete all occurrences of value from list *)
fun deleteall _ [1 = [J |
deleteall v (h::t) = if v=h
then deleteall v ¢
else h::deleteall v t;
> val deleteall = fn : ’’a -> ’’a list -> ’’a list

For example:

—_ deleteall llall [llall s llbll s llall s ”C” s lla”] ;
> ["b","c"] : string list

because:

deleteall "a" ["a","b","a","c","a"] ==> take h as "a"
take t as ["b","a","c","a"]

deleteall "a" ["b","a","c","a"] ==> take h as "b"
take t as ["a","c","a"]

"b"::deleteall "a" ["a","c","a"] ==> take h as "a"
take t as ["c","a"]

"b"::deleteall "a" ["c","a"] ==> take h as "c"
take t as ["a"]

"p"::"c"::deleteall "a" ["a"] ==> take h as "a"
take t as []

"b"::"c"::deleteall "a" [] ==>

UpM e M., [] ==> [”b” s IICII]
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Consider replacing value v1 with value v2 in a list:

- replace UPLINIFell [”A”,”B”,”C”,”D”];
> [”A”,”B”,”C”,”D”] : String liSt

If the list is empty then there is nothing to replace so return the empty list. If the head of the list is v1 then
put v2 onto the tail of the list. Otherwise put the head onto the result of replacing v1 with v2 in the tail:

- (* replace vl with v2 in list *)

fun replace _ _ [1 = [1 |
replace v1 v2 (h::t) = if vi=h
then v2::t
else h::replace vl v2 t;
> val replace = fn : ’’a -> ’’a -> ’’a list -> ’’a list

vl and h are compared for equality so they must be equality types, say ’>’a. The list argument 1s of type ’’a
list. The result must be of type ’’a list because h is put onto it. v2 must be of type ’’a because it 1s put
on the front of t which is of type ’’a 1list. For example:

—_ replace ”Sa.W” llatell [llthell s ”Cat” s ”Sa.W” ’llthell’ llrat”] ;
> ["the","cat","ate","the","rat"] : string list

because:

replace "saw'" "ate" ["the","cat",'saw",'the","rat"] ==>
take h as '"the"
take t as ["cat","saw","the","rat"]
"the'"::replace "saw'" "ate" ["cat",'"saw",'"the","rat"] ==>
take h as '"cat"
take t as ["saw'","the","rat"]
"the'"::'"cat'"::replace "saw'" "ate" ["saw",'"the","rat"] ==>
take h as "saw"
take t as ["the","rat"]
"the'"::"cat"::"ate"::["the","rat"] ==>
"the"::"cat"::["ate","the","rat"] ==>

"the"::["cat","ate"::"the","rat"] ==>

[”the”,”cat”,”ate”,”the”,”rat”]
Consider replacing all occurrences of value v1 with value v2 in a list:

- replaceall 0 9 [1,0,2,0,3];
> [1,9,2,9,3] : int list

If the list is empty then there are no occurrences to replace. If the list starts with v1 then put v2 onto the
result of replacing all v1 with v2 in the tail. Otherwise put the head onto the result of replacing all v1 in the
tail with v2:
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replaceall vl v2 (h::t) = 1f h=vl
then v2::replaceall vl v2 t
else h::replaceall vl v2 t;
> val replaceall = fn : ’’a -> ’’a -> ’’a list -> ’’a list

For example:

- replaceall Nt vy [”a”,”b”,”a”,”c”];
> [”@”,”b”,”@”,”c”] : String liSt

because:

replaceall Nt vy [”a”,”b”,”a”,”c”] ==> take h as "a"
take t as [”b”,”a”,”c”]

ll@ll: :replaceall llall ll@ll [llbll’llall’llcll ==> take h as llbll
take t as ["a","c"]

"Q@"::"b"::replaceall "a" "@" ["a","c"] ==> take h as "a"
take t as ["c"]

"Q@"::"b"::"Q"::replaceall "a" "@" ["c"] ==> take h as "c"
take t as []

"Q"::"b"::"Q"::"c"::replaceall "a" "@" [] ==>
”@”::”b”::”@”::”c”::[] ==>

[”@”’”b”’”@”’”c”]

5.6 Explicit list element selection

As we have seen, list elements are selected by pattern matching. However, it is sometimes convenient to access
the head or tail of a list explicitly. We can define list head and tail selection functions ourselves through list
pattern matching.

We know that an empty list does not have a head or tail. We can define an exception:

- exception Hd;
> exception Hd

to cater for taking the head of an empty list. Now, for the head of a list:

- (* head of list *)
fun hd (h::_) = h |
hd [] = raise Hd;
> val hd = fn : ’a list -> ’a

we either select it through pattern matching on a non-empty list or raise the exception for an empty list.

For example:
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Similarly, for the tail of a list:

- exception T1;
> exception T1

- (* tail of list *)
fun t1 (_::t) =t |

tl [1 = raise T1;
>val t1 = fn : ’a list -> ’a list

we either select it through pattern matching or raise the exception for an empty list.

For example:

- t1 [1,2,3];
> [2,3] : int list

hd and t1 may be nested to select inner elements. For example, to select the second element in a list:

- hd (+1 [3,2,1]1);
> 2 : int

The tail of [3,2,1] 1s [2,1] so the head of the tail of [3,2,1] 1s 2.

For example, to drop the first two elements from a list:

- t1 (t1 [3,2,1]);
> [1] : int list

The tail of [3,2,1] 1s [2,1] so the tail of the tail is [1].

For example, to take the third element in a list:

- hd (t1 (tl [3,2,11));
> 1 : int
The tail of the tail of [3,2,1] 1s [1] so its head 1s 1.

For example, to drop the first three elements from a list:

- t1 (t1 (t1l [3,2,11));
> [] : int list

Note that [] can end any list but here the list is of type int 1list so in this context [] is of type int list as
well.

In general it is clearer to use pattern matching rather than hd and t1. First of all, the structure of the list can
be read off from the pattern. Secondly, the nested use of hd and t1 is hard to read.

For example, suppose we have a list of lists and we want to find the second element of the second list. Compare:
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with:

- fun element_2_2 (_::(_::e::_)::_) = e;

> val element_2_2 = fn : ’a list list -> ’a

In the second case the element of interest is clearly identified, as is the surrounding structure.

5.7 Indexed list access

Sometimes it is useful to be able to access elements by specifying their position relative to the start of a list.
For example, if we have a list of things in order and we want to find the first or the second or the third and so
on. Consider the list:

[ valuel , value? , valued , valuef , ... ]

Consider finding each element using hd and t1. To find the first:

hd [ wvaluel , value?2 , valued , valued , ... 1 ==>
valuel

To find the second:

hd (t1 [ valuel , value? , valued , valuef , ... 1) ==>
value?2

To find the third:

hd (¢1 (t1 [ valuel ,
value? , values , valued , ... 1)) ==>
valued

To find the fourth:

hd (1 (t1 (t1 [ valuel ,
value? , valuel , valued , ... 1))) ==>
value)

In general, the first element in a list is the head. Otherwise, to find the ith value in a list, take the tail i-1
times and then take the head:

h |
find (i-1) t |

- fun find 1 (h::_)
find 1 (_::t)

Note that the head is ignored in the recursion case and the tail is ignored in the base case.

So far, this function is of type:
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i and 1 are both integers. Suppose h::t is an ’a list. Then the result is an ’a.
However, this function is incomplete: there is no case for an empty list! An empty list does not have an ith

element so some value must be returned to indicate failure. Alas, there is no value which is that of all types ’a.
We have to be more specific about the type of list. Suppose it’s an integer list. We could return ~1 to indicate

failure, assuming that ~1 is not in the list:

- (* find ith in integer list *)
fun findi 1 (h::_) = h |
findi i (_::t) = findi (i-1) t |
findi _ [1 = ~1;

> val findi = fn : int -> int list -> int

The last case returns an integer so all cases must return integers so h must be an integer so the list argument
must be an integer list.

Note that the index value is ignored in the last case.

Similarly, for a string list, we supply a string value for when we reach the end of the list:

- (* find ith in string list *)
fun finds 1 (h::_) = h |
finds i (_::t) = finds (i-1) t |
finds [1 = "fail";

> val finds = fn : int -> string list -> string

Now, the last case returns a string so all cases must return strings so h must be a string so the list argument
must be a string list.

For example:

- findi 3 [1,4,9,16];
> 9 : int

because:

findi 3 [1,4,9,16] ==>
findi 2 [4,9,16] ==>

findi 1 [9,16] ==>

For example:

- finds 4 ["apple",'"banana','cherry"];
> "fail" : string

because:

finds 4 ["apple","banana",'"cherry"] ==>
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finds 2 ["cherry"] ==>
finds 1 [1 ==>

”fail”

Note that this function has both a specific type and a list bound variable. Thus, there must be enough cases to
satisfy all possible combinations of that type and lists.

An alternative is to define an exception:

- exception Find;
> exception Find

and then make a general function which raises an exception if the required value 1s not found:

- (* find ith in list *)
fun find 1 (h::_) = h |
find 1 (_::t) = find (i-1) t |
find _ [] = raise Find;
> val find = fn : int -> ’a list -> ’a

Now there is no restriction on the type of or the values in the list.

Consider deleting the ith in a list:

- idelete 3 [1,4,8,16];
> [1,4,16] : int

The empty list has no ith element, so ignore the index. To delete the first element, ignore the head and return
the tail. Otherwise, put the head onto the result of deleting the i-1th in the tail:

- (* delete ith in list *)
fun idelete _ [1 = [1 |
idelete (_::t) =t |
idelete (h::t) = h::idelete (i-1) t;
> val idelete fn : int -> ’a list -> ’a list

0 H =

This is a polymorphic function. Suppose h::t is an >a list. Then t is an >a list and so is the result.

For example:

- idelete 3 [”a”,”b”,”z”,”d”];
> ["a","b","d"] : string list

because:
idelete 3 [”a”,”b”,”z”,”d”] ==>

”a”::idelete 2 [”b”,”Z”,”d”] ==>
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a::"p":: LlldllJ ==>

[”a”,”b”,”d”]

Consider inserting a value v before the ith element in a list:

- iinsertb 3 M [”a”,”b”,”d”];
> [”a”,”b”,”c”,”d”] : String liSt

If the list is empty then i1t has no ith element: the index and value can be ignored. Otherwise, to insert before
the first element, put the value on the front of the list. Otherwise, put the first element onto the front of the
result of inserting before the i-1th element in the list:

- (* insert before ith in list *)

fun iinsertb _ _ [1 = [J |
iinsertb 1 v 1 = v::1 |
iinsertb i v (h::t) = h::iinsertb (i-1) v t;

> val iinsertb fn : int -> ’a -> ’a list -> ’a list

This is a polymorphic function. If the list argument 1 is an *a list then v is an ’a because it is put on the
front of 1. The result is also an ’a list because v is put on the front of 1. For example:

- iinsertb 3 3 [1,2,4];
> [1,2,3,4] : int list

because:

iinsertb 3 3 [1,2,4] ==>
1::iinsertb 2 3 [2,4] ==>
1::2::iinsertb 1 3 [4] ==>
1::2::3::[4] ==>

[1,2,3,4]

Consider replacing the ith element in a list with value v:

- ireplace 3 M [”a”,”b”,”?”,”d”];
> [”a”,”b”,”c”,”d”] : String liSt

If the list is empty then there is nothing to replace. If i is one then replace the head of the list with v. Otherwise
put the head onto the result of replacing the i-1th in the tail:

- (* replace ith in list *)
fun ireplace _ _ [] = [1 |
ireplace 1 v (_::t) = v::t |
ireplace i v (h::t) = h::ireplace (i-1) v t;
> val ireplace = fn : int -> ’a —-> ’a list —-> ’a list

0 H =
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For example:

- ireplace 3 true [true,true,false,truel;
> [true,true,true,truel] : bool list

because:

ireplace 3 true [true,true,false,true] ==>
true::ireplace 2 true [true,false,true] ==>
true::true::ireplace 1 true [false,true] ==>
true::true::true:: [true] ==>

[true,true,true,true]
An alternative way to replace the ith in a list is to delete the ith and then insert before the ith:

- fun ireplace i v 1 = iinsertb i v (idelete i 1);
> val replace = fn : int -> ’a -> ’a list -> ’a list

However, this 1s less efficient than the first version as the list must be scanned twice: once to delete the element
and once to insert the new one.

5.8 Testing list functions

We have seen that a typical function to process a list has one or more base cases and one or more recursion
cases. To try and ensure that every path through the function works then, as for integer recursive functions,
we should test list functions with values for all the base and recursion cases. For example, for:

- fun append [] 12 = 12 |
append (hi::t1) 12 = hi::append t1 12;
> val append = fn : ’a list -> ’a list -> ’a list

we might try the base case:

- append []1 [1,2,3];
> [1,2,3] : int list

and the recursion case:

- append [1,2,3] [4,5,6];
> [1,2,3,4,5,6] : int list

For example, for:
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ireplace 1 v (h::t) = h::ireplace (1-1) v t;
> val ireplace = fn : int -> ’a —-> ’a list —-> ’a list

we might try the base cases:

- ireplace 3 "cat" [];
> [1 : string list

and:

- ireplace 1 "ant" ["ape'","bat","cat"];
> ["ant","bat","cat"] : string list

and the recursion case:

- ireplace 3 "cow'" ["ape'","bat","cat",'"dog"]l;
> ["ape","bat","cow","dog"] : string list

If we try:

- ireplace 0 0 [1,2,3,4];
> [1,2,3,4] : int list

then we may be surprised but relieved to find that recursion stops when the list is empty rather than it continuing
for ever with i getting more and more negative...

5.9 Summary

In this chapter we have met the list as a way of representing variable length sequences of the same type. We
have looked at how to construct list patterns for recursion over patterns and met a variety of general purpose
list functions.

In the next chapter, we are going to consider further techniques for list processing. In particular, we will
construct a number of higher order functions for lists.

5.10 Exercises

1) Identify the types of the following expressions:

a) [2,4,6,8]

b) [2.2,4.4,6.6,8.8]

c¢) [fn s => s""s",fn s => s""ed",fn s => s""ing"]

d) [truel

e) [(1,1.0,"one"),(2,2.0,"two"),(3,3.0,"three")]

f) [(1,(1.0,"one")),(2,(2.0,"two")),(3,(3.0,"three"))]
g) [[1.0,1.0]1,[2.0,4.0],[3.0,9.0]]

h) [C[1,11,[2,4]1,[3,91]1,[[1,1],[2,8]1,[3,2711]

i) [("Pat",["Patricia'","Patrick"]),
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k) L(1,1(2,2),(3,3)]1),(2,L(2,4),(3,6)1)]
1) [[1.0,2.0,3.0]]
m) [1,2,3]1::[[4,5,6]]

2) Explain why the following expressions are badly formed:

a) [1,2,3.0]

b) [true,"false",truel

c) [(1,1),(2,4.0),(3,9)]

d) [fn x => x+1,fn x => x+1.0,fn x => x~"1"]
e) [1,2,3]::4

£) ["a","b","c"]::["d","e","f"]

3) Identify the types of the following functions:

a) fun f1 [J = 0 |
f1 (h::t) = 2%h+f1l ¢t

b) fun f2 [1 = 0.
2 (h::t)

o

I
h+f2 t

c) fun £3 [1 = [1 |
3 (0::%) = 0::(£3 t) |
3 (_::t) = f3 t

d) fun f4 [1 = [ |
f4 ("a"::t) = true::f4 t |
f4 (_::t) = false::f4 ¢

e) fun £5 [1 = "" |
f5 (h::t) = h"h"f5 ¢t

f) fun 6 [1 = (0.0,0.0) |
f6 (h::t) = (h,h/2.0)::f6 t

g) fun £7 [1 = [ |
£f7 (h::t) = (h,h)::f7 ¢

h) fun f8 [1 = [1 |
f8 (h::t) = [h]::f8 ¢

4) Explain why the following functions are badly formed:

a) fun f1 [J = [J |
f1 (h::t) = h*h::f1 t

b) fun f2 v [1 = v |

f2 v (h::t) = v+th::f2 ¢
c) fun £3 [1 = [1 |

£3 (h::t) = [h]::£3 [t]

d) fun f4 [1 = [ |
f4 (0::%)
f4 (h::t)

f4 t |
h/2.0::f4 t
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f5 (h::t) = Lhl::Lf5 tl

5) Write and test the following functions. Identify the type of each function:

a) return a list of the first n integers in descending order;

- intlist 5;
> [5,4,3,2,1] : int list

b) return a list of the first n squares in descending order:

- sqlist 5;
> [25,16,9,4,1] : int list

¢) return a list of tuples of the first n integers and their squares in descending order:

- intsqlist 5;
> [(5,25),(4,16),(3,9),(2,4),(1,1)] : (int * int) list

d) return a list of n occurrences of string s:

- repeat 5 '"very";
> ["very","very","very","very","very"] : string list

6) Write and test the following functions. Identify the type of each function:

a) conjoin all elements of a boolean list together. If the list is empty then return true. Otherwise
conjoin the head onto the result of conjoining the tail:

- andlist [true,false,true,true,falsel;
> false : bool

b) join all elements of a string list end to end. If the list is empty then return the empty string.
Otherwise join the head onto the result of joining together the tail:

- sjoin ["many","happy","returns"];
> "manyhappyreturns" : string

¢) join all elements in a string list end to end with spaces in between:

- spjoin ["many",'"happy","returns"];
> "many happy returns" : string

The function should have cases for an empty list, a one element list and several elements in the list.
It should only put a space after a string if it is not the last element in the list.

7) Write and test the following functions. Identify the type of each function:

a) count how many elements of an integer list are positive

- poscount [1,0,2,73,4];
> 3 : int

b) count how many elements of a string list have more than 3 characters:

- more3 ["cat'","goat","dog","horse"];
> 2 : int

¢) count how many elements of an arbitrary list have elements with property p. If the list is of type
’a then pis an ’a -> bool function:
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d) use the function from ¢) to define the functions from a) and b)

8) Write and test the following functions. Identify the type of each function:

a) check whether all elements of an integer list are non-zero
b) check whether all elements of a string list have at least 4 letters
¢) check whether all elements of an arbitrary list have property p

d) use the function from ¢) to define the functions from a) and b)

9) Write and test the following functions. Identify the type of each function:

a) check whether at least one element of an integer list is bigger than 42
b) check whether at least one element of a string list is ”banana”
¢) check whether at least one element of an arbitrary list has property p

d) use the function from ¢) to define the functions from a) and b)

10) Write and test the following functions. Identify the type of each function:

a) delete the last in a list. If the list is empty, return the empty list. If the list has one element,
return the empty list. Otherwise put the head onto the result of deleting the last in the tail:

- dellast [5,4,3,2,1];
> [5,4,3,2] : int list

b) insert value v1 after the first occurrence of value v2 in a list:

— inserta "d" "c" [nan Hp" M nen].
’ ’ ’ ’
> [”a”,”b”,”c”,”d”,”e”] : String liSt

¢) insert value v1 after all occurrences of value v2 in a list:

- insertaall 1 0 [0,0,0];
> [0,1,0,1,0,1] : int list

11) Write and test the following functions. Identify the type of each function:

a) return the position of a value in a list:

- pOS nen [”a”,”b”,”c”,”d”];
> 3 : int

If the list does not contain the value then return 1. Thus, its position will be one more than the
length of the list:

- pos 99 [1,2,3,4];
> 5 : int

b) insert value v1 after the ith element of a list:

- iinserta "' 3 [”a”,”b”,”c”,”d”];
> [”a”,”b”,”c”,”@”,”d”] : String liSt
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Chapter 6

List higher order functions

6.1 Accumulation variables

Sometimes it is necessary to pass intermediate information from stage to stage in a recursion.

For example, consider finding the biggest in an integer list. Here, we have to keep track of the biggest so far.
If the list is empty then the biggest is the biggest so far. If the head is bigger than the biggest so far then the
biggest so far becomes the head for finding the biggest in the tail. Otherwise, the biggest so far remains the
same for finding the biggest in the tail:

- (* find biggest in integer list given biggest so far *)
fun maxl (bsf:int) [1 = bsf |
maxl bsf (h::t) = if h>bsf
then max1l h ¢
else maxl bsf ¢;
> val maxl = fn : int -> int list -> int

Assuming that there is at least one member in the list, we can start with the first as the initial biggest so far:

- exception Max;
> exception Max

- (* find biggest in integer list *)
fun max (h::t) = maxl h t |

max [] = raise Max;
> val max = fn : int list -> int

We raise an exception if max is called with an empty list: an empty list does not have a largest value. For
example:

- max [1,3,2,4,7,5,6]1;
> 7 : int

because:

max [1,3,2,4,7,5,8] ==>

max1 1 [3,2,4,7,5,6] ==>
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maxl 3 [2,4,7,5,6] ==>
max1l 3 [4,7,5,8] ==>
maxl 4 [7,5,6] ==>
max1l 7 [5,6] ==>

maxl 7 [6] ==>

max1l 7 [1 ==>

Here, bsf is called an accumulation variable because it accumulates the intermediate information about the
biggest so far.

6.2 Encapsulation with local declarations

An important principle in programming is that of encapsulation. The idea is that when providing a solution
to a problem, only the salient things should be generally accessible. Anything which is part of the overall
solution but not used independently of it should only be accessible to the things that use it. This is particularly
important where several people are cooperating to build a large system and each requires components from the
others. FEach individual only needs to know about the overall behaviour of other components in terms of the
values they manipulate and the results they return. How those results are found is irrelevant. Thus, lower level
details may be hidden from them. Furthermore, if all the sub-components of a system are visible other people
may be tempted to change them for their own purposes without appreciating the implications of those changes
for the original component.

In the problems we are now considering, the final function often calls one or more auxiliary functions that only
it needs to know about. These auxiliary functions can be grouped together so that they are accessible to the
calling function but not outside it. The function and its grouped auxiliary form a closed unit. Thus, there
is no possibility of trying to change an auxiliary function for use elsewhere which might have unexpected or
unpredictable effects at the site of its original use. For example, above we only ever access max1 inside max.
Thus, the use of max1 might be restricted to only within max.

A local declaration is a way of providing a function with those functions that only it uses so that they are not
accessible outside that function. A local declaration takes the form:

local declarationl
in declaration?2
end

This says that the declaration declarationl is only visible within declaration?.

For example after:

- local
fun max1l (bsf:int) [1 = bsf |
maxl bsf (h::t) = if h>bsf
then maxl h ¢
else maxl bsf ¢t
in
fun max (h::t) = maxl1 h t |
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> val max = fn: 1nt list -> 1int

only max can access max1.

Note the end at the end of the local declaration. It is a common mistake to forget it.

6.3 Ascending sequences

Consider building a list of squares in ascending order. We want to generate:
[sq 1,sq 2, ... sq n]

for some integer n. Suppose we are generating squares between m and n. If m is bigger than n then return the
empty list. Otherwise put the square of m onto the list of squares from m+1 to n:

- (*# list squares from m to n *)
fun sqlistl m n = if m>n
then []
else sq m::sqlistl (m+1) n;
> val sqlistl = fn : int -> int -> int list

We then start the list at 1:

- (*# list squares from 1 to n *)
val sqlist = sqlistl 1;
> val sqlist = fn : int -> int list

Note that we use a conditional expression to control the generation of a range of values. Pattern matching can
detect the presence of a particular value but not a value meeting an arbitrary condition.

Once again, we can hide the declaration of sqlist1 within sqlist:

- local
fun sqlistl m n = if m>n
then []
else sq m::sqlistl (m+1) n
in
val sqlist = sqlistl 1
end;

> val sqlist = fn : int -> int list

For example:

- sqlist 4;
> [1,4,9,16] : int list

because:

sqlist 4 ==>
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sq 1::sqlistl 2 4 ==>

sq 1::sq 2::sqlistl 3 4 ==>

sq 1::sq 2::sq 3::sqlistl 4 4 ==>

sq 1::sq 2::8q 3::s5q 4::sqlistl 5 4 ==>
sq 1::sq 2::8q 3::8q 4::[] ==>

[1,4,9,16]

Here, m accumulates the starting point for the next range to be generated.

6.4 List reversal

Consider reversing a list. We keep track of the reversed list so far. If the list is empty then return the reversed
list so far. Otherwise put the head of the list onto the reversed list so far and use it to reverse the tail of the
list:

- (* reverse second list onto first list *)
fun revl rlsf [] = rlsf |
revl rlsf (h::t) = revl (h::xrlsf) t;
> val revl = fn : ’a list -> ’a list -> ’a list

To start, set the reversed list so far to the empty list:

- (* reverse list *)
val rev = revl []1;
> val rev = fn : ’a list -> ’a list

Here again, revl can be hidden within reverse:

- local
fun revl rlsf [1 = rlsf |
revl rlsf (h::t) = revl (h::rlsf) t

in
val rev = revl []
end;
> val rev = fn : ’a list -> ’a list

For example:

- rev [”a”,”b”,”c”,”d”];
> [”d”,”c”,”b”,”a”] : String liSt

because:

rev [”a”,”b”,”c”,”d”] ==>
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revi "a"::[1 ["b","c","d"] ==>
revi "b"::"at::[1 ["c","d"] ==>
revi "c":i:"biivar::[] ["d"] ==>
revi "d"::Mc'::vbti:itar::[] [1 ==>
MGt b et s [] ==>

[”d” s nen s "pt s IIaII]

Here rlsf accumulates the reversed list under construction.

rev is a predefined SML function.

6.5 List mapping

As with numbers, common list processing functions can be generalised through higher order functions. Indeed,
list processing in the LISP language was one of the first areas in which higher order functions were used.

Consider squaring every element of an integer list:

- (* square each in integer list *)
fun sqs [1 = [1 |
sqs (h::t) = sq h::sqs t;
> val sqs = fn : int list -> int list

sq 1s of type int -> int so h must be an integer, and h::t and the result must be integer lists:

- sqs [1,2,3];
> [1,4,9] : int list

because:
sqs [1,2,3] ==>
sq 1::sqs [2,3] ==>
sq 1::sq 2::sgs [3] ==>
sq 1l::sq 2::8q 3::sqs [] ==>
sq 1::sq 2::8q 3::[] ==>
[1,4,9]

Consider, putting "s" on the end of every element of a string list:

- (* end string with'"s" *)
fun plural s = s”"s'";
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fun plurals LI = L1 |
plurals (h::t) = plural h::plurals t;

plural is of type string -> string so h must be a string, and h::t and the result must be string lists:

- plurals ["ape","bat","cat"];
> ["apes","bats","cats"] : string list

because:

plurals ["ape","bat","cat"] ==>

plural "ape"::plurals ["bat",'"cat"] ==>

plural "ape"::plural "bat"::plurals ["cat"] ==>

plural "ape"::plural "bat"::plural "cat"::plurals [] ==>
plural "ape"::plural "bat"::plural "cat"::[] ==>

["apes" s "bats" s "cats"]

sgs and plurals have similar structure but differ in the action performed on the head. We can generalise by
replacing the action with an arbitrary function:

- (* apply function to each in list *)
fun map _ [1 = [1 |
map £ (h::t) = f h::map £ ¢
> val map = fn : (’a -> ’b) -> ’a list -> ’b list

map applies function £ to each element of a list to form a new list. Suppose f is an >a -> ’b function. Then h
must be an ’a, h::t must be an a list and the result must be a ’b list.

Note that when the list is empty, the function £ is not used so it can be ignored.

map may be used to define sqs:

- val sgs = map sq;
> val sqs = fn : int list -> int list

sqs 1s like map with £ set to sq. £ is of type ’a -> ’b and sq is of type int -> int so ’a and ’b are int in
sQs.

For example:

- sqs [4,5,6];
> [16,25,36] : int list

because:

sqs [4,5,8] ==>
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sq 4::map sq Lb5,61 ==>

sq 4::sq 5::map sq [6] ==>

sq 4::sq b::sq 6::map sq []1 ==>
sq 4::sq 5::8q 6::[] ==>

[16,25,36]

Similarly, plurals is:

- val plurals = map plural;
> val plurals = fn : string list -> string list

plurals is like map with £ set to plural. plural is of type string -> string and £ is of type ’a -> ’b so
’a and ’b are string in plurals.

For example:

- plurals ["dog'","emu",'"frog"l;
> ["dogs","emus","frogs"] : string list

because:

plurals [”dog”,”emu”,”frog”] ==>

map plural ["dog","emu",'"frog"] ==>

plural "dog"::map plural ["emu","frog"] ==>

plural "dog"::plural "emu"::map plural ["frog"] ==>

plural "dog"::plural "emu"::plural "frog"::map plural [] ==>
plural "dog"::plural "emu"::plural "frog"::[] ==>

[”dOgS” s llemusn s "frogs"]

Now consider converting a binary digit into the equivalent string:

- (* convert binary digit string to integer *)
fun conv 0 = "zero" |
conv 1 = "one" |
"not binary";
> val conv = fn : int -> string

conv

We can use map to define a function to convert a list of digits into strings:

- (* convert each binary digit string in list to integer *)
val convs = map conv;
> val convs = fn : int list —> string list
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For example:

- convs [1,0,1];
> ["one","zero","one"] : string list

because:

convs [1,0,1] ==>

map conv [1,0,1] ==>

conv 1::map conv [0,1] ==>

conv 1::conv O::map conv [1] ==>

conv 1::conv O::conv 1::map conv [] ==>
conv 1::conv O::conv 1::[] ==>

["one" s "zaro" s IloneII]

map is a predefined SML function.

6.6 List filtering

map applies a function to all elements of a list. Another common operation is to extract all the members of a
list satisfying some property.

Consider checking whether or not a word is an article or pronoun:

- (*# is word an article or pronoun? *)

fun isap "a" = true |

isap "an" = true |
isap "the" = true |
isap "his" = true |
isap "her" = true |
isap "their" = true |
isap "our" = true |
isap "my" = true |
isap _ = false;

> val isap = fn : string —-> bool

Consider extracting all the articles and pronouns from a list of words. Each time, a head element is included
only if it 18 an article or pronoun:

- (*# find all articles or pronouns in list *)
fun getaps [1 = [1 |
getaps (h::t) = if isap h
then h::getaps t
else getaps t;
> val getaps = fn : string list -> string list
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- getaps ["the","Cat","ate","my","pie"];
> ["the","my"] : string list

because:

getaps ["the","cat","ate","my",'"pie"] ==>
"the"::getaps ["cat","ate","my","pie"] ==>
"the"::getaps ["ate",'"my",'"pie"] ==>
"the"::getaps ["my","pie"] ==>
"the"::"my'"::getaps ["pie"] ==>
"the"::"my"::getaps [] ==>

"the"::"my"::[] ==>

["the" s llmyII]
Consider checking whether or not a number is even, by dividing by 2 and checking for no remainder:

- (* is integer even? *)
fun even x = x mod 2=0;
> val even = fn : int -> bool

Consider finding the even elements of an integer list. Each time, the head is only included if it is even:

- (* find even integers in list *)
fun getevens [] = [] |
getevens (h::t) = if even h
then h::getevens t
else getevens t;
> val getevens = fn : int list -> int list

For example:

- getevens [1,2,3,4,5];
> [2,4] : int list

because:

getevens [1,2,3,4,5] ==>
getevens [2,3,4,5] ==>
2::getevens [3,4,5] ==>
2::getevens [4,5] ==>

2::4::getevens [5] ==>
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2::4::[] ==>

[2,4]

getaps and getevens have similar structure but use different predicates to test the list head. We can generalise
by introducing an arbitrary predicate p:

- (*# find list elements with property p *)
fun filter _ [1 = [1 |
filter p (h::t) = if p h
then h::filter p t
else filter p t;
> val filter = fn : (’a -> bool) -> ’a list -> ’a list

filter checks each element with p and selects those which satisfy it. Suppose p is of type a -> bool. h must
be of type a and h: :t and the result must be of type ’a list.

Note that the predicate function p is not used in the base case so it can be ignored.

We can use filter to define getaps:

- val getaps = filter isap;
> val getaps = fn : string list -> string list

getaps s like filter with p set to isap. isap is a string -> bool function and pis a ’a => bool function
§0 ’a is string in getaps.

For example:

- getaps [”hiS” s "or" s "her" s IlhatII] ;
> ["his","her"] : string list

because:

getaps ["his","or","her","hat"] ==>
filter isap ["his","or","her",'"hat"] ==>
"his"::filter isap [“or","her'","hat"] ==>
"his"::filter isap ["her","hat"] ==>
"his"::"her"::filter isap ["hat"] ==>
"his"::"her"::filter isap [] ==>
"his"::"her"::[] ==>

[”hiS” s llherII]

We can use filter to define getevens:

- val getevens = filter even;
> val getevens = fn : int list -> int list
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For example:

- getevens [9,8,7,6];
> [8,6] : int list

because:

getevens [9,8,7,6] ==>
filter even [9,8,7,6] ==>
filter even [8,7,68] ==>
8::filter even [7,6] ==>
8::filter even [8] ==>
8::6::filter even [] ==>

::6::[1 ==>

0

[8,6]

6.7 Ordered lists

A list is said to be ordered if some relationship holds between successive elements. A common relationship is
that of increasing or decreasing values where the list 1s said to be in ascending or descending order.

First of all, consider checking whether or not an integer list i1s in ascending order. The empty list 1s ordered. A
list with one element is in order, otherwise the head must come before the head of the tail and the tail must be
in order:

- (* is integer list in ascending order? *)
fun iorder [] = true |
iorder [(h:int)] = true |
iorder (h1l::h2::t) = hl <= h2 andalso iorder (h2::t);
> val iorder = fn : int list -> bool

Note that in the second case, the head h is nominated as int. Thus, the list argument must be an integer list
and the system knows that integer comparison is to be used in the third case.

In fact, as h i1s not used in the second case, it can be ignored:

- fun iorder [] = true |

iorder [(_:int)] = true |

iorder (h1l::h2::t) = hl <= h2 andalso iorder (h2::t);
> val iorder = fn : int list -> bool

For example:

- iorder [1,3,5,7];
> true : bool
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iorder [1,3,5,7] ==>

true andalso iorder [3,5,7] ==>

true andalso true andalso iorder [5,7]
true andalso true andalso true andalso
true andalso true andalso true andalso

true

==>

iorder [7] ==>

true ==>

To generalise this to arbitrary lists we need to abstract over the comparison. Now, we check that relationship

p holds between successive elements:

- (* is list ordered by property p? *)
fun order [1 = true |

order p [_] = true |

order p (hi::h2::t) = p hl h2 andalso order p (h2::t);
> val order = fn : (’a -> ’a -> bool) -> ’a list —> bool

Suppose the list argument is an ’a 1list. Then hi1 and h2 must be of type ’a so p must be of type ’a -> ’a

-> bool.

For example, given:

- (* is integer x smaller than y? *)
fun iless (x:int) y = x<=y;
> val iless = fn : int -> int -> bool

the integer order checker is:

- val iorder = order iless;
> val iorder fn : int list -> bool

iorder is like order with p set to iless. iless is of type int -> int —> bool and p is of type ’a -> ’a ->

bool so ’a ls int 1n iorder.

For example:

- jorder [2,4,6];
> true : bool

because:

iorder [2,4,6] ==>
order iless [2,4,6] ==>

true andalso order iless [4,6] ==>

true andalso true andalso order iless [6] ==>
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true
We can define a string version. Given:

- (* does string s1 precede s27 *)
fun sless (sl:string) s2 = s1<=s2;
> val sless = fn : string —-> string -> bool

then:

- (* is string list in ascending order? x*)
val sorder = order sless;
> val sorder = fn : string list -> bool

sorder is like order with p set to sless. sless is a string -> string -> bool function and p is an ’a ->
’a -> bool function so ’ais string in sorder.

For example:

- sorder ["ape","bat","dog","cat"];
> false : bool

because:

sorder [”ape”,”bat”,”dog”,”cat”] ==>

order sless [”ape”,”bat”,”dog”,”cat”] ==>

true andalso order sless ["bat",'dog","cat"] ==>

true andalso true andalso order sless [“dog","cat"] ==>

true andalso true andalso false andalso order sless [“cat"] ==>
true andalso true andalso false ==>

false

Note that andalso does not evaluate its second argument if the first argument is false.

6.8 Insertion into ordered lists

Consider inserting a new integer into a list of integers in ascending order. If the list is empty then make a new
list for the new value. If the new value comes before the first in the head then put it on the front of the list.
Otherwise, put the head onto the result of inserting the new value into the list tail:

- (* insert into ascending integer list *)
fun inserti (v:int) [1 = [v] |
inserti v (h::t) = if v<=h
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> val inserti = fn : i1nt -> 1nt list -> 1int list

Note that v is marked as int so that integer comparison is used.

