
Elementary Standard MLGreg MichaelsonMay 27, 2002

Contents0 Prologue 100.1 Overview . 100.2 Approach . 100.2.1 Where to start? . 100.2.2 Functional programming . 110.2.3 Why start with a functional language? . 110.2.4 Why Standard ML? . 120.3 Contents . 120.4 Acknowledgements . 131 Introduction 141.1 Introduction . 141.2 Making models . 141.3 Things, collections and properties . 151.4 Properties of properties . 161.5 Types and methods . 171.6 Choosing types . 181.7 Characterising things and collections . 191.8 New types from old types . 201.9 The story so far . 201.10 Expressions from methods . 201.11 Generalising through naming . 211.12 Specialising abstractions . 221.13 Abstraction by comparison . 231.14 Naming functions . 231

1.15 Deciding what to do next . 241.16 Names are arbitrary . 271.17 New collections from old collections . 281.18 Mapping . 291.19 Filtering . 311.20 Folding . 321.21 Checking . 331.22 Higher order functions . 341.23 Naming and recursion . 371.24 Summary . 381.25 Book structure . 391.26 Syntax notation . 401.27 Typefaces . 401.28 Exercises . 412 Basic types 432.1 Introduction . 432.2 Expressions and types . 432.3 Basic system use . 432.4 Boolean type . 442.5 Case sensitivity . 442.6 Integer type . 442.7 Real type . 452.8 Numeric precision . 462.9 String type . 462.10 Tuple type . 472.11 Function type overview . 492.12 Boolean operators . 502.13 Precedence and boolean expressions . 512.14 Integer operators . 532.15 Tuple type operators . 562.16 Real operators . 572

2.17 Overloaded operators . 592.18 Mixed type arithmetic . 592.19 String operators . 592.20 Comparison operators . 602.21 Boolean comparison . 632.22 Real comparison . 632.23 Division and remainder with a negative operand . 642.24 Tuples with expressions . 662.25 Function composition . 662.26 Introducing exceptions . 662.27 Summary . 672.28 Exercises . 673 Global declarations and functions 703.1 Introduction . 703.2 Names . 703.3 Reserved words . 713.4 Global declarations . 713.5 Functions . 733.6 Naming functions . 773.7 Comments . 783.8 Making the bound variable type explicit . 783.9 Abstraction over functions . 793.10 Introducing higher order functions . 843.11 Introducing polymorphism . 893.12 Function composition function . 933.13 Scope . 953.14 Illustrating function application . 963.15 Testing . 963.16 Summary . 993.17 Exercises . 993

4 Pattern matching and recursion 1034.1 Simpli�ed notations . 1034.2 Tables and functions . 1054.3 Pattern matching . 1054.4 Pattern matching with strings . 1064.5 Raising exceptions . 1084.6 Wildcard pattern matching . 1094.7 Pattern matching and boolean operations . 1104.8 Recursion with integers . 1134.9 Generalising summing integer sequences . 1174.10 Conditional expression . 1194.11 Conditional expressions and boolean values . 1204.12 Pattern matching with real values . 1214.13 More testing . 1224.14 Summary . 1244.15 Exercises . 1245 Introducing lists 1295.1 Introduction . 1295.2 Basic list properties . 1295.3 Pattern matching with lists . 1345.4 Equality types . 1375.5 General list operations . 1385.5.1 Add to end of list . 1385.5.2 Append two lists end to end . 1395.5.3 Insert before value in list . 1415.5.4 Delete value from list . 1425.5.5 Replace value in list . 1445.6 Explicit list element selection . 1455.7 Indexed list access . 1475.8 Testing list functions . 1515.9 Summary . 1524

5.10 Exercises . 1526 List higher order functions 1566.1 Accumulation variables . 1566.2 Encapsulation with local declarations . 1576.3 Ascending sequences . 1586.4 List reversal . 1596.5 List mapping . 1606.6 List �ltering . 1636.7 Ordered lists . 1666.8 Insertion into ordered lists . 1686.9 Layered patterns . 1706.10 Insertion sort . 1716.11 Mapping over two lists . 1736.12 Merge sort . 1756.13 Folding lists of lists . 1766.14 Generalised folding . 1796.15 Testing groups of functions . 1806.16 Summary . 1826.17 Exercises . 1827 Tuple lists 1877.1 Introduction . 1877.2 Pattern matching with tuples . 1877.3 Tuples for accumulation variables . 1907.4 Pattern matching with lists of tuples . 1917.5 Accumulation with lists . 1927.6 Generalised list �nd, delete and replace . 1947.7 Example - telephone directory . 1957.8 Example - stock control . 1987.9 Type expressions and type abbreviations . 2027.10 Curried and uncurried functions . 2035

7.11 Summary . 2057.12 Exercises . 2068 Text processing 2138.1 Introduction . 2138.2 String to list conversion . 2138.3 Text editing . 2148.3.1 Does one string start another? . 2148.3.2 Does one string contain another? . 2158.3.3 Delete one string from another . 2168.3.4 Insert one string before another in a third string . 2198.3.5 Insert one string after another in a third string . 2218.3.6 Replace one string with another in a third string . 2248.4 Digit string to number value conversion . 2268.5 Let expression . 2298.6 Unzip revisited . 2308.7 Finding words in a string . 2328.8 Counting words . 2358.9 Summary . 2378.10 Exercises . 2379 Concrete data types 2409.1 Introduction . 2409.2 New types . 2409.3 Example - simple lexical analysis . 2429.4 Structured datatype binding . 2439.5 Structured pattern matching . 2459.6 Union types . 2479.7 Example - converting digit strings to number lists . 2499.8 Example - lexical analysis of arithmetic expressions . 2529.8.1 Introduction . 2529.8.2 Analyser function . 2536

9.8.3 Mutual de�nitions . 2549.8.4 Recognising identi�ers . 2549.8.5 Recognising integers . 2549.8.6 Complete analyser . 2559.8.7 Pretty printer . 2559.9 Pattern matching summary . 2569.10 Summary . 2579.11 Exercises . 25710 De�ning lists and trees 26210.1 Linked structures . 26210.2 String linked lists . 26310.3 Generalised lists . 26410.4 List e�ciency . 26510.5 Introducing trees . 26510.6 Binary tree datatype . 26810.7 Polymorphic trees . 27110.8 Grammar and parsing . 27210.9 Parse trees . 27810.10Concrete and abstract syntax . 28410.11Parsing arithmetic expressions . 28610.12Case expression . 28910.13Multiple exceptions . 29010.14Interpreting arithmetic expressions . 29110.15Arithmetic pretty printer . 29210.16Summary . 29310.17Exercises . 29311 Input and output 29811.1 Introduction . 29811.2 Unit type . 29911.3 Screen output . 2997

11.4 String list output . 30011.5 Integer list output . 30111.6 Formatted output . 30311.7 Keyboard input . 30511.8 Interactive I/O . 30611.9 Handling exceptions . 30811.10File output . 31011.11Sequenced �le output . 31111.12File input . 31311.13Sequenced �le input . 31411.14Summary . 31611.15Exercises . 31612 Further SML 31912.1 Introduction . 31912.2 Functional and imperative languages . 31912.2.1 Imperative aspects of SML . 32012.2.2 Replacing recursion with iteration . 32212.2.3 Replacing copying with assignment . 32512.3 Encapsulation with abstract types and modules . 32612.3.1 Abstract types . 32612.3.2 Structures . 32812.4 Other features . 33012.5 Further reading . 33112.6 SML implementations . 332A Using an SML system 333A.1 Introduction . 333A.2 Getting started . 333A.3 Leaving the system . 334A.4 Panic button . 334A.5 Program development . 3358