For example:

- inserti 3 [1,2,4];
> [1,2,3,4] : int list

because:

inserti 3 [1,2,4] ==>
1::inserti 3 [2,4] ==>
1::2::inserti 3 [4] ==>
1::2::3::[4] ==>

[1,2,3,4]

Once again, we can generalise insertion to an arbitrary relationship between successive list members. Here p is
the relation which must hold for the new value to be positioned:

- (* insert into list with order property p *)
fun insert _ v [1 = [v] |

insert p v (h::t) = if pv h
then v::h::t
else h::insert p v t;
> val insert = fn : (’a -> ’a -> bool) -> ’a -> ’a list -> ’a list

Suppose the list and the new value are of type *a. Then p must be an a -> ’a -> bool function.

For example, the integer insertion function is:

- val inserti = insert iless;
> val inserti = fn : int -> int list -> int list

inserti is like insert with p set to iless. iless is of type int -> int -> bool and p is of type ’a -> ’a
-> bool so ’ais int in inserti.

For example:

- inserti 5 [1,3,7];
> [1,3,5,7] : int list

because:

inserti 5 [1,3,7] ==>

insert iless 5 [1,3,7] ==>
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1::3::1nsert 1less b 7] ==>
1::3::5::[7] ==>

[1,3,5,7]
Similarly, a string insertion function is:

- (* insert into ascending string list *)
val inserts = insert sless;
> val inserts = fn : string -> string list -> string list

inserts is like insert with p set to sless. sless is of type string -> string -> bool and p is of type ’a
-> ’a -> bool so ’a is string in inserts.

For example:

- inserts '"cat" ["ape","bat",'"dog"]l;
> ["ape","bat","cat","dog"] : string list

because:

inserts "cat" ["ape","bat",'dog"l] ==>
insert sless "cat" ["ape","bat","dog"] ==>
"ape"::insert sless "cat" ["bat",'"dog"]l ==>
"ape"::"bat"::insert sless "cat" ["dog"] ==>
"ape'"::"bat"::"cat"::["dog"] ==>

[napen s "hat" s “"ecat" s Ildog”]

6.9 Layered patterns
In insert:

fun insert _ v [] = [v] |
insert p v (h::t) =if pv h
then v::h::t
else h::insert p v t

we use the pattern h::t so that we can access the head and tail of the list argument independently. However,
we then have to use the construct h::t in order to put v on the front of the list.

The SML layered pattern provides a means of relating a bound variable with a pattern so that after matching
they both refer to the same thing. It takes the form:

name as patiern
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elements ol that value.

Above, we might use:
1 as h::t

so 1 and h::t would refer to the same list. We could then use 1 when we want the whole list and h or t when
we want the head or tail:

fun insert _ v [] = [v] |
insert p v (1L as h::t) = if p v h
then v::1
else h::insert p v t

6.10 Insertion sort

Consider sorting an unordered list of integers into ascending order. If the list is empty then it is sorted.
Otherwise, insert the head into the result of sorting the tail:

- (* sort integer list in ascending order *)
fun sorti [1 = [0 |
sorti (h::t) = inserti h (sorti t);
> val sorti = fn : int list -> int list

inserti returns an integer list: so must sorti. inserti has an integer as first argument. Thus, h is an integer
and h::t is an integer list.

For example:

- sorti [4,3,2,1]1;
> [1,2,3,4] : int list

because:

sorti [4,3,2,1] ==>

inserti 4 (sorti [3,2,1]) ==>

inserti 4 (inserti 3 (sorti [2,1])) ==>

inserti 4 (inserti 3 (inserti 2 (sorti [1]))) ==>

inserti 4 (inserti 3 (inserti 2 (inserti 1 (sorti [1)))) ==>
inserti 4 (inserti 3 (inserti 2 (dimserti 1 []))) ==>

inserti 4 (inserti 3 (inserti 2 [1])) ==>

inserti 4 (inserti 3 [1,2]) ==>

inserti 4 [1,2,3] ==>

[1,2,3,4]
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- (* sort list using specialised insert *)
fun sort _ [1 = [0 |
sort insert (h::t) = insert h (sort insert t);

Suppose h::t is an ’a list. Suppose sort returns a ’b list. Then insert is of type ’a -> ’b list ->
’b list so sort is of type:

> val sort = fn : (’a -> ’b list -> ’b list) -> ’a list -> ’b list

Thus, integer sort is:

- val sorti = sort inserti;
> val sorti fn : int list -> int list

sorti is sort with insert set to inserti. inserti is of type int -> int list -> int list and insert is
of type a => ’b list -> ’b list so ’ais int and ’b is int in sorti.

For example:

- sorti [5,3,1];
> [1,3,5] : int list

because:

sorti [5,3,1] ==>

sort inserti [5,3,1] ==>

inserti 5 (sort imserti [3,1]) ==>

inserti 5 (inserti 3 (sort inserti [1])) ==>

inserti 5 (inserti 3 (inserti 1 (sort imserti [1))) ==>
inserti 5 (inserti 3 (inserti 1 [])) ==>

inserti 5 (inserti 3 [1]) ==>

inserti 5 [1,3] ==>

[1,3,5]

However, we have been making insertion functions by specialising insert with specific predicates. An alternative
generalisation for sorting is to use the general insert and abstract over the predicate:

- (* sort list on order property p *)
fun sort _ [1 = [1 |
sort p (h::t) = insert p h (sort p t);

We know from the previous section that insert is of type (’a -> ’a —=> bool) -> ’a -> ’a list -> ’a
list so p is of type ’a => ’a => bool, his of type *a and h::t is of type ’a list so sort is of type:
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Thus, a string sort is:

- (* sort string list in ascending order *)
val sorts = sort sless;
> val sorts = fn : string list -> string list

sorts is like sort with p set to sless. sless is a string -> string -> bool function and p is an ’a ->’a
-> bool function so ’a is string in sorts.

For example:

- sorts [“cat","bat","ape"];
> ["ape","bat","cat"] : string list

because:

sorts ["cat","bat","ape"] ==>

sort sless ["cat","bat","ape"] ==>

insert sless "cat" (sort sless ["bat","ape"])) ==>

insert sless "cat" (insert sless "bat" (sort sless ["ape"])) ==>

insert sless '"cat"
(insert sless "bat" (insert sless "ape" (sort sless []))) ==>
P

insert sless "cat' (insert sless "bat" (insert sless "ape" [1)) ==>
insert sless "cat" (insert sless "bat" ["ape"]) ==>
insert sless "cat" ["ape","bat"] ==>

[napen s Ilbatll s IlcatII]

6.11 Mapping over two lists

Consider forming a new list by adding corresponding elements of both lists together. If both lists are empty
then return the empty list. Otherwise put the sum of the heads onto the result of adding corresponding elements
in the tails:

- (* add corresponding elements of two integer lists *)
fun add2 [1 [1 = [ |
add2 ((hi:int)::t1) (h2::t2) = hi+h2::add2 t1 t2 |
add2 _ _ = [1;
> val add2 = fn : int list -> int list -> int list

Note that hi is tagged as int: + is overloaded.

Note that we assume that both lists are the same length. The last case is if one is longer than the other. We
only reach this case when one list is empty and the other is not. Here, we return an empty list, discarding all
of the rest of the non-empty list. For example:
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because:

add2 [1,2,3] [4,5,6] ==>
1+4::add2 [2,3] [5,6] ==>
1+4::2+5::add2 [3] [6] ==>
1+4::2+5::3+6::add2 [1 [1 ==>
1+4::2+5::3+6:: [] ==>

[5,7,9]

Consider ANDing corresponding elements of two lists together. If both are empty then return the empty list.
Otherwise, AND the heads and join the result onto the list from ANDing corresponding tail elements:

- (* conjoin corresponding elements of two boolean lists *)
fun and2 [1 [1 = [ |
and2 (hi::t1) (h2::t2) = (h1l andalso h2)::and2 t1 t2 |
and2 _ _ = [1;
> val and2 fn : bool list -> bool list -> bool list

For example:

- and2 [true,false,truel] [false,false,truel;
> [false, false, truel : bool list

because:

and2 [true,false,truel] [false,false,true] ==>
(true andalso false)::and2 [false,true] [false,true] ==>
(true andalso false)::(false andalso false)::and2 [true] [true] ==>

(true andalso false)::(false andalso false)::
(true andalso true)::and2 [1 []1 ==>

(true andalso false)::(false andalso false)::
(true andalso true)::[] ==>

[false,false,truel
We can generalise by abstracting over the operation applied to the list heads:

- (* apply function to corresponding elements of two lists *)
fun map2 _ [1 [1 = [0 |
map2 £ (hi::t1) (h2::t2) = £ hl h2::map2 £ t1 t2 |
map2 _ _ _ = [1;
> val map2 = fn : (’a => ’b -> ’¢) -> ’a list -> ’b list -> ’c list
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The first and last cases return the same result so they can be folded together into a single case:

- fun map2 £ (hi::t1) (h2::t2) = £ hl h2::map2 £ t1 t2 |
map2 _ _ _ = [1;
> val map2 = fn : (’a => ’b -> ’¢) -> ’a list -> ’b list -> ’c list

Here, if either or both lists do not have the structure h::t, i.e. one or both are empty, then the empty list is
returned.

For example, add2 is like map2 with £ set to add:

- fun add (x:int) y = x+y;

> val add = fn : int -> int -> int

- val add2 = map2 add;

> val add2 = fn : int list -> int list -> int list

fisan ’a -> ’b -> ’c function and add is a int -> int -> int function so ’a, b and ’c¢ are all int. For
example:

- add2 [7,8,9] [10,11,12];
> [17,19,21] int list

because:
add2 [7,8,9] [10,11,12] ==>
map2 add [7,8,9] [10,11,12] ==>
add 7 10::map2 add [8,9] [11,12] ==>
add 7 10::add 8 11::map2 add [9] [12] ==>
add 7 10::add 8 11::add 9 12::map2 add []1 [1 ==>

add 7 10::add 8 11::add 9 12::[] ==>

[17,19,21]

6.12 Merge sort

Consider merging two integer lists which are both in ascending order:

- merge [1,3,4,7] [2,5,6];
> [1,2,3,4,5,6,7] : int list

If the head of the first is bigger than the head of the second then put it onto merging the tail of the first and
the second. If the head of the second is bigger than the head of the first then put it onto merging the first and
the tail of the second. If one is empty then return the other:

- (* merge two ascending ordered integer lists *)
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then hl::merge t1 12
else h2::merge 11 t2 |
merge 11 [1 = 11 |
merge [] 12 = 12;
> val merge = fn : int list -> int list -> int list

For example:

merge [1,3,4,7] [2,5,6] ==>
1::merge [3,4,7] [2,5,6] ==>
1::2::merge [3,4,7] [5,6] ==>
1::2::3::merge [4,7] [5,6] ==>
1::2::3::4::merge [7] [5,6] ==>
1::2::3::4::5::merge [7] [6] ==>
1::2::3::4::5::6::merge [7] [1 ==>
1::2::3::4::5::6::[7] ==>

[1,2,3,4,5,6,7]

6.13 Folding lists of lists

Consider appending a list of lists end to end:

- appendall [[1,2,3],[4,5,6],[7,8,91];
> [1,2,3,4,5,6,7,8,9] : int list

If the list is empty then return the empty list. Otherwise, append the head list onto appending all the lists in
the tail:

- (* append a list of lists end to end *)
fun appendall [1 = [1 |
appendall (h::t) = append h (appendall t);
> val appendall = fn : (’a list) list -> ’a list

append is an ’a list -> ’a list —> ’a list function so h must be an ’a list and h::t must be an ’a
list list.

For example:

appendall [[1,2,3],[4,5,61,[7,8,9]1]1 ==>
append [1,2,3] (appendall [[4,5,6]1,[7,8,91]) ==>

append [1,2,3] (append [4,5,6] (appendall [[7,8,9]11)) ==>
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append 11,2,3] (append |%,5,6] (append [7,58,9] L1)) ==>
append [1,2,3] (append [4,5,6] [7,8,9]) ==>
append [1,2,3] [4,5,6,7,8,9] ==>

[1,2,3,4,5,6,7,8,9]
Consider merging a list of ordered integer lists:

- mergeall [[1,4,7,10],[2,5,8,11],[3,6,9]1];
> [1,2,3,4,5,6,7,8,9,10,11] : int list

If the list is empty then return the empty list. Otherwise merge the list in the head into the result of merging
the lists in the tail:

- (* merge a list of ascending order integer lists together *)
fun mergeall [1 = [] |
mergeall (h::t) = merge h (mergeall t);
> val mergeall = fn : int list list -> int list

For example:

mergeall [[1,4,7,10],[2,5,8,11],[3,6,9]] ==>

merge [1,4,7,10] (mergeall [[2,5,8,11]1,[3,6,91]1) ==>

merge [1,4,7,10] (merge [2,5,8,11] (mergeall [[3,6,9]1]1)) ==>

merge [1,4,7,10] (merge [2,5,8,11] (merge [3,6,9] (mergeall [1))) ==>
merge [1,4,7,10] (merge [2,5,8,11] (merge [3,6,9] [1)) ==>

merge [1,4,7,10] (merge [2,5,8,11] [3,6,9]) ==>

merge [1,4,7,10] [2,3,5,6,8,9,11] ==>

[t1,2,3,4,5,6,7,8,9,10,11]

We can generalise these examples by abstracting over the operation applied to the head and the result of
processing the tail of the list:

- (* fold function across list of lists from right *)
fun listfoldr _ [1 = [1 |
listfoldr £ (h::t) = £ h (listfoldr f t);
> val listfoldr =
fn : (’a => ’b list -> ’b list) —> ’a list -> ’b list

Suppose h::tis a list of a. Suppose 1istfoldr returns a ’b 1list. Then £ must be applied to an ’a from the
head of h::t and the *b list returned by listfoldr. Thus f must also return a ’b list.

For example, mergeall is like 1istfoldr with f set to merge:

- val mergeall = listfoldr merge;
> val mergeall = int list list -> int list

177



For example:

- mergeall [[2,5,9],[1,3,4]1,[6,7,8]1];
> [1,2,3,4,5,6,7,8,9] : int list

because:

mergeall [[2,5,9],[1,3,4],[6,7,8]]1 ==>
listfoldr merge [[2,5,91,[1,3,4]1,[6,7,8]] ==>
merge [2,5,9] (listfoldr merge [[1,3,41,[6,7,8]1]1) ==>

merge [2,5,9]
(merge [1,3,4] (listfoldr merge [[6,7,811)) ==>

merge [2,5,9]
(merge [1,3,4]
(merge [6,7,8] (listfoldr merge [1))) ==>
merge [2,5,9]
(merge [1,3,4]
(merge [6,7,8] [1)) ==>

merge [2,5,9]
(merge [1,3,4] [6,7,8]) ==>

merge [2,5,9] [1,3,4,6,7,8] ==>

[t1,2,3,4,5,6,7,8,9]

Similarly, appendall is like 1istfoldr with £ set to append:

- val appendall = listfoldr append;
> val appendall = fn : ’a list list -> ’a list

f is of type a => ’b list -> ’b list and append is of type
’a list -> ’a list -> ’a list so in appendall ’a must be a list and ’b must be ’a.

For example:

- appendall [[”a”,”b”,”c”],[”d”,”e”],[”f”,”g”,”h”]];
> [”a”,”b”,”c”,”d”,”e”,”f”,”g”,”h”] . string 1list

because:

appendall [[”a”,”b”,”c”],[”d”,”e”],[”f”,”g”,”h”]] ==>
listfoldr append [[”a”,”b”,”c”],[”d”,”e”],[”f”,”g”,”h”]] ==>

append [”a”,”b”,”c”]
(listfoldr append [[”d”,”e”],[”f”,”g”,”h”]]) ==>
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(append L”d”,”e”J
(1istfoldr append [["£f","g","h"]]1)) ==>

append [”a”,”b”,”c”]
(append [”d”,”e”]
(append [”f”,”g”,”h”]
(listfoldr append [1))) ==>

append [”a”,”b”,”c”]
(append [”d”,”e”]
(append [”f”,”g”,”h”] [])) ==>

[llall s llbll s ”C” s lldll s llell s llfll s llgll s llhll]
Note that 1istfoldr is the same as the first generalisation of sorting:

- fun sort _ [1 = [0 |
sort insert (h::t) = insert h (sort insert t);
> val sort = fn : (Pa -> ’b list -> ’b list) -> ’a list —> ’b list

6.14 Generalised folding

The function 1istfoldr folds a function across a list of lists to form a new list. We can abstract again to fold
a function across a list to form a value:

- (* fold function across list from left to right *)
fun foldr _ b [1 = b |
foldr £ b (h::t) = £ h (foldr £ b t);
> val foldr = fn : (’a * ’b -> ’b) -> ’b —> ’a list -> ’b

0+

Here, when the list is empty we return a base value b. Otherwise we apply £ to the list head and the result of
folding £ with b over the list tail.

Consider the list:
Lel, e2, ... , eN]

If we fold some arbitrary function f over this list then the effect is:

foldr fbL el, e2, ... , eN] ==>
fel ( foldr fbL e2, ... , eN]1) ==>
fel ( fe2 (foldr fHL ... , eN1)) ==>
fel Cfe2C ... CfeNb) ... )

to apply the function to each element and the result of folding the function across the rest of the elements.

For example, we can sum an integer list:

- fun add (il:int) i2 = i1+i2;
> val add = fn : int -> int -> int

- val sum foldr add O;
> val sum = fn : int list -> int
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- sum [1,2,3,4];
> 10 : int

because:

sum [1,2,3,4] ==>

foldr add 0 [1,2,3,4] ==>

add 1 (foldr add 0 [2,3,4]) ==>

add 1 (add 2 (foldr add 0 [3,4])) ==>

add 1 (add 2 (add 3 (foldr add 0 [4]1))) ==>

add 1 (add 2 (add 3 (add 4 (foldr add 0 [1)))) ==>
add 1 (add 2 (add 3 (add 4 0)))) ==>

10
Our list of lists fold function listfoldr is like foldr but with an empty list as the base value:

- fun listfoldr f = foldr f [];
> val listfoldr =
fn : (Pa -> ’b list -> ’b list) -> ’a list -> ’b list

6.15 Testing groups of functions

Our functions are now somewhat more complicated and often call other functions. It is important to test out
functions individually before using them in other functions, to reassure ourselves that each stage works.

For example, suppose we want to sort a list of real numbers in descending order. We need a real comparison
function:

(* is one real greater than another? *)
- fun rmore (ri:real) r2 = ri>=r2;
> val rmore = fn : real -> real -> bool

which we should test first with values to make the boolean expression both true and false:

- rmore 6.1 6.2;
> false : bool

- rmore 8.9 7.6;
> true : bool

Suppose we are using the insertion function:

- fun insert _ v [1 = [v] |
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else h::ilnsert p v t;
> val insert = fn : (’a -> ’a —-> bool) -> ’a -> ’a list —> ’a list

We next define a real insertion function:

(* insert into descending order real list *)
- val rinsert = insert rmore;
> val rinsert = fn : real -> real list -> real list

and test the base case:

- rinsert 3.4 [];
> [3.4] : real list

and the recursion case:

- rinsert 3.4 [5.6,4.5,2.3,1.2];
> [6.6,4.5,3.4,2.3,1.2] : real list

We will use the first version of sort:

- fun sort _ [1 = [0 |
sort insert (h::t) = insert h (sort insert t);
> val sort = fn : (Pa -> ’b list -> ’b list) -> ’a list —> ’b list

so we define a real sorting function:

(* sort real list in descending order *)
- val rsort = sort rinsert;
> val rsort = fn : real list -> real list

Finally, we test the sort function base case:

- rsort [1;
> [1 : real list

and recursion case:

- rsort [1.2,2.3,3.4,4.5,5.6];
> [6.6,4.5,3.4,2.3,1.2] : real list

Similarly, when using a local declaration to hide auxiliary functions, it is important to test each auxiliary
function before combining them to test calling functions.

Testing alone cannot guarantee that a program is correct for all possible argument values. For that, mathemat-

ical proof techniques are needed. Nonetheless, thorough testing can give us confidence that our programs do
indeed do what they are supposed to do.
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In this chapter we started by looking at the use of accumulation variables to pass intermediate values between
recursive function calls. We then considered the use of local declarations to encapsulate functions and the
auxiliaries that they call. We next discussed the map higher order function for applying a function to each
element in a list and the filter higher order function for selecting list elements with particular properties.
Then we looked at generalising insertion into ordered lists to form a general purpose higher order sorting
function. Finally, we looked mapping over two lists and at folding functions over lists of lists.

We are now in a position to start looking at the use of lists to represent collections of things as groups of values

represented as tuples. In the next chapter we will use directly or modify the functions from the previous and
this chapter to manipulate lists of tuples.

6.17 Exercises
1) Identify the types of the following functions:

a) fun a _ [J = [J |
af (h::t) = (2x(f h))::(a £ t)

b) fun b 0=o01
b (h::t) = (f h)+(b £ t)

H

c) fun ¢ _ [0 = 00 |
c (h::t) = if £ h
then (f h)::(c f t)
else c f ¢t

H

d) fund _ _ [1 =101 |
dpf (h::t) =if ph
then (f h)::(dp £ t)
elsedpf t

e) fun e _ _ [1 =101 |
e f1 £2 (h::t) = (f1 (f2 h))::(e f1 £2 t)

£f) fun £ _ _ [1 = [1 |
f pl p2 (h::t) = if pl (p2 h)
then h::(f pl p2 t)
else f pl p2 t

S W A

g f (hil::t1) (h2::¢2) = if £ hi

then h2::(g £ t1 t2)
else g £ t1 t2

g) fun

oQ

h) fun b _ _ [1 [0 = [0 |
h f1 f2 (hi1::t1) (h2::t2) = if f1 hi
then (£f2 h2)::(f f1 £f2 t1 t2)
else £ f1 £f2 t1 t2

2) Write and test the following functions. Identify the type of each functions:

a) find the shortest element in a string list

b) generate a list of cubes of integers between m and n in ascending order
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e) generate a list of halves of integers between m and n in steps of s:

- halves 1 10 2;
> [0,1,2,3,4] : int list

f) generate a list by applying function £ to each integer value between m and n in steps of s

g) define
i) function e)
ii) function b)

ii1) a function to return a list of integers from m to n in steps of s

using the function from f).
3) Write and test a function to check if a list is a palindrome i.e. is the same when reversed:

—_ palin [Ilmll s Ilall s Ildll s Ilall s llmll s Ilill s Ilmll s Ilall s Ildll s llall s IImII] ;
> true : bool

What is the type of this function?

4) Write and test the following functions. Identify the type of each function:

a) use map to generate a list of tuples of numbers and squares from a list of numbers:

- numsq [1,2,3,4];
> [(1,1),(2,4),(3,9),(4,16)] : int list

b) use map to generate a list of booleans indicating whether or not each of a list of integers is odd:

- odds [1,2,3,4,5];
> [true,false,true,false,true] : bool list

¢) use map to generate a list of tuples of strings and integer sizes from a list of strings:
- sizes [”time”,”for”,”a”,”cup”,”of”,”tea”];
> [(”time”,4),(”for”,3),(”a”,1),(”Cup”,3),(”of”,2),(”tea”,3)];

5) Write and test the following functions. Identify the type of each function:

a) use filter to select all the strings in a list which have at least 3 letters:

- more3 [”time”,”to”,”wake”,”up”];
> ["time","wake"] : string list

b) use filter to select all the negative numbers from a list of integers:

- getnegs [1,71,2,72,3,73];
> [*1,72,73] : int list

¢) use map, filter and 1)g)iii) above to find all the even squares of integers between m and n which
divide by 7. Test the function on the range 1 to 1000.

6) Write and test the following functions. Identify the type of each function:

a) use sort to sort a list of integers in descending order:
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b) use sort to sort a list of strings in ascending order of their lengths:

- sortas ["how","long","is","the","longest","word"];
> ["is","how","the","long","word","longest"] : string list

7) Write and test the following functions. Identify the type of each function:

a) use map2 to join corresponding elements of two string lists together:
- join2 [nan s Ilbll s IICII] [”1” s ||2|| s ||3||:| ’
> ["al","b2","c3"] : string list
b) use map2 to form a list of tuples of corresponding list elements from two lists:

- zip [1,2,3,4] ["one","two","three","four"];
> [(1,"one"),(2,"two"),(3,"three"), (4,"four")] : (int * string) list

8) Write and test the following functions. Identify the type of each function:

a) use listfoldr to add together corresponding elements of a list of integer lists:

- addall [[1,2,3],[4,5,6],[7,8,91];
> [12,15,18] : int list

Hint: write a function that adds together corresponding elements of two integer lists but if either
list is empty then return the other.
b) use listfoldr to find the longest list in a list of lists:

- longest [[1,2,31,[4,5,6,7]1,[8,911;
> [4,5,6,7] : int list

Hint: write a function that returns the longer of two lists.

9) A botanist is experimenting with a new fertiliser. Every week the lengths of plants are measured in cm and
maintained in individual lists. For example:

[1.2,1.7,1.9,2.3,2.5,2.6]

a) Write a function to return a list of how much a plant has grown week by week from a list of
lengths. For an empty list or a list with one element return the empty list. Otherwise, subtract the
head from the head of the tail and put the result in front of the growth list from the tail:

- growth [1.2,1.7,1.9,2.3,2.5,2.6];
> [0.5,0.2,0.4,0.2,0.1] : real list
What is the type of this function?

b) Write a function to find the average weekly growth from a growth list. What is the type of this
function?

¢) Write a function which, given a list of growth lists, uses map and the function from b) to return
a list of average weekly growths. What is the type of this function?

d) Write a function which given a list of growth lists, uses filter and the function from b) to
return a list of growth lists whose average weekly growth is at least 0.3 cm. What is the type of this
function?

e) Write a function which, given a list of average weekly growths, counts how many average weekly
growths are less than 0.4 cm. What is the type of this function?

f) Write a function which, given a growth list, returns a string list to indicate whether or not each
element represents high, medium or low growth:
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"low" == growth < average/2

Use map and the function from b). What is the type of this function?

10) Write and test the following functions. Identify the type of each function:

a) given a list of integers, return a list of sums of each element and the next:

- sum2 [1,2,3,4,5,6];
> [2,5,7,9,11] : int list
For an empty or one element list, an empty list should be returned.
b) given a list of strings, return a list formed by joining each element to the next:
- join2 ["happy","birthday","party",'"time"];
> ["happybirthday","birthdayparty","partytime"] : string list
For an empty or one element list, an empty list should be returned.

¢) given a list, return a list formed by applying function £ to each element and the next. For an
empty or one element list, an empty list should be returned.

d) define the functions from a) and b) using the function from c).
11) Write and test the following functions. Identify the type of each function:

a) return a list consisting of twice every non-zero element in an integer list:

- twicenotO [1,0,2,0,3];
> [2,4,8] : int list

b) return a list consisting of the string "s" joined to the end of every element in a list of strings
with more than 4 letters:

- pluralmore4 ["ape","beaver",'cow","dragon"];
- ["beavers","dragons'"] : string list
¢) return a list resulting from applying function £ to every element of a list satisfying predicate p.

d) define the functions from a) and b) using the function from c).
12) Write and test the following functions. Identify the type of each function:

a) return the sum of all odd elements in a list of integers.
b) return the sum of all elements greater than 10 in a list of integers.
¢) return the sum of all elements satisfying predicate p in a list of integers.

d) define the functions from a) and b) using the function from c).
e

)
f) return the result of applying function £ cumulatively to all the elements of a list satisfying predicate
p- For an empty list the function should return value v.

return a string formed by joining together all the elements of a string list satisfying predicate p.

g) define the functions from a), b), ¢) and e) using the function from f).

13) Write and test the following functions. Identify the type of each function:
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¢) define the function from a) using the function from b).
d) count how often an odd integer is followed by an even integer in a list of integers.

e) count how often an element satisfying predicate p1 is followed by an element satisfying predicate

p2 in a list of appropriate type.

f) define the functions from a), b) and d) using the function from e).
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Chapter 7

Tuple lists

7.1 Introduction

We can now complete the Odyssey we started in chapter 1. We said that model making is based on collections of
things and things are groups of properties. We have seen that properties may be represented as values of types
and that fixed size groups of properties may be represented by tuples. We have also seen that lists may be used
to represent collections as variable length sequences of values. We will now look at the use of list processing
techniques to manipulate collections of things represented as lists of tuples.

7.2 Pattern matching with tuples

Until now we have been rather coy about tuples. We have seen how tuples may be formed and typed but have
not yet seen how to extract their values. As with lists, functions may be defined with tuples of patterns. When
such a function is applied to a tuple value, the tuple of patterns is matched against the value tuple. If they
have the same structure, that is the same number of elements with elements of corresponding type in the same
positions, then each bound variable in the tuple pattern is set to the corresponding element of the tuple value
tuple.

Thus, tuple pattern matching may be used to extract elements from tuples. For example, suppose we wish to
extract the first element from a tuple with 3 elements:

- (* select first element from three element tuple *)
fun first (x,y,z) = x;
> val first = fn : ’a * ’b * ’c -> ’a

This function is defined with a tuple of bound variables x, y and z. In the body of the function, no operations
are performed on x, y or z. Thus, they may be of any types, say:

X : ’a
y :’b
z : ’c

The function returns the value of x which is an ’a. Thus, the function type 1is:

’a * b *x 'c -> ’a

Consider:
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Here, x 18 set to 1, y is set to 1.0, z is set to "one" and 1 is returned from x.

Consider:

- first (("one",1),("two",2),("three",3));
> ("one",1) : string * int

Here, x 18 set to ("one",1), y is set to ("two",2), z is set to ("three",3) and ("one",1) is returned from x.

Note that y and z are not used so they can be ignored:

- fun first (x,_,_) = x;
> val first = fn : ’a *¥ 'b ¥ ’c -> ’a

Similarly, we could select the second in a 3 element tuple with:

- (* select second element from three element tuple *)
fun second (_,y,_) = y;
> val second = fn : ’a * ’b * ’c -> ’Db

For example, in:

- second ("Dennis","Menace",8);
> "Menace" : string

"Dennis' and 8 are ignored, y is set to "Menace" and "Menace" returned.

Similarly, we could select the third in a 3 element tuple with:

- (* select third element from three element tuple *)
fun third (_,_,z) = z;
> val third = fn : ’a * ’b * ’c => ’c

For example, in:

- third (2,2.0,[2,4,8,16]);
> [2,4,8,16] : int list

2, and 2.0 are ignored. z is set to [2,4,8,16] which is returned.

Elements may be selected from nested tuple values by pattern matching with nested tuples of patterns. At
each level of matching, the bound variable structure is matched against the element structure. For example, a
telephone book entry might be represented by:

((forename , surname ), department , extension )

for example:

- (("Alice","Apple"),"Accounts",2222);
- (("Alice","Apple"),"Accounts'",2222) : (string * string) * string * int
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- (* select surname *)
fun surname ((f,s),d,e) = s;
> val surname = fn : (’a * ’b) * ’c * ’d -> ’b

Here no operations are performed on £, s, d or e so they can be any types, say:

f : ’a
s :’'b
d: ’c
e : ’d
Consider:
- surname (("Bill",'"Banana'"),'Bakery'",3210);
> "Banana" : string

Here (f£,s) matches ("Bill","Banana'"), d matches "Bakery" and e matches 3210. Furthermore, £ matches
"Bill" and s matches "Banana" so "Banana' is returned from s.

Once again, as £, d, and e are not used they may be ignored:

- fun surname ((_,s),_,_) = s;
> val surname = fn : (’a * ’b) * ’c * ’d -> ’b

For pattern matching with tuples, constants may appear in the bound variable structure. Then, the tuple value
to which the function is applied must have the same constants in the same position. For example, to return the
name of someone if they are in the "Cookery" department:

- (*# select name from tuple with "Cookery' department *)
fun cookname (n,"Cookery",_) = n;
> val cookname = fn : ’a * string * ’'b —> ’a

Here, no operations are performed on n or _ so they can be any types, say:

n: ’a
’b

but the second element must be a string. Furthermore, for the match to succeed 1t must have the value
"Cookery". For example:

- cookname (("Clare","Cherry"),'"Cookery",2345);
> ("Clare",'"Cherry") : string * string

Here nis set to (""Clare","Cherry"), "Cookery" matches "Cookery", 2345 isignored and ("Clare'","Cherry")
is returned from n.

If the second element was not "Cookery" then the match would fail and a system exception would be raised.

This function has only one case so a warning will be issued when the function is first defined that not all values
have been catered for.
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Tuples are useful when we want to accumulate a variety of information about a sequence of values. Here, a
function might be defined with a tuple of accumulation variables. The tuple is initialised to appropriate values,
updated as each element of the sequence is considered and passed on to the next stage. At the end of the
sequence, the whole tuple is returned.

For example, suppose we want to find how many integers in a list are equal to, less than or greater than 0. We
can record the counts for each possibility in a tuple and return it when the end of the list is reached:

- fun countl (less,equal,greater) [] = (less,equal,greater) |

If the list starts with a 0 then we add 1 to equal and check the tail:

- fun countl (less,equal,greater) [] = (less,equal,greater) |
countl (less,equal,greater) (0::t) =
countl (less,equal+l,greater) t |

Similarly, if the list head is positive then greater is incremented. Otherwise less is incremented:

- (* count integers less than, equal to or greater than zero
in a list with accumulation tuple *)
fun countl (less,equal,greater) [] = (less,equal,greater) |
countl (less,equal,greater) (0::t) =
countl (less,equal+l,greater) t |
countl (less,equal,greater) (h::t) =
if h>0
then countl (less,equal,greater+1i) t
else countl (less+1,equal,greater) t;
> val countl = fn : int * int * int -> int list -> int * int * int

Initially, all counts are set to 0:

- local

fun countl ... =

in

(* count integers less than, equal to or
greater than zero in a list *)

val count = countl (0,0,0)

end;
> val count = fn : int list -> int * int * int

For example:

- count [1,0,72,0,3,0,74,0,5];
> (2,4,3) : int * int * int

because:

count [1,0,72,0,3,0,74,0,5] ==>

count1 (0,0,0) [1,0,72,0,3,0,%4,0,5] ==>
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countl (O0,1,1) [72,0,3,0,74,0,5] ==>
countl (1,1,1) [0,3,0,74,0,5] ==>
countl (1,2,1) [3,0,74,0,5] ==>
count1l (1,2,2) [0,74,0,5] ==>

countl (1,3,2) [“4,0,5] ==>

count1l (2,3,2) [0,5] ==>

countl (2,4,2) [5] ==>

countl (2,4,3) [1 ==>

(2,4,3)

7.4 Pattern matching with lists of tuples

A tuple of patterns is itself a pattern and so can appear in any other pattern. As well as list patterns with
constants, variables and lists, we can now use tuple patterns as parts of list patterns. We will now use tuples to
represent things and lists of tuples to represent collections of things. Many of the functions from the last two
chapters can be used directly with tuple lists or with a little modification to reflect particular sorts of tuples.
When we are writing recursive functions to process a list of tuples it i1s typical to have a recursion case with a
tuple pattern as the head of a list pattern.

For example, suppose we have a list of tuples of pairs and we want to swap the order of the elements in the
tuple:

- swap [("Anna","Ant"),("Bill","Bee"),("Clea","Cicada")];
> [("Ant","Anna"), ("Bee","Bill"),("Cicada","Clea")]
(string * string) list

swap is like map applied to a function that inverts the element of one pair:

- (* reverse elements of two element tuple *)
fun inv (x,y) = (y,%x);
> val inv = ’a * ’b -> ’b * ’a
- (*# reverse all tuple elements in two element tuple list *)

val swap = map inv;
> val swap = fn : (’a * ’b) list -> (’b * ’a) list

For the above example:

swap [("Anna","Ant"), ("Bill","Bee"),("Clea","Cicada")] ==>
map inv [("Anna","Ant"),("Bill","Bee"),("Clea",'"Cicada")] ==>
inv ("Anna","Ant")::map inv [("Bill","Bee"),('"Clea","Cicada")] ==>

inv ("Anna","Ant")::
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inv ("Anna","Ant")::
inv ("Bill","Bee")::inv ("Clea",'"Cicada")::map inv [] ==>
("Ant","Anna")::("Bee","Bill")::("Cicada","Clea")::[] ==>

[(”Ant”,”Anna”),(”Bee”,”Bill”),(”Cicada”,”Clea”)]

For example, suppose we have a list of two element tuples and we want a list of the first elements only:

- getfirsts [(1,1),(2,4),(3,9),(4,16)];
> [1,2,3,4] : int list

Once again, getfirsts is like map applied to a function to get the first from a tuple:

- (* select first element from two element list *)
fun first (x,_) = x;
> val first = fn : ’a ¥ b -> ’a

- (* select first elements from list of two element tuples *)
val getfirsts = map first;
> val getfirsts = fn : (’a * ’b) list -> ’a list

Thus:

getfirsts [(1,1),(2,4),(3,9),(4,16)] ==>

map first [(1,1),(2,4),(3,9),(4,16)] ==>

first (1,1)::map first [(2,4),(3,9),(4,16)] ==>

first (1,1)::first (2,4)::map first [(3,9),(4,16)] ==>

first (1,1)::first (2,4)::first (3,9)::map first [(4,16)] ==>

first (1,1)::first (2,4)::first (3,9)::first (4,16)::map first [] ==>

1::2::3::4::[] ==> [1,2,3,4]

All our polymorphic and higher order list functions apply to tuple lists.

7.5 Accumulation with lists

Consider separating a list of 2 element tuples into two lists, one for the first elements and one for the second
elements:

—_ unzip [(”a”,i),(”b”,2),(”c”,3)];
> (["e","b","a"],[3,2,1]) : string list * int list

The two lists are accumulated in a tuple which is returned when the end of the original list is found:
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If the list is not empty then the first element is added to the first list, the second element is added to the second
list and the tuple 1s passed to the next stage:

- (* split two element tuple list into two
singleton lists using accumulation lists *)
fun unzipl (f,s) [1 = (£f,s) |
unzipl (£,s) ((el,e2)::t) = unzipl (el::f,e2::s) t;
> val unzipl = fn : ’a list * ’b list ->
(’a * ’b) list -> ’a list * ’b list

No operations are performed on el or e2 so they may be any types, say:

el : ’a
e2 : ’'b

Thus, (e1,e2)::tisan (’a * ’b) list. el is joined to f so £ must be an ’a list. e2 is joined to s so s
must be a *b list. Thus, the result must be an:

’a list * ’b list
Initially, the accumulation lists are empty:

- local
fun unzipl ... = ...
in
(* split two element list into two singleton lists *)
val unzip = unzipil ([J,[1)
end;
> val unzip = fn : (Ca * ’b) list -> ’a list * ’b list

For example:

- unzip [(1.0,1),(2.0,2),(3.0,3)];
> ([3.0,2.0,1.0]1,[3,2,1]) : real list * int list

because:

unzip [(1.0,1),(2.0,2),(3.0,3)] ==>

unzipi ([1,01) [(1.0,1),(2.0,2),(3.0,3)] ==>
(£,s) == (01,0[1)
(el1,e2) == (1.0,1)
t == [(2.0,2),(3.0,3)]

unzipi ([1.0]1,[11) [(2.0,2),(3.0,3)] ==>
(£,s) == ([1.01,[11)
(el,e2) == (2.0,2)
t == [(3.0,3)]

unzipl ([2.0,1.0],[2,1]) [(3.0,3)] ==>
(f,s) == ([2.0,1.0]1,[2,1]1)
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unzipi ([3.0,2.0,1.01,[3,2,11) [1 ==>
([3.0,2.0,1.01,[3,2,11)

Note that the element lists are in reverse order. We will see how to assemble them 1n the correct order later.

7.6 Generalised list find, delete and replace

In chapter b we met functions to see if a list contained a value, to delete a value from a list and to replace a
value in a list. We will now generalise these functions so that rather than looking for a specific value we look
for a value satisfying some predicate p.

Consider finding the first element of a list satisfying predicate p:

- (*# find list element with property p *)
fun findp _ b [1 = b |
findp p b (h::t) = if p h
then h
else findp b p t;
> val findp = fn : (’a -> bool) -> ’a -> ’a list -> ’a

If the list does not contain the value then return the base value b. Otherwise, if the first element satisfies p
then return it. Otherwise look in the rest of the list.

For example, to find the first record in a list of names and ages, represented as string * int tuples, with name
set to "jo":

fun isjo (name,_) = name="jo";

> val isjo = fn : string * ’a —-> bool

- findp isjo [("pat",1),("chris",2),("jo",3),("les",4)];
("jo",3) : string * int

\'4

because:

findp isjo ("fail",0) [("pat",1),("chris",2),("jo",3),("les",4)] ==>
findp isjo ("fail",0) [("chris",2),("jo",3),("les",4)] ==>

findp isjo ("fail",0) [("jo",3),("les",4)] ==>

findp isjo ("fail",0) [("jo",3),("les",4)] ==>

(”jO”,?})

Consider deleting the first element of a list satisfying predicate p:

- (* delete list element with property p *)
fun deletep _ [1 = [1 |
deletep p (h::t) = if p h
then t
else h::deletep p t;
> val deletep = fn : (’a -> bool) -> ’a list -> ’a list
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For example, to delete the record with name "jo" in a list of name/age records:

- deletep isjo [("pat",1),("chris",2),("jo",3),("les",4)];
> [("pat",1),("chris",2),("les",4)] : (string * int) list

because:

deletep isjo [("pat",1),("chris",2),("jo",3),("les",4)] ==>
("pat",1)::deletep isjo [("chris",2),("jo",3),("1les",4)] ==>
("pat",1)::("chris",2)::deletep isjo [("jo",3),("les",4)] ==>
("pat",1)::("chris",2)::[("les",4)] ==>

[("pat",1),("chris",2),("les",4)]
Similarly, consider replacing the first value satisfying predicate p in a list:

- (*# replace list element with property p *)
fun replacep _ _ [1 = [1 |
replacep p v (h::t) =if ph
then v::t
else h::replacep p v t;
fn : (’a => bool) -> ’a —> ’a list -> ’a list

> val replacep

If p is true for the list head then it i1s replaced with the new value. Otherwise the list head is joined to the result
of making the replacement in the tail.

For example, to replace the record with name "jo'" with a new record ("jo'",4):

- replacep isjo ("jo",4) [("pat",1),("chris",2),("jo",3),("les",4)];
> [("pat",1),("chris",2),("jo",4),("les",4)] : (string #* int) list

because:

replacep isjo ("jo",4) [("pat",1),("chris",2),("jo",3),("les",4)] ==>
("pat",1)::replacep isjo ("jo",4) [("chris",2),("jo",3),("les",4)] ==>
("pat",1)::("chris",2)::replacep isjo ("jo",4) [("jo",3),("les",4)] ==>
("pat",1)::("chris",2)::("jo",4)::[("les",4)] ==>

[("pat",i) s (”ChriS”,2) s (”jO”,‘.‘:) s (”165”,4)]

7.7 Example - telephone directory

We might represent someone’s departmental telephone number as a tuple consisting of:
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extension - 1nteger

For example:

name department extension
Anna Anatomy 123

can be represented as:

- ("Anna","Anatomy",123);
> ("Anna","Anatomy'",123) : string * string * int

A telephone directory might then be represented as a list of phone number tuples. For example the table:

name department extension
Anna Anatomy 123
Bill Biology 234
Clea Chemistry 345
Doug Dentistry 456
Ellen Biology 567

can be represented by the tuple list:

- val dir = [("Anna",'"Anatomy",123),
("Bill","Biology",234),
("Clea","Chemistry",345),
("Doug","Dentistry",456),
("Ellen","Biology",567)];
> val dir = [("Anna",'"Anatomy",123),
("Bill","Biology",234),
("Clea","Chemistry",345),
("Doug","Dentistry",456),
("Ellen","Biology",567)] : (string * string * int) list

For example, to find the number for given name we can use findp again:

- (* find record for given name in directory *)
fun find n = findp (fn (nil,_,_) => ni=n) ("fail","fail",0);
> val find = fn : string -> (string * string * int) list ->
string * string * int

Note that we cannot use findp directly. Instead we define a predicate:

fn (n1,_,_) => nl=n

that refers to the bound variable n for the required name.

Note that n1 and n are compared so they must have the same equality type, say ’’a. No operations are
performed on the other anonymous tuple elements so they can be any types.

For example:
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("Clea","Chemistry",345)1;
> ("Clea","Chemistry",345) : string * string * int

For example, we can insert a new entry into a directory in name alphabetic order using the general purpose
insertion function from chapter 6:

fun insert _ v [] = [v] |
insert p v (1L as h::t) = if p v h
then v::1
else h::insert p v t

We need to define a comparison function for directory records which checks if one record’s name comes before
another record’s name:

- (* does one record come before another in name order? *)
fun nless (nl:string,_,_) (n2,_,_) = ni<n2;
> val nless = fn : string * ’a * ’b -> string * ’c * ’d -> bool

Now we can define the directory insertion function:

- (# insert record into directory in name order *)
val dinsert = insert nless;
> val dinsert = fn : string * ’a * ’b -> (string *’a *’b) list
(string *’a *’b) list

For example:

- dinsert ("Dora",'"Debts",777) [("Anna","Anatomy'",123),
("Bill","Biology",234),
("Clea","Chemistry",345)];
> [("Anna'","Anatomy",123),
("Bill","Biology",234),
("Clea","Chemistry",345),
("Dora'","Debts",777)] : (string * string #* int) list

Suppose we want to find all the people in the same department. We can use filter with a new predicate to
match the department in a tuple with a required department:

- (* find all records in directory with given department *)
fun samedept d = filter (fn (_,d1,_) => d=d1);
> val samedept = fn : ’’a -> (’b * ?’a * ’c) list -> (’b * ’’a * ’c) list

For example:

- samedept "Biology'" dir;
> [("Bill","Biology",234),
("Ellen","Biology",567)] : (string * string * int) list

Suppose we want to change someone’s record with replacep:
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fn : ’’a * ’b ¥ ’¢c —>
(’’a * ’b * ’¢c) list —>
(’’a * ’b * ’¢c) list

> val change

For example:

- val newdir = change ("Clea","Computing",987) dir;
> val newdir = [("Anna","Anatomy",123),
("Bill","Biology",234),
("Clea","Computing'",987),
("Doug","Dentistry'",456),
("Ellen","Biology",567)] : (string * string * int) list

7.8 Example - stock control

Consider a stock record:
( wtem , stock level , reorder level)

The item is the name of an item held in stock. The stock level 1s the number of item currently in stock. When
the stock level falls below the reorder level the item should be reordered.

For example:

item level reorder
bath 200 150

which could be represented as a tuple:

- ("bath",200,150);
> ("bath",200,150) : string * int * int

An example table of stock records is:

item level reorder

bath 200 150
tap 200 300
sink 75 200

tile 3000 1500

which can be represented as a list of tuples:

- [("bath",200,150), ("tap",200,300),
("sink",75,200), ("tile",3000,1500)];

> [("bath",200,150), ("tap",200,300),
("sink",75,200),("tile",3000,1500)] : (string * int * int) list
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- (* delete record with name i from stock list *)
fun delete i = deletep (fn (il,_,_) => il=i);
> val delete = fn : ’’a -> (’’a * ’b * ’c) list -> (’’a * ’b * ’c) list

delete is polymorphic and will delete the tuple with a given first element from a list of arbitrary three element
tuples.

For example:

- delete "sink" [("bath",200,150),("tap",200,300),
("sink",75,200), ("tile",3000,1500)];
> [("bath",200,150), ("tap",200,300),
("tile",3000,1500)] : (string * int * int) list

Consider finding all the records for items whose stock level’s are less than the reorder level’s. Here we can use
filter applied to a function to check if the stock level is less than the reorder level:

- (* is stock level less than reorder level? *)
fun less_stock (_,s:int,r) = s<r;
> val less_stock = fn : ’a * int * int -> bool

- (* find all stock with stock level less
than reorder level in stock list *)
val reorder = filter less_stock;
> val reorder = fn : (’a * int * int) list -> (’a * int * int) list

For example:

- reorder [("bath",200,150), ("tap",200,300),
("sink",75,200),("tile",3000,1500)1;
> [("tap",200,300), ("sink",75,200)]
(string * int * int) list

Consider finding out how many of each item need to be reordered to bring the stock level back to the reorder
level. If the list is empty then return the empty list. If the first item needs to be reordered then put a tuple for
the item and the difference between the reorder and stock levels onto the result of checking the rest of the list.
Otherwise check the rest of the list:

- (* for each record with stock level less than reorder level
in a stock list, find quantity needed to bring stock level
up to reorder level *)

fun needed [1 = [1 |
needed ((i,(1:int),r)::t) =
if 1<r
then (i,r-1)::needed t
else needed t;
> val needed = fn : (’a * int * int) list —> (’a * int) list

One of 1 and r must be typed as they are compared with the overloaded <. i may be any type.

For example:
- needed [("bath",200,150),("tap",200,300),
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because:

needed [("bath",200,150), ("tap",200,300),
("sink",75,200), ("tile",3000,1500)] ==>

needed [(“tap",200,300),("sink",75,200),("tile",3000,1500)] ==>

("tap",100)::
(needed [("sink",75,200),("tile",3000,1500)]) ==>

("tap",100)::
("sink",125)::
(needed [("“tile'",3000,1500)]) ==>

("tap",100)::
("sink",125)::
(needed [1) ==>

("tap",100)::
("sink",125)::
[] ==>

[("tap",100), ("sink",125)]

Consider updating the stock level for a given item i by a given amount a. If the list is empty then return the
empty list. If the first record is for the required item then add the amount to the stock level making a new
tuple and put it in front of the rest of the records. Otherwise put the first tuple onto the result of performing
the update in the rest of the records:

- (* increment stock level in record for given item in stock list *)
fun update _ [1 = [1 |
update (i,a:int) ((i1,11,r1)::t) =
if i=i1
then (i1,1l1+a,rl)::t
else (i1,11,r1)::update (i,a) t;
> val update = fn : ’’a * int -> (’’a * int * ’b) list
-> (?’a * int * ’b) list

il and i are only compared with the polymorphic = so they may have the same equality type ’’a. rl is not

used so it may have any type, say ’b. a or 11 must be typed explicitly for the addition. They have the same
int type.

For example:

- update ("sink",200) [(“"bath",200,150),("tap",200,300),
("sink",75,200), ("tile",3000,1500)];
> [("bath",200,150), ("tap",200,300),
("sink",275,200),("tile",3000,1500)] : (string * int * int) list

because:

update ("sink",200) [(“bath",200,150),("tap",200,300),
("sink",75,200), ("tile",3000,1500)] ==>
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update ("sink",200) L("tap",200,300),
("sink",75,200),("tile",3000,1500)] ==>

("bath",200,150) : :
("tap",200,300)::
update ("sink",200) [(“sink",75,200),("tile",3000,1500)] ==>

("bath",200,150) : :
("tap",200,300)::
("sink",275,200):: [("tile",3000,1500)] ==>

[("bath",200,150), ("tap",200,300),
("sink",275,200), ("tile",3000,1500)]

A list of updates might be represented by a list of tuples of items and amounts, for example:

- [("tap",150),("tile",200), ("bath",50)];
> [("tap",150),("tile",200),("bath",50)] : (string * int) list

Consider updating a list of stock records from a list of updates. If the update list i1s empty then return the
record list. Otherwise, use the first update record to update the new record list from using the rest of the
update records to process the original record list. Here we can use foldr to apply update with each of the
update records in turn. We use the original record list as the base case to be returned by foldr when there are
no update records left:

- (* update stock list from reorder list *)
val updateall = foldr update;
> val updateall = fn : (’’a * int * ’b) list ->
(’’a * int) list ->
(’’a * int * ’b) list

For example:

- updateall [("bath",200,150),("tap",200,300),
("sink",75,200), ("tile",3000,1500)]
[("tap",150), ("tile",200), ("bath",50)]1;
> [("bath",250,150), ("tap",350,300),
("sink",75,200),("tile",3200,1500)] : (string * int * int) list

because:

updateall [("bath",200,150),("tap",200,300),
("sink",75,200), ("tile",3000,1500)]
[("tap",150), ("tile",200), ("bath",50)] ==>

foldr update [("bath",200,150),("tap",200,300),
("sink",75,200), ("tile",3000,1500)]
[("tap",150), ("tile",200), ("bath",50)] ==>

update ("tap",150)
(foldr update [("bath",200,150),("tap",200,300),
("sink",75,200),("tile",3000,1500)]
[("tile",200), ("bath",50)]) ==>
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(update ("tile",200)

(foldr update [("bath",200,150),("tap",200,300),
("sink",75,200),("tile",3000,1500)]
[("bath",50)]1)) ==>

update ("tap",150)
(update ("tile",200)
(update ("bath",50)
(foldr update [("bath",200,150),("tap",200,300),
("sink",75,200), ("tile",3000,1500)]
1)) ==
update ("tap",150)
(update ("tile",200)
(update ("bath",50)
[("bath",200,150), ("tap",200,300),
("sink",75,200), ("tile",3000,1500)])) ==>
update ("tap",150)
(update ("tile",200)
[("bath",250,150), ("tap",200,300),
("sink",75,200), ("tile",3000,1500)]) ==>
update ("tap",150)
[("bath",250,150), ("tap",200,300),
("sink",75,200), ("tile",3200,1500)] ==>

[("bath",250,150), ("tap",350,300),
("sink",75,200), ("tile",3200,1500)]

7.9 Type expressions and type abbreviations

We have seen that we can specify a variable’s type with a type expression built from type constructors like int,
real, string, bool and 1ist. So far, a type expression may be a single type constructor or a type variable or a
function type or a tuple type or a bracketed type expression or a type expression or the 1ist type constructor.

SML enables the use of abbreviated types as a shorthand for type expressions. A name may be associated with
a type expression using a type binding of the form:

type name = iype expression

The name 1s an identifier which may be used in subsequent type expressions.

For example, in the telephone directory example we are using entries of type:
string * string * int

and entry lists of type
(string * string * int) list

These do not tell us much about what they represent. We might rename the directory entry type by:
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- type department = string;

> type department = string

- type extension = int;

> type extension = int

- type entry = person * department * extension;
> type entry = person * department * extension

and the directory type by:

- type directory = entry list;
> type directory = entry list

We could now write a function to find everyone on the same extension using the new types:

- (* find all records in directory with given extension *)
fun findext e¢ [1 = [1 |
findext (e:extension) (((nl,d1l,el)::t):directory) =
if e = el
then (n1,d1,el)::findext e t
else findext e ¢
> val findext = fn : extension —>
(person * department * extension) list —>
(person * department * extension) list

Here, we have been explicit about e being an extension and the list (n1,d1,el)::t being a directory. This
is a bit more long winded than the lack of explicit types in the previous section but it makes it easier to read
the function. Here, the type definitions help us rather than the computer: they make us focus on the intended
meaning of the data values rather than the way in which they are represented.

Note that a new type constructor is syntactically equivalent to its defining expression. Thus, if we define:

- type whole_numb = int;
> type whole_numb = int
- type integer = int;
> type integer = int

then values of type whole_numb, integer and int may be used in the same places without causing type errors.
This form of type binding just disguises a longer type expression.

7.10 Curried and uncurried functions

You may have noticed that a function with a tuple argument is apparently similar to nested functions of single
arguments. For example, suppose we want to calculate:

a*x*x+b*x+c
We could write:

- fun quadl a b ¢ (x:int) = a*x*x+b*x+c;
> val quadl = fn : int -> int -> int -> int -> int
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- quadl 1 2 1 3;
> 16 : int

Alternatively, we could put a, b, ¢ and x together into a tuple:

- fun quad2 (a,b,c,x:int) = a*x*x+b*x*c;
> val quad2 = fn : int * int * int * int -> int

and pass the values in all together:

- quad2 (1,2,1,3);
> 16 : int

The first form, where functions of single bound variables are nested, is known as a curried function, after Haskell
Curry, the American mathematical logician. The second form, using a single function with a tuple of bound
variables, is known as an uncurried function.

Curried functions may be converted to uncurried by running all the nested bound variables into a single tuple.
We can generalise for specific depth of nesting with a higher order function. For example, consider a function
of an arbitrary bound variable whose body is another function of an arbitrary bound variable:

—fun FX Y =
>val F=1fn : ’a -> b -> ¢

This may be converted to an uncurried function, that is a function which is called with a tuple of arguments
for x and y:

- (* convert curried to uncurried *)
fun uncurry f (x,y) = £ x y;
> val uncurry = fn : (a -> ’b -> ’c) -> ’a * ’b -> ’c¢

We can use this to uncurry F above:

- val uncurry_F = uncurry F;
> val uncurry_F = fn : ’a * ’b -> ’c¢c

Thus, calling uncurry_F with a tuple of two values, say valuel and value?, is equivalent to calling F with the
first value and calling the result with the second value:

uncurry_F ( valuel , value2 ) ==>
uncurry F ( wvaluel , value2 ) ==>

F valuel value2

Here, the uncurried function uncurry_F was called with a tuple of two values which were unpacked through
pattern matching and passed to the curried function F.

Similarly, an arbitrary two variable uncurried function:

204



may be converted to curried form with a higher order function which parcels up the nested arguments into a
tuple:

- (* convert uncurried to curried *)
fun curry £ x y = £ (x,y);
> val curry = fn : (Pa * ’b -> ’¢) -> ’a -> ’b -> ’c¢

For example, we can curry G:

- val curry_G = curry G;
> val curry_G = fn : ’a -> ’b > ‘¢

Calling curry_G with two nested values is equivalent to calling G with a tuple of those variables:
curry_G valuel value2 ==>
curry G valuel value2 ==>
G ( wvaluel , wvalue2)

Here, the curried function curry_g was called with two values which were packed up into a tuple and passed
to the uncurried function G.

In general, curried functions have equivalent uncurried versions and vice versa. The advantage of the curried
form is that the outer bound variables can be frozen to make a specialised function. For example, for:

Xkx+2%x+3

we can write:

- val quad1_123 = quadl 1 2 3;
> val quad1_123 = fn: int -> int

with the curried version. The same effect with the uncurried version is much more long winded:

- fun quad2_123 x = quad2 (1,2,3,x);
> val quad2_123 = fn : int -> int

as we have to make the bound variable x explicit to place it in the tuple. However, uncurried functions may be
implemented more efficiently as the system does not need to keep track of the function nesting.

7.11 Summary

In this chapter we have looked at list processing with tuples. We have seen how we can use tuples to represent
things as fixed groups of different types of property values and lists to represent variable length collections of
the same type of thing. We have used or modified our list processing functions from the previous chapters to
manipulate tuple lists. We also looked at type abbreviations as a way of specifying types with names that are
meaningful to us. Finally, we looked at the relationship between curried and uncurried functions.

In the next chapter, we will consider the use of list processing techniques for elementary text processing.
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1) Identify the types of the following functions:

a) fun a [J] = [J |

a ((x,y)::t) = x::a t
b) fun b [1 = [ |
b ((x,y,z)::t) = x+ty/z::b t

c) fun ¢ _ [1 = [0 |
c f ((x,y)::t)

fxyiicft ¢t

d) fun da [1 = [ |
d ((p,q)::t) =pq::d t

e) fun e _ [1 = [ |
e f ((x,y)::t)

(f x,f y)::ef t

) fun £ ((x1,y1)::t1) ((x2,y2)::t2) =
(x1,x2,y1,y2)::f t1 t2 |
f__=10

g) fun g £ ((x1,y1)::t1) ((x2,y2)::t2) =
if £ x1 x2
then (y1,y2)::g £ t1 t2
else g £ t1 t2 |
g ___=101

h) fun h ((x1,y1)::t1) ((x2,y2)::t2) =
(x1 x2,y1 y2)::h t1 t2
h___=10

2) Write functions to solve the following problems.

a) Given a list of pairs of integers, write a function to form a new list by adding the elements from
each pair together:

- addpair [(1’1) > (2’2) > (3’3)] 5
> [2,4,8] : int list
without using map.
What is the type of this function?
b) Given a list of pairs of strings, form a new list by joining the elements from each pair together:
- joinpair [("Happy","Birthday"),
("Good","Morning"),
(IIHotII s IIDogII ):I ;
> ["HappyBirthday","GoodMorning","HotDog"] : string list
without using map.
What is the type of this function?
¢) Given a list of pairs of strings and integers, form a list of booleans which indicates whether or

not each string has the associated integer as its length:

- checksize [("cat",4),("dog",3),("ant",2)];
> [false,true,false] : bool list
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d) Use map to define the functions from a), b) and ¢) above.
3) A name may be represented as a tuple of a given name and a family name.

a) Write a function which inserts a name into a list of names in ascending alphabetical order of
family name. For two names with the same family name, the given name is used to determine the
order:

- ninsert ("Pat'","Penguin") [("Chris'","Cat"),("Zoe","Zebra")];
> [("Chris","Cat"),("Pat","Penguin"), ("Zoe","Zebra")]

(string * string) list
- ninsert ("Ziggy","Zebra") [("Chris'","Cat"),("Zoe","Zebra")];
> [(“"Chris","Cat"),("Ziggy","Zebra"), ("Zoe","Zebra")]

(string * string) list

What is the type of this function?

b) Write a function to sort a list of names in order of the length of the family name:

- nsort [("Chris","Cat"),("Pat'","Penguin"),("Zoe","Zebra")];
> [(“"Chris","Cat"),("Zoe","Zebra"), ("Pat","Penguin")]
(string * string) list

What is the type of this function?

¢) Use map to define a function which given a list of names returns a list of tuples of given name and
family name lengths:

- initial [("Chris","Cat"),("Pat","Penguin"),("Zoe","Zebra")];
> [(5,3),(3,7),(3,5)] : (int * int) list

What is the type of this function?

4) Exam marks for one person may be held as a tuple of their name, as in 3) above, and a list of integer marks.
For example, the following table:

given family markl mark2 mark3 ...
Allan Anchor 45 56 78

Betty Boat 75 80

Colin Compass 33 39 41

would be represented as:

- [(("Allan","Anchor"),[45,56,78]),
(("Betty","Boat"),[75,80]),
(("Colin","Compass"), [33,39,41])];

> [(("Allan","Anchor"), [45,56,78]),
(("Betty","Boat"),[75,80]),
(("Colin","Compass"),[33,39,41])]
(string * string) #* int list

a) Write a function which given a name, a mark and a list of exam marks adds the mark to the
integer mark list for the name. If the name is not in the list then add a new pair for that name with
a list with that mark:

207



(("Betty","Boat"),L75,80]1),
(("Colin","Compass"), [33,39,41])];
> [(("Allan","Anchor"), [45,56,78]),
(("Betty","Boat"), [55,75,801),
(("Colin","Compass'"),[33,39,41]1)] : (string * int list) list

- addmark ("Betty",'"Boat") 55
[(("Allan","Anchor"),[45,56,78]),
(("Colin","Compass"), [33,39,41])];
> [(("Allan","Anchor"), [45,56,78]),
(("Colin","Compass"),[33,39,41]),
(("Betty","Boat"),[55])] : (string * int list) list

What is the type of this function?

b) Write a function which given a name and a list of exam marks returns the list of individual marks
for the name:

- getmarks ("Colin",'"Compass")
[(("Allan","Anchor"), [45,56,78]),
(("Betty","Boat"), [55,75,801),
(("Colin","Compass"),[33,39,41]1)];
> [33,39,41] : int list

What is the type of this function?

¢) Write a function which given a list of exam marks finds the average mark for each person, using
map:

- avmark [(("Allan","Anchor"),[45,56,78]),
(("Betty","Boat"),[55,75,801),
(("Colin","Compass"), [33,39,41])];

> [(("Allan","Anchor"),66),

(("Betty","Boat"),70)
(("Colin","Compass"),37)] : ((string * string) * int) list

What is the type of this function?

5) In a simple graphics system, lines are represented by tuples of start and finish x/y coordinates. For example:

from 4,5 to 8,9 ==

x1 y1 x2 y2
4 5 8 9

is represented by:
(4 s 5 ’ 8 s 9)
Similarly, a table of lines, for example:

x1 y1 x2 y2
4 5 8 9

1 1 1 7
2 3 6 3
3 3 8 8
is represented as a list of tuples:
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(1nt * 1nt * 1nt * 1nt) list

Lines may be horizontal from left to right, vertical from top to bottom, or diagonal from top or bottom left
to bottom or top right. For horizontal lines the x coordinates must be the same. For vertical lines the y
coordinates must be the same. For diagonal lines, the difference between the x coordinates must be the same
as the difference betweeen the y coordinates.

a) Write a function to return a tuple to indicate the class of a line:

- 1lclass (4,3,7,3);

> ("horiz",(4,3,7,3)) : string * (int * int * int #* int)

- 1lclass (3,4,3,7);

> ("vert",(3,4,3,7)) : string * (int * int * int * int)

- 1lclass (7,9,11,13);

> ("diag",(7,9,11,13) : string * (int * int * int #* int)
What is the type of this function?

b) Write a function which given a list of lines returns a list of line class tuples, using map and the
function from a). What is the type of this function?

¢) Write a function which given a horizonal line tuple returns all the points on the line as x/y

coordinate tuples:

- hpoints (4,3,7,3);
> [(4,3),(5,3),(6,3),(7,3)] : (int* int) list

If the start x coordinate is bigger than the finish x coordinate then return the empty list. Otherwise
put a tuple for the start point onto the list for the line from the start point with incremented x
coordinate. What is the type of this function?

d) Write a function which given a vertical line tuple returns all the points on the line as a list of x/y

coordinates tuples:

- vpoints (3,4,3,7);
> [(3,4),(3,5),(3,6),(3,7)] : (int * int) list
What is the type of this function?

e) Write a function which give a predicate final and a function next and a line tuple, returns the
empty list if £inal is true for the line tuple. Otherwise, it joins the start point from the tuple onto
the result of applying the function itself to the line tuple after next is applied to 1t. What is the
type of this function?

f) define the functions from ¢) and d) using the function from e).

g) Write a function which gven a list of line classes returns a list of lists of points for all the horizontal
lines. What is the type of this function?

6) A car park computer holds records of when cars enter as integer hours, minutes and seconds. A time:

hour minute second
12 35 16

may be represented as a tuple:

- (12,35,18);
> (12,35,16) : int * int * int

a) Write a function to convert a time tuple into seconds. What is the type of this function?

b) Write a function to convert a time in seconds into a time tuple. What is the type of this function?

209



number hour minute second
ABC 123 15 9 27

may be represented by tuple of the registration number and time:

- ("ABC 123",(15,9,27));
> ("ABC 123",(15,9,27)) : string * (int * int * int)

and a table of car entry records:

number hour minute second

ABC 123 15 9 27
XSG 309 17 15 40
0SX 786 21 37 17

may be represented by a tuple list:

- [("aABC 123",(15,9,27)),
("XsSG 309", (17,15,40)),
("0sx 786", (21,37,17))1;
> [("ABC 123",(15,9,27)),
("XsSG 309", (17,15,40)),
("0sX 786",(21,37,17))] : (string * (int * int * int)) list

¢) Write a function which adds an entry record to a list of entry records in ascending order of
registration number. What is the type of this function?

d) Write a function which given a registration code, an exit time and an entry list, returns the time
spent by the car in the car park in seconds. What is the type of this function?

A long term list is kept of how long each car spends in the car park. Fach record consists of a tuple of a
registration code and a cummulative time in seconds.

e) Write a function which, given a car’s registration code, a time in seconds and a long term list,
updates the cummulative time for that car by adding the new time to the cummulative time in its
record. If there is no record in the list for that registration code then a new one should be created
with the time as the initial cammulative time. What is the type of this function?

f) Write a function which returns the record in the long term list with the longest cummulative time.
What is the type of this function?

7) Dates consisting of integer day, month and year, for example:

day month year
15 2 1997

may be represented as tuples:

- (15,2,1997);
> (15,2,1997) : int #* int * int
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aivil il v

> "May" : string

What is the type of this function?

A table of dates, for example:

day month year

17 3 1997
24 9 2001
5 11 1995

may be represented as a list of tuples:

- [(17,3,1997),(24,9,2001),(5,11,1995)];
> [(17,3,1997),(24,9,2001),(5,11,1995)] : (int * int * int) list

b) Write a function which given a list of dates converts it to a list of dates with string months using
map:

- mconv [(17,3,1997),(24,9,2001),(5,11,1995)];
> [(17,"March",1997), (24,"September",2001), (5, "November',1995)]
(int * string * int) list

What is the type of this function?

¢) Write a function which given a list of dates returns all those in a given year. The result list should
have string months. What is the type of this function?

d) Write a function which adds a value to a list provided that value is not in the list already. What
is the type of this function?

e) Use the function from d) to write a function which, given one date and a list of years, adds the
year from that date to the list of dates if it is not already in the list. What is the type of this
function?

f) Use the function from €) to write a function to find all the unique years in a list of dates. Tt will
be applied to a list of unique years, initially empty, and a list of dates. What is the type of this
function?

g) Write a function which adds a date to a list of dates in ascending date order. What is the type
of this function?

h) Write a function that counts how many dates in a list have a specific year. What is the type of
this function?

8) A road monitor notes that vehicles that pass it. When a sequence of the same vehicle passes the monitor they
are counted. At the end of the day all the vehicle sequence records are returned with the records in the order in
which the corresponding sequences passed the monitor. A record is a string vehicle name and an integer count
of the number of vehicles in that sequence. For example, the table of records:

vehicle number

car 3
bus 1
car 5
lorry 2
bus 1

may be represented by the list of tuples:
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(string * 1int) list

a) Write a function to find all the sequence records with a given name using filter. What is the
type of this function?

b) Write a function to count how many vehicles with a given name passed the monitor in total.
What is the type of this function?

¢) Write a function to insert a sequence record into a list of sequence records in ascending vehicle
name order. Where two records have the same name they should be inserted in ascending vehicle
number order. What is the type of this function?

d) Write a function to delete the first sequence record with a given vehicle name from a list of
records. What is the type of this function?

e) Write a function to delete the ith sequence record with a given vehicle name from a list of records.
What is the type of this function?

f) Write a function to find the name of the vehicle with the longest sequence number from a list of
records. What is the type of this function?

9) In a bank, exchange rate records are held for each currency. For example, if 1 pound is worth 9.8 Francs,
2161.1 Lire or 1.4 ECU then the record is:

currency ratel tol rate2 to2 rate3 to3
pound 9.8 franc 2161.1 lire 1.4 ecu

which may be represented as a tuple of a string and a list of tuples:

- ("pound",[(9.8,"franc"),(2161.1,"1lire"),(1.4,"ecu")]);
> ("pound",[(9.8,"franc"),(2161.1,"1lire"),(1.4,"ecu")]) :
string * (real * string) list

a) Write a function which, given a record for a currency and the string name of another currency,
finds the exchange rate for converting from the first to the second currency.

What is the type of this function?

b) Write a function which, given a currency and a list of exchange rate records, finds the record for
that currency.

What is the type of this function?

Exchange rate request records are held as tuples. For example, if 5 pounds is to be converted to ECU then the
request record 1s:

- ("pound",5.0,"ecu");
> ("pound",5.0,"ecu") : string * real * string

¢) Write a function which, given an exchange request record and a list of exchange rate records,
finds the result of converting the specified amount of the first currency in the request record to the
second currency in the request record. The result should be returned as a tuple of a currency name
and an amount.

What is the type of this function?

d) Write a function using that from c¢) which, given a list of exchange rate records and a list of
exchange request records, returns a list of results for those requests.

What is the type of this function?
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Chapter 8

Text processing

8.1 Introduction

In this chapter we are going to apply the list processing techniques from chapters 5 and 6 to text processing.
We will treat a text as a list of single letter strings and develop general list processing functions for locating
and manipulating one list within another list.

8.2 String to list conversion

SML provides built in functions for converting between strings and lists of strings. The function:
explode
turns a string into a list of single letter strings:

- explode '"banana';

> [Ilbll Ilall Ilnll Ilall Ilnll IIaII] . String list
> > > > > .

- explode;

> fn : string -> string list

The function:
implode
turns a list of strings into a single string by joining the strings end to end:

—_ implode [Ilpll Iloll Iltll Ilall Iltll IIOII] .
> > > > > 3

> "potato" : string

- implode;

> fn : string list -> string

For text processing based on strings, 1t is most efficient to have an outer level function which explodes the
strings, calls other functions to process them and then implodes the result. Text processing then reduces to list
processing.
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Editors usually provide facilities to find, add, delete and replace text. We will now look at how to implement
equivalent low level editing functions based on string processing.