A.6 Saving system output . 336B SML syntax 337C SML standard functions and operators 344C.0.1 Standard functions . 344C.0.2 I/O streams and functions . 345C.0.3 Standard operators . 345

9

Chapter 0Prologue0.1 Overview\Between thought and expression there lies a lifetime", Lou ReedThis book is intended to support a �rst level course in programming in Standard ML (SML). No previousprogramming experience is required. No mathematical ability is required beyond competence at senior schoolyear 4 mathematics. It is assumed that you have access to a computer running SML, and know how to prepareand modify a raw text �le using an editor.SML is a member of a family of programming languages known as the functional languages. It has manydi�erences to the imperative programming languages like Basic, C, Pascal and COBOL. If you have alreadyused one of these languages then it is important that you leave any preconceptions behind and approach SMLwith an open brain.The material is organised as a continuous argument and each chapter assumes that the previous chapters havebeen understood. Thus, you should work steadily through the book rather than trying to dip in and out.Programming is ultimately about persuading computers to run programs. As you progress through this book itis well worth using a computer to try out the examples in the text. Each chapter is followed by exercises whichare based on the preceding material. While time should be spent on thinking about how to solve the exercisesand working out answers on paper, the use of a computer is fundamental.This book has been developed from courses taught at Heriot-Watt University to 1st year undergraduate BScComputer Science students (1993 to present) and to MSc Knowledge Based System students (1987 to present).0.2 Approach0.2.1 Where to start?Learning to program is a confusing and puzzling business. It is necessary to learn simultaneously how to analyseproblems, how to design a solution, how to encode a solution in a programming language and how to use acomputer system to run and modify programs. To begin with, a great deal of elementary but vital detail mustbe absorbed which often obscures more general concepts.This book does not pretend to teach a discipline of problem analysis and design as well as programming. Tryingto cover all of these topics in one text leads either to vast books, to inadequate treatment of individual topicsor to never progressing beyond trivial problems. Rather, this book is based on the premise that the best wayto learn to program is by seeing and attempting lots of simple examples where the problem area is already wellanalysed and constrained. From these examples, more general constructs and techniques are drawn out. Thus,you will soon notice that for each new topic a couple of concrete examples are presented and a general case is10

then elaborated by looking at where the examples are di�erent and abstracting accordingly. The general caseis then applied to more concrete examples.The book explicitly draws on the distinction between programming in the small and in the large, plumpingexclusively for the former. I think that it is best to become competent at getting the guts of elementaryalgorithms right before trying to assemble such algorithms into larger systems. Thus, there are no case studiesor large worked problems until very late on. Instead, there are lots and lots of very similar simple exampleswhich are used to present a variety of quite low level but nonetheless fundamental techniques. Furthermore,there is no material here on advanced searching and sorting methods, or on data structures beyond simplelists and unbalanced trees. I think that such subtleties are best left to a second level course concentrating onprogramming in the large, where they can be tackled in conjunction with abstract data types and modular orobject oriented programming.0.2.2 Functional programmingFunctional programming has its roots in mathematical logic and computability theory from the 1930's. Comingto prominence as a research area in the 1970's, it is now in the mainstream of Computing. Alas, functionalprogramming is still seen by many as a hard, advanced subject, bearing an unwarranted aura of mathematicsand theory. This is partly because of the manner in which it is traditionally presented.Some texts are based on the comparative ease of deriving, proving and transforming functional programs andseek to use these techniques to elaborate rigorous disciplines of programming. Alas, programming tends to beoverwhelmed by formal detail which is o� putting for beginners. Such approaches are also unconvincing at �rstlevel: beginners can often understand intuitively a program but lack the mathematical sophistication to get togrips with its derivation or proof. Furthermore, the sizes of proofs and derivations explode as programs getlarger.We teach low level imperative programming but we do not expect students to hand translate substantial highlevel programs into machine code: we have compilers. In the same way, while it is vital for students to understandformal approaches and to apply them by hand to small problems, we need appropriate tool sets to support boththe teaching and application of such techniques.Other texts try to treat functional programming as paradigmatic of all computing and cover issues in semanticsand implementation as well as programming. I do not think that such an all embracing approach is appropriatefor �rst level teaching. Too many disparate issues are covered and their signi�cance is lost in the absence of ageneral overview of computing.Functional programming is really just another way of constructing computer programs. Because of its theoreticalgrounding it certainly has many attractive formal properties. At heart though, it is an eminently practicalactivity. There is no need to have any background in or awareness of matters theoretical to learn functionalprogramming. Indeed, it is a positive advantage for teaching to not treat functional programming as anythingout of the ordinary. In this book there is nothing on derivation, proof and transformation. Nor are semanticsor implementation issues considered. Instead, as indicated above, the focus is solidly on practical functionalprogramming through examples.0.2.3 Why start with a functional language?There is much anecdotal evidence that, as with natural language, a �rst programming language colours andclouds the learning of the second, particularly where there are substantial paradigmatic di�erences. It seemsappropriate to teach a simple, abstract language before a more complex, concrete one. Thus, high level impera-tive languages are usually taught before assembly languages. Functional programming is both simpler and moreabstract than high level imperative programming and there are many advantages to learning it �rst. Topicswhich are either presented as advanced or ignored completely in �rst level imperative programming courses area natural, indeed essential part of a functional programming course.In functional programming, function composition and parameter passing are fundamental. Recursive datastructures are complemented directly by recursive control for repetition. The combination of case structured11

function de�nitions, pattern matching and explicit structure denotations leads to small, succinct programs witha close correspondence between data and program structure. Functions as values and higher order functionsfollow cleanly and easily from a high degree of orthogonality of abstraction mechanisms. Polymorphic typingcombines ease of function reuse with strong checks for type compatibility.In contrast, the transition to a functional language after a year or two of imperative programming is muchharder. People who are used to assignment as the primary means of associating names and values often haveconceptual problems with sub-program use through parameter passing, even in imperative languages. Similarly,those who are used to iteration as a repetition mechanism �nd recursion hard. In the same vein, patternmatching seems arcane after explicit element selection from data structures. In short, people who know aboutassignment miss it: hence the warning in the �rst section above.Of course, functional languages are not some universal panacea for all our programming teaching ills. Functionalprogramming brings di�erent misconceptions, confusions and problems. That is why so much time is spent inthis book on basic concepts, repeating and abstracting from concrete examples with stepped variations to buildup slowly and steadily layers of more general techniques.0.2.4 Why Standard ML?SML was originally developed in the 1970's at the University of Edinburgh as the meta-language for the LCFtheorem prover. It is now used widely for teaching and research, and increasingly for industrial computing.SML was one of the �rst languages to be de�ned formally, rather than retro�tted with a formal de�nition. Thisprovides a solid basis both for implementations and for program proof and transformation. Mature, robust,stable, consistent, free implementations are available for a variety of platforms, in particular for IBM compatiblePCs and for UNIX based systems. SML is actually an imperative language with a pure functional subset. Forpractical purposes it may be viewed as a functional language, the approach taken here.Good but incompatible alternatives are Miranda (a trade mark of Research Software Ltd) and Haskell. Both arepure functional languages. Both di�er from SML not just in syntaxes but in the way that function applicationis de�ned. To be somewhat arcane, SML is said to be strict because arguments are always evaluated beforefunctions are applied to them. Contrariwise, Miranda and Haskell are said to be lazy because argumentevaluation is delayed until the argument value is actually needed. Purists argue plausibly that this givesMiranda and Haskell an edge over SML in that it is easier to prove some properties of programs and tocharacterise particular sorts of computations. However, for �rst level teaching, I do not think that these aregood reasons to choose Miranda or Haskell over SML.0.3 ContentsIt is not the intention to cover full SML here. The major topics are:basic types and operations - integer, real, boolean stringfunctions as valuesglobal declarationspattern matching with booleans, integers and stringsinteger recursionconditional expressionlists, list pattern matching and list recursionlist higher order functionslocal declarationstuples and tuple pattern matchingconcrete datatypes 12