8.3.1 Does one string start another?
Consider checking whether a string starts with another string:

- starts '"the" '"the cat sat on the dog";
> true : bool

We explode the strings and call an auxiliary function to check if the first list starts the second list:

- local
fun startsl ... = ...
in
(* does one string start another? *)
fun starts sl s2 = startsl (explode s1) (explode s2)
end;
> val starts = fn : string -> string -> bool

We assume that startsi returns a bool. s1 and s2 must be of type string because they are arguments to
explode.

The problem now reduces to checking if one list starts another list. If the first list is empty then checking has
succeeded: it has been found completely in the second list. If the second list is empty then checking has failed:
there is no more second list to check. If the first element of the first list is the first element of the second list
then check if the tail of the first list starts the tail of the second list. Otherwise, the check fails:

- (* does one list start another? *)
fun startsi [] _ = true |
startsl _ [] false |
startsl (hi::t1) (h2::t2) =
if hi=h2
then startsl t1 t2
else false;

> val startsl = fn : ’’a list -> ’’a list —-> bool

hi and h2 are compared with polymorphic = but no other operations are applied to them. Thus, they can both
have the same equality type ’’a.

For example:

- starts "the" "the cat";
> true: bool

because:
starts '"the" '"the cat" ==>

startsi ["t","h","e"] ["t","h","e"," II’IICII’IIaII’IItII] ==>

214



Startsi LllellJ Lllell’ll II’IICII’IIaII’IItIIJ ==>
startsi [] [ll II’IICII’IIaII’IItII] ==>

true
Note that:

h1=h2 andalso startsl t1 t2
could be used instead of:

if hi=h2
then startsl t1 t2
else false

andalso is a sequential operator which returns false if the first operand is false, without evaluating the
second operand.

8.3.2 Does one string contain another?

Consider checking if one string is contained in another string:

- contains "beans" '"eat beans";
> true : bool

Once again, the strings are exploded and an auxiliary function is called:

- local
fun containsl ... = ...
in
(* does one string contain another? *)
fun contains s1 s2 = containsl (explode s1) (explode s2)
end;
> val contains = fn : string —> string -> bool

We assume that containsi1 returns a value of type bool.

containsi checks if an arbitrary typed list is contained in another list of the same type. If the second list is
empty then the check fails. If the first list starts the second list then the check succeeds. Otherwise check if the
first list is contained in the tail of the second list:

- (* does one list contain another? *)
fun containsl _ [] = false |
contains1l 11 (12 as _::t2) =
if startsl 11 12
then true
else containsl 11 t2;
> val containsl = fn : ’’a list -> ’’a list -> bool

As before, 11 and (h2::t2) may be arbitrary equality typed lists but of the same type.

For example:
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because:

contains "and" "stand up" ==>
contains1 ["a","n","d"] ["s","t","a","n", "d"," ","u","p"] ==>
startsi ["a","n","da"] ["s","t","a","n","d"," ","u","p"] ==>
false
contains1 ["a","n","d"] ["t","a","n","da"," ","u","p"] ==>
startsi ["a","n","d"] ["t","a","n","d","” ","u","p"] ==>
false
containsi ["a","n","d"] ["a","n","da"," ","u","p"] ==>
startsi ["a","n","d"] ["a","n","d"," ","u","p"] ==>
true

Note that:
startsl 11 (h2::t2) orelse contains 11 t2

could be used instead of:

if starts1l 11 (h2::t2)
then true
else contains 11 t2

orelse is a sequential operator which returns true if its first operand is true, without evaluating the second
operand.

8.3.3 Delete one string from another

Consider deleting a string from another string:

- delete "cat" "the cat sat";
> "the sat'" : string

First of all, both strings are exploded and an auxiliary function is called to delete one list from another. The
resultant list is then imploded

- local
fun deletel ... =
in
(* delete one string from another *)
fun delete sl s2 = implode (deletel (explode s1) (explode s2))
end;
> val delete = fn : string -> string -> string
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1o delete one list Irom another li1st, we need to check 11 the nirst list starts the second list and then remove 1t
from the start of the second list. We can do this by dropping elements from both lists until the first is empty.

To drop the number of elements in one list from another list, if the first list is empty then return the second
list. Otherwise drop the number of elements in the tail of the first from the tail of the second:

- (*# drop the number of elements in a first list from a second list *)
fun drop [] 12 = 12 |
drop (_::t1) (_::t2) = drop t1 t2;
> val drop = fn : ’a list -> ’b list -> ’b list

No operations are performed on the list heads so they may be of arbitrary different types. Note that drop is
polymorphic. For example:

- drop [1,2,3] [1,2,3,4,5,6];
> [4,5,8] : int list

because:

drop [1,2,3] [1,2,3,4,5,6] ==>
drop [2,3] [2,3,4,5,6] ==>
drop [3] [3,4,5,6] ==>

drop [1 [4,5,6] ==>

[4,5,86]

Note that the lists may be of different types and that the first list need not start the second list. The length of
the first list determines how many elements are dropped from the second list. For example:

- drop [true,false,true] ["a","b","c","d","e"];
> ["d","e"] : string list

because:

drop [true,false,true] ["a","b","c","d","e"] ==>
drop [false,true] ["b","c","d","e"] ==>

drop [true] ["c'","d","e"] ==>

drop [1 ["d","e"] ==>

[”d” s IIeII]

To return to deleting one list from another list. If the second list is empty then deletion fails so return the empty
list. If the first list starts the second list then drop the first list from the start of the second list. Otherwise,
drop the first list from the tail of the second list and put the head of the second list back onto the result:

- (* delete one list from another *)
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1f startsl 11 12
then drop 11 12
else h2::deletel 11 t2;
> val deletel = fn : ’’a list -> ’’a list -> ’’a list

We know that startsi is of type ’’a list -> ’’a list -> bool so 11 and h2::t2 must be of type ’’a
list. This is another polymorphic function.

For example:

- deletel [3,4,5] [1,2,3,4,5,6];
> [1,2,8] : int 1list

because:

deletel [3,4,5] [1,2,3,4,5,6] ==>
starts1 [3,4,5] [1,2,3,4,5,6] ==>
false

1::deletel [3,4,5] [2,3,4,5,6] ==>
starts1l [3,4,5] [2,3,4,5,6] ==>
false
1::2::deletel [3,4,5] [3,4,5,6] ==>
starts1l [3,4,5] [3,4,5,8] ==>
true

drop [3,4,5] [3,4,5,6] ==>

[6]

1::2::[6] == [1,2,6]
For example:

delete "cat" '"the cat sat" ==>

implode (deletel ["c","a","t"]
[lltll’llhll’llell’ll ll’llcll’llall’lltll’ll ll’llsll’llall’llt”]) ==>

Startsi [”c”,”a”,”t”]
[”t”,”h”,”e”,” n’ncn’nan’ntn’n ”,”s”,”a”,”t”] ==>

false

implode ("t"::
deletei [”c”,”a”,”t”]
[”h”,”e”,” n’ncn’nan’ntn’n ”,”s”,”a”,”t”]) ==>
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thn’nen’n n’ncn’nan’ntn’n n’nsn’nan’nth ==>
false
implode ("t"::"h"::

deletei [”c”,”a”,”t”]

[nen’n ”,”c”,”a”,”t”,” ”,”s”,”a”,”t”]) ==>

Startsi [”c”,”a”,”t”]
[nen’n n’ncn’nan’ntn’n ”,”s”,”a”,”t”] ==>

false
implode ("t"::"h"::"e"::
deletei [”c”,”a”,”t”]

[n ”,”c”,”a”,”t”,” ”,”s”,”a”,”t”]) ==>

Startsi [”c”,”a”,”t”]
[n n’ncn’nan’ntn’n ”,”s”,”a”,”t”] ==>

false
implode ("t"::"h"::"e"::" "::
deletei [”c”,”a”,”t”]

[”c”,”a”,”t”,” ”,”s”,”a”,”t”]) ==>

Startsi [”c”,”a”,”t”]
[”c”,”a”,”t”,” ”,”s”,”a”,”t”] ==>

true

drop [”c”,”a”,”t”]
[”c”,”a”,”t”,” ”,”s”,”a”,”t”])) ==>

[n ”,”s”,”a”,”t”]
implode (”t”::”h”::”e”::” n::[n ”,”s”,”a”,”t”]) ==>
implode [”t”,”h”,”e”,” n’n ”,”s”,”a”,”t”] ==>

“"the sat"

Note that we have not made drop local to deletel because we will need it later on.

8.3.4 Insert one string before another in a third string

Consider inserting one string before another string in a third string:

- insertb "kidney " '"beans'" "eat beans";
> "eat kidney beans" : string

The three strings are exploded and passed to an auxiliary function for list insertion. The result is then imploded

- local
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(* 1nsert one string before another in a third *)
fun insertb sl s2 s3 =
implode (insertbl (explode si1) (explode s2) (explode s3))
end;
> val insertb = fn string -> string -> string -> string

To insert one list before another list in a third list, if the third list 1s empty then the second list cannot be found
so return the third list. If the second list starts the third list then put the first list on the front of the third list.
Otherwise insert in the tail of the third list and put the head of the third list onto the result:

- (* insert one list before another in a third *)
fun insertbl _ _ [1 = [J |

insertbl 11 12 (13 as h3::t3) =
if starts1l 12 13

then 11013
else h3::insertbl 11 12 t3;
> val insertbl = fn : ’’a list -> ’’a list -> ’’a list -> ’’a list

startsil 1s of type ’’a list -> ’’a list -> bool so 12 and h3::t3 must be of type ’’a list. 11 is
appended to h3::t3 so it must also be of type >’a list. This is another polymorphic function for lists of
equality type.

For example:

- insertbl [3,4] [5,6] [1,2,5,6];
> [1,2,3,4,5,6] : int list

because:

insertbl [3,4] [5,6] [1,2,5,6] ==>
startsi [5,6] [1,2,5,6] ==>

false

1::insertb1l [3,4] [5,6] [2,5,6] ==>
starts1 [5,6] [2,5,6] ==>

false

1::2::insertb1l [3,4] [5,6] [5,6] ==>
startsl [5,6] [5,8] ==>

true

1::2::[3,4]e[5,8] ==>

[1,2,3,4,5,6]

Thus:

insertb "cat'" "fish'" '"the fish'" ==>
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Llltll s "h" s Het s " s D i s Ilill s g s ”h”J ) ==>

startsi [”f”,”i”,”s”,”h”]
[”t”,”h”,”e”,” n’nfn’nin’nsn’nhn] ==>

false

implode (”t”::insertbi [”c”,”a”,”t”] [”f”,”i”,”s”,”h”]
[”h”,”e”,” ”’”f”’”i”’”s”’”h”]) ==>

startsi [”f”,”i”,”s”,”h”]
[”h”,”e”,” n’nfn’nin’nsn’nhn] ==>

false

implode (”t”::”h”::insertbl [”c”,”a”,”t”] [”f”,”i”,”s”,”h”]
[nen’n ”’”f”’”i”’”s”’”h”]) ==>

startsi [”f”,”i”,”s”,”h”]
[nen’n n’nfn’nin’nsn’nhn] ==>

false

implode (”t”::”h”::”e”::insertbl [”c”,”a”,”t”] [”f”,”i”,”s”,”h”]
[n ”’”f”’”i”’”s”’”h”]) ==>

startsi [”f”,”i”,”s”,”h”]
[n ”’”f”’”i”’”s”’”h”] ==>

false

implode (”t”::”h”::”e”::” “"..insertbil [”c”,”a”,”t”] [”f”,”i”,”s”,”h”]
[”f”,”i”,”s”,”h”]) ==>

startsi [”f”,”i”,”s”,”h”]
[”f”,”i”,”s”,”h”] ==>

true

e, a","t"Je[ £","i","s","h"] ==>
[rer,rar, e, e, i, "s", "h"]
implode ("t"::"h"::"e"::" M::[Mc","a", g, L, "1, "s","h"]) ==>
implode ["t","h","e"," ", "c", "a","g","L","i","s","h"] ==>

"the catfish"

8.3.5 Insert one string after another in a third string

Consider inserting one string after another string in a third string:

- inserta '"more " "eat " "eat beans";
> "eat more beans" : string
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- local
fun insertal ... = ...
in
(* insert one string after another in a third *)
fun inserta sl s2 s3 =
implode (insertal (explode s1) (explode s2) (explode s3))
end;
> val inserta = fn string -> string -> string -> string

To insert one list after another list in a third list, if the third list is empty then the second list cannot be found
so return the third list. If the second list starts the third list then drop the second list, put the first list on the
front of the remains of the third list and put the second list before the first list. Otherwise insert in the tail of
the third list and put the head of the third list onto the result:

- (* insert one list after another in a third *)
fun insertat 0=10 |

insertal 11 12 (13 as h3::t3) =
if startsi 12 13
then 12@11@drop 12 13
else h3::insertal 11 12 t3;
> val insertal = fn : ’’a list -> ’’a 1list -> ’’a list -> ’’a list

startsil 1s of type ’’a list -> ’’a list -> bool so 12 and h3::t3 must be of type ’’a list. 11 is
appended to the remains of h3::t3 so it must also be of type > ’a 1list. This is another polymorphic function
on lists of equality type.

For example:

- insertal [4,5] [2,3] [1,2,3,6];
> [1,2,3,4,5,6] : int list

because:

insertal [4,5] [2,3] [1,2,3,8] ==>
startsi [2,3] [1,2,3,6] ==>

false
1::insertal [4,5] [2,3] [2,3,6] ==>
startsi [2,3] [2,3,6] ==>

true

[2,3]@[4,5]edrop [2,3] [2,3,6] ==>
[2,3]e[4,5]e[6] ==>

[2,3,4,5,6]
1::[2,3,4,5,68] ==>

[1,2,3,4,5,6]
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- inserta '"more " "eat " "eat beans";

> "eat more beans" : string
because:
inserta "more " '"eat " "eat beans' ==>

implode (insertai [nmn’non’nrn’nen’n n]
[”e”,”a”,”t”,” n]
[nen QM RN i gl g ”S”]) ==>
’ ’ ’ ’ ’ ’ ’ ’

startsi [nen HaMt ngn n n]
’ ’ ’
[”e”,”a”,”t”,” ”,”b”,”e”,”a”,”n”,”s”] ==>

true
[”e”,”a”,”t”,” n]@[nmn’non’nrn’nen’n n]@
drop [nen HaMt ngn n n]
’ ’ ’
[”e”,”a”,”t”,” ”,”b”,”e”,”a”,”n”,”s”] ==>
[”e”,”a”,”t”,” n]@[nmn’non’nrn’nen’n ”]@[”b”,”e”,”a”,”n”,”s”] ==>
[”e”,”a”,”t”,” ”,”m”,”o”,”r”,”e”,” ”,”b”,”e”,”a”,”n”,”s”]
implode [”e”,”a”,”t”,” ”,”m”,”o”,”r”,”e”,” ”,”b”,”e”,”a”,”n”,”s”] ==>

"eat more beans"

In insertal the expression:

12@li@drop 12 13

is not very efficient. First of all 12 is dropped from 13 which involves going along 13 for the length of 12. Then
11 is joined to the remains. But then 12 is appended back on which again involves going down the length of 12.

We could write a new function to combine dropping 12 and putting it back on the front of 11. Instead of simply
dropping each element of 12 we can join them back on to the result of appending 11 once all of 12 is dropped:

- (*# drop the number of elements from a second list in a
third list and append a first list preceded by the
elements of the second list *)

fun dropjoin 11 [] 13 = 11013 |
dropjoin 11 (h2::t2) (_::t3) = h2::dropjoin 11 t2 t3;
> val dropjoin = fn : ’a list -> ’a list -> ’a list -> ’a list

append is of type ’a list -> ’a list -> ’a list so 11 and 13 must b of type ’a list as must the final
result. h2 is joined onto the final result so it must be of type ’a.

For example:

- dropjoin [4,5] [2,3] [2,3,6];
> [2,3,4,5,6] : int list

because:
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2::dropjoin [4,5] L3l L3,61 ==>
2::3::dropjoin [4,5] [] [6] ==>
2::3::[4,5]e[6] ==>

[2,3,4,5,6]
Now, we can define:

- local
fun dropjoin ... = ...
in
fun insertal 11 12 [1 = [ |
insertal 11 12 (13 as h3::t3) =
if startsi 12 13
then dropjoin 11 12 13
else h3::insertal 11 12 t3
end;
> val insertal = fn : ’’a list -> ’’a 1list -> ’’a list -> ’’a list

Note that dropjoin is local to insertal which is local to inserta.

8.3.6 Replace one string with another in a third string
Finally, consider replacing one string with a second string in a third string:

- replace '"cat' "dog" '"a catfish";
> "a dogfish" : string

The strings are exploded and passed to an auxiliary function to replace one list with another in a third list.
The result is then imploded:

- local
fun replacel ... = ...
in
(* replace one string with another in a third *)
fun replace sl1 s2 83 =
implode (replacel (explode s1) (explode s2) (explode s3))
end;
> val replace = fn : string —-> string -> string -> string

To replace one list with another in a third list, if the third list is empty then the first list cannot be found so
return the empty list. If the first list starts the third list then drop it from the start of the third list and append
the second list. Otherwise, replace in the tail of the third list and put the head of the third list onto the result:

- (* replace one list with another in a third *)
fun replacel _ _ [1 = [1 |
replacel 11 12 (13 as h3::t3) =
if starts1l 11 13
then 12@drop 11 13
else h3::replacel 11 12 t3;
> val replacel = fn : ’’a list -> ’’a list —> ’’a list -> ’’a list
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- replacel [4,3] [3,4] [1,2,4,3,5,6];

> [1,2,3,4,5,6]

because:

int list

replacel [4,3] [3,4] [1,2,4,3,5,8] ==>

starts1 [4,3] [1,2,4,3,5,8] ==>

false

1::replacel [4,3]

[3,4] [2,4,3,5,6] ==>

starts1l [4,3] [2,4,3,5,8] ==>

false

1::2::replacel [4,3] [3,4] [4,3,5,6] ==>

starts1 [4,3] [4,3,5,6] ==>

true
[3,4]edrop [4,3]
[3,4]e[5,8] ==>

[3,4,5,6]

[4,3,5,6] ==>

1::2::[3,4,5,8] ==>

[1,2,3,4,5,6]

Thus:

- replace '"cat' "dog" '"a catfish";
> "a dogfish" : string

replace '"cat" 'dog'" "a catfish" ==>

implode (replacel

[”c”,”a”,”t”] [”d”,”o”,”g”]
[nan’n ”,”c”,”a”,”t”,”f”,”i”,”s”,”h”]) ==>

startsi [llcll’llall’llt”] [Ilall’ll II’IICII’Ilall’Iltll’IIfII’IIiII’IISII’IIhII] ==>

false

implode (”a”::replacei [”c”,”a”,”t”] [”d”,”o”,”g”]

[n ”,”c”,”a”,”t”,”f”,”i”,”s”,”h”]) ==>

startsi [”c”,”a”,”t”] [n ”,”c”,”a”,”t”,”f”,”i”,”s”,”h”] ==>

false

implode ("a"::" ":

:replacei [”C”,”a”,”t”] [”d”,”o”,”g”]
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StartSi LHC”,”a”,”t”J LIICII’Ilall’lltll’Ilfll’llill’llsll’IIhIIJ ==>
true

[”d” s "ot s IIgII] @drop [”C” s nan s lltll]
[”C” R vt R nen R g R nin R ngn R ”h”] ==>

["d","o", g"le["E", i","s", "h"] ==>
[d",om, ", ", 1", "s", "h"]

implode ("a"::" M"::["d","o", "g","f","i","s","h"]) ==>
implode ["a"," ","d","o", "g","f", "i","s","h"] ==>

"a dogfish"

8.4 Digit string to number value conversion

Suppose we have a string made up of digits and we want to convert it to the equivalent integer value. First of
all, let’s look at the form of an integer. Consider:

4637

We can factor this as multiples of powers of ten:
41000461004+ 31047+ 1 ==>
4% 10% 4+ 6+ 107 4+ 3+ 10! 4 7+ 10°

Thus, each digit in an integer represents a multiple of a power of 10. If we number the digits from 0 to N from
right to left then the general form is:

digitN ... digit2 digitl digit0 ==>
digit N « 10V .. digit2 + 102 + digit] + 10" + digit0 % 10°

It is impractical to hold a table of all possible powers of 10 and expensive computationaly to generate them as
they are needed. Instead, we can factor the expression for the value of a digit sequence to identify a recursive
form. Consider again:

4637 ==>

4%10% 4+ 6+ 1074+ 3% 101 + 7+ 10° ==>

10 # (4% 107 4+ 6 10T + 3 % 10%) + 7% 10° ==>

10 # (10 # (4 % 101 + 6 % 10%) + 3% 10°) + 7 % 10° ==>

10 # (10 % (10 * (4 % 10%) + 6 % 10%) 4+ 3 % 10%) + 7% 10° ==>

10 (10 % (10«4 4+6)+3)+ 7
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digitN ... digit2 digitl digit0 ==>
digit N + 10V ... + digit2 « 10? + digit] * 10> + digit0 x 10° ==>

10  (digit N + 10N =1 4+ 4 digit2 + 101 + digit1 % 10°) + digit0 x 10° ==>

10 (10 # (digit N + 10N=2 + ) + digit2 + 10°) + digit1 + 10°) + digit0 + 10° ==>

10 # (10 % (...(10 * digit N + 10%) + ...) + digit2 x 10°) + digit1 + 10°) + digit0  10° ==>

10 (10 (...(10 % digit N + ...) + digit2) + digitl) + digit0
We can evaluate this from the inside out. For example:

10%(10*(10%4+6)+3)+7
10%(10*(40+6)+3)+7 ==>
10*(10%46+3)+7 ==>
10*%(460+3)+7 ==>
10%463+7

4683047 ==>

4637

This suggests that we keep a running total and work from left to right. Each time we multiply the running
total by 10 and then add the next digit value to it. For example:

RT == 0 digits == 4637

RT == 10%0+4 == 4 digits == 637
RT == 10%4+6 == 46 digits == 37
RT == 10%46+3 == 463 digits ==

RT == 10%463+7 == 4637

Let us assume that we will be working with a list of single digit strings. We explode the initial string and call
another function to process it:

- (* convert digit string to integer *)
fun value intstring = getval O (explode intstring);
> val value = fn : string list -> int

The 0 1s the initial value for the running total.

If the list 1s empty, return the running total. Otherwise, find the value of the tail with the running total
multiplied by 10 and the value of the head digit added to it:
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getval rt (h::t) = getval (10*rt+conv h) t;
> val getval = fn : int -> string list -> int

Here, conv is a function which will return the integer value corresponding to a string digit.

There are two ways to convert a digit string to the equivalent value. One is to use a lookup function:

- exception CONV;
> exception CONV

- (* convert single digit string to integer by pattern matching *)

fun conv "0" = 0 |
conv "1" =1 |
conv "9" = 9 |
conv _ = raise CONV;

> val conv = fn : string -> int

Note the exception which is raised when a non-digit string is the argument.

ASCII, the American Standard Code for Information Interchange, is an international standard for representing
characters as integers. We could also convert digit strings to values using the built in function ord which returns
the ASCII value of a single letter string:

- ord "O0";
> 48 : int
- ord;

> fn : string -> int

Now, the ASCII value of each digit is one more than the previous digit:

ord "Q0" == 48
ord "1" == 49
ord "2" == 50
ord "9'" == b7

so a digit string can be converted to its integer value by taking the ASCII value for 0 away from its ASCII
value:

ord "0" - ord "0" == 48-48 == 0

ord "1" - ord "0" == 49-48 == 1

ord "2" - ord "O" == 50-48 == 2

ord "9" - ord "0O" == 57-48 == 9
Thus:

- (* convert single digit string to integer by ASCII value arithmetic *)
fun conv d = ord d-ord "0";
> val conv = fn : string -> int

To return to finding the value of a string of digits:
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because:

value "3241" ==>

getval O ["3","2", "4" "1"] ==>
getval (10%0+conv "3") ["2", "4", "i"] ==>
getval (0+3) ["2","4","1"] ==>
getval 3 ["2","4", "1"] ==>

getval (10%3+conv "2") ["4","1"] ==>
getval (30+2) ["4","1"] ==>

getval 32 ["4","1"] ==>

getval (10#32+conv "4") ["1"] ==>
getval 320+4 ["1"] ==>

getval 324 ["1"] ==>

getval (10%324+conv "1") [] ==>
getval (3240+1) [] ==>

getval 3241 [] ==>

3241

8.5 Let expression

Sometimes it is useful to be able to introduce a temporary variable to hold a partial result during evaluation.
SML provides let expressions to do this. At simplest one may write:

let val name = expressionl
in expression?
end

This associates the value of expressionl with name for the evaluation of expression2. After the end the name
may no longer be used: it is local to expression?

The type of a let expression is that of the final expression ezpression?2.
Note the val before the name. A common mistake is to forget the val.
Note the end at the end. A common mistake is to forget the end.

For example, to work out 3*3+4*4 with a local squaring function:
- let val sq = fn (x:int) => x*x
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> 25 : 1int

Here, sq is local to sq 3+sq 4.

For a local function declaration, the fun form may be used, for example:

- let fun sq (x:int) = x*x
in sq 3+sq 4
end;

> 25 : int

Instead of a name a pattern of names may be used. Then, the value of the defining expression must have the
same structure as the pattern. Names in the pattern are bound to corresponding components of the value of
the defining expression.

For example, to multiply the first two elements of a list together:

- let val (hil::h2::_) = [22,33,44,55,66]
in hi*h2
end;

> 726 : int

Here:

hi == 22
h2 == 33
_ == [44,55,66]

in hi*h2.

A particularly useful form is to have a tuple pattern to pick up components of a tuple value from a function.
Then the tuple components may be manipulated locally.

8.6 Unzip revisited

In the last chapter, we looked at turning a list of pair tuples into a tuple of lists:

- local
fun unzipl (f,s) [1 = (f,s) |
unzipl (£,s) ((£1,s1)::t) = unzipl (f1::f,s1::s) t
in
val unzip = unzipil ([J,[1)
end;
> val unzipl

fn : (’a * ’b ) list -> ’a list * ’b list

and saw that we built the lists in reverse order:

- unzip [(1,1),(2,4),(3,9),(4,16)]1;
> ([4,3,2,11,[16,9,4,1]1) : (int 1list) * (int list)
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INow we can use a let expression to match the tuple of l1sts Irom processing the tail or the original [1st and then
put the elements from the head pair in the right positions. If the tuple list i1s empty then return a tuple of
empty lists. If the tuple list is not empty then process the tail to form a tuple of a list of the first elements from
the tail and a list of the second elements from the tail. Then put the first element from the head tuple onto the
first elements list and the second element from the head tuple onto the second elements list:

- (* convert list of two element tuples to two singleton lists *)
fun unzip [1 = ([0,0) |
unzip ((£,s)::t) = let val (£f1,sl) = unzip t
in (f::fl,s::sl)
end;
> val unzip = fn : (Pa * ’b) list -> (’a list) * (’b list)

Here £1 holds the list of first elements from the tail and s1 holds the list of second elements from the tail.

For example:

- unzip [(1,1),(2,4),(3,9),(4,16)]1;
> ([1,2,3,4]1,[1,4,9,16]1) : (int 1list) * (int list)

because:

unzip [(1,1),(2,4),(3,9),(4,16)] ==>

f==1

s == 1

t == [(2,4),(3,9),(4,16)]

let val (fl,sl) = unzip [(2,4),(3,9),(4,16)] ==>

t == [(3,9),(4,16)]
let val (f1,sl) = unzip [(3,9),(4,16)] ==>

3

9

t == [(4,16)]

let val (f1l,sl) = unzip [(4,16)] ==>

n H
1]
1]

£ ==

s == 16

t == []

let val (f1l,sl) = unzip [] ==>
(aa,mmn

£ ==

s == 16

t == []

let val (f1,s1) = ([1,[1)
f1 == []

sl == []

in (f::fl,s::s1) ==>

([4], [16]1)
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t == L(4,16)]

let val (f1,sl) = ([41,[161)
1 == [4]

sl == [16]

in (f::fl,s::s1) ==>

([3,4]1,[9,16]1)

o]
1]
1]

t == [(3,9),(4,16)]

let val (£1,s1) = ([3,4]1,[9,16])
f1 == [3,4]

sl == [9,16]

in (f::fl,s:;sl) ==>

([2,3,4],[4,9,16])

t == [(2,4),(3,9),(4,16)]

let val (f1,sl) = ([2,3,4]1,[4,9,16])
f1 == [2,3,4]

sl == [4,9,16]

in (f::fl,s::s1) ==>

(f1,2,3,41,[1,4,9,16]1)

Instead of passing an accumulation tuple we now hold the same information in local variables.

8.7 Finding words in a string

Suppose we have a string and we want to convert it to a list of words:

- getwords "the cat went to sleep";
> ["the","cat","went","to","sleep"] : string list

As always, we explode the string into individual letters:

- local
fun getwordsl ...
in
(* convert string to list of words *)
fun getwords s = getwordsl (explode s)
end;
> val getwords = fn : string —-> string list

We assume that getwordsi returns a string list.
The original string list contains letter sequences separated by space sequences.

To get a word, we need to pick up each letter until we find a space and then return a tuple of the word and the
rest of the list following the space. For example:
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If the letters list is empty then return the empty string and the empty list in a tuple. If the letters list starts
with a space then return the empty string and the rest of letters list after the space. Otherwise the list starts
with the first letter of the word. Process the rest of the letters list, which starts with the rest of the word, to
form a tuple of the rest of the word and the letters after it. Then put the first letter of the word list onto the
rest of the word and return it with the rest of the letters:

- (* return, from singleton string list, next word and
list of singleton strings following it *)
fun getword [1 = ("",[1) |
getword (" "::t) = ("",t) |
getword (h::t) =
let val (rw,rl) = getword t
in (h"rw,rl)
end;
> val getword = fn : string list ->
string * string list

Note the tuple pattern (rw,rl). getword is called recursively to return a tuple of the rest of the word and the
rest of the letters. Thus rw matches the rest of the word and rl matches the rest of the letters. For example:

- getword [”t”,”h”,”e”,” n’n ”,”c”,”a”,”t”]);
> ("the",[" ","c","a","t"]) : string * string list

because:

getword [”t”,”h”,”e”,” n’n ”,”c”,”a”,”t”]) ==>

h == "¢"
t == [”h”,”e”,” n’n ”,”c”,”a”,”t”]) ==>

let val (rw,rl) =

getword [”h”,”e”,” n’n ”,”c”,”a”,”t”]) ==>

h == "h"
t == [Me', M, o et tat, ")) ==>
let val (rw,rl) =

getword ["e™,™ M, ", "c","a","t"]) ==>

h == "e"
t == [n n’n ”,”c”,”a”,”t”]) ==>

let val (rw,rl) =

getword [n n’n ”,”c”,”a”,”t”]) ==>

(nn’[n ”,”c”,”a”,”t”])

h == "e"
t == [, o e gt g ]) ==>

let val (rw,rl) = (", [" ","c","a","t"])
rg == ""

rl == [" ","c","a","t"]

in (h"rw,rl) ==>
(nen’[n ”,”c”,”a”,”t”])

h == "h"
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rw == "e"
rl == [n ”,”c”,”a”,”t”]

in (h"rw,rl) ==>

(”he”,[” ”,”c”,”a”,”t”])

h == "¢"
t == [”h”,”e”,” n’n ”,”c”,”a”,”t”]) ==>
let val (rw,rl) = (”he”,[” ”,”c”,”a”,”t”])
rw == "he"
rl == [n ”,”c”,”a”,”t”]

in (h"rw,rl) ==>

(”the”,[” ”,”c”,”a”,”t”])

To find all the words, we need to skip spaces until we find a letter. Then we pick up the first word and put it
on the front of processing the rest of the list:

- (* get list of words from list of singleton strings *)
fun getwordsi [1 = [] |
getwordsl (" "::t) = getwordsl t |
getwordsl 1 =
let val (wil,rl) = getword 1
in wl::getwordsl rl
end;
> val getwordsl = fn : string list —> string list

Remember that getword returns a tuple of the next word and the list of letters after it. w1 will match the word
and rl with match the rest of the list. For example:

- getwords "the cat sat down'";
> ["the","cat","sat","down"] : string list

because:

getwords "the cat sat down" ==>

getwordsl [lltll’llhll’llell’ll II’IICII’IIaII’IItII’II II’
IISII’IIaII’IItII’II II’Ildll’lloll’llwll’lln”] ==>

let val (wil,rl) =
getword [lltll’llhll’llell’ll ll’llcll’llall’lltll’ll ll’
IISII llall lltll " " lldll lloll ”W” lln”] ==>
t t t t t t t
(llthell [”C” llall lltll " " IISII llall lltll " " lldll lloll ”W” lln”] )
t t t t t t t t t t t t
wi == "the"
rl = [”C” llall lltll " " IISII llall lltll " " lldll lloll ”W” lln”]
t t t t t t t t t t t

in wil::getwordsl rl ==>

“"the"::
(getwordsi [Ilcll’llall’lltll’ll II’IISII’IIaII’IItII’II II’IIdII’IIoII’IIWII’IInII]) ==>

let val (wi1,rl) =
getword [llcll’llall’lltll’ll ll’llsll’llall’lltll’
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(Ilcatll s LIISII s Ilall s Iltll s " s Ildll s Iloll s IIWII s IInIIJ )

wl == "cat"

rl = [IISII’IIaII’IItII’II II’IIdII’IIoII’IIWII’IInII]
in wil::getwordsl rl ==>

"the"::"Cat"::getwordsi [llsll’llall’lltll’ll II’Ildll’lloll’llwll’lln”] ==>

let val (wil,rl) =
getword [llsll’llall’lltll’ll ll’lldll’lloll’llwll’lln”] ==>

(”S&t”,[”d”,”o”,”W”,”n”])

wl == "sat"

rl == [”d”,”o”,”w”,”n”]
in wil::getwordsl rl ==>

"the"::"cat"::"sat"::getwordsl ["d","o","w","n"] ==>

let val (wil,rl) =
getword [”d”,”o”,”w”,”n”] ==>

("down",[])
wl == "down"
rl == []
in wil::getwordsl rl ==>
"the"::"cat"::"sat"::"down"::getwordsl [] ==>
"the"::"cat"::"sat"::"down"::[] ==>

[”the”,”cat”,”sat”,”down”]

8.8 Counting words

Consider counting how often each word occurs in a list of words. For each distinct word, a count is held as a
tuple of the word and the number found so far. All the count tuples are held in a list which is initially empty.

For each word, the count list is updated. If the count list is empty then the word has not yet been found so a
new list is made with a tuple for that word with a count of 1. If the word 1s that in the first tuple in the count
list then the count in the tuple is incremented and the new tuple is put back onto the rest of the count list.
Otherwise, the first tuple 1s put onto the result of updating the tail of the count list for the word:

- (* increment count for given word in count list *)
fun wupdate w [] = [(w,1)] |
wupdate w ((wil,cl)::t) = if w=wl
then (wl,cl+1)::t
else (wl,cl)::wupdate w t;
> val wupdate = fn : ’’a -> (’’a * int) list -> (’’a * int) list

This function will serve to update the count in a tuple list for any equality type of index element. For example:

- wupdate "beans" [("eat",2),("more",1),("beans",3)];
> [("eat",2),("more",1),("beans",4)] : (string * int) list
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wupdate "beans" [("eat",2),("more",1),("beans",3)] ==>
(""eat",2)::wupdate "beans" [("more",1),("beans",3)] ==>
("eat",2)::("more",1): :wupdate "beans" [("beans",3)] ==>
("eat",2)::("more",1)::("beans",4)::[1 ==>

[("eat",2),("more",1),("beans",4)]

Now to count the occurrence of each distinct word in a word list, if it is empty an empty count list is returned.
Otherwise, use the first word to update the count list from processing the rest of the words. We can use foldr
to apply wupdate to each word in turn with an empty count list as the base case:

- local
fun wupdate ... =
in
(* update count list from word list *)
val count = foldr wupdate []
end;
> val count = fn : ’’a list -> (’’a * int) list

For example:

- count ["the",'"cat","saw","the","saw"];
> [("saw",2),("the",2),("cat",1)] : (string * int) list

because:

count ["the" s “ecat" s “saw" s “"the" s IlsaWII] ==>
foldr wupdate [] ["the","cat",'"saw","the","saw"] ==>
wupdate "the" (foldr wupdate [] ["cat'","saw",'"the","saw"]) ==>

wupdate "the"
(wupdate "cat" (foldr wupdate [] [“saw","the","saw'"])) ==>

wupdate "the"
(wupdate "cat"
(wupdate "saw" (foldr wupdate [] ["the","saw"]))) ==>

wupdate "the"
(wupdate "cat"
(wupdate "sauw"
(wupdate "the" (foldr wupdate [] ["saw"])))) ==>

wupdate "the"
(wupdate "cat"
(wupdate "sauw"
(wupdate "the"
(wupdate "saw" (foldr wupdate [1 [1))))) ==>

wupdate "the"
(wupdate "cat"

236



(wupdate "saw" LI )))) ==>
wupdate "the"
(wupdate "cat"
(wupdate "sauw"
(wupdate "the" [("saw",1)]))) ==>
wupdate "the"
(wupdate "cat"
(wupdate "saw" [("saw",1),("the",1)])) ==>

wupdate "the"
(wupdate "cat" [("saw",2),("the",1)]) ==>

wupdate "the" [("saw",2),("the",1),("cat",1)] ==>

[("saw",2),("the",2),("cat",1)] ==>

8.9 Summary

In this chapter we looked at the use of explode to turn a string into a list and implode to turn a list of strings
into a single string. We then wrote functions to find, delete, insert and replace text in text by manipulating
lists of single letters. Next we met the let expression for introducing temporary local variables. We then used
let expressions to accumulate partial results when processing lists. Typically, we accumulated a tuple of the
result so far and what was left over. At the end, we had nothing left over and returned the final result.

In the next chapter we are going to look at a technique for defining our own data types. We will use this to
represent the results of more elaborate text processing, including simple lexical analysis.

8.10 Exercises

1) Write a function to find the length of a string using explode and length. Do not use the built in size.
What is the type of this function?

2) Write a function which counts how often a string occurs in another string:

- scount "the'" "the pathetic bathe theory with lather";
> 5 : int

What is the type of this function?

3) Write a function which deletes all occurrences of a string in another string:

- deleteall "the" "the cat ate the haggis";
> " cat ate haggis" : string

What is the type of this function?

4) Write a function which replaces all occurrences of a string with another string in a third string:
- replaceall "the'" "our" "the cat stole the pie";
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What is the type of this function?

5) Write a function which inserts a string after all occurrences of another string in a third string:

- insertafterall " big" 'the'" '"the dog saw the cat";
> "the big dog saw the big cat' : string

What is the type of this function?

6) Write a function which inserts a string before all occurrences of another string in a third string:

- insertbeforeall "happy " "happy" "happy happy";
> "happy happy happy happy" : string

What is the type of this function?

7) Write a function to convert an integer into a string of digits:

- iconv 312;
> "312" : string

Use the system function chr which turns an ASCII value into the equivalent single letter string:

- chr 48;

> "0" : string

- chr;

> fn : int -> string

Can your function deal with an initial value of 07
What is the type of this function?

8) Octal integers use the digits:

01234567

Each place indicates a multiple of a power of 8:

452 == 4*8*8+5*8+2

Write a function to convert an octal number represented as a string of octal digits to a decimal integer:

- oconv "452";
> 298 : int

What is the type of this function?

9) A string contains a sequence of octal and decimal integers separated by spaces. An octal integer starts:
#0
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#D

Write a function which given such a string returns an equivalent list of tuples of string number type and integer
number value:

- numbs "#032 #D32 #045";
> [("octal",26),("decimal",32),("octal",37)] : (string #* int) list

What is the type of this function?
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Chapter 9

Concrete data types

9.1 Introduction

In chapter 1 we talked about how model making is based on constructing new types for a problem. Programming
then involves using the given types in a programming language to represent those new types. We have seen that
SML provides base types for integers, reals, booleans and strings and we have used these directly to represent
property values. However, sometimes the types we want for a problem can be represented by a subset of one
of the base types but we still have to deal with all possible values for that base type. We have used catch all
variables to pick up the base type values we are not really interested in but this can distort our functions.

For example, in the traffic light function from chapter 4:

- fun change "red" = "red & amber" |
change "red & amber'" = '"green" |
change '"green" = "amber'" |
change "amber" = "red" |
change s = s”" not a light state";

> val change = fn : string -> string

we represented light states as strings. However, there are only four light states and an infinite variety of strings
so we had to introduce the final case for s to catch any other string and return a plausible value. If this function
were part of a larger system then we would need special cases all over the place to deal with an invalid light
state.

We also saw that we could use exceptions to stop evaluation when something goes wrong. However, it would
be nice to exclude the possibility of a function being called with an inappropriate value right from the start.

SML enables the definition of new types as ranges of discrete values represented as names. These are known as

concrete data types. Patterns for a new concrete type may only take those defined values. Thus, there is no
need to worry about values outside of those required.

9.2 New types

A new type may be introduced by what is called a datatype binding. At simplest, this may be used to define
the constituent values for a new type by listing base values explicitly. The binding is said to introduce new
value constructors, that is the names representing the discrete values. These are used to build new values of
that type just by mentioning them in expressions.

This simple form of datatype binding takes the form:
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value_constructors ...

which defines the base values of type type_constructor, a name, to be the value constructor names value_constructori
or value_constructor? or value_constructors etc.

The new type is an equality type, that is = and <> are defined for its values.

For example, we could represent traffic light states with the datatype:

- datatype traffic_light = red | red_amber | green | amber;
> datatype traffic_light = red | red_amber | green | amber
con red = red : traffic_light
con red_amber = red_amber : traffic_light
con green = green : traffic_light
con amber = amber : traffic_light

Here, the system tells us that we have defined the datatype traffic_light with the value constructors red,
red_amber, green and amber with the same constructor names as values. An equality test for traffic_light
values is also defined so these values may appear in patterns. We can now define a function to change a traffic
light from one state to the next:

- (* change traffic light state *)
fun change red = red_amber |
change red_amber = green |
change green = amber |
change amber = red;
> val change = f£n : traffic_light -> traffic_light
- change amber;
> red : traffic_light

Note that we no longer need the catch all case. We can only use the values red, red_amber, green and amber.

For example, we could define the boolean type bool with:

- datatype bool = true | false;
> datatype bool = true | false
con true = true : bool
con false = false : bool

This defines the value constructors true and false for the new type bool. An equality test for bool is also
defined so that the values true and false may be tested explicitly and used in pattern matching. Thus, we
could define negation:

(* boolean negation *)
fun not true = false |
not false = true;
> val not = fn : bool -> bool
- not true;
> false : bool

We can also define other boolean operations, for example conjunction:

- (* conjunction *)

241



band true false = false |
band true true = true;
> val band = fn: bool -> bool -> bool

9.3 Example - simple lexical analysis

For example, suppose we are told about the following word classes:

article — the, a
noun - cat, mat, rat
verb - sat on, ate

We might represent word classes as a datatype:

- datatype class = article | noun | verb;
> datatype class = article | noun | verb
con article = article : class
con noun = noun : class
con verb = verb : class

Suppose we are given a sentence as a string and we want to turn it into a list of the corresponding word classes:

- lex "the cat sat on the mat";
> [article,noun,verb,article,noun] : class list

This is the problem of lexical analysis: the recognition of individual lexemes or symbols from a character
representation of a lexeme sequence. We can use string matching to identify each word:

- (* recognise word classes in singleton sting list *)
fun lex1 [1 = [1 |

lex1 ("a"::"t"::"e"::t) = verb::lexl t |

lex1 ("a"::t) = article::lex1 t |

lex1l ("c"::"a"::"t"::t) = noun::lexl t |

lexi ("m"::"a"::"t"::t) = noun::lexl t |

lex1 ("r"::"a"::"t"::t) = noun::lexl t |

lex1 ("s"::Ma::"g"::™ Miivo"::i"n"::t) = verb::lexl t |

lex1 ("t"::"h"::"e"::t) = article::lexl t |
lexl (_::t) = lexl t;
> val lex1l = fn: string list -> class list

For each word we list its characters followed by a variable t to pick up the tail of the string list. Having
recognised a word, we return its class followed by the result of recognising the words in the rest of the list.

The order of the clauses is alphabetical but with long words before short words starting with the same letters.
Pattern matching is top to bottom. If two words start with the same letters then we must check for the longer
one first. Otherwise, the shorter one will be matched in instances of the longer one.

The last clause has a wildcard match to ignore any other characters, including spaces, and just check the rest
of the list. Instead, we could have defined an error class and returned that. Alternatively, we could have raised

an exception.

Given a string, we explode 1t and pass it to lex1:
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in
(* lexical analyser *)
fun lex words = lexl (explode words)
end;
> val lex = fn: string —> class list

For example:

- lex "the cat sat on";
> [article, noun,verb] : class list

because:
lex '"the cat sat on'" ==>
Texd [, "h","e," ", e, mar, g, ", s, "ak, ", ", "0, "n"] ==>
article::lex1 [ ","c","a","t"," ","s","a","t"," ","o","n"] ==>
article::lex1l ["c¢","a'","t"," ","s","a","t"," ","o","n"] ==>
article::noun::lex1 [" ","s","a","t"," ","o","n"] ==>
article::noun::lex1l ["s","a","t"," ","o","n"] ==>

article::noun::verb::lex1 [] ==>
article::noun::verb::[] ==>

[article,noun,verb]

9.4 Structured datatype binding

In the above example, we constructed a datatype to represent a discrete range of values. We can also define
discrete values which are associated with other values which need not be discrete.

For example, in the above lexical analyser it would be useful to know not just what classes of words were found
but also which words were found. That is we would like each discrete class value to be associated with a string
value. For this example, we could do this already with a tuple of a class and a string. However, every tuple
would have to consist of a class value and a string.

SML generalises datatype bindings to associate discrete value constructors with arbitrary values. Within the
values of a datatype, different value constructors may be associated with different types. Such associations

might be termed structured concrete types.

Here, the datatype binding form is extended to:

datatype type_constructor =
value_constructorl of type_expressiond |
value_constructor? of type_expression? |

where the extension:
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is optional. This specifies a new type type_constructor with values of the form:

value_constructor! valuel
value_constructor? value?

where valuel 1s a value corresponding to type_expressionl, value2 is a value corresponding to type_expression?2,
and so on. Here:

value_constructorl
value_constructor?

are functions which build structured values of type type_constructor. They do so by associating the value
constructors with the values. Thus, they look like function calls for which evaluation stopped after the argument

was evaluated.
Note that the values may be of any types including arbitrary structures of lists, tuples, datatypes and functions.

For example, supposing we want the lexical analyser to return the word as well as the class. We could add a
string field to each class constructor:

- datatype class = article of string |

noun of string | verb of string;
> datatype class = article of string |

noun of string | verb of string

con article = fn: string -> class
con noun = fn: string -> class
con verb = fn: string -> class

Once again, we have the discrete value constructors article, noun and verb but now each is a function from
a string to a class. Effectively, each value constructor may be associated with any string value. For example:

article '"the"
noun 'cat"
verb "sat on"

are all valid class values.

Let us now modify the lexical analyser to return the words as well as the classes:

- lex "the cat ate the rat";
> [article "the'",noun "cat",verb "ate",
article "the'",noun "rat"] class list

For each word, we

- (* find words

apply the value constructor to the appropriate string:

fun lexi [1 = [0 |
lex1l ("a"::"t"::"e"::t) = verb "ate"::lexl t |
lex1 ("a"::t) = article "a"::lexl t |
lex1 ("e"::"a"::"t"::t) = noun "cat"::lexl t |
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lex1 ("sM::MaooMg"o" oMo " nMiit) = verb "sat on"::lexl t |
lex1l ("t"::"h"::"e"::t) = article "the"::lexl t |
lexl (_::t) = lexl t;

> val lexl = fn : string list -> class list

For example:

—_ lexi [llall’ll ll’llrll’llall’lltll’ll ll’llall’lltll’lle”] ;
> [article "a",noun "rat",verb "ate"] : class list

because:
lexi [llall’ll ll’llrll’all’tll’ll ll’llall’tll’lle”] ==>
article llall: :lexi [ll ll’llrll’all’tll’ll ll’llall’tll’lle”] ==>
article llall: :lexi [llrll’all’tll’ll ll’llall’tll’lle”] ==>

article "a"::noun "rat"::lex1i [" ","a",t","e"] ==>
article "a"::noun "rat"::lex1i ["a",t","e"] ==>
article "a"::noun "rat"::verb "ate"::lexi [] ==>
article "a"::noun "rat"::verb "ate"::[] ==>

[article "a",noun "rat",verb "ate"]

9.5 Structured pattern matching

Structured datatype patterns consist of a value constructor followed by a pattern for the associated value.

For example, to extract the string from a class: we match each discrete value:

- (* select word value from word class *)
fun word (article a) = a |
word (verb v) = v |
word (moun n) = n;
> val word = fn : class -> string

Here, we have a datatype pattern consisting of a constructor name followed by a variable for the associated
value.

Note that the whole datatype pattern is in brackets, as if it were a function call argument for another function.

For example:

- word (article "an");
> "an" : string

Now we can convert a list of class back into a string sentence:
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words |lwl = word w |
words (h::t) = word h™" "“words t;
> val words = fn: class list —-> string

Note the case for one word to avoid putting a space at the end of the sentence.

For example:

- words [article "the",noun "cat",
verb "sat on'",article "the",noun "rat'"];
> "the cat sat on the rat'" : string

because:

words [article 'the",noun "cat",
verb "sat on'",article "the'",noun "rat'"] ==>

"the" " ""words [noun "cat",
verb "sat on'",article "the",noun "rat"] ==

"the""" "“"cat""" ""words [verb "sat on",article "the",noun "rat"] ==>
"the""" "“"cat""" "“"gat on""" "“words[ article '"the'",noun "rat"] ==
"the"~'" "“Mcat""" "“"sat on""" "“"the""'" "“words [noun "rat'"] ==
"the""" "“"cat""™'" """sat on""'" "“"the"" " ""rat" ==

"the cat sat on the rat"

This is a simple example of a pretty printer, a program to recreate a textual representation from an internal
representation.

For example, we can count how often each word class appears in a list of word classes, using accumulation
variables for the different classes:

- (*# count word classes with accumulation tuple *)
fun countl (ac,nc,vc) [] = (ac,nc,vc) |
countl (ac,nc,vc) (article _::t) = countl (ac+l,nc,vc) t |
countl (ac,nc,vc) (noun _::t) countl (ac,nc+1,vc) t |
countl (ac,nc,vc) (verb _::t) = countl (ac,nc,vc+l) t;
> val countl = fn: int * int * int -> class list -> int * int * int

- local
fun countl ... =
in
(* count word classes *)
val count = countl (0,0,0)
end;
> val count = fn : class list —-> int * int * int

For example:

- count [article "the",noun "cat",
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because:

count [article '"the'",noun "cat",
verb "sat on'",article "the'",noun "rat'] ==>

countl (0,0,0) [article "the",noun '"cat",
verb "sat on'",article "the'",noun "rat"] ==>

count1l (1,0,0)
[noun "cat",verb "sat on",article '"the'",noun "rat"] ==>

countl (1,1,0) [verb "sat on",article '"the'",noun "rat"] ==>
countl (1,1,1) [article "the",noun "rat"] ==>

countl (2,1,1) [noun "rat"] ==>

count1l (2,2,1) [1 ==>

(2,2,1)

Note, that in structured datatype patterns, the wildcard pattern may only be substituted for value constructors
with no arguments. That is, it is not possible to write a pattern to match arbitrary value constructors. For
example, we cannot simplify:

- fun getword (article a) = a |
(noun n) = n |
(verb v)

> val getword = fn : class —-> string

1]
<

to:
fun getword (_ w) = w

The system cannot deduce what type is intended.

9.6 Union types

Datatypes are particularly useful when we wish to construct functions to handle mixed types. In SML, a
function’s range and domain must be of single types. To get the effect of mixed type domains and ranges we
can unite different types using a datatype.

For example, suppose we want to construct a function which will take either an integer or a real argument and
return the equivalent integer. If we write:

- fun makeint (x:int) = x |
makeint (y:real) = floor y;

then a type error occurs because x and y have different types. We can get round this by defining:
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con 1type = fn: 1nt —-> numb
con rtype = fn: real —-> numb

Here, an integer is represented by:

itype integer

and a real by:

rtype real

For example:

- itype 4;

> itype 4 : numb

- rtype 4.2;

> rtype 4.2 : numb

We can now define the function to convert an integer or a real to an integer as:

- (* convert integer or real to numb *)
fun makeint (itype i) = i |
makeint (rtype r) = floor r;
> val makeint = fn : numb -> int

SO:

- makeint (itype 3);
> 3 : int

- makeint (rtype 4.71);
> 4 : int

Note that we must disguise the integer and real values with a layer of constructor to make them both numb
type.

For example, suppose we want to represent various shapes of boxes. We have cubes, where all sides are the
same, cubic rectangles where two sides are the same, and rectangles where all sides are different. We can use
datatype to represent boxes:

- datatype box = cube of int |
cubic of int * int |
rectangle of int * int * int;
> datatype box = cube of int |
cubic of int * int |
rectangle of int * int * int
con cube = fn : int -> box
con cubic = fn : int * int -> box
con rectangle = fn : int * int * int —-> box

For example, a cube with 3 metre sides is:
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a cubic rectangle with two 3 metre sides and a 4 metre side is:
cubic (3,4)

and a rectangle with 3 metre, 4 metre and 5 metre sides is:
rectangle (3,4,5)

Suppose we have a list of boxes and we require a list of volumes. First of all, to find the volume of each box

case:

- (* find box volume *)
fun vol (cube s) = s*s*s |
vol (cubic (s,d)) = s*s*d |
vol (rectangle (1,b,h)) = 1l*bx*h;
> val vol = fn : box -> int

Note that there is a separate pattern for each box type, with an appropriate pattern following the value

constructor.

We can then map this over a list of boxes:

- (* find box volumes from box list *)
val vols = map vol;
> val vols = fn : box list -> int list

For example:

- vols [cube 3,cubic (3,4),rectangle (3,4,5)];
> [27,36,60] : int list

because:

vols [cube 3,cubic (3,4),rectangle (3,4,5)] ==>
map vol [cube 3,cubic (3,4),rectangle (3,4,5)] ==>
vol (cube 3)::vol (cubic (3,4))::vol (rectangle (3,4,5))::[] ==>

[27,36,60]

9.7 Example - converting digit strings to number lists

For example, suppose we have a sequence of integer and decimal numbers with spaces in between them repre-

sented as a string, for example:

- "34.27 8.91";
>"34.27 8.91" : string
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- findnumbs "3 4.2 7 8.91";
> [itype 3,rtype 4.2,itype 7,rtype 8.91] : numb list

First of all, we could use getwords from the last chapter to split the string up:

- getwords "3 4.2 7 8.91";
> ["3v,"4.2","7","8.91"] : string list

getwords does not know about the difference between letters and digits. All it does is split a string up where
it finds spaces.

Next we could construct a function which given a string number returns the appropriate numb. First of all, we
will modify getval from the last chapter to return a tuple of an integer and rest of list from a list of single
character strings. For an integer string, the rest of list will be empty. For a real string, the rest of the list will
start with the decimal point:

- (* find integer at start of singleton string list,
returning rest of list also *)

fun findint i [J1 = (i,0]) |
findint i ("."::t) = (i,t)]
findint i (h::t) = findint (10*i+ord h-ord "0") t;

> val findint = fn : int -> string list -> int * string list

For example:

flndlnt 0 [||1||’||2||’||3||];
(123,[]1) : int * string list

\'4

and:

findint o [”4”’”5”’”‘||’||6||’||7||];
> (45,["6","7"]) : int * string list

Next we require a function to convert the digit string after the decimal point to a real value. Note that the
decimal part of a real number may be factored as a sum of digits divided by decreasing negative powers of ten.
For example:

0.3124 ==> 3/10+0.0124 ==> 3/10+1/100+0.0024 ==>
3/10+1/100+2/1000+0.0004 ==> 3/10+1/100+2/1000+4/10000+0.0

To convert the string representation of the decimal part we we need to multiply each digit by the appropriate
negative power of 10.0, and then generate the next negative power of 10.0 for the next digit:

- (* convert singleton digit list to decimal fraction *)
fun findreal pi0 r [] = r |
findreal p10 r (h::t) =
findreal (p10/10.0) (r+real (ord h-ord "O0")*pl0) t;
> val findreal = fn : real -> real —> string list —> real

Here, r accumulates the decimal part of the real number and p10 is the next power of 10. For example:
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because:

findreal 0.1 0.0 ["2","4" "1"] ==>
findreal 0.01 0.2 ["4","1"] ==>
findreal 0.001 0.24 ["1"] ==>
findreal 0.0001 0.241 [] ==>

0.241 : real

To return to our number to numb conversion, we call findint with the digit sequence to return an initial integer
and the rest of the string list. If the rest of string list is empty then we return an itype for the integer.
Otherwise we call findreal to convert the decimal part and then form the final rtype:

- (* convert singleton digit list to numb *)
fun findnumb (i,[]) = itype i |
findnumb (i,t) = rtype (real i+findreal 0.1 0.0 t);
> val findnumb = fn : int * string list -> numb
- (* convert string to numb *)

fun nconv 1 = findnumb (findint 0 (explode 1));
> val nconv = fn : string -> numb

For example:

- nconv "123";
> itype 123 : numb

because:

nconv '"123" ==>

findnumb (findint O (explode "123")) ==>
findnumb (findint O ["1","2","3"]) ==>
findnumb (123,[]) ==>

itype 123

For example:

- nconv "12.34";
> rtype 12.34 : real

because:

nconv "12.34" ==>

251



findnumb (findint O ["1v,m"2",".","3","4"]) ==>
findnumb (12,[".","3","4"]) ==>

rtype (real 12+findreal ["3","4"]) ==>

rtype (real 12+0.34) ==>

rtype 12.34

Finally, given the initial string, we use getwords to break it up into a list of separate number strings and then
map nconv over the list:

- (* convert string of numbers to list of numb *)
fun findnumbs 1 = map nconv (getwords 1);
> val findnumbs = fn : string -> numb list

For example:

- findnumbs "1 2.3 4";
> [itype 1,rtypr 2.3,itype 4] : numb list

because:

findnumbs "1 2.3 4" ==>

map nconv (findwords "1 2.3 4") ==>

map nconv ["1',"2.3","4"] ==>

nconv "1"::map nconv ["2.3","4" "5.6"] ==>

nconv "1"::nconv "2.3"::map nconv ["4","5.8"] ==>
nconv "1"::nconv "2.3"::nconv "4"::map nconv [] ==>

[itype 1,rtype 2.3,itype 4]

9.8 Example - lexical analysis of arithmetic expressions

9.8.1 Introduction

Suppose we are processing strings representing arithmetic expressions consisting of:

operators - + - * / ()
identifiers - one or more letters
integers - one or more digits

As above, we wish to construct a list of individual symbols from a string.

252



( == 1bra

) == rbra

+ == add

- == diff

* == mult

/ == divide

We will use different value constructors to differentiate the different types:

- datatype symbol = ident of string | numb of int |

lbra | rbra | add | diff | mult | divide;
ident of string | numb of int |

lbra | rbra | add | diff | mult | divide
con ident = fn: string —-> symbol

con numb = fn: int -> symbol

con lbra = lbra : symbol

> datatype symbol

so examples of valid symbols include:

numb 42

ident "total"
lbra

add

9.8.2 Analyser function

We will develop the techniques used in the lexical analyser discussed above to extract a symbol list from a
string. First of all, we recognise the operators:

- (* recognise arithmetic symbols from singleton string list *)
fun arithlexi [1 = [1 |
arithlex1 ("("::t) = lbra::arithlexl t |
arithlex1 (")"::t) = rbra::arithlexl t |
arithlex1 ("+"::t) = add::arithlexl t |
arithlex1 ("-"::t) = diff::arithlexl t |
arithlex1 ("*"::t) = mult::arithlexl t |
arithlex1 ("/"::t) = divide::arithlexl t |

For an identifier, we recognise that the string list starts with a letter and for an integer we recognise that it
starts with a digit:

arithlex1 (1 as h::t) =
if h>="a" andalso h<="z"
then getident 1
else
if h>="0" andalso h<="9"
then getint 1
else arithlexl t

Otherwise, we have an invalid character so we ignore it.
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In arithlexl above, two auxiliary functions getident and getint are called. These will also need to call
arithlex1 to continue processing. If we try and define them independently, say getint and getident be-
fore arithlex1, then the system will complain that arithlex1 has not been defined. Similarly, if we define
arithlex1 first then the system will object that getint and getident have not been defined.

SML allows such mutual references through the simultaneous declaration:

fun namel ...
and name? ...
and named ...

Here, the bodies of namel, name2, name3 and so on may all refer to each other. In the above example we need:

fun arithlexl ... = ... getident ... getint
and getident ... = ... arithlexl ...
and getint ... = ... arithlexl ...

9.8.4 Recognising identifiers

The function getident will call another function to split the character sequence into the letter sequence for the
name and the rest of the character sequence:

(* find identifier starting singleton string list,
returning rest of list also *)
and get_letters [1 = ("",[1) |
get_letters (1 as h::t) =
if h >= "a" andalso h <= "z"
then
let val (rest_of_name,rest_of_chars) = get_letters t
in (h"rest_of_name,rest_of_chars)
end
else ("",1)
> val get_letters = fn : string list -> string * string list

Now, getident will convert the letters into a symbol and call the analyser arithlex1 recursively:

(* find identifier followed by symbols in singleton string list *)
and getident c =
let val (name_letters,rest_of_chars) = get_letters ¢
in ident name_letters::arithlexl rest_of_chars
end
> val getident = fn : string list —> symbol list

9.8.5 Recognising integers

The function getint will call another function to split the character sequence into the digit sequence for the
number and the rest of the character sequence:

(* find number in singleton string list, returning rest of list also *)
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1f h >= "0" andalso h <= "9"
then
let val (rest_of_number,rest_of_chars) = get_digits t
in (h::rest_of_number,rest_of_chars)
end
else ([1,1)
> val get_digits = fn : string list -> string list * string list

It will then use getval from chapter 8 to convert the number digits into the numb datatype value and call the
analyser arithlex1 recursively:

(* £ind number followed by symbols in singleton string list *)
and getint c =
let val (number_digits,rest_of_chars) = get_digits ¢
in numb (getval O number_digits)::arithlexl rest_of_chars
end;

> val getint = fn : string list -> symbol list

9.8.6 Complete analyser

Finally, we need to define the top-level lexical analysis function:

- local
fun arithlexl ... = .
and get_letters ... =
and getident ..
and get_digits ... =

and getint

in

(* arithmetic lexical analyser *)

fun arithlex s = arithlexl (explode s)

end;
> val arithlex = fn: string —> symbol list
- arithlex "(total+57)/(19-sum)";
> [1bra,ident "total",add,numb 57,rbra,divide,lbra,numb 19,

diff,ident "sum",rbral] : symbol list

9.8.7 Pretty printer
We can convert a sequence of symbols back into the original string:

- symbs_to_string [lbra,ident "total'",add,numb 57,rbra,divide,
lbra,numb 19,diff,ident "sum'",rbral;
> "(total+57)/(19-sum)": string

As for our simple sentences above, we write a function to convert an individual symbol into the equivalent
string:

- (* convert symbol to string *)
fun sconv lbra = "("|
sconv rbra = ")" |
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sconv mult = "*" |
sconv divide = "/" |
sconv (ident i) = i |
sconv (numb n) = iconv n
> val sconv = fn : symbol -> string

Note that we need to convert a number to a string. We can do so with iconv from the chapter 8 exercise 7
which you will have already solved...

- fun iconv 0 = "0" |
iconv n = iconvl n
> val iconv = fn : int -> string
and iconvi 0 = "" |
iconvi (iconvl (n div 10))"(chr (n mod 10+ord "0'"))
> val iconvl = fn : int -> string

ns o
1]

Finally, we apply sconv to each element of the symbol list:

(* arithmetic symbol list pretty printer *)
fun symbs_to_string [] = "" |
symbs_to_string (h::t) = sconv h™symbs_to_string t;
> val symbs_to_string = fn : symbol list -> string

9.9 Pattern matching summary

In general a function may be defined by:

fn patternl => expressiond |
pattern? => expression? |

where a pattern may be:

i) a constant

ii) a bound variable

ii1) a list of patterns

iv) a tuple of patterns

v) a datatype pattern

vi) the wildcard pattern _

When a function is called with an argument, the argument is matched against each pattern in turn until a match
is found. That is:

i) constants in the pattern must be in the same positions in the argument

ii) bound variables in the pattern will be set to the values in the corresponding argument positions
ii1) tuples in the pattern must correspond in position and structure to tuples in the argument

iv) lists in the pattern must correspond in position and structure to lists in the argument

v) datatypes in the pattern must correspond in position, constructor and structure to datatypes in
the argument

vi) wildcard patterns match any values in the corresponding argument positions
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9.10 Summary

In this chapter we have looked at the use of datatypes to define new types. First of all we saw how to define a
type with a fixed number of discrete values, identified as constructor names. We then saw how to parameterise
constructor names with associated further values. Finally, we looked at forming discriminated union types
where disparate types are combined into a single type. We also met mutual declarations as a way of enabling
functions to refer to each other.

In the next chapter we will use datatypes to define recursive structures. In particular, we will see how to define
an equivalent to the SML list type and how to build tree structures. We will then use tree structures to
represent the result of parsing symbol sequences from lexical analysers, for subsequent manipulation.

9.11 Exercises

1) A group of functions is required to produce an index from a book.

An index is a list of word records. Each word record is a tuple of a string word followed by a list of integer page
numbers. The list is in ascending alphabetical word order, for example:

- [("apple",[1,2,3]),("banana",[2]), ("cherry",[2,4])];
> [("apple",[1,2,3]),("banana", [2]), ("cherry",[2,4])]
(string * int list) list

a) Write a function to add an integer page number to the end of a list of integer page numbers
provided that the new page number is not already in the list.

What is the type of this function?
b) Write a function to add a word and page number to an index. It should find the word in the

index and add the page number to the page number list if it is not already in the list. If the word
is not in the index then a new entry should be made.

What is the type of this function?

A book is preprocessed to produce a list of entries which may be string words or integer page numbers, using
the following concrete datatype:

datatype entry = word of string | page of int
For example:

- [page 1,word "the",word '"cat",word "sat",word "by",
word 'the",page 2,word "dog",word "by'",word "the'",
page 3,word "mat"];

> [page 1,word "the",word '"cat",word "sat",word "by",
word 'the",page 2,word "dog",word "by'",word "the'",
page 3,word "mat"] : entry list

¢) Write a function to update an index from an entry list. The function should have bound variables
for the entry list, the current page number and the index. If the first entry is a word then it is added
to the index at the current page and the rest of the entry list is used to update the new index. If the
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What is the type of this function?

d) Write a function to create an index from an entry list, for example:

index [page 1,word "the",word '"cat'",word "sat",word "by",
word 'the",page 2,word "dog'",word "by'",word "the'",
page 3,word "mat"] ==>

C("by", [1,2]),("cat", [1]1), ("dog", [2]),
”mat”’ [3] ) > (nsatnyi) > (”the”’ [1’2] ):I

What is the type of this function?

2) Yet another automatic car park records the registration number of every car that enters and leaves in a list.
It also adds a time signature to the list every hour. Registration numbers and times are represented by the
concrete datatype:

datatype park = enter of string | exit of string | time of int
An example list is:

- [time 5,enter "ABC123",enter "DEF456",time 6,exit "ABC123",
enter "GHI789",time 7,exit "GHI789",exit "DEF456"];

> [time 5,enter "ABC123",enter "DEF456",time 6,exit "ABC123",
enter "GHI789",time 7,exit "GHI789",exit "DEF456"] : park list

Car park lists are to be processed to produce a list of tuples of car registration numbers and times spent in the
car park. In the list, a positive time is the time spent in the car park and a negative time is the entry time.

a) Write a function to add a registration number and an entry time as a tuple to a tuple list in
registration number alphabetic order. For example:

- addrn "DEF456" ~4 [("ABC13",~2),("GHI789",~3)];
> [("ABC13",~2),("DEF456","4),("GHI789",~3)] : (string * int) list

What is the type of this function?

b) Write a function which updates a tuple list by finding the tuple for a given registration number
and adding a given exit time to the negative entry time in the tuple. For example:

- updatern "DEF456" 7 [("ABC13",~2),("DEF456",~4),("GHI789",~3)];
> [("ABC13",~2),("DEF456",3), ("GHI789","3)] : (string * int) list

What is the type of this function?

¢) Write a function which given a car park list, the current time, and a tuple list, processes the car
park list to produce a final tuple list as follows. If the car park list is empty then return the tuple list.
If the car park list starts with a time then process the rest of the list using that time as the current
time. If the car park list starts with a registration number for a vehicle entering the car park then
add a new tuple the for registration number and negated current time to the tuple list, and process
the rest of the car park list. If the car park list starts with the registration number for a vehicle
leaving the car park then add the current time to the negated entry time in the corresponding tuple
and process the rest of the car park list.

What is the type of this function?

3) A road is used by cars, buses and lorries. A roadside detector records in a list every vehicle that passes by.
Every 10 minutes it also records the time. The following datatype is used to represent these events:
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An example list is:

- [time(14,10),bus,car,car,lorry,time(14,20),car,car,lorry,car];
> [time(14,10),bus,car,car,lorry,time(14,20),car,car,lorry,car]
event list

A summary list is required with a record for each time period giving the start time and number of cars, buses
and lorries before the next time. For example, for the above list:

- [(time(14,10),2,1,1), (time(14,20),3,0,1)]1;
> [(time(14,10),2,1,1), (time(14,20),3,0,1)]
(event * int * int * int) list

a) Write a function that converts a vehicle list into a summary list. Tt has bound variables for the
current time, a tuple of counts for cars, buses and lorries, and a vehicle list. If the list starts with
a vehicle then the appropriate count is incremented and the rest of the list is processed with the
current time. If the list starts with a time then a tuple for the current time and counts is put on
the front of the result of processing the rest of the list with the current time set to the time from
the list and all counts set to 0.

What is the type of this function?

b) Write a function of a summary list which returns a list of all time periods for which there were
no buses.

What is the type of this function?

¢) Write a function of a summary list which returns a list of all summary entries for which the time
1s a precise hour.

What is the type of this function?

d) Write a function that returns the result of applying function £ to all elements of a list satisfying
property p.
What is the type of this function?

e) Define the functions from b) and ¢) using the function from d).

4) In a cafe, menu items are represented by the following datatype:

datatype item = vgn of string #* real |
vgt of string * real |
omn of string * real

The constructors are:

vgn == vegan == no animal produce
vgt == vegetarian == no meat
omn == omnivorous == may contain animal produce

The string is the item’s name and the real is its price.

A menu is held as a list, for example:

- [vgn("tofu",3.6),vgt("quiche",2.7),omn(""haggis",1.9)];
> [vgn("tofu",3.6),vgt(""quiche",2.7),omn("haggis",1.9)] : item list
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b) Write a function to find the cheapest omnivorous item on the list.

What is the type of this function?

An order is a tuple of a food item and a quantity, for example:

("tofu",3) == 3 orders of tofu

¢) Write a function which looks up an item and returns the price.

What is the type of this function?

d) Write a function which, given an order tuple and a menu, returns the total cost of the order.
What is the type of this function?

e) Write a function which given, a list of order tuples and a menu, returns the total cost of all the
orders.

What is the type of this function?

f) Write a function which, given a list of lists of order tuples and a menu, returns a list of total order
costs, one for each order list.

What is the type of this function?

5) Logical expressions are composed of truth values and operators, for example:

TRUE

TRUE OR FALSE

NOT TRUE AND FALSE

NOT (TRUE AND FALSE)

NOT (TRUE AND FALSE) OR TRUE

NOT (TRUE AND FALSE) OR TRUE AND FALSE

NOT (TRUE AND FALSE) OR (TRUE AND FALSE)

NOT (TRUE AND FALSE) OR (TRUE AND FALSE) OR FALSE

Symbols for logical values and operators may be represented by the datatype:
datatype symbol = STRUE | SFALSE | SAND | SOR | SNOT | LBRA | RBRA

Write a lexical analysis function to produce a list of symbols from a string representing a logical expression.

6) Polynomials are composed of names, integers and the operators +, * and =, for example:

3*x"3+4*x"2+6%x+8

Here, =~ means “to the power of”.

a) define a datatype to represent polynomial symbols.

b) write a lexical analysis function to produce a list of symbols from a string representing a polyno-
mial.