let expressions and simultaneous declarationsexceptionsinput/outputThere is minimal mention of:imperative constructsabstract data typesmodulesin the �nal chapter. There is no coverage of:recordsuser de�ned operators0.4 AcknowledgementsI would like to thank:Tore Bratvold and Sandra Foubister, for checking carefully the contents and exercises of the �rstdraft.The anonymous reviewer, for incisive and instructive comments, suggestions, corrections and im-provements.Peter King, for making Latex more bearable.Andrew Carrick, for his support and enthusiasm.I would particularly like to thank my 1st year BSc Computer Science and MSc in Knowledge Based Systemsstudents who acted as constructively critical consumers of much of the material in this book.I alone am responsible for the mistakes and misrepresentations in the following pages. If you spot any thenplease let me know.Greg Michaelson, Edinburgh, 1994/95greg@cee.hw.ac.uk
13

Chapter 1Introduction1.1 IntroductionThe world is a �endishly complicated place. To make sense of it, we break it up into manageable chunks andconstruct abstract descriptions or models of them. If those descriptions are detailed and precise enough thenthey can be turned into programs to be animated by computers.In this chapter we are going to consider various aspects of model making. This chapter is really a fairy story.Like all fairy stories it contains nuggets of wisdom but it presents them in an idealised and simpli�ed mannermaking lots of vague assumptions along the way. Still, we have to start somewhere. The rest of the book will�rm up and amplify the ideas sketched out here.1.2 Making modelsIf we want to solve a problem then one approach is to make a model which captures important aspects of thecircumstances of the problem. If the model is accurate and detailed enough then working with it should shedfurther light on the problem.Usually, a model means a simpli�ed physical replica of something. For example, many childrens' toys aremodels of far more complex devices. Models may be constructed at di�ering levels of closeness to the thingbeing modelled. For example, a basic toy car has four wheels so that it can be pushed across a
oor. A morecomplex model might have steerable wheels. An even more detailed model might have an electric motor so thatit does not need to be pushed. Finally, the model might have remote control so that its speed and direction canbe changed without direct contact.Each level of model encapsulates more and more features of the thing being modelled. However, each levelalso misses out a lot of detail which is deemed to be inessential: the detail should be appropriate for a model'sintended use. For example, a two year old will wreck a remote controlled car while a twelve year old will bebored by a push along wagon. Similarly, a child's model car probably does not have leather upholstery or anFM radio whereas a manufacturer's model car at a motor show might have both but no engine.Models can be made increasingly sophisticated so that they encompass more and more detail and hence providemore and more information about what is being modelled. In civil engineering, for example, models of proposedstructures are made to very high tolerances so that measurements made on them can be scaled up directly tothe ultimate constructions. None the less, in a model road bridge it is probably not important whether the linesin the centre of the road are white or yellow, or, indeed, if the lines are there at all. A fundamental aspect ofproblem solving and model making is deciding what detail is relevant.Models for use with computers are much more abstract than physical replicas. Computer models are programs,that is sequences of instructions for manipulating information. The information represents static details of14

the problem and the instructions describe the dynamic behaviour of those static details. Thus, a programis much more general than a physical model: the instructions describe dynamic behaviour for general casesand the information provides details for a speci�c case of interest. A physical model is frozen with one set ofproperties but a computer model can be used in any circumstances which �t the general case. For example, inusing a computer program to model a bridge the information might include the dimensions of the girders andthe strength of the material they are made from, and the instructions might describe how girders of arbitrarydimension and material bend and fracture when they bear weight. This program could then be used to modelthe behaviour of bridges made from steel or concrete provided the strengths of steel and concrete beams areknown.An important aspect of abstract model making is identifying general cases. One way to do this is to look at lotsof individual cases to try and spot regularities or common patterns in static detail and dynamic behaviour. It isvery useful to clarify how the individual cases are similar and how they di�er. A general case can then be formedby freezing the points of similarity and leaving open the points of di�erence. Subsequently, the general case canbe applied in a new individual case by �lling in the open points with appropriate information and instructions.The tricky thing is knowing what are going to be useful points of comparison, once again separating out relevantfrom irrelevant detail.For example, suppose we want to investigate the factors determining car fuel consumption. We know that carshave a number of common features such as wheels and engines and bodies and seats and so on: all the thingsthat constitute \carness". We also know that cars can be of di�erent colours, have varying numbers of doors,have di�erent sized engines, travel at di�erent speeds and have di�erent weights. We could then measure thefuel consumptions of lots of cars and try and relate the consumption to these di�erent factors. It is likely thatwe would �nd that the car colour and number of doors were not relevant to fuel consumption whereas enginesize, car weight and speed were relevant. Furthermore, we might �nd that fuel consumption increased in asimple way with engine size and car weight and in a complex way with speed. We could then construct a modelwhich given an arbitrary car's weight, engine size and speed would tell us its fuel consumption. We could checkthe model with the original information and if we were happy with its accuracy we could then apply it to newcars.Of course, if we had thought a little bit more about cars we might not have bothered to see if the colourand number of doors were important. That is, we actually already have a model in our brains based on ourexperience of cars and what we have read or have been told about them. If we are totally ignorant about aproblem then we can ask someone else or read about it or see if it is similar to a problem that we already havesome information about. We will then incorporate a �rst model in our brains as a starting point. We neverapproach a problem blind. Rather, we have presuppositions and we should always make them explicit. If ourpresuppositions are wrong then our experimentation and model making will show that up.1.3 Things, collections and propertiesWhen we make an abstract model we have to actually write down its description. Above, we introduced adistinction between static information and instructions for manipulating it. To begin with, let us assume thatinformation consists of collections of descriptions of things.Note that collections are also things so we can have collections of collections. Note also that instructions arethings and so are programs, structured collections of instructions. Hence the distinction between informationand instructions is not hard and fast in our world of thingfulness, or, as we shall see, in computer programs.Now, when we make a collection of things we do not do so arbitrarily: we have some criteria for identifyingthem and grouping them together, some common properties that they all share. That is, we must have someway of determining which things should be in the collection and which should not. For example, when weare collecting cars to investigate fuel consumption we might specify that a car has four wheels, an engine andenclosed seating. Thus, we should exclude bicycles, which have two wheels, no engine and are not enclosed,motorcycles, which have two wheels, an engine and are not enclosed, and stagecoaches, which have four wheels,no engine and are enclosed.Note that we have become a bit more speci�c about descriptions of things in collections. We are now includingproperties as parts of descriptions and we can de�ne a thing itself as a group of properties. We will come back15