7) A simple programming language consists of bracketed prefix integer arithmetic operations, functions intro-
ducing bound variables and function calls. For example:
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(fny => ((*xy) y) (fn x => ((+ x) 1) 4))
(fn x => (fn y => ((* x) y) 3) 5)

a) define a datatype to represent symbols for bound variable names, integers and:
¢ )+ - * / fn=>

b) write a lexical analysis function to produce a list of symbols from a string representing a program.
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Chapter 10

Defining lists and trees

10.1 Linked structures

SML provides lists as a universal linked structure. We can now use datatypes to define specialised linked
structures and then generalise to universal lists.

Consider a linked list of integers:

Here, we have a sequence of nodes. Each node holds an integer value and a link to the next node. The end of
the sequence 1s marked by a terminating link.

A datatype for this structure 1is:

- datatype ilist = icons of int * ilist | INIL;
> datatype ilist = icomns of int * ilist | INIL
con icons = fn: int * ilist -> ilist
con INIL = INIL : ilist

Here we have a base case for an empty list:

INIL

and a recursion case:

icons of int * ilist

for a integer followed by another integer list.
Note the recursive reference to ilist in the recursion case.

The above example 1s:

- icons(1,icons(2,icons(3,INIL)));
> icons(1,icons(2,icons(3,INIL))) : ilist
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icons. PFor example, to ind the sum ol the elements ol an integer list:

- (% sum ilist *)
fun isum INIL = 0 |
isum (icons(v,1l)) = v+isum 1;
> val isum = fn: ilist -> int

For example:

- isum (icons(1,icons(2,icons(3,INIL))));
> 6 : int

because:

isum (icons(1,icons(2,icons(3,INIL)))) ==>
1+isum (icons(2,icons(3,INIL))) ==>
1+2+isum (icons(3,INIL)) ==>

1+2+3+isum INIL ==>

1+2+3+0 ==>

10.2 String linked lists

Suppose we now want to define linked lists of strings, for example:

||ape|| "pat" "eat" [:l

we can use a similar datatype to that for integer lists:

- datatype slist = scons of string * slist | SNIL;
> datatype slist = scons of string * slist | SNIL
con scons = fn: string * slist -> slist
con SNIL = SNIL : slist

so the above example 1s:

- scons("ape",scons("bat",scons("cat",SNIL)));
> scons("ape",scons("bat",scons("cat",SNIL))) : slist

Once again, we can write functions with a base case for the terminating link SNIL and a recursion case for an
scons. For example, to join all the elements of a string list together:

- (* implode slist *)
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> val implode = fIn: slist -> string
For example:

- implode (scons("ape",scons("bat",scons("cat",SNIL))));
> '"apebatcat" : string

because:

implode (scons("ape",scons("bat",scons("cat",SNIL)))) ==>
"ape'" implode (scons("bat",scons("cat",SNIL))) ==>
"ape'"""bat" implode (scons('cat",SNIL)) ==>

"ape" " "bat"""cat'" implode SNIL ==>

"ape'"""bat'" "cat"""'" ==>

"apebatcat"

10.3 Generalised lists

If we compare the datatypes for integer lists:

datatype ilist = icons of int * ilist | INIL

and string lists:

datatype slist = scons of string * slist | SNIL

we can see that they are essentially the same apart from the use of the types int and string. We can generalise
to lists of any type by replacing the specific type with a type variable:

- datatype ’a list = cons of ’a * ’a list | NIL;
> datatype ’a list = cons of ’a * ’a list | NIL
con cons = fn: ’a * ’a list -> ’a list
con NIL = NIL : ’a list

Now, we can write the above examples as:

- cons(1,cons(2,cons(3,NIL)));
cons(1,cons(2,cons(3,NIL))) : int list

\'4

- cons("ape",cons("bat",cons("cat" ,NIL)));
> cons("ape'",cons("bat",cons("cat",NIL))) : string list

Note that, in the first example, the system deduces that the whole structure is of type int list because the
individual elements are of type int. Similarly, in the second example, the system deduces that the whole
structure is a string list because the individual elements are string.
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- (* length of list *)
fun length NIL = O |
length (cons(h,t)) = 1+length t;
> val length = fn: ’a list -> int

or to map a function over a list:

- (* apply function to each in list *)
fun map £ NIL = NIL |
map £ (cons(h,t)) = cons(f h,map f t);
> val map = fn: (’a -> ’b) -> ’a list -> ’b list

In SML systems, lists are based on a similar datatype: the constructor equivalent to cons is changed into the
infix operator :: and the constructor NIL is changed to nil.

10.4 List efficiency

A disadvantage of list structures is that they are not very efficient to access. To get to an arbitrary element,
it is necessary to go past all the preceding elements. Suppose a list has N elements. Then, at worst N — 1
elements must be ignored to get to the last one. On average, finding an arbitrary element involves scanning the
N/2 preceding elements.

For example, with a 5 element list:

to get to skip
element 5 4 elements

element 4 3 elements
element 3 2 elements
element 2 1 element
element 1 O elements

Thus to get to each of these 5 elements in succession involves skipping:
4+3+2+1+0 == 10

elements in total or:
10 div 5 ==

elements on average, which is close to N/2.

For long lists, this overhead can becomes prohibitive. For example, with a million elements, half a million must
be skipped on average.

10.5 Introducing trees

For data with an order between elements, tree structures enable far faster access at the cost of an increase in
storage requirements.
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the node’s value. lhe top-most node 1s called the root. INodes with empty branches are called leaves.

Here, we will consider ordered binary trees where each node has at most two branches, called the left and right
branches:

value

/N

left right

For a given node, all the values on a node’s left branch are less than the node value and all the values on a
node’s right branch are greater than the node’s value.

For example, let us construct a binary tree from the values:
7 315 10 8 12

We start with a node for 7 as the root:

7

3 comes before 7 so we add it on a new left branch:

7

/

3

1 comes before 7 so it goes on 7’s left branch. 1 comes before 3 so we add it on a new left branch:

7

/

5 comes before 7 so it goes on 7’s left branch. 5 comes after 3 so we add it on a new right branch:

7

/
N

1 5

10 comes after 7 so we add it on a new right branch:
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=z N
3 10

N

1 5

8 comes after 7 so it goes on 7’s right branch. 8 comes before 10 so we add it on a new left branch:
7
3 10
1 5 8
12 comes after 7 and after 10 so we add it on a new right branch:
7
3 10
1 5 8 12

This is called a balanced binary tree: each node has the same number of sub-nodes on the left and right branches.

With 1 node in a balanced binary tree there is one layer:

nodel

With 3 nodes in a balanced binary tree there are two layers:

nodel

T

node?2 node3

With 7 nodes in a balanced binary tree there are three layers:

nodel

T

node?2 node3

SN TN

node4 node5node6 node7

In general, with NV nodes in a balanced binary tree, the number of layers is one more than the number of times

N can be divided by 2:
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Thus:

N (log2 N)+1 N div 2

1 1 0

3 2 1

7 3 3

15 4 7
31 5 15
63 6 31
1023 10 511

Hence, searching for a value in a balanced binary tree takes at most (log, N) + 1 steps because that is the
maximum number of layers.

For example, the above tree has 7 nodes and so there are (log, 7) + 1 == 3 layers. Consider finding 12 in the
above tree:

1) 12 after 7 - right and down
2) 12 after 10 - right and down
3) 12is 12 == 3 steps

In the equivalent ordered linear list:

1 3 5 7 8 10 12 | [

finding 12 takes 7 steps.

10.6 Binary tree datatype

Implicit in the above description of binary trees is a recursive definition:

a binary tree is empty

or

a binary tree is a node with:

a value

and

left and right branches to binary trees

We can represent binary trees of integers with the datatype:

- datatype itree = iempty | inode of int * itree * itree;
> datatype itree = iempty | inode of int * itree * itree
con iempty = iempty : itree
con inode = fn: int * itree * itree —> itree

iempty is the empty node.

Note the recursive references to itree in:
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For example, the above tree 1s:

inode(7,
inode(3,
inode(1,iempty,iempty),
inode(5,iempty,iempty)),
inode(10,
inode(8,iempty,iempty),
inode(12,iempty,iempty)))

To add a value to a binary tree: if the tree is empty then make a new node for that value with empty branches.
Otherwise, if the new value comes before the node value then add it to the left branch. Otherwise add it to the
right branch:

- (* add integer to ascending order binary tree *)
fun iadd v iempty = inode(v,iempty,iempty) |
iadd v (inode(iv,1l,r)) =
if v<=iv
then inode(iv,iadd v 1,r)
else inode(iv,l,iadd v r);
> val iadd = fn: int -> itree —> itree

Note that this does not build a balanced tree.

For example, adding 7 to an empty tree:

iadd 7 iempty ==> inode(7,iempty,iempty)

Now adding 3:

iadd 3 (inode(7,iempty,iempty)) ==>

inode(7,
iadd 3 iempty,
iempty) ==>

inode(7,
inode(3,iempty,iempty),
iempty)

Next adding: 1:

iadd 1 (inode(7,inode(3,iempty,iempty),iempty)) ==>

inode(7,
iadd 1 (inode(3,iempty,iempty)),
iempty) ==>

inode(7,
inode(3,
iadd 1 iempty,
iempty),
iempty) ==>
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1node(3,
inode(1,iempty,iempty),
iempty),

iempty)

Then adding 5:

iadd 5 (inode(7,inode(3,inode(1,iempty,iempty),iempty),iempty)) ==>

inode(7,
iadd 5 (inode(3,inode(1,iempty,iempty),iempty)),
iempty) ==>

inode(7,
inode(3,
inode(1,iempty,iempty),
iadd 5 iempty),
iempty) ==>

inode(7,
inode(3,
inode(1,iempty,iempty),
inode(5,iempty,iempty)),
iempty)

To traverse an ordered binary tree to construct a list of elements in ascending order: if the tree is empty then
return the empty list; otherwise append the list from the left branch onto the node value and the list from the
right branch:

- (* traverse ascending order binary integer tree *)
fun itrav iempty = [] |
itrav (inode(v,1,r)) = (itrav 1)@(v::itrav r);
> val itrav = fn: itree -> int list

For example:

- itrav (inode(7,
inode(3,
inode(1,iempty,iempty),
inode(5,iempty,iempty)),
iempty));
> [1,3,5,7] : int list

because:

itrav (inode(7,
inode(3,
inode(1,iempty,iempty),
inode(5,iempty,iempty)),
iempty)) ==>

itrav (inode(3,

inode(1,iempty,iempty),
inode(5,iempty,iempty)))@
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1trav (1inode(l,1empty,liempty))@
3::itrav (inode(5,iempty,iempty))@
7::itrav iempty ==>

itrav iempty@1::(itrav iempty)@
3::itrav iempty@5::itrav iempty
7::itrav iempty ==>

[le1::[]e3::[Je5::[]@7::[]1 ==>

1::3::5::7::[1

10.7 Polymorphic trees

We can now generalise the above tree datatype to binary trees of arbitrary type. Once again, we replace int
with a type variable ’a:

- datatype ’a tree = empty | node of ’a * ’a tree * ’a tree;
> datatype ’a tree = empty | node of ’a * ’a tree * ’a treel
con empty = empty : ’a tree
con node = fn: ’a * ’a tree * ’a tree —-> ’a tree

Consider the function to add a value to an integer tree:

fun iadd v iempty = inode(v,iempty,iempty)
iadd v (inode(iv,l,r)) =
if v<iv
then inode(iv,iadd v 1,r)
else inode(iv,1l,iadd v r);

Here, the comparison operator < is used on iv which 1s the value from an inode and therefore an int. Hence
< denotes integer "less than”. To generalise this function we need to abstract from the comparison operator:

- (*# add value to polymorphic binary tree *)
fun add less v empty = node(v,empty,empty) |
add less v (node(nv,1l,r)) =
if less v nv
then node(nv,add less v 1,r)
else node(nv,1l,add less v r);
> val add = fn: (’a -> ’a -> bool) -> ’a —> ’a tree -> ’a tree

so less 1s a:

’a => ’a —-> bool

function.

add will operate on a tree of arbitrary type provided it is supplied with an appropriate comparison operator for
that type. For example, for trees of strings:

- fun sless (sl:string) s2 = s1<=s2;
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> val sadd = fn: string -> string tree —> string tree

Similarly, for trees of reals:

- fun rless (ril:real) r2 = ri<=r2;

> val rless = fun: real -> real -> bool

- val radd add rless;

> val radd = fn: real -> real tree -> real tree

The traversal function for polymorphic trees is more or less the same as that for integer trees, as no type specific
operations are carried out:

- (* inorder polymorphic binary tree traversal *)
fun trav empty = [] |
trav (node(v,l,r)) = trav 1l@v::trav r;
> val trav = fn: ’a tree -> ’a list

This function is polymorphic.

10.8 Grammar and parsing

Consider the English sentences:

The mouse saw a big peach

The mouse ate the peach

A big cat saw the mouse

The big cat ate the small mouse

We can characterise the structure of these sentences with a set of rules:

A sentence is a noun phrase followed by a verb followed by a noun phrase
A noun phrase is an article followed by a noun part

A noun partis an adjective followed by a noun

A noun partis a noun

An article is one of: a the

A noun is one of: mouse cat peach

An adjective is one of: big small

A wverb 1s one of: saw ate

These rules or grammar define the syntax of a class of sentences: that is, they specify which sequences of
symbols are considered to be well formed.

For computer use, syntax is often defined using a notation called BNF (Backus Naur Form). BNF was originally
developed to define the syntax of ALGOL 60, an early and extremely influential language. BNF and variants
are now widely used to define programming language syntax.

A BNF rule or production consists of a left hand side and a right hand side separated by the symbol : :=, which
is read as “is”. The left hand side is the rule name or non-terminal symbol within angle brackets < and >. The
right hand side 1s a sequence of options separated by the option symbol |, which is read as “or”. Each option
is a sequence of terminal symbols or lexemes and non-terminal symbols. Thus, the above grammar is:
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<noun part> ::= <adjective> <noun> | <noun>

<article> ::= a | the

<noun> ::= cat | mouse | peach
<adjective> ::= big | small
<verb> ::= saw | ate

A set of productions may be used to check whether or not a sequence of symbols is well formed, by starting with
the first rule and trying to match one of its right hand side options. To match a right hand side option, match
each element in the sequence. To match a terminal symbol, look for that symbol. To match a non-terminal
symbol, try to match one of its options. If a match fails then back up a stage and try again.

Consider checking:

the cat ate the small peach

starting with sentence:

To find a <sentence> find a <noun phrase> followed by a <verb> followed by a <noun phrase>.

To find a <noun phrase> find an <article> followed by a <noun part>.
To find an <article> find an a, which fails.
To find an <article> find a the which succeeds.
To find a <noun part>, find an <adjective>
followed by a <noun>.
To find an <adjective> find a big, which fails.
To find an <adjective> find a small, which fails.
To find a <noun part>, find a <noun>.
To find a <noun> find a cat, which succeeds.
To find a <verb>, find a saw, which fails.
To find a <verb>, find an ate, which succeeds.
To find a <noun phrase> find an <article> followed by a <noun part>.
To find an <article> find an a, which fails.
To find an <article> find a the which succeeds.
To find a <noun part>, find an <adjective>
followed by a <noun>.
To find an <adjective> find a big, which fails.
To find an <adjective> find a small, which succeeds.
To find a <noun> find a cat, which fails.
To find a <noun> find a mouse, which fails.
To find a <noun> find a peach, which succeeds.

We can write SML functions to parse sentences directly from the rules. For each rule, a function processes a
sequence of symbols and returns a tuple consisting of a boolean to indicate whether or not the function has
succeeded and the rest of the symbols.

We assume that we have a datatype:

datatype symbol = art of string | adj of string |
n of string | v of string | sfail

to represent symbols and a lexical analyser which generates a symbol list from a string. Note the constructor
sfail which is used later to indicate a failure to find a symbol. We do not want to use an exception because
that would halt the parsing. Instead, we need to note that an option has failed and try another one.

First of all, to find an <article>:
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article s = (false,s)
> val articel = fn: symbol list —> bool * symbol list

look for an art symbol. If one is not found then return false and the whole symbol sequence. Otherwise,
return true and the rest of the symbols following the art.

For example:

- article [art "the",n "cat",v "ate"];
> (true,["n "cat",v "ate"]) : bool * symbol list

Similarly, to find an <adjective>:

(* recognise <adjective> and return rest of symbols *)
and adjective (adj a::t) = (true,t) |
adjective s = (false,s)
> val adjective = fn : symbol list -> bool * symbol list

look for an adj symbol. If one is not found then return false and the whole symbol sequence. Otherwise,
return true and the rest of the symbols following the adj.

For example:

- adjective [n "cat",v "ate"];
> (false,[n "cat",v "ate"]) : bool * symbol list

Once again, to find a <noun>:

(* recognise <noun> and return rest of symbols *)
and noun (n nn::t) = (true,t) |
noun s = (false,s)
> val noun = fn: symbol list —> bool * symbol list

look for an n symbol. If one is not found then return false and the whole symbol sequence. Otherwise, return
true and the rest of the symbols following the n.

Finally, to find a <verb>:

(* recognise <verb> and return rest of symbols *)
and verb (v vv::t) = (true,t) |
verb s = (false,s)
> val verb = fn: symbol list —> bool * symbol list

look for a v symbol. If one is not found then return false and the whole symbol sequence. Otherwise, return
true and the rest of the symbols following the v.

Next, to find a <noun part>:

(* recognise <noun part> and return rest of symbols *)
and nounpart [] = (false,[]) |

nounpart s =

let val (a,rl) = adjective s
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then
let val (nn,r2) = noun s
in
if not nn
then (false,s)
else (true,r2)
end
else
let val (nn,r2) = noun ril
in
if not nn
then (false,s)
else (true,r2)
end
end
> val nounpart = fn: symbol list -> bool * symbol list

look for an <adjective>. If one is not found then look for a <noun>. If one is not found then return false and
the whole symbol sequence. Otherwise, return true and the rest of the symbol sequence following the <noun>.
If, however, an <adjective> is found then look for a <noun> following the <adjective>. If one is not found
then return false and the whole symbol sequence. Otherwise, return true and the rest of the symbol sequence
following the <noun>.

For example:

- nounpart [adj "big",n "cat",v "sat"];
> (true,[v "sat"]) : bool * symbol list

because:

nounpart [adj "big",n "cat",v "sat"] ==>

let val (a,rl) = adjective s

adjective [adj "big",n "cat",v "sat"] ==>
(true,[n "cat",v "sat"])

in ...

let val (n,r2) = noun ril
noun [n "cat",v "sat"] ==>
(true,v "sat")

in ... (true,r2) ==>

(true,v "sat")
For example:

- nounpart [n "cat",v "sat"];
> (true,[v "sat"]) : bool * symbol list

because:
nounpart [n "cat",v "sat"] ==>
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(false,[n "cat",v "sat"])

in ...
let val (n,r2) = noun s
noun [n "cat",v "sat"] ==>

(true,v "sat")
in ... (true,r2) ==>

(true,v "sat")
Thus, to find a <noun phrase>:

(* recognise <noun phrase> and return rest of symbols *)
and nounphrase [] = (false,[]) |
nounphrase s =
let val (a,rl) = article s
in
if not a
then (false,s)
else
let val (np,r2) = nounpart ri
in
if not np
then (false,rl)
else (true,r2)
end
end
> val nounphrase = fn: symbol list -> bool * symbol list

look for an <article>. If one is not found then return false and the whole symbol sequence. Otherwise, look
for a <noun part>. If one is not found then return false and the whole symbol sequence. Otherwise, return
true and the rest of the symbols following the <noun part>.

For example:

- nounphrase [art "the",n "cat",v "ate",art "the"];
> (true, [art "the"]) : bool * symbol list

because:

nounphrase [art "the'",n "cat",v "ate",art "the"] ==>

let val (a,rl) = article s
article [art "the",n "cat",v "ate",art "the"] ==>

(true, [n "cat",v "ate",art "the"])
in ...
let val (np,r2) = nounpart ri

nounpart [n "cat",v "ate",art '"the"] ==>

(true, [v "ate",art "the"])
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(true, [v "ate",art "the"])

Finally, to find a <sentence>:

(* recognise <sentence> and return rest of symbols *)
and sentence [] = (false,[]) |
sentence s =
let val (npl,rl) = nounphrase s
in
if not npl
then (false,s)
else
let val (vv,r2) = verb ril
in
if not vv
then (false,rl)
else
let val (np2,r3) = nounphrase r2
in
if not np2
then (false,r2)
else (true,r3)
end
end
end;
> val sentence = fn: symbol list -> bool * symbol list

look for a <noun phrase>. If one is not found then return false and the whole symbol sequence. Otherwise
look for a <verb> following the <noun phrase>. If one is not found then return false and the whole symbol
sequence. Otherwise, look for a <noun phrase> following the <verb>. If one is not found then return false and
the whole symbol sequence. Otherwise, return true and the rest of the symbols following the <noun phrase>.

For example, to check:
the cat ate the small peach
we assume that:

lex "the cat ate the small peach" ==>
[art "the",n "cat",v "ate",art "the'",adj "small",n "peach"]

SO:
- sentence [art "the",n "cat'",v "ate",
art '"the",adj "small",n "peach"];
> (true,[]) : bool * symbol list
because:

sentence [art "the'",n "cat",v "ate",
art "the'",adj "small",n "peach"] ==>
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art "the",adj "“small",n "peach"] ==>

article [art "the",n "cat",v "ate",
art '"the",adj "small",n "peach"] ==>

(true,[n "cat",v "ate",art "the",adj "small",n "peach"])
nounpart [n "cat",v "ate", art "the'",adj "small",n "peach"] ==>
adjective [n "cat",v "ate",art "the",adj "small",n "peach"] ==>
(false,[n "cat",v "ate",art "the",adj "small",n "peach"])
noun [n "cat",v "ate",art "the",adj "small",n "peach"] ==>
(true, [v "ate",art "the",adj "small",n "peach"])
(true, [v "ate",art "the",adj '"small",n "peach'"])
verb [v "ate",art "the",adj "small",n "peach"] ==>
(true, [art "the",adj "small",n "peach"])
nounphrase [art "the",adj "small",n "peach"] ==>
article [art "the'",adj '"small",n "peach"] ==>
(true, [adj "small",n "peach"])
nounpart [adj "small",n "peach"] ==>
adjective [adj "small",n "peach"] ==>
(true, [n "peach"])
noun [n "peach"] ==>
(true, [1)
(true, [1)
(true, [1)

(true,[])

10.9 Parse trees

A successful recognition sequence or parse may be represented as a parse tree, where each node is marked with
a non-terminal symbol and each leaf 1s a terminal symbol. For the above example, we could represent the parse

sequence as:
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= Al =
<noun phrase> <verb> <noun phrase>

<article> <noun part> ate <article> <noun part>
the <noun> the <adjective> <noun>
cat small peach

Parse trees are a useful intermediate representation for subsequent processing of structured information defined
by syntax rules. In SML, we can use datatypes to represent parse trees. We will start with an option for each
production. For example:

datatype tree = sentnode of tree * tree * tree
nounphrnode of tree * tree |
nounprtinode of tree * tree |
nounprt2node of tree |
artnode of symbol |
vnode of symbol |
nnode of symbol |
adjnode of symbol |
fail

Here, the node for a <sentence> has three branches for the two <nounphrase>s and the <verb>.
The node for a <nounphrase> has two branches for the <article> and the <nounpart>.

There are two cases for <nounpart>: the first for an <adjective> followed by a <noun> and the second for a
single <noun>.

Finally, there are single branch nodes for each of <article>, <verb>, <noun> and <adjective>, each with a
symbol as the leaf.

Note the inclusion of the constructor fail. As before, this will be used to indicate failure during parsing.

Thus, the <verb> ate would be:
vnode (v "ate").
The <noun part> big cat would be:
nounprtinode (adjnode (adj "big"),nnode (n "cat")).
The <noun part> mouse would be:
nounprt2node (nnode (n "mouse")).
The <noun phrase> the big cat would be:

nounphrnode (artnode (art '"the"),
nounprtinode (adjnode (adj "big"),nnode (n "cat"))).
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sentnode (nounphrnode (artnode (art '"the"),
nounprt2node (nnode (n "cat"))),

vnode (v "ate"),
nounphrnode (artnode (art '"the"),
nounprtinode (adjnode (adj "small"),
nnode (n "peach"))))

Note that there is excess information in this tree. For each terminal symbol we already have a lexical constructor
so we do not need a syntactic constructor as well to identify it. Thus, we could simplify the datatype to:

datatype tree = sentnode of tree * symbol * tree |
nounphrnode of symbol * tree |
nounprtinode of symbol * symbol |
nounprt2node of symbol |
fail

by dropping the constructors for rules which only recognise terminal symbols. Now the above tree simplifies to:

sentnode (nounphrnode (art "the",
nounprt2node (n "cat")),
v "ate",
nounphrnode (art "the",
nounprtinode (adj "small",
n "mouse")))

We can now modify the above parser to build the tree during the parse.

For an <article>:

- (* recognise <article>,
return symbol leaf and rest of symbols *)
fun article (art a::t) = (art a,t) |
article s = (sfail,s)

> val article = fn: symbol list —> symbol * symbol list

return the art and the rest of the symbols or sfail and all the symbols.

For example:

- article [art "the",n "cat",v "ate"];
> (art "the",[n "cat",v "ate"]) : symbol * symbol list

Similarly, for an <adjective>

(* recognise <adjective>,
return return symbol leaf and rest of symbols *)
and adjective ((adj a)::t) = (adj a,t) |
adjective s = (sfail,s)

> val adjective = fn: symbol list -> symbol * symbol list

For example:
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return the adj and the rest of the symbols or sfail and all the symbols.

For a <noun>:

(* recognise <noun>,
return symbol leaf and rest of symbols *)
and noun ((n nn)::t) = (n nn,t) |
noun s = (sfail,s)
> val noun = fn: symbol list —> symbol * symbol list

return the n and the rest of the symbols or sfail and all the symbols.

For a <verb>:

(* recognise <verb>,
return symbol leaf and rest of symbols *)
and verb ((v vv)::t) = (v vv,t) |
verb s = (sfail,s)
> val verb = fn: symbol list —> symbol * symbol list

return the v and the rest of the symbols or sfail and all the symbols.

Next, for a <noun part>:

(* recognise <noun part>,
return tree node and rest of symbols *)
and nounpart [] = (fail,[]) |
nounpart s =
let val (a,rl) = adjective s
in
if a=sfail
then
let val (nn,r2) = noun s
in
if nn=sfail
then (fail,s)
else (nounprt2node nn,r2)
end
else
let val (nn,r2) = noun ril
in
if nn=sfail
then (fail,s)
else (nounprtinode(a,nn),r2)
end
end
> val nounpart = fn: symbol list -> tree * symbol list

if there is not an <adjective> then return a nounprt2node and the rest of the symbols after finding a <noun>.
If there 1s an <adjective> then return a nounprtinode and the rest of the symbols after finding a <noun> after
the <adjective>. Otherwise return fail and all the symbols.

For example:

281



- nounpart [adj "big",n "mouse",v "ate"];
> (nounpartinode (adj "big'",n "mouse"),[v "ate"]) : tree * symbol list

For a <noun phrase>:

(* recognise <noun phrase>,
return tree node and rest of symbols *)
and nounphrase [] = (fail,[]) |
nounphrase s =
let val (a,rl) = article s
in
if a=sfail
then (fail,s)

else

let val (np,r2) = nounpart ri
in
if np=fail

then (fail,s)
else (nounphrnode(a,np),r2)
end
end
> val nounphrase = fn: symbol list -> tree * symbol list

return a nounphrnode and the rest of the symbols after finding a <article> and a <noun part>. Return fail
and all the symbols if any element fails.

For example:

- nounphrase [art "a",adj "small",n "cat",v "ate"];
> (nounphrnode (art '"the'",
nounpartinode (adj "small",n "cat")),[v "ate"])
tree * symbol list

Finally, for a <sentence>:

(* recognise <sentence>,
return tree node and rest of symbols *)
and sentence [] = (fail,[]1) |
sentence s =
let val (npl,rl) = nounphrase s
in
if npil=fail
then (fail,s)
else
let val (vv,r2) = verb ril
in
if vv=sfail
then (fail,s)
else
let val (np2,r3) = nounphrase r2
in
if np2=fail
then (fail,s)
else (sentnode(npi,vv,np2),r3)
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end;
> val sentence = fn: symbol list -> tree * symbol list

return a sentnode and the rest of the symbols after finding a <noun phrase>, <verb> and <noun phrase>.
Return fail and all the symbols if any of the elements fail.

Assuming that we have an appropriate lexical analyser, we can now parse sentences. For example:

- sentence (lex "the cat ate the small peach");

> (sentnode
(nounphrnode(art "the",
nounprt2node (n "cat")),
v "ate",
nounphrnode(art "the",

nounprtinode(adj "small",
n "peach"))),[1) : tree * symbol list

because:

sentence (lex "the cat ate the small peach”) ==>

sentence [art "the",n "cat",v "ate",art "the",adj "small",

n '"peach"] ==>

nounphrase [art "the",n "cat",v "ate",art "the",adj "small",
n "peach"] ==>

article [art "the'",n "cat",v "ate",art "the",adj "small",

n "peach'"] ==>
(art "the",[n "cat",v "ate",art "the",adj '"small",n "peach"])
nounpart [n "cat",v "ate",art "the",adj '"small",n "peach"] ==>

adjective [n "cat",v "ate",art "the",adj "small",n "peach"] ==>

(sfail,[n "cat",v "ate",art "the",adj "small",n "peach"])

noun [n "cat",v "ate",art "the",adj "small",n "peach"] ==>
(n "cat",[v "ate",art "the",adj "small",n "peach"])

(nounprt2node (n "cat"),[v "ate",art "the",adj "small",n "peach"])

(nounphrnode(art "the'", nounprt2node (n "cat")),
[v "ate",art "the",adj "small",n "peach"])

verb [v "ate",art "the",adj "small",n "peach"] ==>
(v "ate",[art "the'",adj "small",n "peach"])

nounphrase [art "the",adj "small",n "peach"] ==>

article [art "the'",adj '"small",n "peach"] ==>
(art "the",[adj "small",n "peach"])

nounpart [adj "small",n "peach"] ==>

adjective [adj "small",n "peach"] ==>
(adj "small",[n "peach"])
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(n "peach",Ll)
(nounprtinode(adj "small",n "peach"),[])
(nounphrnode(art "the",nounprtinode(adj "small",n "peach")),[1)

(sentnode
(nounphrnode(art "the",
nounprt2node (n "cat")),
v "ate",
nounphrnode(art "the",
nounprtinode(adj "small",
n "peach"))),[1)

10.10 Concrete and abstract syntax

It is useful to distinguish between concrete syntax, the structure of representation, and abstract syntax, the
meaningful structure. Concrete syntax often contains details which, while fundamental to checking that a
symbol sequence is well formed, are not relevant to subsequent processing.

Consider the following grammar of arithmetic expressions:

<expression> ::= <term> + <term> |
<term> - <term> |
<term>
<term> ::= <factor> * <factor> |
<factor> / <factor> |
<factor>
<factor> ::= - <base> | <base>
<base> ::= <integer> | ( <expression> )

Consider the parse tree for the expression:

(8+7)*8
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y
<term>

é?//////////$\\\\\\\\\ﬁs

<factor> * <factor>
<base> <base>
/\
( <expression> ) <integer>
<term> + <term> 8
<factor> <factor>
<base> <base>
<integer> <integer>
6 7

From the point of view of processing arithmetic expression parse trees this contains unnecessary structural
information. For example, there are chains of nested subtrees where each level has only one branch. Thus, we
see that an <integer>is a <base> is a factor is a <term> when all we need to know about is the <integer>.

For example, the brackets appear explicitly but their presence is already indicated by the nesting of the expres-
sion they enclose in the tree. If we miss such details out then we are left with the minimal structural details

necessary for further processing.

For example, the above tree might be simplified to:

<expression>
<expression> * <integer>
<integer> + <integer> 8
6 7

An abstract syntax for arithmetic expressions is:

<expression> ::= <expression>+<expression>
<expression>-<expression>
<expression>#*<expression>
<expression>/<expression>
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Note that this abstract syntax cannot be used to parse arithmetic expressions because information about
operator precedence and brackets is lost. Rather, it defines the structure of resultant parse trees. An equivalent
datatype for this abstract syntax is:

datatype exp = addexp of exp * exp |
diffexp of exp * exp |
multexp of exp * exp |
divexp of exp * exp |
negexp of exp |
integer of int |
fail

Note that operators are not present explicitly but are implied by the corresponding constructors.

For example:

42 == integer 42

6*7 == multexp (integer 6,integer 7)

6*7+8 == addexp (multexp (integer 6,integer 7),integer 8)
(6+7)*8 == multexp (addexp (integer 6,integer 7),integer 8)

10.11 Parsing arithmetic expressions

Suppose we wish to construct abstract syntax trees for arithmetic expressions, given the datatype:
datatype symbol = lbra | rbra | add | diff | mult | divide | numb of int

for symbols.

We will use the exception:

- exception Pfail;
> exception Pfail

to terminate parsing when the first error occurs.

To find an <expression>:

- (* recognise <expression>,
return exp node and rest of symbols *)
fun exp [] = raise Pfail |
exp e =
let val (t1,rl1) = term e
in
if r1=[] orelse (hd ri<>add andalso hd ri<>diff)
then (t1,r1)
else
let val (t2,r2) = term (t1 ri1)
in
if hd ri=add
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end
end
> val exp = fn: symbol list -> exp * symbol list

find a <term>. If it is not followed by an add or a diff then return the datatype for the <term> and the rest
of the symbols. Otherwise, find a <term> after the add or diff and return an addexp or diffexp and the rest
of the symbols.

To find a <term>:

(* recognise <term>,
return exp node and rest of symbols *)
and term [] = raise Pfail |
term t =
let val (f1,r1) = factor t
in
if r1=[] orelse (hd ri<>mult andalso hd ri<>divide)
then (f1,r1)
else
let val (£f2,r2) = factor (tl ri1)
in
if hd ri=mult
then (multexp(£f1,f2),r2)
else (divexp(£f1,f2),r2)
end
end
> val term = fn: symbol list —> exp * symbol list

find a <factor>. If it is not followed by a mult or a divide then return the datatype for the <factor> and
the rest of the symbols. Otherwise, find a <factor> after the mult or divide and return a multexp or divexp
and the rest of the symbols.

To find a <factor>:

(* recognise <factor>,
return exp node and rest of symbols *)
and factor [] = raise Pfail |
factor (diff::t) =
let val (bl,r1) = base t
in (negexp bl,r1)
end |
factor £ = base f
> val factor = fn: symbol list -> exp * symbol list

if there is a diff then find a <base> after it and return a negexp and the rest of the symbols. Otherwise look
for a <base>.

To find a <base>:

(* recognise <base>,
return exp node and rest of symbols *)
and base (numb ii::t) = (integer ii,t) |
base (lbra::t) =
let val (el,rl) = exp t
in
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else (el,tl rl)
end |
base _ = raise Pfail;
> val base = fn: symbol list —> exp * symbol list

either find a numb symbol and return an integer and the rest of the symbols or find an <expression> between
1lbra and rbra and return its datatype and the rest of the symbols.

For example, again assuming a suitable lexical anlyser:

- exp (arithlex "(2+3)*4");
> (multexp (addexp(integer 2,integer 3),integer 4),[])
exp * symbol list

because:

exp [lbra,numb 2,add,numb 3,rbra,mult,numb 4] ==>
term [lbra,numb 2,add,numb 3,rbra,mult,numb 4] ==>
factor [lbra,numb 2,add,numb 3,rbra,mult,numb 4] ==>
base [lbra,numb 2,add,numb 3,rbra,mult,numb 4] ==>
exp [numb 2,add,numb 3,rbra,mult,numb 4] ==>
term [numb 2,add,numb 3,rbra,mult,numb 4] ==>
factor [numb 2,add,numb 3,rbra,mult,numb 4] ==>

base [numb 2,add,numb 3,rbra,mult,numb 4] ==>
(integer 2, [add,numb 3,rbra,mult,numb 4])

(integer 2, [add,numb 3,rbra,mult,numb 4])
(integer 2, [add,numb 3,rbra,mult,numb 4])
term [numb 3,rbra,mult,numb 4] ==>

factor [numb 3,rbra,mult,numb 4] ==>

base [numb 3,rbra,mult,numb 4] ==>
(integer 3, [rbra,mult,numb 4])

(integer 3, [rbra,mult,numb 4])
(integer 3, [rbra,mult,numb 4])
(integer 3, [mult,numb 4])
(addexp(integer 2,integer 3), [rbra,mult,numb 4])
(addexp(integer 2,integer 3), [mult,numb 4])

term [numb 4] ==>

288



base |numb 4 ==>
(integer 4,[1)

(integer 4,[1)
(integer 4,[1)
(multexp (addexp(integer 2,integer 3),integer 4),[])

(multexp (addexp(integer 2,integer 3),integer 4),[])

10.12 Case expression

In exp, term and base above we used rather clumsy nested conditional expressions to decide what to do after
trying to find something at the start of a symbol sequence. For example, in exp, after trying to find a <term>
we have:

if r1=[] orelse (hd ri<>add andalso hd ri<>diff)
then ...
else ...

to see if there is an appropriate operator after the term. Later on we have:

if hd ri=add
then ...
else ...

to discriminate between finding an addition or a subtraction operator.

SML provides the case expression as a way using pattern matching to discriminate between cases within ex-
pressions. It has the form:

case expression of match
where the match is a sequence of optional patterns and associated expressions:

patternl => expressionl |
pattern? => expression? |

as in a function value.
Here, the exzpression is evaluated and matched against each pattern in the maitch in turn. When a match
succeeds the expression associated with the pattern is evaluated, with the pattern’s bound variables set to the

corresponding values from the expression’s value.

We can use a case expression to simplify exp by factoring out the cases for an addition operator, a subtraction
operator or nothing appropriate after a <term>:
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let val (tl,rl) = term e
in
case rl1 of
(add::r2) => let val (t2,r3) = term r2
in (addexp(t1,t2),r3)
end |
(diff::xr2) => let val (t2,r3) = term r2
in (diffexp(t1,t2),r3)
end |
_ => (t1,r1)
end

We can also rebuild term:

and term [] = raise Pfail |
term t =
let val (f1,r1) = factor t
in
case rl1 of
(mult::xr2) => let val (£2,r3) = factor r2
in (multexp(£1,£2),r3)
end |
(divide::r2) => let val (£f2,r3) = factor r2
in (divexp(£1,f2),r3)
end |
_=> (f1,r1)
end

and base:

and base (numb ii::t) = (integer ii,t) |

base (lbra::t) =

let val (el,rl) = exp t

in

case rl1 of

(rbra::r2) => (el1,r2) |
_ => raise Pfail

end |

base = raise Pfail;

> val base = fn: symbol list —> exp * symbol list

but not factor

10.13 Multiple exceptions

We used a single exception to indicate failure during parsing. There are several ways in which parsing can fail
and we can define different exceptions to discriminate amongst them. In expr, term, factor and base we can
encounter an empty list when we are expecting an expression, term, factor or base respectively. In all cases, the
problem is that there is no more text to be parsed. In base we can fail to find a closing right bracket or we can
fail to find any of the symbols that start a base, that is a left bracket or a number. Thus, we can define three

exceptions:

- exception No_text; (* text expected *)
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> exception Rbra
- exception Numb_or_lbra; (* number or left bracket expected *)
> exception Numb_or_lbra

and call them at the appropriate points:

fun exp [] = raise No_text |
and term [] = raise No_text |
and factor [] = raise No_text |

and base [] = raise No_text |
base (numb ii::t) = (integer ii,t) |
base (lbra::t) =
let val (el,rl) = exp t
in
case rl1 of
(rbra::r2) => (el1,r2) |
_ => raise Rbra
end |
base _ = raise Numb_or_lbra;

Now, the raised exception gives slightly more indication as to what has gone wrong:

- exp (arithlex "2*");
uncaught exception No_text

- exp (arithlex "2*(3+4");
uncaught exception Rbra

- exp (arithlex "2%+4");
uncaught exception Numb_or_lbra

10.14 Interpreting arithmetic expressions

We can now write an interpreter to evaluate parse trees for arithmetic expressions. It consists of a function
with a case for each sort of exp which calls itself recursively for the sub exps and then applies the corresponding
arithmetic operator:

- (# interpret arithmetic tree *)
fun arith (integer i) = i |

arith (addexp(el,e2)) = arith el+arith e2 |
arith (diffexp(el,e2)) = arith el-arith e2 |
arith (multexp(el,e2)) = arith el*arith e2 |
arith (divexp(el,e2)) = arith el div arith e2 |
arith (negexp e) = “(arith e);

> val arith = fn: exp -> int

For example:

- arith (multexp (addexp (integer 6,integer 7),integer 8));
> 104 : int
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arith (addexp(integer 6,integer 7))*arith (integer 8) ==>
(arith (integer 6)+arith (integer 7))*arith (integer 8) ==>
(8+7)*8 ==>

104

We can sew together the lexical analyser arithlex from chapter 9 with the parser exp and the arithmetic
interpreter arith to form a complete calculator:

- (* interpret arithmetic expression string *)
fun calc s =
let val (tree,rest) = exp (arithlex s)
in
if rest<>[]

then raise Pfail

else arith tree

end;
> val calc = fn : string -> int

We call exp to parse the sequence of symbols from arithlex. If there is anything left of the symbols after
parsing then rest will not be empty and the parsing exception is raised. Otherwise arith is called to evaluate
the tree. For example:

- calc "(3+4)*8";
> 42 : int

- calc "(3+4) 8";
uncaught exception Pfail

10.15 Arithmetic pretty printer

We can also write a pretty printer function which converts an exp into an equivalent string:

- (* convert arithmetic tree to string *)
fun atos (integer i) = iconv i |

atos (addexp(el,e2)) = "(""atos el”™"+"" atos e27")" |
atos (diffexp(el,e2)) = "(""atos el™"-""atos e27")" |
atos (multexp(el,e2)) = "(""atos el™"*""atos e27")" |
atos (divexp(el,e2)) = "(""atos el”"/""atos e2"")" |
atos (negexp e) = "("""-""atos e"")";

> val atos = fn: exp -> string

Note the use of the function iconv, which converts an integer into a string, and which you wrote for chapter
8 exercise 7.

Note that iconv cannot convert negative integers.

For example:

- atos (integer 42);
> "42" . string
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- atos (addexp (integer 6,integer 7));
> "(6+7)" : string

because:

atos (addexp (integer 6,integer 7)) ==>
"(""atos (integer 6) " "+""atos (integer 7)"")'" ==>
n(n~n6n~n+n~n7n~n)n ==>

n(6+7)n
For example:

- atos (multexp (addexp (integer 6,integer 7),integer 8));
> "((6*%7)+8)" : string

because:

atos (multexp (addexp (integer 6,integer 7),integer 8)) ==>
"(""atos (addexp (integer 6,integer 7)) "*""atos (integer 8)"")" ==>

"("”"("”atoS (integer 6)”"+”AatOS (integer '7)’”‘)”’~
"x""atos (integer 8)"")" ==>

n(n*n(n~n6n~n+n~n7n~n)n*n*nﬂnsnﬂn)n ==>

n((6+7)*8)n

It is possible to pretty print arithmetic expressions without unnecessary brackets by constructing additional
cases to consider the precedence of operators in subtrees relative to the operator in the current tree.

10.16 Summary

In this chapter we have looked at the use of datatypes in defining our own recursive structures. We saw
how to construct type specific and polymorphic lists and binary trees. We then looked at parsing as a way of
recognising structured symbol sequences and constructing parse trees. Finally, we considered parse tree traversal
and interpretation. Along the way we met the case expression for pattern matching within expressions.

In the next chapter, we are going to discuss techniques for input and output. This will enable our programs to
interact with the screen and keyboard, and with files.

10.17 Exercises

For the first three exercises, assume the datatype definition:
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It is worth giving some thought to the generation of suitable test trees from lists for these three exercises.

1) write the following functions. In each case, identify the function’s type.

a) check if a tree appears as a subtree of another tree

b) generate a list from a tree with reverse in-order traversal i.e visit the right branch, the node and
the left branch

¢) generate a list from a tree with pre-order traversal i.e visit the node, the left branch and the right
branch

d) generate a list from a tree with post-order traversal i.e visit the left branch, the right branch and
the node

2) Write the following functions. Identify each function’s type:

a) copy a string tree, putting "s" on the end of each node value
b) copy an integer tree, doubling each node value
¢) copy a tree, applying function £ to each node value

d) define the functions from a) and b) using the function from c¢)
e

)
f) copy a string tree, ending each node value with an "s", provided it does not already end with an
IISII

copy an real tree, squaring each node value provided it is not within 0.001 of 0

g) copy a tree, applying function £ to each node if it satisfies predicate p
h) define the functions from a), b), e) and f) using the function from g)

3) Write the following functions. Identify the type of each function:

a) join together all the node values of a string tree in in-order
b) add together all the node values of an integer tree

¢) flatten a tree by applying function £ to the node value and the result of flattening the left and
right branches. For an empty branch, return value v

d) define the functions from a) and b) using the function from c¢)

e) define the functions from 1)b), 1)c) and 1)d) using the function from ¢)

4) Logical expressions have the form:

<expression> ::= <term> AND <expression> | <term>
<term> ::= <factor> OR <term> | <factor>
<factor> ::= NOT <base> | <base>

<base> ::= TRUE | FALSE | ( <expression> )

For example:

TRUE

TRUE OR FALSE

NOT TRUE AND FALSE

NOT (TRUE AND FALSE)

NOT (TRUE AND FALSE) OR TRUE

NOT (TRUE AND FALSE) OR TRUE AND FALSE

NOT (TRUE AND FALSE) OR (TRUE AND FALSE)

NOT (TRUE AND FALSE) OR (TRUE AND FALSE) OR FALSE
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b) modify the functions from a) to build an <expression> parse tree from a string using the following

datatype:
datatype logic = TRUE | - for TRUE
FALSE - for FALSE
AND of logic * logic | - for <term> AND <expression>
OR of logic # logic | - for <factor> OR <term>
NOT logic - for NOT <base>

Note that brackets are discarded.
¢) write a function to pretty print a parse tree from b)

d) write a function to evaluate logical expression parse trees using the following rules:

evaluate NOT TRUE == FALSE
evaluate NOT FALSE == TRUE

evaluate FALSE AND FALSE == FALSE

evaluate FALSE AND TRUE == FALSE
evaluate TRUE AND FALSE == FALSE
evaluate TRUE AND TRUE == TRUE

evaluate FALSE OR FALSE == FALSE

evaluate FALSE OR TRUE == TRUE
evaluate TRUE OR FALSE == TRUE
evaluate TRUE OR TRUE == TRUE
evaluate NOT <base> == evaluate NOT (evaluate <base>)

evaluate <base> OR <term> ==
evaluate (evaluate <base>) OR (evaluate <term>)

evaluate <term> AND <expression> ==
evaluate (evaluate <term>) AND (evaluate <expression>)

5) Polynomials have the form:

<polynomial> ::= <term>+<polynomial> | <term>
<term> ::= <integer>*<power> | <power> | <integer>
<power> ::= <name>"<integer> | <name>

<integer> == any sequence of digits

<name> == any sequence of lower case letters

For example:

3*x"3+4*x"2+6%x+8

a) define a datatype to represent <polynomial> parse trees

b) using the lexical analyser from chapter 9 exercise 6, write a function to parse a <polynomial>
string and return a <polynomial> parse tree

¢) write a function to check that all <name>s in a <polynomial> parse tree are the same

d) write a function to evaluate a <polynomial> parse tree satisfying ¢) with a given integer value
of the <name>, according to the following rules:
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evaluate <name>"<integer> ==
value for <name> to the power of <integer>

evaluate <integer>*<power> == <integer>#*(evaluate <power>)

evaluate <term>+<polynomial> ==
(evaluate <term>)+(evaluate <polynomial>)

e) write a pretty printer to generate <polynomial> strings from <polynomial> parse trees

f) write a function to differentiate a polynomial according to the following rules:

differentiate <integer> ==
differentiate <name> ==

differentiate <name>"<integer> ==
<integer>*<name>~ (<integer>-1)

differentiate <integer>*<power> ==
<integer>*(diferentiate <power>)

differentiate <term>+<polynomial> ==
(differentiate <term>)+(differentiate <polynomial>)

It should be applied to a <polynomial> parse tree and return a <polynomial> parse tree.

6) A simple programming language has the form:

<expression> ::= <name> | <integer> | <call>

<call> ::= ( fn <name> => <expression> <expression> ) |
((<operator> <expression>) <expression>)

<operator> ::=+ | - | * | /

<integer> == any sequence of digits

<name> == any sequence of lower case letters

For example:

((+ 2) 3)

(fn x => ((+ x) 1) 3)

(fny => ((* y) y) (fn x => ((+ x) 1) 4))
(fn x => (fn y => ((* x) y) 3) B)

Note that function calls are strictly bracketed.

Note that arithmetic operations are prefix and strictly bracketed as if arithmetic operators were functions of
type:

<integer> -> <integer> —-> <integer>

a) design a datatype to represent <expression> parse trees

b) using the lexical analyser from chapter 9 exercise 7, write functions to parse <expression> strings
and return <expression> parse trees

¢) write a pretty printer to generate <expression> strings from <expression> parse trees

d) write a function that checks that no <name>s in expressions are free i.e. that every <name> in an
<expression> is introduced by an enclosing <function>. For example, in:
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iilt.

(fny => ((* y) y) (fn x => ((+ x) y) 11))

the y in the body of fn x => ... is free as it is not introduced anywhere.
e) write a function which given an <expression> parse tree checks that every <function>introduces
a unique <name> so, for example:

(fn x => ((+ x) 1) (fn x => ((- x) 1) 2))

is not allowed as both functions introduce x
f) write a function that evaluates <expression> parse trees satisfying d) and e) according to the

following rules:

evaluate ((+ <expressionl>) <expression2>) ==
(evaluate <expressionl>)+(evaluate <expression2>)

evaluate ((- <expressionl>) <expression2>) ==
(evaluate <expressionl>)-(evaluate <expression2>)

evaluate ((* <expressionl>) <expression2>) ==
(evaluate <expressionl>)*(evaluate <expression2>)

evaluate ((/ <expressionl>) <expression2>) ==
(evaluate <expressionl>)/(evaluate <expression2>)

evaluate (fn <name> => <expressionl> <expression2>) ==
evaluate replace <name> in <expressionil>
with (evaluate <expression2>)

The result should be an integer.

g) change the function from f) so that the final evaluate rule is:

evaluate (fn <name> => <expressionl> <expression2>) ==
evaluate replace <name> in <expressionl> with <expression2>

297



Chapter 11

Input and output

11.1 Introduction

So far we have worked exclusively within SML; that is, our input data have been SML values as have our output
results. We are now going to look at how to acquire input data from beyond the SML system from a keyboard
or a file. Similarly, we will also look at how to present results on screens or in files without being restricted to
SML’s value forms.

At simplest SML input and output (I/O) is based on sequences of characters. System functions are provided
for acquiring character sequences as strings from input sources and sending them to output destinations. We
will use these as the basis of more elaborate 1/0.

There are two complementary approaches to I/O. First of all, for output, a whole string may be assembled,
and displayed or sent to a file all at once. Similarly, for input a whole string may be read at once and
then the lexical and string processing techniques discussed in previous chapters may be used to extract the
represented information. An alternative approach i1s to output and input values item by item rather than
packing or unpacking them all together. Here, nested let expressions are very useful for sequencing I/0O. These
two approaches may be combined for interactive I/O where a program prompts a user for information and then
displays results before prompting for more information.

SML T/0 is based on what are called streams as the sources and destinations of data. A stream may either be
used for input, in which case its type is:

instreamn,
or for output, in which case its type 1s:
outstream,

but not both at the same time.
In general, a stream is established by opening a file. The system will allocate a new stream. Stream values
cannot be displayed but there is never any need to do so. Instead, the stream value 1s associated with a name

and that name is used to pass the stream to the I/O functions.

The built in stream std_in may be used for input from the keyboard. Similarly, the built in stream std_out
may be used for output to the display.

Note that instream and outstream are not equality types; that is, it 18 not possible to identify a stream by
comparing it with another stream.
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The unit type has one value:
O

For example:

- 0;
> () : unit

The unit type 1s used to give a neutral result after an activity or to pass a neutral argument to a function.

() may be used in pattern matching as a dummy argument. For example:

- fun hello() = "hello";
> val hello = fn : unit -> string

- hello();
> "hello" : string

() might be thought of as an empty tuple. Many I/O functions return () as result.

11.3 Screen output

For basic output, the system function output is used:

- output;
> fn : outstream * string -> unit

This takes a tuple argument consisting of an output stream and a string. That string is then displayed on the
designated output stream without quotes. output returns the unit value ().

For example, to display "banana' on the screen:

- output (std_out,'banana");
banana> () : unit

Note that the string "banana" has been displayed on the same line as the SML result. A newline character:
\n

may be used to make the result of any subsequent output use or system output appear on a new line. For
example:

- output (std_out,"banana\n");
banana
> () : unit

We can disguise the use of output with std_out to make a string to screen function:
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> val swrite = fn : string —-> unit
for example:

- swrite "fritters";
fritters> (): unit

From this we can write a function to follow the display of a string with a newline:

- (* newline terminated string write to standard output *)
fun swriteln s = swrite (s~ "\n");
> val swriteln = fn : string —> unit

for example:

- swriteln "split";
split
> () : unit

11.4 String list output

Suppose we have a list of strings and we want to display it on the screen. We could implode the list and then
print it directly. For example:

- swrite (implode ["water","for",'"wetness"]);
waterforwetness> () : unit

However, implode joins all the list elements together without intervening spaces.

Instead, we could write a recursive function to join the strings together with spaces in between:

- (* space separated implode *)
fun spimplode []1 = "" |
spimplode [s] = s |
spimplode (h::t) = h™" "“spimplode t;
> val spimplode = fn : string list -> string

For example:

- spimplode ["water",'"for'","wetness'"];
> "water for wetness" : string

so we can define:

- (* space separated string list write to standard output *)
fun slwrite s = swrite (spimplode s);
> val slwrite = fn : string list -> unit

to write a space separated sequence from a list of strings. For example:
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To generate a newline after the string sequence, a newline character may be added to the end of the joined up
strings:

- (* newline terminated,
space separated string list write to standard output *)
fun slwriteln s = swriteln (spimplode s);
> val slwriteln = fn : string list -> unit

For example:

- slwriteln ["water","for","wetness"];
water for wetness
> () : unit

A list of strings may be displayed on separate lines by adding a newline character to the end of each:

- (* join newline to each in string list *)
val addnl = map (fn s => s™"\n");
> val addnl = fn : string list -> string list

For example:

- addnl ["able",'"baker'",'"charlie"];
> ["able\n","baker\n","charlie\n"] : string list

The list can then be imploded for display:

- (* separate line string list write to standard output *)
fun slwritelns s = swrite (implode (addnl s));
> val slwritelns = fn : string list -> unit

For example:

- slwritelns ["able","baker",'"charlie"];
able

baker

charlie

> () : unit

11.5 Integer list output

In chapter 8 exercise 7 you wrote a function to convert an integer to a string:

- (* convert integer to string *)
fun iconv 0 = "0" |

iconv n = iconvl n

> val iconv = fn : int -> string
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and i1convl O = "" |
iconvl n = iconvl (n div 10)"chr (n mod 10+ord "0");
fn : int -> string

> val iconvl

This may be used to output an integer to the screen by converting it to a string:

- (* integer write to standard output *)
fun iwrite i = swrite (iconv 1i);
> val iwrite = fn : int -> unit

For example:

- iwrite 777;
777> () : unit

Similarly, to display an integer as the last item on a line, its string is followed by a newline character:

- (* newline terminated integer write to standard output *)
fun iwriteln i = swriteln (iconv 1i);
> iwriteln = fn : int -> unit

for example:

- iwriteln 888;
888
> () : unit

A list of integers could be displayed by mapping iconv over it to produce a list of strings and then calling
slurite to display a space separated sequence:

- (* space separated integer list write to standard output *)
fun ilwrite 1 = slwrite (map iconv 1);
> val ilwrite = fn : int list -> unit

For example:

> ilwrite [1,3,5,7];
135 7> () : unit

As for a string list, an integer list display may be followed by a newline by placing a newline character at the
end of the space separated joined up strings for the integers:

- (* newline terminated,
space separated integer list write to standard output *)
fun ilwriteln s = slwriteln (map iconv s);
> val ilwriteln = fn : int list -> unit

for example:

- ilwriteln [3,6,9,12];
369 12
> () : unit
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It is often desirable to print out items within constant width fields, for example to lay out tables. For a string

which is shorter than the width, spaces might be added on the left. This is said to right justify the string within
the width:

- (* right justify string in given width field *)
fun rjustify i s = if size s<i
then rjustify i (" ""s)
else s;
> val rjustify = fn : int -> string -> string

For example:

- rjustify 8 "banana" ;
> " banana" : string

For example, to display a list of integers right justified within 6 character fields on separate lines:

- slwritelns (map ((rjustify 6) o iconv) [1,22,333,4444,55555,666666]);
1
22
333
4444
55555
666666

> () : unit

Recall that:
(f og) x==1 (gx)
80:
map ((rjustify 6) o iconv)

applies rjustify 6 to the result of applying iconv to each element of an integer list.

Similarly, to left justify a string, spaces are added to the right:

- (* left justify string in given width field *)
fun ljustify i s = if size s<i
then ljustify i (s™" ")
else s;
> val ljustify = fn : string -> string

Formatted output is particularly useful for displaying tables from tuple lists. Each tuple may be assembled into
the equivalent table row as a string for display.

For example, suppose we have a list of tuples of names and ages:

- [("Agnes",35),("Bill","3), ("Clare",21)];
> [("Agnes",35),("Bill","3),("Clare",21)] : (string * int) list
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- (* layout name/age entry *)
fun layout (n,a) = ljustify 10 n™" "“rjustify 3 (iconv a)~"\n";
> val layout = fn : string * int -> string

For example:

- layout ("Agnes",35);
> "Agnes 35\n" : string

Then for a list of tuples layout may be maped over it:

- map layout [("Agnes",35),("Bill",3),("Clare",21)];
> ["Agnes 35\n","Bill 3\n","Clare 21\n"] : string list

Finally, the list may be imploded for display:

- (* tabulate name/age table *)
fun tabulate t = swrite (implode (map layout t));
> val tabulate= fn : string -> unit

For example:

- tabulate [("Agnes",35),("Bill",3),("Clare",21)];

Agnes 35
Bill 3
Clare 21

> () : unit

We may precede the table with headings by displaying an appropriate string:

- (* tabulate name/age table with heading *)
fun table t = swrite ("Name Age\n""~ (implode (map layout t)));
> val table = fn : string -> unit

For example:

- table [("Agnes",35),("Bill",3),("Clare",21)];

Name Age
Agnes 35
Bill 3
Clare 21

> () : unit

The above example is a trifle dense. We could be slightly more long winded by carrying out each stage of the
display explicitly:

- fun table t =
let val heading = swriteln '"Name Age"
in tabulate t
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and tabulate [1 = () |
tabulate (h::t) =
let val line = swrite (layout h)
in tabulate t
end;
> val tabulate = fn : (string * int) list -> unit

First table writes the heading. It then calls tabulate to repeatedly layout and display each tuple on a
separate line.

Note the use of let expressions to sequence the display.

11.7 Keyboard input

For input, the system function input is used:

- input;
> fn : instream * int -> string

This takes a tuple argument consisting of an input stream and the number of characters to be read from that
input stream, and returns that number of characters as a single string.

For example, to read a single letter from the keyboard:

- input (std_in,1);
#
> "#" . string

On most systems, the ‘Enter’ or ‘Return’ key must be pressed before input will start taking in characters. Both
will insert a newline character into the stream which the system will input as "\n".

For example, suppose we want to read a line terminated by a newline from the standard input, and return that
line as a list of single characters. The next character is read. If it is a newline character then the empty list is
returned. Otherwise that character is placed on the front of reading the rest of the line:

- (*# read newline terminate input from standard input *)
fun sreadln() = let val ch = input (std_in,1)
in
if ch="\n"
then []
else ch::sreadln ()
end;
> val sreadln = fn: unit -> string list

Note the use of the unit argument ().

For example:

- sreadln();
time for tea
> [lltll’llill’llmll’llell’ll ll’llfll’lloll’llrll’ll ll’lltll’llell’lla”] : String list
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- (* read newline terminated integer from standard input *)
fun ireadln() = getval 0 (sreadln());
> val ireadln = fn : unit -> int

Here, sreadln is used to get a whole line which is assumed to be a single integer. getval is then used to convert
the corresponding string to an integer. For example:

- ireadln()
2331
> 2331 : int

11.8 Interactive I/O

A simple way to interact with a program is for it to prompt for input to the screen, read input up to some end
character from the keyboard, process the input, display the output to the screen and prompt for input again.

For example, suppose we have a sequence of pairs of integers and we want to find the first as a percentage of
the second. We could:

a) prompt for the first number
b) read the first number
¢) prompt for the second number

d) read the second number
e

)
f)

g) initiate the whole process again:

calculate the first as a percentage of the second

display the result

- (# interactive percent calculator *)
fun percents () =
let val promptl = swrite "1st number:

in
let val n1 = ireadln()
in
let val prompt2 = swrite "2nd number: "
in
let val n2 = ireadln()
in
let val result = iwriteln (n1*100 div n2)
in percents ()
end
end
end
end
end;

> val percents = fn : unit -> ’a

For example:

- percents();
1st number: 45
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1st number: 70
2nd number: 80
87

1st number:

Note this function never stops! The SML system gives it the arbitrary type ’a as result.

We could end the function by prompting for a character to decide whether or not to continue:

- (*# user terminatable interactive percent calculator *)
fun percents () =
let val promptl = swrite "1st number: "
in
let val nl = ireadln()
in
let val prompt2 = swrite "2nd number: "
in
let val n2 = ireadln()
in
let val result = iwriteln (ni1*100 div n2)
in
let val g = swrite "more? enter y or n: "
in
let val a = sreadln()
in
if a=["n"]
then ()
else percents ()
end
end
end
end
end
end
end;
> val percents = fn : unit -> unit

[Tb

Now, the function will continue unless an “n” on a line by itself is entered. For example:

- percents();

1st number: 24

2nd number: 40

60

more? enter y or n: y
1st number: 24

2nd number: 30

80

more? enter y or n: n
> () : unit

We can now make an interactive calculator by using the lexical analyser arithlex from chapter 9 with the
parser exp and evaluator arith from chapter 10:

- (* interactive arithmetic calculator *)
fun intcalc () =
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let val e = sreadln()
in
let val (tree,rest) = exp (arithlexl e)
in
if rest<>[]
then raise Pfail
else
let val result = iwriteln (arith tree)
in intcalc()
end
end
end
end;
> val intcalc = fn : unit -> ’a

We prompt for input, read a line and parse the result of lexically analysing the input string. If the tree is a
failure node or there are symbols left after parsing we halt. Otherwise we output the result of evaluating the
tree. In either case we repeat the whole process again.

For example:

- intcalc();

enter an expression: 3%4+5
17

enter an expression:

11.9 Handling exceptions

In the above calculator, processing terminates if a parse error is encountered and an exception is raised. It
would be more satisfactory if we could intercept the exception, provide an appropriate error message and input
another expression.

SML enables the construction of exception handlers which can catch a raised exception before it is detected by
the system. An exception handling expression has the form:

erpression handle maitch
where a match is a sequence of alternative patterns and associated expressions:

patternl => expressionl |
pattern2 => expression? |

as in a function definition. At simplest, each pattern is the constructor for an exception.
The match is known as the handler for the expression.

When the ezpression is evaluated, the system remembers that it has an associated handler. Sub-expressions
may also have handlers and they are remembered in sequence. If an exception is raised during evaluation then
control is returned to the most recent handler. The exception’s constructor is matched in turn against each of
the handler’s patterns. If a match is found then the value of the corresponding ezpression is returned. If no
match is found then control is returned to the next most recent handler and so on. If none of the remembered
handlers has a pattern for the exception then ultimately the system will display an uncaught exception message.

308



1o apply this to the calculator, nirst of all we will separate out the input/output Irom the actual interpretation:

- fun interpret e =

and intcalc () =

let val prompt = swrite "enter an expression: "

in

let val e = sreadln()

in
let val result = writeln (interpret e)
in intcalc()
end

end

end;

> val intcalc = fn : unit -> ’a

As before, the interpreter calls the parser followed by the calculator. In addition, there is a handler with a case
for each possible parsing error:

- fun interpret e =
let val (tree,rest) = exp (arithlexi e)
in
if rest<>[]
then "extra text at end of expression"
else iconv (arith tree)
end
handle No_text => "end of text encountered" |
Rbra => ") expected" |
Numb_or_lbra => "number or ( expected"
> val interpret = fn : string list -> string

Note that the handler returns strings. The interpreter must also return strings if no exceptions are raised,
that is a string error message if the expression text is not empty after parsing or a string for the result of the
calculation.

For example:

- intcalc();

enter an expression: 3%

end of text encountered

enter an expression: 3%+b
number or ( expected

enter an expression: 3*(4+5

) expected

enter an expression: 3*(4+5) 6
extra text at end of expression
enter an expression:

Exceptions may also be used to pass back values. They are then declared with associated types, like a datatype:
exception name of {ype

Such an exception is raised with a specific value. For example, we could declare a single parser error exception
which returns a string:
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and call it with different strings to reflect the different errors

fun exp [] = raise Error "end of text encountered" |
and term [] = raise Error "end of text encountered" |
and factor [] = raise Error "end of text encountered" |

and base [] = raise Error "end of text encountered" |
base (numb ii::t) = (integer ii,t) |
base (lbra::t) =
let val (el,rl) = exp t
in
case rl1 of
(rbra::r2) => (el1,r2) |
_ => raise Error ") expected"
end |
base = raise Error "number or ( expected";

An exception handler pattern may now include appropriate constants, constructors and bound variables. For
example:

- fun interpret e =
let val (tree,rest) = exp (arithlexi e)
in
if rest<>[]
then "extra text at end of expression"
else iconv (arith tree)
end
handle Error s => s;
> val interpret = fn : string list -> string

Here, s matches the string value passed back with Error.

The advantage of this approach is that the error message is identified at the point where the error is detected.

11.10 File output

For output to a file, the file must be opened for output. The system function open_out:

— open_out;
> fn : string -> outstream

takes a file name string as argument, creates a new file with that name, having thrown away any existing file
with the same name, and returns an output stream which may then be used in output.

After output the file on the stream should be closed by the system function close_out:

- close_out;
> fn : outstream -> unit
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‘L hus, to send a string to a nle:

- (* write string to file *)
fun fswrite £ s =
let val outs = open_out f
in
let val ss = output (outs,s)
in close_out outs
end
end;
> val fswrite = fn : string —> string —> unit

First of all, the file with string name associated with f is opened, returning a stream value to outs. Next, the
string s is sent to the file on stream outs. Finally, the file on stream outs is closed.

For example, to send the string "time for tea" to the file: myfile.txt:

- fswrite "myfile.txt" "time for tea";
> () : unit

Note that we never need to see or know how the stream is represented. We just pass around the name associated
with the stream value.

We can use this function to send an arbitrary string to an arbitrary file. For example, to send the tuple of
names and ages in list s to a file £, we map layout over it and implode the result as before:

- (* write name/age table to file *)
fun out_age_name f s = fswrite £ (implode (map layout s));
> val out_age_name = fn : string -> string -> unit

Note that attempting to output to a closed file raises an exception.

11.11 Sequenced file output

Sometimes, it may be more convenient to write to a file item by item rather than assembling all the items into a
string and sending them at once. For example, many interactive systems update a file in response to user input
from a keyboard. The danger is that if anything goes wrong and the process stops abnormally then the output
file will be left open. The underlying computer system should notice this when you leave the SML system and
close the file: however, 1t is bad practise to rely on the underlying system to do so.

We can adapt our screen display functions to write to an explicit output stream by abstracting for the stream.
Thus, to write a string we effectively rename output:

- (* write string to output stream *)
fun fswrite stream s = output (stream,s);
> val fswrite = fn : outstream -> string -> unit

Similarly, to put a string at the end of a line:

- (* write newline terminated string to output stream *)
fun fswriteln stream s = fswrite stream (s~ "\n");
> val fswriteln = fn : outstream -> string -> unit
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- (* write space separated string list to output stream *)
fun fslwrite stream s = fswrite stream (spimplode s);
> val fslwrite = fn : outstream -> string list -> unit

and to end the space separated sequence with a new line:

- (* write newline terminated,
space separated string list to output stream *)
fun fslwriteln stream s = fswriteln stream (spimplode s);
> val fslwriteln = fn : outstream —> string list —> unit

Finally, to display a list of strings on separate lines:

- (* write string list on separate lines to output stream *)
fun fslwritelns stream s = fswrite stream (implode (addnl s));
> val fslwritelns = fn : outstream -> string list —> unit

We may also generalise the integer display functions. Thus, to send an integer to an output stream:

- (* write integer to output stream *)
fun fiwrite stream i = fswrite stream (iconv 1i);
> val fiwrite = fn : outstream -> int -> unit

and to send a integer followed by a newline character:

- (* write newline terminated integer to output stream *)
fun fiwriteln stream i = fswriteln stream (iconv i);
> val fiwriteln = fn : outsream -> int -> unit

For a list of integers, we map iconv over it to produce a list of strings and then call fslwrite to write a space
separated sequence:

- (* write space separated integer list to output stream *)
fun filwrite stream 1 = fslwrite stream (map iconv 1);
> val filwrite stream = fn : outstream -> int list -> unit

Finally, an integer list may be followed by a newline:

- (* write newline terminated,
space separated integer list to output stream *)
fun filwriteln stream s = fslwriteln stream (map iconv s);
> val filwriteln = fn : outstream -> int list -> unit

For example, consider reading a sequence of lines from the keyboard and writing them to a file. The last line

has a ‘I’ on its own at the start:

- (* copy from keyboard to named file *)
fun keytofile () =
let val prompt = swrite "file name:
in copylines (open_out (implode (sreadln())))
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(* copy from keyboard to output stream *)
and copylines stream =
let val prompt = swrite "next line: "
in
let val 1 = implode (sreadln())
in
if 1 ="I"
then close_out stream
else
let val fw = fswriteln stream 1
in copylines stream
end
end
end;
> val copylines = fn : outstream -> unit

keytofile prompts for and reads the file name. It opens the file and passes the associated stream to another
function copylines. This prompts for and reads a line. If the line is the last one then the file 1s closed.
Otherwise the line is written to the stream for the file and the process continues.

For example:

- keytofile();

file name: tempfile.txt

next line: Once upon a time there were three little
next line: computers called Freyr, Aurora and Anubis.
next line: !

> () : unit

will write two lines of text to the file tempfile.txt.

11.12 File input

To input from a file, the file must be opened for input with the system function open_in:

- open_in;
> fn : string -> instream

This takes a file name string argument and returns the corresponding input stream.
Note that attempting to open a nonexistent file causes an exception to be raised.

At the end of input, the file should be closed with the system function close_in:

- close_in;
> fn : instream -> unit

which also returns the unit value.

The system function end_of_stream:
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checks whether an input stream has no more characters, that is whether the associated file is empty. It returns
true at the end of a stream and false if there are more characters to come.

For example, to read an entire file and return it as a list of single characters:

- (* read file as string *)
fun fread £ = let val ins = open_in f
in
let val ff = freadl ins
in
let val ci = close_in ins
in ff
end
end
end
> val fread = fn : string -> string

(* read input stream as string *)
and freadl ins = if end_of_stream ins
then []
else
let val ch = input (imns,1)
in ch::freadl ins
end;
> val freadl = fn: instream —> string list

In fread, the file named by the string associated with £ is opened for input returning a stream to ins. freadi1
is called to read each character in turn from stream ins and assemble them into a list of strings, until the end
of the stream is detected. Finally, the file attached to the input stream is closed.

11.13 Sequenced file input

It may also be useful to read a file bit by bit rather than all at once, for example in a system where a file is
displayed on the screen under the control of the user. Care must be taken to ensure that the file is always closed
at the end. As for output, we may abstract over the keyboard functions.