to just what constitutes a property a little later on.This gives us a �rst way of representing a collection of things as a table of properties. For example, for vehicleswe might have:name wheels engine enclosedcar 4 yes yesmotorcycle 2 yes nostagecoach 4 no yesAt the top of the table is a row of properties. Each subsequent row is a sequence of property values for anindividual thing.Note that a thing will often have more properties than those needed to decide if it should be in a particularcollection. For example, individual cars have particular colours but having a speci�c colour is irrelevant forwhether or not something is a car. For example, in the collection of cars we might want to compare engine size,weight and speed but once again these are not properties that determine whether or not something is a car.1.4 Properties of propertiesIn the above discussion of cars we introduced implicitly a number of di�erent ways of describing properties.Now we will tease out just how we form property descriptions.First of all, we said that a car should have enclosed seating and should have an engine. Enclosed-seatingnessand engine-bearingness are two valued or binary properties: either a thing has or does not have enclosed seating;either a thing has or does not have an engine. To put it another way, the questions \Does the thing have enclosedseating?" and \Does the thing have an engine?" can both be answered yes or no. To put it yet another way,the statements \The thing has enclosed seating." and \The thing has an engine." can be either true or false.True and false are called truth values or logical values or boolean values. Boolean values are named for GeorgeBoole, the 19th century mathematician who was one of the �rst people to formalise the mathematics of truthvalues. He thought that he had found the answer to the ultimate question and called his book on logic \TheLaws of Thought".Next, we said that a car should have four wheels. We know that a wheel is an indivisible sort of an entity andso wheels are counted in whole numbers. Here there is an unstated implication that in determining the numberof wheels on a thing we use a whole number, an integer value.We also said that cars have weights and speeds. We know that these are not whole numbers of kilograms or ofmetres per second but can vary to an in�nitely �ne degree. Hence, the implication here is that we use decimalnumbers, real values, to describe them.Finally, we said that cars have colour. Colours have �xed names, for example \red", \green" and \blue". Here,we can use the word or words for the colour name. In principle, any colour name is valid, for example \metallicblue" or \racing green", provided the names can be distinguished. Words are a special case of the more generalstrings. Where a word is a sequence of alphabetic letters, a string is any sequence of any letters between doublequotes, including spaces and digits and punctuation marks. Thus, we can use strings to represent arbitrarysequences of words.These property descriptions - booleans, integers, reals and strings - are pleasingly general, certainly not speci�cto car properties. We can use truth values to represent any property involving the presence or absence ofsomething, for example whether or not something has marmalade fur or eats �sh. In the same way, we can useintegers to represent any property involving a whole number of something, for example how many marmaladehairs something has. Similarly, we can use reals to represent any property involving a variable quantity ofsomething, for example how many kilograms of �sh something eats. And we can use strings to represent aproperty involving a �xed range of describable possibilities, for example whether something is not very, quite,very or extremely furry.Note that we are being somewhat luxurious in allowing so many di�erent sorts of generalised property descrip-16

tions because we can use some of them to represent others. For example, we could use integers to representtruth values, say using `0' for `false' and `1' for `true'. We could also use integers to represent strings, forexample `0' for \red" and `1' for \orange" and so on. Equally well, we could use strings to represent integers,for example \zero" for `0' and \one" for `1' and so on. Or we could use pairs of integers to represent reals,for example `12' and `34' for `12.34'. However, we gain in expressive power by separating out di�erent generalproperty classes. By introducing additional general properties we can not necessarily describe more things butwe can make richer descriptions.1.5 Types and methodsFor making models, just putting things into collections is rather more involved than it seems at �rst. We'vesaid that for something to go into a collection it must have certain properties. Thus there must be some wayof selecting properties from the description of a thing. That suggests that there must also be some way ofconstructing descriptions of things out of properties in the �rst place. In turn, that suggests that there must besome way of constructing properties themselves. Similarly, once we have selected the properties from a thing'sdescription there must be ways of testing them. Furthermore, we may want to make new descriptions out of olddescriptions: if those new descriptions are not just simple copies then the properties from the old descriptionsmust be changed. These ways of constructing and accessing and manipulating properties and descriptions areknown as methods. As we shall see, they are the basis for the instructions in model building.Above we looked at the use of booleans, integers, reals and strings to describe properties. Each of these generalproperty descriptions are more than just collections of values for us to choose from. They also come with theirown methods which we use implicitly all the time. A collection of values and associated methods is known as atype. Let us now look at methods for these types in more detail.First of all, all of these types enable two values to be compared. We can ask \Is `5' the same as `7'?" or \Does`true' equal `true'?" or \Is `3.14' di�erent to `3.15'?" or \Is \tomato" identical with \tomato"?". Note that allof these questions require a binary answer, either `yes' or `no', or `true' or `false'. That is, methods for testingequality return boolean values.Note that it does not really make sense to compare values from di�erent types. When we compare two valueswe assume that we are comparing \like with like" and not comparing \apples and oranges" as the old saws haveit. If two values are from di�erent types then they are necessarily di�erent, so there is no point in comparingthem.For the boolean type, we can ask whether or not two values are both `true'. This method is called conjunction.We can also ask if one or both of two values is `true', known as disjunction. Or, we could ask if one followsfrom the other. This method is called implication. As we shall see, we can build up involved logical argumentsfrom these methods. Note that these methods return boolean values.For the integer and real types, we have methods to do arithmetic, that is to add or multiply two values togetheror subtract one from another or divide one by another. As we shall see later, we can construct complex sumsfrom these methods. Note that these methods return numerical values.We can also carry out magnitude comparisons on integer and real values to see if one is bigger or smaller thananother. We can use these methods to choose amongst things and to put things in order. Such methods returnboolean values.For the string type, we can join two strings together to form a new string, or we can ask how many letters arein a string, to get an integer, or we can select parts of strings to get what are e�ectively more strings. Onceagain, we can carry out quite elaborate textual manipulation using these simple methods.Note that methods are type speci�c. That is, they must be used with values of particular type and return valuesof particular type. For example, it does not make sense to add an integer and a string, or to test if a real isbigger than a boolean. As we will see, this is important for ensuring that the methods that make up programsare �tted together correctly. 17

1.6 Choosing typesA fundamental aspect of model making is deciding which types to use to represent properties. Above wesuggested using booleans for binary choices, integers for counting, reals for measuring and strings for words.Note, however, that di�erent types may be appropriate for what is apparently the same property in di�erentcontexts.For example, consider working with dates of the form:day month yearFirst of all, suppose we want to check if two people have the same birthday. We only need compare their datesof birth so they might be represented as strings, for example:"24th September 1953"or "1/3/39"Here we have two radically di�erent possible ways of writing down dates but they are both represented asstrings. So long as we use consistently just one way of writing down dates as strings then we can compare themletter by letter from left to right. Thus we can see that:"24th July 1961"is the same as:"24th July 1961"and: "29/4/56"is not the same as:"24/12/58"However, if we want to �nd the date of the day after someone's birthday then the representation as a singlestring is not very
exible. We need to add 1 to the day, suggesting representing the day as an integer. If thenew day is bigger than the number of days in the month then we need to reset it to 1 and somehow get to thenext month. This suggests representing the month as a integer between 1 and 12:1 == January2 == February...12 == Decemberwhich we can add 1 to. If the new month is bigger than 12 then we need to reset it to 1 for January and get tothe next year. This again suggests representing the year as an integer.18