For example, suppose we want to read a line terminated by a newline from a stream, and return that line as a
list of single characters:

- (* read singleton string list from input stream *)
fun fsreadln stream = let val ch = input (stream,1)
in
if ch="\n"
then []
else ch::fsreadln stream
end;
> val fsreadln = fn: instream -> string list

For example, suppose we want to read up to a certain character from a stream:

- (* read singleton string list up to given char from input stream *)
fun fread stop stream = let val ch = input (stream,1)
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then L]
else ch::fread stop stream
end;

> val fsreadln = fn: instream -> string -> string list

so fsreadln is:

- val fsreadln = fread "\n";
> val fsreadln = fn: instream -> string list

Alternatively, we could read until some condition is met:

- (* read singleton string list until condition from input stream *)
fun fread p stream = let val ch = input (stream,1)
in
if p ch
then []
else ch::fread p stream
end;
> val fread = fn : (string -> bool) -> instream -> string list

Thus, fsreadln is:

- val fsreadln = fread (fn ch => ch="\n");
> val fsreadln = fn : instream -> string list

For example, to display all the lines in a file containing a specified string:

- (* display lines from file containing string *)
fun findlines() =
let val promptl = swrite "file name: "
in
let val file = implode (sreadln())
in
let val prompt2 = swrite '"search text: "
in
let val s = sreadln()
in search (open_in file) s
end
end
end
end

> val findlines = fn : unit -> unit

and search stream s =
if end_of_stream stream
then close_in stream
else
let val next = fsreadln stream
in
if containsl s next
then
let val 1 = swriteln (implode next)
in search stream s
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end;
> val search = fn : instream -> string list -> unit

findlines prompts for and reads a file name and search text. It then opens the file and passes the associated
stream and exploded search text to search. search checks to see if the end of stream has been reached. If it
has then the stream is closed. Otherwise, the next line from the stream is read and containsi from chapter
8 1s used to see if the line contains the text. If it does then the line is displayed. In either case, processing
continues.

11.14 Summary

In this final practical chapter we have seen how to connect our programs to the outside world through input
and output. We looked at simple output to the screen and input from the keyboard, and how to interleave
them for interaction. We also saw how to extend these techniques to simple file handling.

The next chapter is the last in this book. It provides a brief survey of more advanced aspects of SML and makes
suggestions for further reading.

11.15 Exercises

1) Write a function to display a real number r on the screen with d places after the decimal point.

2) Write functions to display a list of real numbers on the screen:

i) all on one line, with spaces in between each number

ii) with each number on a separate line
3) Write a function to print the n times table for integer n. For example,

- timestable 4;

14 = 4
2x4 = 8
124 = 48

> () : unit

The columns of numbers should be right justified.

4) Write a function that prompts for and reads a sequence of integers ending with 0 from the keyboard, one on
each line, and displays a count of the integers, and their total and average.

5) Write a function which prompts for an reads an integer and then displays a table of all values from 0 to that
integer with their squares and cubes, in left justified columns, with a suitable heading. For example:

- powers ();
enter integer < 100: 3
n n*n n¥n*n
1 1 1
2 4 8
3 9 27

> () : unit
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0) vvrite a Tunction that repeatedly prompts Ior and reads a line ol text from the Keyboard, and prints a message
to say whether or not it is a palindrome ie reads the same from left to right and right to left, after all spaces
have been removed:

- palin();

text: madam im adam

madam im adam is a palindrome
text:

7) Write a function that, using the functions from chapter 10 exercise 4, prompts for and reads a logical
expression, and displays the result of evaluating the expression.

8) Write a function that, using the functions from chapter 10 exercise 5, prompts for and reads a polynomial,
and displays the result of differentiating the polynomial.

9) Write a function that, using the functions from chapter 10 exercise 6, prompts for and reads a program in
the simple language, and displays the result of evaluating it.

10) Write a function to copy all of one file to another file. Both file names should be string arguments.

11) Write a function to display a file on a screen after prompting for the file name. On displaying a screen full
of text, it should pause and prompt for a key to be pressed before displaying the next screen full.

12) Write a function to edit files of lines of text. Tt should prompt for and read a file name, and read the file into
a list of string lists, one for each line. It should then repeatedly prompt for a single letter command followed
by optional arguments and carry them out. The commands are:

T == display list as a sequence of lines
F/<text> == find and display all lines containing the text
<text> in the list
D/<text> == delete all occurences of the text <text> in the list
I/<textl>/<text2> == insert text <textl> before all occurences of
text <text2> in the list
R/<text1>/<text2> == replace all occurences of text <textl> with
text <text2> in the list
Q == write the list back to the file as a sequence of lines
and halt

13) Stock control records consisting of item names, stock levels and reorder levels may be held in a text file, for
example:

socks 200 250
hats 15 10
coats 7b 80
pants 30 35
vests 45 40

Write a function that prompts for and reads a file name, and reads the file into a suitable tuple list. It then
repeatedly prompts for and reads a single letter command followed by optional arguments and carries out the
command. The commands are:

D == display the list as a table with a suitable heading

F <name> == find and display the entry for item <name> in the list
D <name> == delete the entry for item <name> from the list

A <name> <stock> <reorder> == add a new entry to the list for item
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0 <file>

C <name>

== display all entries 1n the list whose order level 1s below
the stock level, showing the difference between the
reorder level and the stock level
== write the name and difference between the reorder
level and stock level for all entries in the list
whose order level is below the stock level to file <file>
<amount> == add <amount> to the stock level for the list
entry for <name>
== write the tuple list back to the original file and halt
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Chapter 12

Further SML

12.1 Introduction

This book is intended as an introduction to Standard ML and has concentrated on basic language aspects
and programming techniques. SML has a number of more advanced features, in particular for imperative
programming and encapsulation, which we will now consider. Suggestions for further reading are then given.

12.2 Functional and imperative languages

We have treated SML as if it were a pure functional language. Functional languages are a subgroup of the
declarative languages: the other subgroup is logic programming languages of which the best known example is
the impure Prolog.

Pure declarative languages have the common feature that once a name has been associated with a value, that
association cannot be changed. Program parts communicate with each other by passing each other values as
arguments or by referring to shared names to access their associated values. However, program parts cannot
change the values associated with shared names and so they cannot affect indirectly each other’s behaviour.
Thus, the order in which different program parts are carried out cannot affect the final result. It may affect
whether or not the program ever stops but we will not worry about that here.

This evaluation order independence gives pure declarative languages a number of useful theoretical and practical
properties. Primarily, it is relatively easier to construct formal definitions of pure declarative languages as they
do not necessarily have to make explicit any concept of evaluation order. Such formal definitions can form the
basis for proving programs correct relative to specifications, which is particularly important for safety critical
systems. They also enable the development of transformation rules for changing programs without affecting
what they do, for example to make them more efficient. Finally, formal definitions may be used to prove the
correctness of language implementations, that is that implementations are consistent with the formal definition.
On the practical side, pure declarative languages are good candidates for parallel implementations. If the
evaluation order cannot affect the final result then, in principle, arbitrary program parts may be evaluated
concurrently on separate processors.

In contrast, imperative languages, like C, Pascal and Cobol, are based on changeable associations between
names and values, and provide commands for assigning new values to names. Thus, program parts can interact
with other by changing the values associated with shared names and so the evaluation order can affect the final
result. This makes it much harder to construct formal theories about imperative languages as they must either
make the evaluation order explicit, leading to more complex theories, or leave areas of ambiguity where it is not
possible to identify one unique result for a program. Programming is also more complex as programmers have
to be far more concerned with the precise order in which things happen.

The main advantage of imperative languages is that they correspond more closely to digital computer hardware.
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a memory whose contents can be accessed and changed by specllylng an assoclated address. 1his 1s the
hardware basis for assignment; indeed assignment in imperative languages originated as an abstraction from
such hardware.

Declarative languages correspond less well to the Von Neumann architecture. When they were first developed
their implementations were significantly slower and more demanding of memory than imperative language
implementations. There are now excellent pure declarative language implementations which come close to
the efficiency of imperative language implementations. Nonetheless, there are circumstances where imperative
approaches are advantageous. For example, we have seen that in SML lists and trees are “changed” by making
entire new copies with appropriate differences. For large applications, this copying can be very consuming of
time and space. In contrast, in an imperative language lists and trees really can be changed by overwriting
their elements with new values.

SML seeks the best of both worlds. It has a pure functional subset which we have looked at in the rest of this
book. It also has imperative constructs which we will consider briefly now.

12.2.1 Imperative aspects of SML

In imperative languages a variable is a changeable association between a name and a value. In declarative
languages, a variable is a fixed association between a name and a value. The imperative aspects of SML reflect
this and are based upon a fixed association between a name and a changeable value. The implications of this
difference will be explored below.

In SML, the polymorphic constructor ref returns a changeable reference to a value:

- ref;
> fn : ’a -> ’a ref

For example, after:

- val x = ref 1;

ref 1 : int ref

> val x

x 1s associated with a changeable reference to an integer with initial value 1.

The assignment operator := is used to change ref values and returns the unit value ():

- op :=;
> fn : ’a ref * ’a -> unit

For example:

- X 1= 2;
> () : unit
- x;

> ref 2 : int ref

sets the value of the ref value associated with x to 2.

Note that the value of x has not changed, it is still the same ref value. However, the value of the ref value has
changed.

Now consider:
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y and x have the same value which is a ref value. Thus, assignment to the ref value associated with y:

-y := 3
> () : unit
- ¥

> ref 3 : int ref

appears to change x:

- x:
> ref 3 : int

In fact x has not changed. Rather the value of the ref value associated with both y and x has changed.

Here lies the difference between SML and other imperative languages. The SML ref value is akin to pointers

in C or Pascal. In SML, setting one ref variable to the value of another results in both sharing the same ref

value, much like setting two pointer variables in Pascal to the same pointer. However, SML has no concept of

a changeable name/value association and thus is fully in the spirit of functional languages.

The polymorphic operator ! is used to get the value from a ref value:

— -
A

> fn : ’a ref > ’a

Note the difference between:

- x;
> ref 3 : int ref

which returns the ref value associated with x and:

- Ix;
> 3 : int

which returns the value of the ref value associated with x.

For example, to increment the ref value associated with x:

- x = Ix+1;
> () : unit
- x;

> ref 4 : int ref

Now ; may be used a sequence operator. A bracketed sequence of expressions:

( expresionl ; expression 2 ; ... expressionN )

returns the value of the last expression expressionN. For example:
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increments the ref value associated with x and returns its value.

12.2.2 Replacing recursion with iteration
SML provides the iterative construct:
while expressionl do erpression?

which repeatedly evaluates ezpression? so long as expressionl is true. We can use this construct to convert
linear recursion to iteration.

Consider the factorial function:

fun fac n =
if n=0
then 1
else n*fac (n-1);

An iterative equivalent is:

fun fac n =
let val i = ref n;
val £ = ref 1;

in

while !'i<>0 do

(f := 11 % I1f;
i = 1i-1

);

1 f

end;

Here, instead of repeatedly creating new instances of n through recursion we repeatedly reuse a ref value
associated with i which is set initially to the value of n. Similarly, instead of repeatedly accumulating the value

of;

fac (n-1)

we repeatedly reuse a ref value associated with £ which is set initially to the base value of the recursion.

In general, consider:

fun name variable =
if condition variable
then basc variable
else recursion vartable ( name ( decrement variable ))

Here, the condition condition, base expression base, recursion expression recursion and decrement expression
decrement are treated as functions of the defined function’s bound variables. The recursion expression is also
treated as a function of the recursion call.

This is equivalent to:
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val accumulate = ref ( base variable )

in

while not ( condition !'count ) do

( accumulate := recursion 'count 'accumulate ;

count := decrement 'count

)

Vaccumulate
end

Now, a count variable count is initialised to the starting value of the bound variable variable and an accumulation
variable accumulate is initialised to the base expression. Then, so long as the condition is not true, the recursion
expression is applied to the count and accumulation variables to update the accumulation variable, and the
decrement expression is applied to the count variable. Finally, the value of the accumulate variable is returned.

For example, consider:

fun sumlist 1 =

if 1=[]

then 0O

else hd l+sumlist (t1 1);

condition 1 == 1=[]

base 1 ==

recursion 1 v == (hd 1)+v
decrement 1 == t1 1

fun sumlist 1 =
let val 11 = ref 1;
val s = ref O
in
while '11<>[] do
(s :=hd ('11) + 's;
11 := t1 ('11)
);
's
end;

This extends to functions of several variables. For example, consider:

fun power (x,n) =

if n=0

then 1

else x*power (x,n-1);

condition (x,n) == n=0
base (x,n) == 1
recursion (x,n) v == x*v
decrement (x,n) == n-1

fun power (x,n) =
let val i = ref n;
val p = ref 1
in
while !'i<>0 do
(p :=x * Ip;
i:= ti-1

);
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It also extends to nested functions. For example, consider:

fun funsum f n =

if n=0

then 0

else f n+funsum £ (n-1);
condition £ n == n=0

base £ n = 0

recursion £ n v = (f n)+v
decrement £ n = n-1

fun funsum f n =
let val i ref n;
val s = ref O

in

while !'i<>0 do

(s :=1f (11) + 's;
i = 1i-1

);

's

end;

This does not apply universally. Consider:

fun map £ 1 =

if 1=[]

then []

else £ (hd 1)::map £ (t1 1);
condition £ 1 == 1=[]

base £ 1 == []

recursion T 1 v = (f (hd 1))::v
decrement £ 1 = t1 1

fun map £ 1 =
let val 11 = ref 1;
val m = ref []

in

while '11<>[] do

(m:=f (hd (111)) :: 'm;
11 := t1 ('11)

);

'm

end;

1s not commutative.

Here, the result from the second version is a list in reverse order! This arises because ::
In the recursive function we build the list from the last element. In the iterative version we build the list from
the first element. In the above examples where the recursive action involved + or * the order did not matter.

Transformation of all forms of recursion to

Note that we have only considered a simple form of recursion.
iteration is possible. However, more complex forms often involve the introduction of explicit data structures to
hold partial accumulated values. Recursion is then converted to an initial iteration down to the base case accu-
mulating partial values in the structures and then iterating back up again, processing the partial accumulated
values, to find the final value. For more details consult a book on compiler construction.

Note that while we save on recursion, we have the new, smaller overhead of dereferencing explicitly the ref

values.
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Suppose we have a list of integers, and that we wish to construct a list of doubles of those integers:

fun double [1 = [] |
double (h::t) = 2+*h::double t

Here we recurse down the list and then return constructing a copy of the list. Suppose that we no longer need
the first list thereafter. We could start with a list of int ref instead of int:

- val 1
>val 1

[ref 1,ref 2,ref 3,ref 4,ref 5];
[ref 1,ref 2,ref 3,ref 4,ref 5] : (int ref) list

and change the ref elements rather than copying:

- fun double [1 = () |
double (h::t) = (h := 2 * 'h; double t);
> val double = fn : (int ref) list -> unit

- double 1;
> () : unit
_l;

> [ref 2,ref 4,ref 6,ref 8,ref 10] : (int ref) list

Here, we change the head of the list and discard the unit result. We then recursively change the rest of the list.
In the above example, 1 is still associated with the same list of int refs. The values of those int refs has
changed.

For example, consider counting how often each unique letter appears in a string. First of all we build a list of
tuples to hold a count of 0 for each alphabetic letter:

- fun initcounts 1 counts =

if 1<"a"

then counts

else initcounts (chr ((ord 1)-1)) ((1,ref 0)::counts);
> val initcounts = fn : string -> (string * int ref) list ->

(string * int ref) list

- val counts = initcounts "z" []1;
> val counts = [("a",ref 0), ... ("z",ref 0)] : (string * int ref) list

Next we increment the count for one letter. If we cannot find that letter then we ignore it:

- fun count _ [1 = () |
count 1 ((11,cl1)::t) =
if 11=1
then c1 := !ci1+1
else count 1 t;
> val count = fn : string -> (string * int ref) list -> unit

For a list of letters, we increment the count for each letter in turn:

- fun countall [] counts = () |
countall (h::t) counts = (count h counts; countall t counts);
> val countall = fn : string list -> (string * int ref) list -> unit
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- countall (explode '"ace cab") counts;

> () : unit

- counts;

> [(Ma",ref 2),("b",ref 1),("c",ref 2),("d",ref 0),("e",ref 1),...]
(string * int ref) list

Note as above that while we have avoided copying we have the new, smaller overhead of dereferencing explicitly
ref variables.

12.3 Encapsulation with abstract types and modules

In chapter 6 we introduced the idea of encapsulation. We used local declarations to group a function with the
auxiliary functions that only it needs to access and to hide those auxiliary functions from other uses. SML
provides two more advanced constructs for encapsulation, abstypes and structures, which we will now survey
briefly.

12.3.1 Abstract types

In chapter 1 we said that a type consists of a range of values along with methods to construct, inspect and
change such values. In chapter 2 we then met the bool, int, real and string basic types and their associated
operations. Note that we have no need to know just how these types are actually implemented in a computer
provided they behave consistently when we use them in programs. In chapter 1 we also suggested that pro-
gramming could be viewed as the crafting of new types to fit particular needs. That is, we use existing types
to define representations for new ranges of values and we build functions to be the methods that manipulate
those new value ranges.

Here, we have made our new representations from lists, tuples and datatypes. Such representations are said to
be concrete because their low level SML details are explicit and visible. However, someone using a new type
has no need to know specific representation details provided the type behaves consistently when manipulated
through the methods.

The SML abstype is a way of forming a new type by encapsulating a datatype with method functions so that
only appropriate functions are visible. There is no access to the low level datatype details. Values of an abstype
can only be constructed and manipulated through the visible method functions. Such a type is said to be
abstract rather than concrete as both the representation and method details are hidden.

For example, suppose we wish to make a new type to represent word counts for texts:

- abstype wordcount= words of (string * int) list
with
local
fun inccount w [1 = [(w,1)] |
inccount w ((wi,c1)::t) = if w=wl
then (wl,cl+1)::t
else (wl,cl)::inccount w t
and findcount _ [] = 0 |
findcount w ((wil,c1)::t) = if w=wl
then c1
else findcount w t
in
(* create new count *)
fun new() = words []
(* increment counts for words *)
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and find w (words wl) = findcount w wl
(* find all words *)

and allwords (words wl) = map (fn (w,_) => w) wl

end

end;

> type wordcount

val new = fn : unit -> wordcount
val incwords = fn : string list -> wordcount —> wordcount
val find = fn : string -> wordcount -> int
val allwords = fn : wordcount -> string list

Our new type is called wordcount. It has datatype values with constructor words for lists of pairs of string
words and integer counts. It also has functions to create an empty wordcount, to increment the counts for a list
of words in a wordcount, to find the count for a word in a wordcount and to return all the words in a wordcount.
Note that these visible functions strip away the outer words and then call hidden auxiliary functions.

The user of this new type cannot see how a wordcount is actually represented. They can only construct and
manipulate wordcounts by using the visible functions.

For example, we could create a new wordcount:

new();
> val ¢ = - : wordcount;

- val ¢

Note that the system does not show us a concrete value for the new wordcount. Instead it displays a -.

We can now increment the counts for a sentence:

- val cl1 = incwords ["the","cat","ate","the","haggis"] c;
> val ¢l = - : wordcount

view all the unique words:

- allwords ci;
> ["ate","cat","haggis","the"] : string list

and then check the count for a word:

- find "the" ci;
> 2 : int

Note that abstypes are not equality types so comparison methods must be defined explicitly.

We might use abstypes as building blocks when developing large systems as a way of controlling system com-
plexity. Once a new type has been tested thoroughly it can be treated as pre-given in constructing other system
components. Furthermore, if we supply other people with an abstype then they need not be aware if we decide
to change the representation or method details later on, for example to make them more efficient or extend their
functionalities. Provided the methods still behave in the same way then users will not notice the difference and
need not change their programs.

For example, we might decide to change the representation of the sequence of pairings of words and counts
above from a list to a tree:

- abstype wordcount = words of string * int * wordcount * wordcount |
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local
fun inccount w wcempty = words (w,1,wcempty,wcempty)
inccount w (words (wl,cl,l,r)) =
if w=wi
then words (w,c1+1,1,r)
else
if w<wi
then words (wl,cl,inccount w 1,r)
else words (wil,cl,l,inccount w r)
in
(* create new count *)
fun new() = wcempty
(* increment counts for words *)
and incwords ws wl = foldr inccount wl ws
(* find count for word *)
and find _ wcempty = 0 |
find w (words(wil,c1l,l,r)) = if w=wl
then c1
else
if w<wil
then find w 1
else find w r
(* find all words *)
and allwords wcempty = [] |
allwords (words(w,_,1l,r)) = allwords 1@w::allwords r
end
end;
> type wordcount
val new = fn : unit -> wordcount
val incwords = fn : string list —> wordcount -> wordcount
val find = fn : string -> wordcount -> int
val allwords = fn : wordcount —-> string list

Here, the representation and methods have changed but the methods still have the same names, types and
observable behaviours.

12.3.2 Structures

We have been working with what is called the SML Core language. The SML Modules language extends the
Core with constructs which support large scale system development from separate components. We will look
very briefly now at these constructs.

In general, a module is an independent, self-contained chunk of program, usually consisting of a group of related
declarations. For a module to be used elsewhere, what it contains must be made public. Similarly, for something
declared in a module to be used elsewhere, it must be known how to invoke it, what arguments if any it requires
and what results if any it returns.

In SML, a module is called a structure and consists of a named sequence of declarations. Corresponding to a
structure is a signature which is a sequence of the names of the declared values in the structure along with their
types. That signature is all that someone else needs to know to access things from the structure.

An abstype must be incorporated in the program that uses it and so its definition can be seen by the user even
though only its visible methods may be used. In contrast, the SML Module language enables the completely

independent development of program components with only their signatures known to users.

For example, suppose we wish to develop a module for ordered integer lists, starting with functions to insert an
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- structure ISORTLIST =
struct
fun iinsert i [1 = [i] |
iinsert (i:int) (h::t) = if i<h
then i::h::t
else h::iinsert i t
and isort [1 = [] |
isort (h::t) = iinsert h (isort t)
end;
> structure ISORTLIST :
sig
val iinsert : int -> int list -> int list
val isort : int list —-> int list
end

The system shows us the structure’s signature, indicating that the structure contains two functions called
iinsert and isort.

Someone else can use the functions in a module provided they know the signature and a description of the
functions’ behaviours. A function in a module is invoked through what is called a long identifier, that is the
structure name followed by a “.” followed by the function name.

For example, iinsert can be invoked from ISORTLIST:

- ISORTLIST.iinsert 3 [1,2,4,5];
> [1,2,3,4,5] : int list

A structure may provide a wide variety of general purpose functions which are not all relevant to a particular
problem. It may then be constrained by an explicit signature that only refers to some of the functions, thereby
restricting those that may be used.

For example, we might want to only make the sorting function from ISORTLIST available. The signature:

- signature ONLYISORTSIG =
sig
val isort : int list -> int list
end;
> signature ONLYISORTSIG =
sig val isort : int list -> int list end

only specifies the sort function. We can now define a new structure which will only allow access to that sort
function:

- structure ONLYISORTLIST : ONLYISORTSIG = ISORTLIST;
> structure ONLYISORTLIST : ONLYISORTSIG

Attempts to access iinsert from ONLYISORTLIST will result in an error message to say that iinsert is not

declared.
Structures may be generalised as functors through parameterisation. Such parameters may abstract over types
as well as values. Functors are then specialised by being called with specific types and values to form new

structures.

For example, we might want to provide a more general sorted list module, so we could abstract at the comparison
i<h:
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s1g type ANY
val sort : ANY list —-> ANY list
val insert : ANY -> ANY 1list -> ANY list
sharing type ANY = ANY

end =

struct

type ANY = ANY

fun insert v [1 = [v] |

insert v (h::t) = if order v h
then v::h::t
else h::insert v t
and sort [1 = [1 |
sort (h::t) = insert h (sort t)
end;
> functor SORTLIST : <sig>

We have indicated that in SORTLIST, for some type ANY the function order returns a boolean after doing
something to two values of that type.

Note that we have specified SORTLIST’s type explicitly. The type and sharing type definitions are necessary
to ensure type consistency: for explanation see one of the books below.

This functor can be used elsewhere to build new structures to deal with a specific types of list. For example,
we can construct a structure specifically for integer lists by calling SORTLIST with ANY set to int and order set
to an appropriate int -> int -> bool function:

- fun iless (il:int) 12 = i1<i2;
> val iless = fn : int -> int -> bool

- structure ISORTLIST = SORTLIST(type ANY = int;
val order = iless);
> structure ISORTLIST :
sig
eqtype ANY
val sort : ANY list -> ANY list
val insert : ANY -> ANY list -> ANY list
end

Now ISORTLIST is like SORTLIST with ANY set to int and order set to iless. When we invoke insert or sort
from ISORTLIST they will only work with integer lists:

- ISORTLIST.insert 3 [1,2,4,5];
> val it = [1,2,3,4,5] : ISORTLIST.ANY list

For more information about structures, see the further reading below.

12.4 Other features

SML has two other significant features which we will now summarise.
As well as tuples, lists and datatypes, SML also provides records for defining groups of associated values. A

record 1s like a tuple in that it is a fixed sized sequence of elements of different types. However, in a record each
element has an explicit name which may be used to access it.
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For more details see the further reading below.

12.5 Further reading

A wide range of books on Standard ML is available.

The essential references for people who want to implement SML or manipulate formally SML programs are:

R.Milner, M. Tofte & R.Harper, “The Definition of Standard ML”, MIT, 1990
R.Milner & M.Tofte, “Commentary on Standard ML”, MIT, 1991

which provide a succinct formal definition of SML.
C.Myers, C.Clack & E.Poon, “Programming with Standard ML”, Prentice-Hall, 1993

is a thorough introduction which includes coverage of abstypes and structures. It also contains a good annotated
bibliography on both SML and functional programming.

A Wikstrom, “Functional Programming Using Standard ML”, Prentice-Hall, 1987

is another thorough introductory text. It has material on abstypes but not on structures, and covers an older
version of exceptions.

R.Bosworth, “A Practical Course in Functional Programming Using Standard ML”, McGraw-Hill,
1995

is another introduction. It provides two medium sized case studies but has no material on abstypes or structures.
R.Harrison, “Abstract Data Types in Standard ML”, Wiley, 1993

is a second level text. It assumes some knowledge of functional programming and contains detailed coverage of
the use of abstypes and structures in developing generic abstract data types.

J.D.Ullman, “Elements of ML, Programming”, Prentice-Hall, 1994

and
R.Stansifer, “ML Primer”, Prentice-Hall, 1992

are better suited for second language learning of SML. Both cover all of SML. The latter is relatively brief but
contains useful examples.

L.C.Paulson, “ML for the Working Programmer”, CUP, 1991
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S.Sokolowski, “Applicative High Order Programming: the Standard ML Perspective”, Chapman
and Hall, 1991

focuses on the use of higher order functions. It includes material on program proof, polymorphism and functional
language implementation through compilation to code for an abstract stack machine.

C.Reade, “Elements of Functional Programming”, Addison-Wesley, 1989

covers a wide range of practical and theoretical functional programming topics. An introduction to SML is
followed by material on lazy evaluation, semantics, polymorphic type checking, A calculus and combinators, and
functional language implementation through the SECD machine.

12.6 SML implementations

The Usenet news group comp.lang.ml provides a lively forum for discussion of SML. The “Standard ML Fre-
quently Asked Questions” posting appears monthly and contains details of how to obtain SML implementations,
including those summarised below. It may also be found through anonymous ftp from :

pop.cs.cmu.edu: /usr/jgmorris/sml-archive/faq.txt

In particular, Standard ML of New Jersey (NJSML), developed jointly by AT&T Bell Laboratories and Prince-
ton University, runs on many UNIX based systems. MicroML, developed at the University of Umea, and
Moscow ML, developed at the Keldysh Institute of Applied Mathematics, Moscow, and the Royal Veterinary
and Agricultural University, Denmark, run on IBM PC compatible systems. All are free and may be obtained
by anonymous ftp:

NJSML: ftp.research.att.com:/dist/ml
MicroML: ftp.cs.umu.se:/pub/umlexe01l.uue
Moscow ML: ftp.dina.kvl.dk:/pub/mosml
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Appendix A

Using an SML system

A.1 Introduction

Active use of an SML system is fundamental to this book. It i1s assumed that you have access to a computer
and that you know or can find out how to:

a) type text into a text file using an editor

b) run the SML system

The following discussion is pertinent to UNIX and DOS systems. It is assumed for illustrative purposes only
that the UNIX prompt is:

the DOS prompt is:
c>

and the SML system command on both UNIX and DOS is:
sml

Note that the system you are using may well have a different SML command and prompts.

On windows based systems you should be able to run SML from within a UNIX shell window or a DOS window.

A.2 Getting started

SML systems are interactive, that is you type things at them for immediate processing. Suppose the system is
started by:

$ sml

or:
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After printing various inscrutible start up details, the system will prompt for input from the keyboard with:

After the prompt you can enter any expression followed by a semi-colon:
— expression ;

If the expression goes over several lines then push ‘Enter’ after each line and the system will prompt for the
next line with a:

Don’t forget the “;” at the very end of the expression.

The system will carry out the expression and display the result. How this is done depends on the system. Here,
we assume that it will print out a right angle bracket followed by the expression’s final value and type:

> value :  type
Other SML systems will print out:
val it = walue : type

The SML system name it is always set to the last value to be found when an expression is carried out. We will
use the first simpler form here.

A.3 Leaving the system

You can usually get out of an SML system by using the underlying system’s exit interrupt code, often control
7 or control D. Check for the system you are using. For example, assuming control Z:

- "2

or

c>

A.4 Panic button

If you need to stop an SML program running and return to the SML input prompt then use control C:

~C
Execution terminated
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Unfortunately, many SML systems will not let you change things once you have typed them in. Thus, it is best
to first of all type everything you want to try out into a text file.

Don’t forget the ¢;” after each expression.

It is a useful convention to give files containing SML the suffix .sml so that you can see that they are SML files
from their names. However, this is not a requirement of SML systems.

Suppose the file is called:

file

Next, start up the SML system and type in:

- use "file";

to read in everything from the file.

Note the double quotes round the file name: it is a string. For example, if the file was called:

test.sml

then you would enter:

- use "test.sml";

Once the file has been read in, the system will go back to prompting for more input from the keyboard.

If there are errors then leave the SML system, edit the file, re-enter the SML system and read the file back in
again.

On a UNIX system, you can suspend a process, in this case the SML system, and return to the system input
prompt without terminating the process. You will need to find out what the suspension control sequence is.
Often it 1s control X or control Z. For example:

- "X
Stopped

You can then edit the file and restart the SML system, usually by typing £g to move a suspended process into
the foreground. For example:

$ fg
(sml)

Note that the system informs you that you have returned to SML but the SML input prompt may not be
printed. You can now read the file in again.

On a windows based system you could have one window for the SML system and another for editing the file.
First of all, type your SML into the file and then read it into the SML system, having saved but not closed the
file. If errors are detected in the file you could move to the edit window, change and save the file, move to the
SML window and read in the file again, without stopping the SML system in between.
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If you want to save the results of an SML session in a file then you can use file redirection under DOS or UNIX.
You could run everything in:

mput file

and save the output in:

output file

by entering:

C> sml < nput file > output file

or

$ sml < nput file > output file

For example, if the input file is called:

test.sml

and you want the results in:

results

then you would enter:

C> sml < test.sml > results

or

$ sml < test.sml > results
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Appendix B

SML syntax

These syntax diagrams are for the SML subset covered in chapters 1 to 11. They are loosely adapted from the
syntax in “The Definition of Standard ML” | referenced in chapter 12. The main changes are the conflation of
various independent syntax constructs into unified diagrams and the treatment of different sorts of constructor
simply as name.

program ————=
(g

A program is one or more declarations and expressions separated by “;’s.

——= val value binding
—= fun %(function binding)
declaration type type binding

——— dat atype %(datatype binding }

——= exception %{exception bindin@
— local ' n—={_dectaration }—~end —

A declaration may be for a name/value association, value binding, a function, function binding, a type synonym,

type binding, a datatype, datatype binding, an exception, exception binding or a local declaration.
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expression

A wvalue binding is one or more associations between patterns and erpressions, separated by ands.

V
value binding w

atomic
name T pattern
pattern pattern s pattern

name as
—

A patternis an atomic pattern, a constructor pattern consisting of a structured value constructor name followed
by an argument atomic pattern, a list pattern consisting of two patterns separated by the list constructor ::, a
typed pattern or a layered pattern associating a possibly {yped bound variable name and a pattern.

atomic

pattern ()

( patterns )

[ patterns ]

( pattern )
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AN atomic patiern 18 a wildcard, a constant (1.e. an mteger, real, boolean or string value), a bound varlable
or simple value constructor name, the unit value, a tuple of patierns, an empty list or a list of patterns or a
bracketed pattern.

patterns —

A patterns is one or more patterns separated by *,’s.

name

type (type ) T * (type )
(type ) -> (type )
( type ) )

A type is a type name (i.e. a ’ followed by a name), a type constructor name (i.e. int, real, bool, string or
a type constructor) or a type constructor name preceded by a types (i.e. for a list or a parameterised type
constructor), a tuple type, a function type or a bracketed type.

type
typeS
( ( type | : ( type | )

A types is one type, empty or a bracketed sequence of one or more °,’ separated types.
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function
binding

function
cases

v
H function cases

atomic
pattern

expression —

A function binding is one or more function cases separated by ands.

A function cases is a name followed by one or more bound variable atomic patterns and associated with a body
expression, or several of this sequence separated by ‘|’s.

A type binding is an association between a type constructor name
names. A sequence of such associations is separated by ands.

type names

and

name

o

and a type. It may be parameterised by type

( type name

type name )

A type namesis a single type name, empty or a bracketed sequence of one or more {ype names separated by °,’s.
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A
datatype thpe names ) (name) (constructor bindin@—‘ﬁ

binding

l |
constructor w of | type |

binding

A datatype binding associates a type constructor name with a constructor binding. It may be parameterised by
a type names. A sequence of such associations is separated by ands.

A constructor binding is a value constructor name which may be typed. A sequence of these is separated by “|’s.

l and

exception %

binding

= of

An exception binding is a constructor name which may be typed. A sequence of these is separated by ands.
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expression andal so expression
expression orel se expression

expression —= expression handl e match
— raise expression

expression t hen expression el se expression

— case of match

fn match

An expression 1s an infizx expression, two expressions separated by an infix boolean operator, an expression
with a handler maich, a raised exception ezpression, a conditional expression, a case expression matching an

erpression to a match, or a function value defined by a match.

application
expression

infix L

—_—
infix ' operator infix .
expression expression

An infix expression is a function call application expression or two infizx expressions separated by an infix

expression

operator.
application atomic
. E——
expression expression

An application expression is a single atomic expression or a function atomic expression followed by argument

atomic expressions.
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name

i M| -
atomic 2 ( expressions )
expression
.
[ expressions T ]

e ond —-
( ——{opemon — )

An atomic expression is a constant, a bound variable or constructor name, the unit value, a tuple, an empty
list or a non-empty bracketed list, a let expression, or a bracketed expression.

expressions expression —=

An expressions is one or more expressions separated by ¢, ‘s.

match —

A match is an association between a pattern and an expression. A sequence of such associations is separated by
(l 2
S.
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Appendix C

SML standard functions and operators

In the type of an overloaded numeric function or operator, all occurrences of the type num may be replaced by
either int or real.

C.0.1 Standard functions
The following standard functions are introduced in the text:

abs : num —-> num
~ 1 pum => num
floor : real -> int
real: int -> real

not: bool —-> bool

size : string -> int

ord : string -> int

chr : int -> string

explode : string -> string list
implode : string list -> string

map : (’a => ’b) -> ’a list -> ’b list
rev : ’a list -> ’a list

SML also provides the following arithmetic and trigonometric functions:

sqrt : real -> real - square root

sin : real -> real - sine of radians

cos : real -> real - cosine of radians

arctan : real -> real - arctangent; returns radians
exp : real —> real - ¥ for argument z

In : real -> real - natural logarithm
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The following streams and functions are discussed in chapter 11:

open_in : string -> instream

input : instream * int -> string
end_of_stream : instream -> bool
close_in : instream -> unit

std_in : instream

open_out : string -> outstream
output : outstream * string -> unit
close_out : outstream -> unit
std_out : outstream

SML also provides the function:
lookahead : instream —> string

which returns the next character in the specified input stream as a string without removing it from the stream.

C.0.3 Standard operators

The number preceding each operator is its precedence.

7 div : dint * int -> int

7 mod : int * int -> int

7 / : real * real -> real

7 * 1 pum ¥ pum —> npum

6 + : pum * pum —> num

6 - num* pum —> num

6 ~ : string * string -> string

5 1r @ ’a * ’a list -> ’a list

5 @ : ’a list * ’a list -> ’a list
4 = ’’a * ’’a -> bool

4 <> ’’a * ’’a -> bool

4 < : npum * num —> bool

4 <= : pum * num —> bool

4 >= num * num —> bool

4 > ¢ npum * num —> bool

3 o: (b ->"’¢c)* (’a->"'b) > ’a->"'c
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