We can also use this representation as three integers to compare dates but now we have to explicitly comparethree di�erent integer properties instead of one string property.In general, the choice of type to represent a property should be determined by how the property is used, that iswhat methods are used to manipulate it. It is important to try and �nd a balance between ease of manipulationand simplicity of representation.1.7 Characterising things and collectionsLet us now begin to �rm up the di�erences between things and collections of things. A thing is described by a�xed number of properties. We decide once and for all which properties are needed to describe something and,thereafter, we cannot add or remove properties. In contrast, a collection of things can have a variable numberof things in it. In particular, it can be empty. However, all the things must have common properties. As we willsee much later on, requiring things to be a �xed number of properties is not as restricting as it sounds becausesome of the properties could be other things or variable sized collections of other things.The reasons for this distinction are to do with various technical aspects of ensuring that models are correctlyconstructed: we are not yet in a position to go into more details but introduce the distinction to ease presentation.So, from now on we will distinguish �xed sized descriptions of things from variable sized collections of things.When we want a new value from one of our basic types we just write it down or form an expression to generateit. In the same way, we will need to have some way of writing down a thing as a �xed group of values and ofwriting down a collection as a potentially variable bundle of things.Above we saw that we can represent collections of things as tables. For example, suppose we have a collectionof vehicles each with its own name, a certain number of wheels, and the presence or absence of an engine. Thus,we might include a Morris 1000 car with four wheels and an engine, an Elswick Ambler bicycle with two wheelsand no engine, a Honda 90 motorcycle with two wheels and an engine, a Wells Fargo stagecoach with fourwheels and no engine, and a Fiat 127 car with four wheels and an engine. The corresponding table is:Vehicles collectionname wheels engine"Morris 100" 4 true"Elswick Ambler" 2 false"Honda 90" 2 true"Wells Fargo" 4 false"Fiat 127" 4 trueNotice that down each column all the values are of the same type: the name is always a string, the number ofwheels is always an integer and the presence or absence of an engine is always a boolean. Thus, each row hasthe same combination of a �xed number of types.We have just introduced tables as a �rst informal representation of collections of things. However, we are goingto delay making a more de�nite commitment to speci�c representations for things and collections of things untillater chapters. Nonetheless, we can begin to consider in broad terms how we can manipulate collections ofthings.Because things and collections are so fundamental to model making, it would be very useful to have generalways of manipulating them, that is general purpose methods. Thus, we want types for things and collectionswhich we can �rm up for particular problems. However, just as we are evading questions of thing and collectionrepresentation, we will also evade questions to do with the corresponding methods. We have also assumed thatwe can extract properties from things. In the same way, we will assume that we have ways of putting thingsinto and taking them out of collections. We will also assume that we can make an empty collection and thatwe can tell if a collection is empty. 19

1.8 New types from old typesWe have said that a car description is a collection of properties formed from values from general types. Wecould now consider a car description to be a value in its own right. Furthermore, we could consider the functionto �nd a car's name or the number of wheels or its travel distances as methods for manipulating of car values.That is, we can use general types and abstraction over their methods to start building a new type for cars.This is the essence of model making and programming. We analyse a problem to identify the types within it.We then used the general types we know about already along with abstraction to represent values and methodsfor new types appropriate to the problem. We then plug the methods for the new types together to solve theproblem. Once we have become adept at building new types we can then use them in turn to make yet moretypes to solve further problems.1.9 The story so farLet us summarise the above musings. Models are abstract descriptions and are composed of static informationand dynamic instructions. Information is based on collections of things. Things are groups of properties.Properties are values of particular types. Types are general purpose aggregates of values and methods. Methodsenable the manipulation of values of appropriate types and are the building blocks of programs, that is sequencesof instructions.Thus, knowing what we want to model we have to decide what things are relevant, which properties are importantand how they need to be manipulated. We then choose appropriate types for describing those properties andhence the things.We will now turn to how we use methods to construct instructions for thing manipulation through their proper-ties. In particular, we will look at the use of naming properties of things as a way of specifying general, abstractinstructions.1.10 Expressions from methodsMethods seem to be very simple instructions for manipulating properties of things and returning values whichmight be further properties. We can plug methods together to build up more complex instructions. However,we must make sure that the types match up. That is, if the result of one method is to be used by anothermethod then the result type of the �rst method must be the same as the required type for the second method.Instructions built from methods are called expressions.For example, suppose we write * to mean integer multiplication. Then, if we know that a car travels at 110kilometres per hour for 2 hours, then the distance covered is:110 * 2 ==> 220kilometres.Note the use of:==>to mean that the result of the expression on the left is the value on the right.For example, suppose we write < when we want to see if one integer is smaller than another. If we know thatone car has a top speed of 130 kilometres per hour and another has a top speed of 150 kilometres per hour thenthe �rst car has a slower top speed than the second car because:20

130 < 150 ==> trueFor example, if we know that one car travels at 150 kilometres per hour for 2 hours and another travels at 90kilometres per hour for 3 hours then the �rst car does not travel a lesser distance than the second car because:150 * 2 < 90 * 3 ==> falseLet us make the stages in carrying out this expression explicit. First of all, we work out the distance travelledby the �rst car:150 * 2 ==> 300Next we work out the distance travelled by the second car:90 * 3 ==> 270Finally, we compare the distances travelled:300 < 270 ==> falseRecall that * multiplies one integer by another integer to return an integer and < compares two integers. Thus,it is �ne to build an expression from other expressions using * to return integers for subsequent comparison by<.Note that there is an implicit order in which the expression is carried out. First we did the expressions involvingarithmetic methods. Then we did the expression involving a comparison method. In a complex expression,arithmetic methods are said to have greater precedence than comparison methods. When carrying out anexpression, the expressions it is composed of are carried out in order of precedence from highest to lowest.Notice also then after we had carried out the multiplication expressions we replaced them in the originalexpression with their results. We will assume that we can always replace something with something elseprovided they are equivalent.1.11 Generalising through namingIn the above discussion we were working with speci�c things with speci�c properties. Thus, we had a �rst carwith a speed of 110 kilometres per hour and a duration of 2 hours. Then we had two cars with top speedsof 130 and 150 kilometres per hour respectively. Then we had another two cars with speeds of 100 and 90kilometres per hours and travel durations of 2 and 3 hours respectively. In all the examples, we ignored anyother properties of the cars.All the expressions we constructed and evaluated involved those speci�c property values being frozen in place.For example, we carried out three similar calculations to �nd the distance travelled from three cars' speeds anddurations. Each time we wrote down a slightly di�erent expression with the same method but di�erent speci�cvalues for the speed and duration. This is all very well for �nding the distance travelled by 3 cars but would bedull for 30 cars, tedious for 300 cars and mind bogglingly boring for 3000 cars. It would be much better if wecould make an expression to �nd the distance from the speed and duration for an arbitrary car and then reusethat expression with lots of speci�c cars.We want to be able to talk about arbitrary values of properties rather than speci�c values. We can do so bynaming the properties and writing expressions that refer to the names rather than the speci�c values.For example, suppose we want to know how far a car travels in 2 hours given its speed. We could refer to thespeed by the name speed and write: 21

speed * 2We could generalise further by referring to an arbitrary duration of travel as duration, and then write:speed * durationThis technique of generalising speci�c values with a name is called abstraction. As we shall see, abstraction iscentral to programming. In particular, an abstracted expression is called a function.It makes subsequent use of functions easier if we always make explicit the names that are used for abstraction.For example, we could write something like:replace speedin speed * 2to make it clear that speed needs to be replaced with a speci�c value. Similarly, we could write:replace speedreplace durationin speed * durationto stress that �rst speed and then duration need to be replaced with values.1.12 Specialising abstractionsIn order to use an abstracted expression to carry out a calculation we need to replace the names with speci�cvalues. This is called specialising an abstraction. For each name, we need to state the values that will replaceit. For example, to �nd the distance travelled by a car going at an average speed of 100 kilometres per hour for2 hours using the �rst function above, we might write:replace speedin speed * 2with 100This tells us to replace speed with 100 giving:100 * 2 ==> 200Similarly, using the second function above to �nd the distance travelled by a car at 120 kilometres per hour for4 hours, we might write:replace speedreplace durationin speed * durationwith 120with 4First of all, we replace speed with 120 giving:replace durationin 120 * durationwith 4 22

Next we replace duration with 4 giving:120 * 4 ==> 480Specialising an expression abstraction by replacing names with values is known as calling or applying a function.1.13 Abstraction by comparisonWe could have used the approach of case comparison for generalisation suggested above to guide us in theabstraction. The three original calculations were:110 * 2150 * 290 * 3If we compare the �rst two they have the duration 2 in common but di�erent values for the speed. This suggeststhat we might abstract for speed:replace speedin speed * 2to form a function. We could abstract in the third example in the same way:replace speedin speed * 3to form another function. If we now compare these two functions they have speed in common but di�erentvalues for the duration. This suggests that we might abstract for duration:replace speedreplace durationin speed * durationto form a third function.This way of comparing things and abstracting at the points where they are di�erent is incredibly useful formodel making and programming. Indeed, this is often a good way to start solving a problem when we knowroughly what things we are interested in and how we want to manipulate them but are not clear how to proceed.We can write down lots of individual examples, compare them, spot the common features and introduce namesat the points of di�erence.1.14 Naming functionsWe have just seen how we can use names to generalise values in expressions. We can also associate names withfunctions so that in future when we refer to the name we know to use the associated function.For example, we might write:distance is replace speedreplace durationin speed * duration 23

to give the name distance to the function to �nd distance travelled from speed and travel duration. Supposewe want to �nd the distance travelled by a car doing 20 kilometres per hour for 10 hours, we could write:distancewith 20with 10First we replace distance with the associated function:replace speedreplace durationin speed * durationwith 20with 10and then we replace speed and duration as before:20 * 10 ==> 2001.15 Deciding what to do nextAbove, we �tted methods together to form expressions. An expression is a one o� activity but often we need tochoose amongst a group of possible actions depending on the properties of the things that we are investigating.We will now introduce a simple way of describing such decisions.For example, suppose that any car that has a top speed of over 150 kilometres per hour is said to be fast and allother cars are said to be slow. Consider deciding whether a car that has a top speed of 160 kilometres per houris fast or slow. We would like to get back the string \fast" or the string \slow" as the result of the decision.Suppose we use the method called > to decide if one integer is bigger than another. We might write:if 160 > 150then "fast"else "slow"The intention here is that if the expression after the if has the value true then the result is whatever followsthe then. Otherwise the expression after the if must have the value false and so the result is whatever followsthe else. Thus, in the above example:160 > 150 ==> trueso for:if truethen "fast"else "slow"the result is "fast".Note that �rst we worked out the value of the expression after the if which should return a boolean value. Wethen replaced the expression with its value before proceeding.For example, for a car with a top speed of 110 kilometres per hour, the fastness check is:24

if 110 > 150then "fast"else "slow"Here, the expression after the if gives:110 > 150 ==> falseso forif falsethen "fast"else "slow"the result is "slow".This way of making a decision is called a conditional expression.Incidentally, comparing these two conditional expressions, they are the same apart from the speed so we couldabstract over the speed to form a function:replace speedin if speed > 150then "fast"else "slow"We could then name this function:speedname is replace speedin if speed > 150then "fast"else "slow"and call it with, for example, a speed of 120 kilometres per hour:speednamewith 120 ==>replace speedin if speed > 150then "fast"else "slow"with 120 ==>if 120 > 150then "fast"else "slow" ==>if falsethen "fast"else "slow" ==> "slow"For example, suppose that one car travels for 2 hours and another travels for 3 hours and we want to knowwhich duration is longer. We could write: 25

if 2 > 3then 2else 3that is, if the �rst car's duration, 2, is bigger than the second car's duration, 3, then the result is the �rst car'sduration, 2. Otherwise the result is the second car's duration, 3. In fact:2 > 3 ==> falseso: if 2 > 3then 2else 3 ==>if falsethen 2else 3 ==> 3so the second car's duration is the longer.Perhaps the �rst car has a longer duration than one which travels for 1 hour:if 2 > 1then 2else 1 ==> 2Indeed it has.Comparing these two conditional expressions they di�er in the second duration, so we could abstract to form afunction to compare the duration 2 with an arbitrary second duration called duration2:replace duration2in if 2 > duration2then 2else duration2Now we are returning the arbitrary value duration2 if it is not smaller than 2. For example, suppose the secondcar travels for 3 hours:replace duration2in if 2 > duration2then 2else duration2with 3Replacing the name duration2 with the value 3, we get:if 2 > 3then 2else 3 ==>if falsethen 2else 3 ==> 3 26

so the second duration was longer.We could now abstract for the �rst car's duration:replace duration1replace duration2in if duration1 > duration2then duration1else duration2to make a general purpose function to compare two durations. We could name the function:longer is replace duration1replace duration2in if duration1 > duration2then duration1else duration2and call it, for example to �nd the longer of an 11 hour and 7 hour journey:longerwith 11with 7 ==>replace duration1replace duration2in if duration1 > duration2then duration1else duration2with 11with 7 ==>replace duration2in if 11 > duration2then 11else duration2with 7 ==>if 11 > 7then 11else 7 ==>if truethen 11else 7 ==> 111.16 Names are arbitraryThis new function will actually �nd the bigger of any two integers: it is not speci�c to travel durations eventhough we used the names duration1 and duration2. Similarly, our distance function:distance is replace speedreplace durationin speed * duration 27

will multiply any two integers together, not just speeds and distances.None the less, when we make abstractions we should certainly choose names that have meanings for us. Othewiseour functions can become incomprehensible. For example,thingumywhatsit is replace yibblereplace yabblein yibble * yabbleis just as good as:distance is replace speedreplace durationin speed * durationas a way of generalising multiplication but the names thingumywhatsit, yibble and yabble tell us nothingabout their intended use for our particular problem.Part of the art of model making is, on the one hand, choosing names that re
ect the values they generalisebut, on the other hand, recognising that the resulting functions may have applications beyond the immediateproblem. For example, because the duration comparison function works with any two integers, we might usemore general names say:bigger is replace firstreplace secondin if first > secondthen firstelse secondHere the names tell us that we are working with two values and that we supply the values in a particular order.Names' meanings are signi�cant to us because they remind us of what they are generalising in the model that weare building. However, it is important to remember that the names themselves are only signi�cant in functionsas indicators as to where replacements are to take place.1.17 New collections from old collectionsWe have talked about solving a problem by starting with an initial collection of things for subsequent manipula-tion. For a problem to be solved, we will need to construct a �nal collection of things satisfying various criteriaby selecting, inspecting and possibly changing things from the initial collection. The �nal collection may consistof the same sorts of thing as the initial collection or it may be full of di�erent things. The �nal collection maybe empty or may just have one thing in it. Indeed the initial collection may be empty or have just one thingin it. Of course, for elaborate problems we may well start with several initial collections and �nish with several�nal collections, but we shall keep things simple for the moment.Consider the following outline of solving a common simple sort of problem by creating a �nal collection of thingsfrom an initial collection of things:If the initial collection is empty then the �nal collection is empty.Otherwise, manipulate the next thing from the initial collection to decide whether or not to addsomething to the �nal collection that results from dealing with the rest of the initial collection.That is, we go through the initial collection taking out things until there are none left. Next we make an empty�nal collection. Then we look at each of the things that we took out of the initial collection and decide whetheror not to put something into the �nal collection. 28

We will now consider some concrete examples of this general approach, using three variants of it. The examplesare based on a collection of cat descriptions. Each description consists of the cat's name, a string, its fur colour,a string, and its weight, a real number. We might represent the cat descriptions using the following table:Initial collectionname colour weight"Wallace" "tabby" 4.0"Mog" "black" 4.5"Spider" "tabby" 2.8Note again that we are not making any �rm commitment to representations for things or collections: rather wenote that a table is one possible representation for a collection of things.1.18 MappingSuppose each cat eats 200 grammes of delicious dolphin
avoured soya cat food and we want to know how mucheach one now weighs.If the initial collection is empty then we make an empty �nal collection. Otherwise we take out the �rst catand add 0.2 to its weight. We then add it to the �nal collection from �nding new weights for all the cats in therest of the initial collection.Let us try this out. We start with the whole initial collection:Initial collectionname colour weight"Wallace" "tabby" 4.0"Mog" "black" 4.5"Spider" "tabby" 2.8The collection is not empty. After eating, the next cat:Old next cat"Wallace" "tabby" 4.0gains weight:New next cat"Wallace" "tabby" 4.2and we add it to the result of dealing with the rest of the collection:Initial collectionname colour weight"Mog" "black" 4.5"Spider" "tabby" 2.8The collection is not empty. After eating, the next cat:Old next cat"Mog" "black" 4.5is also plumper: 29

New next cat"Mog" "black" 4.7and we add it to the result of dealing with the rest of the collection:Initial collectionname colour weight"Spider" "tabby" 2.8The collection is not empty. After eating, the next cat:Old next cat"Spider" "tabby" 2.8is somewhat stouter:New next cat"Spider" "tabby" 3.0and we add it to the result of dealing with the rest of the collection:Initial collectionname colour weightThe collection is empty so the �nal collection is empty to begin with:Final collectionname colour weightThe new next cat is added:Final collectionname colour weight"Spider" "tabby" 3.0The new next cat is added:Final collectionname colour weight"Mog" "black" 4.7"Spider" "tabby" 3.0The new next cat is added:Final collectionname colour weight"Wallace" "tabby" 4.2"Mog" "black" 4.7"Spider" "tabby" 3.0Note that we unwound our way through the collection until it was empty, doing something to each thing. Wethen made a new empty collection and wound our way back up, picking up the new things and adding them tothe new collection.This activity is called mapping because it involves doing something to everything in a collection to form a newcollection. The �nal collection has as many things in it as the initial collection and each thing in the �nalcollection results from doing something to a corresponding thing in the initial collection.It is important to note that each stage has its own distinct initial and �nal collections. We are not working withone initial collection and one �nal collection which are common to all stages. Rather, we are using the rest ofthe initial collection at each stage as the initial collection for the next stage. Similarly, we used the expanded�nal collection from each stage as the basis of �nal collection for the previous stage. In the same way, eachstage had its own old and new next cats. When we moved from stage to stage we remembered the collectionsand next cats for the previous stages. When we returned to a stage we picked up the appropriate collectionsand cats. 30

1.19 FilteringSuppose we want to �nd all the tabby cats from the collection we used above:Initial collectionname colour weight"Wallace" "tabby" 4.0"Mog" "black" 4.5"Spider" "tabby" 2.8If the initial collection is empty then we make an empty �nal collection. Otherwise, we take out the �rst cat. Ifit is tabby then we add it to the �nal collection from �nding all the tabby cats in the rest of the initial collection.If the �rst cat is not tabby then we just make a �nal collection from all the tabby cats in the initial collection.Once again we start with the initial collection. The collection is not empty. The next cat:Old next cat"Wallace" "tabby" 4.0is tabby so we add it:New next cat"Wallace" "tabby" 4.0to the result of dealing with the rest of the collection:Initial collectionname colour weight"Mog" "black" 4.5"Spider" "tabby" 2.8The collection is not empty. The next cat:Old next cat"Mog" "black" 4.5is not tabby, so we ignore it and just deal with the rest of the collection:Initial collectionname colour weight"Spider" "tabby" 2.8The collection is not empty. The next cat:Old next cat"Spider" "tabby" 2.8is tabby so we add it:New next cat"Spider" "tabby" 2.8to the result of dealing with the rest of the collection:Initial collectionname colour weightThe collection is empty so the �nal collection is empty to begin with:Final collectionname colour weightFirst we add the next cat: 31

Final collectionname colour weight"Spider" "tabby" 2.8Then we do not add the next cat:Final collectionname colour weight"Spider" "tabby" 2.8Finally we add the next cat:Final collectionname colour weight"Wallace" "tabby" 4.0"Spider" "tabby" 2.8Once again, we wound our way down through the collection but this time we decided whether or not to keepeach thing. When the collection was empty we started a new empty collection and wound our way back upagain, picking up things that we had kept.This activity is known as �ltering because it involves selecting things which satisfy some criterion. The �nalcollection does not necessarily contain as many things as the initial collection as some of the things in the initialcollection do not meet that criterion1.20 FoldingSuppose we want to �nd the total weight of all the cats:Initial collectionname colour weight"Wallace" "tabby" 4.0"Mog" "black" 4.5"Spider" "tabby" 2.8This is slightly di�erent to mapping and �ltering as we want a single �nal thing, a value, rather than a collectionof things.If the collection is empty then we start with a �nal total weight of 0.0. Otherwise, we add the weight for the�rst cat in the initial collection to the total weight for all the other cats in the initial collection.As before, we start with the whole collection. The collection is not empty so we add on the next cat's weight:Next cat"Wallace" "tabby" 4.0to the result of dealing with the rest of the collection:Initial collectionname colour weight"Mog" "black" 4.5"Spider" "tabby" 2.8The collection is not empty so again we add on the next cat's weight:32

Next cat"Mog" "black" 4.5to the result of dealing with the rest of the collection:Initial collectionname colour weight"Spider" "tabby" 2.8The collection is not empty so add on the next cat's weight:Next cat"Spider" "tabby" 2.8to the result of dealing with the rest of the collection:Initial collectionname colour weightThe collection is empty. Here though, we are not forming a �nal collection butan overall weight. We start the overall weight at 0.0:Final weight0.0First we add in the next cat's weight:Final weight2.8Then we add in the next cat's weight:Final weight7.3Finally, we add in the next cat's weight:Final weight11.3As before, we wound through the collection, picking up the cats. At the end we started an overall weight andwound back up again adding in the cats' weights.This activity is called folding or reducing because it involves combining together properties of all the things ina collection to form a �nal value.1.21 CheckingSuppose we want to check if every cat weighs more than 2.0 kilograms. We want either `true' or `false' asthe result. If the �nal collection is empty then we must have successfully checked every cat so the �nal checkis `true'. Otherwise, if the next cat weighs more than 2.0 kilograms then we check the rest of the collection.Otherwise, we have found a cat which does not weigh more than 2.0 kilograms: there is no point in checkingany other cats so we stop with the �nal check as `false'.Once again we start with the initial collection. The collection is not empty. The next cat:Old next cat"Wallace" "tabby" 4.0weighs more than 2.0 kilograms so we check the rest of the collection:33

Initial collectionname colour weight"Mog" "black" 4.5"Spider" "tabby" 2.8The collection is not empty. The next cat:Old next cat"Mog" "black" 4.5weighs more than 2.0 kilograms so we deal with the rest of the collection:Initial collectionname colour weight"Spider" "tabby" 2.8The collection is not empty. The next cat:Old next cat"Spider" "tabby" 2.8weighs more than 2.0 kilograms so we deal with the rest of the collection:Initial collectionname colour weightThe collection is empty so the �nal check is `true' to begin with:Final checktrueSo the �nal check is `true':Final checktrueSo the �nal check is `true':Final checktrueSo the �nal check is `true':Final checktrueOnce again, we wound our way down through the collection but this time we passed a boolean value back up.1.22 Higher order functionsLet us summarise the mapping activity to �nd the weights of the fed cats:replace initial collectionin if the initial collection is emptythen the result is an empty final collectionelse the result is found byadding a new description*** from adding 200 grammes to the weight ***with the next in the initial collectionto the final collectionfrom dealing with the rest of the initial collectionNote that we have abstracted for the initial collection so that we could apply this function to an arbitrarycollection of cats.Suppose we had wanted the names of all the cats. We might try:34

replace initial collectionin if the initial collection is emptythen the result is an empty final collectionelse the result is found byadding a new description*** from taking the name ***with the next in the initial collectionto the final collectionfrom dealing with the rest of the initial collectionFor example, starting with:Initial collectionname colour weight"Wallace" "tabby" 4.0"Mog" "black" 4.5"Spider" "tabby" 2.8The collection is not empty. The next cat's:Old next cat"Wallace" "tabby" 4.0name is:New name"Wallace"and we add it to the result of dealing with the rest of the collection:Initial collectionname colour weight"Mog" "black" 4.5"Spider" "tabby" 2.8The collection is not empty. The next cat's:Old next cat"Mog" "black" 4.5name is:New name"Mog"and we add it to the result of dealing with the rest of the collection:Initial collectionname colour weight"Spider" "tabby" 2.8The collection is not empty. The next cat's:Old next cat"Spider" "tabby" 2.8name is:New name"Spider"and we add it to the result of dealing with the rest of the collection:35

Initial collectionname colour weightThe collection is empty so the �nal collection is empty to begin with:Final collectionnameThe new name is added:Final collectionname"Spider"The new name is added:Final collectionname"Mog""Spider"The new name is added:Final collectionname"Wallace""Mog""Spider"Now compare these two mapping functions:replace initial collectionin if the initial collection is emptythen the result is an empty final collectionelse the result is found byadding a new description*** from adding 200 grammes to the weight ***with the next in the initial collectionto the final collectionfrom dealing with the rest of the initial collectionreplace initial collectionin if the initial collection is emptythen the result is an empty final collectionelse the result is found byadding a new description*** from taking the name ***with the next in the initial collectionto the final collectionfrom dealing with the rest of the initial collectionThey are pretty much the same apart from what is done to the next thing in the collection. For heavy cats, theaction is:adding 200 grammes to the weightand for cat names the action is:taking the name 36

We could abstract over this action:replace actionreplace initial collectionin if the initial collection is emptythen the result is an empty final collectionelse the result is found byadding a new description*** from applying action ***with the next in the initial collectionto the final collectionfrom dealing with the rest of the initial collectionWhen we made functions before, we abstracted by introducing names for values. Now we have abstracted byintroducing a name for a function. We have constructed a general mapping function which has no connectionwhatsoever with cats or weights or colours or cat names. We can replace the names action and initialcollection with any function and collection, provided the function can be applied to things from the collection.In other words, the function must apply to things of the same type as the things in the collection.For example, if we wanted to use this function to �nd the weights of pampered cats we would call it with afunction to make a new cat description from an old cat description by adding on the weight of food. Similarly,to �nd the names of cats we would call it with a function to extract the name from a cat description.This function is said to be higher order because it can be applied to other functions. As we shall see, higherorder functions are extremely useful for model making and programming because they enable us to reuse thesame general problem solving instructions in speci�c circumstances.As we shall see, �ltering and folding can also be cast as higher order functions.1.23 Naming and recursionIn the above description of weighing fed cats, it says that the result from an initial collection which is not emptyincludes:... the final collectionfrom dealing with the rest of the initial collectionThe intention is that in \dealing with the rest of the collection" we should in some sense \do the same again"to the rest of the initial collection. Let us now try and make \doing the same again" a little clearer. What wewant to do again is the function itself. Suppose we associated the function with the name fed weight:fed weight isreplace initial collectionin if the initial collection is emptythen the result is an empty final collectionelse the result is found byadding a new descriptionfrom adding 200 grammes to the weightwith the next in the initial collectionto the final collectionfrom dealing with the rest of the initial collectionWe can then indicate \doing the same again" by referring to the function through its associated name:fed weight is 37

replace initial collectionin if the initial collection is emptythen the result is an empty final collectionelse the result is found byadding a new descriptionfrom adding 200 grammes to the weightwith the next in the initial collectionto the final collection*** from fed weight ***with the rest of the initial collectionWhenever we get to fed weight on the second last line, we can replace it with all the instructions, which willresult in them being carried out all over again. Each time, the rest of the initial collection from the previousstage becomes the initial collection for the next stage.We can use the same approach to �rm up the general mapping function. Let us call it mapping and put areference to mapping in the instructions:mapping isreplace actionreplace initial collectionin if the initial collection is emptythen the result is an empty final collectionelse the result is found byadding a new descriptionfrom applying actionwith the next in the initial collectionto the final collection*** from mapping ***with actionwith the rest of the initial collectionOnce again, when the name mapping is reached it should be replaced by all the instructions associated with it,causing them to be done all over again.Note that mapping has two abstraction points so it needs to be called with two values. The �rst abstractionpoint is for the the generalised action action so it must be passed to the call along with the rest of the initialcollection.This technique where a function can invoke itself by referring to a name that is associated with its own instruc-tions is called recursion. As we shall see, recursion is a fundamental technique for repeatedly carrying out asequence of instructions.Note that we said \a name that is associated with its instructions" not \its name". There is no necessaryconnection between a particular name and a particular sequence of instructions: the same name may be as-sociated with di�erent instruction sequences in di�erent places; di�erent names may be associated with thesame instruction sequences in di�erent places. This holds for associations between names and things in general.While it is often convenient to treat a name and a thing as if they are intimately connected they are really quiteseparate. A name simply identi�es a place where it may be replaced by a thing.1.24 SummaryAnd they all lived happily ever after? Well, we are at the end of this particular fairy story and it has given usan overview of problem solving and model making. Let us sum up what we have discussed in this chapter.We have a bundle of tools for making models. Our basic general types - booleans, integers, reals and strings -can be used to describe things as groups of �xed numbers of property values. These types have methods which38

can be plugged together to form expressions to manipulate property values. Expressions can be generalisedas functions by abstracting over values. We can regard thing descriptions and functions as the values andmethods of new types. Decisions can be made by using the values of boolean expressions to choose betweenpossible actions. Collections of things can be empty or have arbitrary numbers of the same type of thing. Newcollections can be constructed from old collections by repeatedly inspecting and changing things from the oldcollection to make things for the new collection. Functions can be generalised as higher order by abstractingover functions called within them. Recursion enables repetition by naming a function and then referring to thenames associated with a function in that function.However, despite introducing some ad-hoc notation we've barely begun to write programs. Our models are justabout detailed enough for human use but still far too vague for a computer to animate.A programming language may be regarded as a model making notation which computers understand. Mostprogramming languages provide a number of basic types like the ones we have been using, and ways of makingcollections of type values. Similarly, they provide methods, often called operations, for manipulating typevalues and collections. Furthermore, they provide abstraction mechanisms, that is ways of generalising throughnaming and specialising by binding names to values and collections and instruction sequences. Finally, theyprovide control mechanisms for making decisions and repeating instruction sequences. One way to tell di�erentprogramming languages apart and to classify them is to �nd out how speci�cally these di�erent aspects aresupported.The rest of this book is concerned with programming in the language Standard ML, that is using SML to makeprecise models for computer animation. We will not say much more about problem solving. Instead, we willlook mostly at writing programs where the problem is well de�ned already. Furthermore, there are no harddetails about how computers work: we will assume that a computer is organised to accept a program and eitherrun it or reject it because it contains errors, without caring about how a computer is able to do this.This book is based on the premise that the best way to learn how to write programs is to write lots of programs.Thus, there are lots and lots of exercises at the ends of chapters and you are urged to try them out. Mostexercises are based directly on ideas that have been covered in the text or can be solved by extrapolating fromsomething in the text.1.25 Book structureThe rest of the book is organised as follows.In chapter 2 we will meet the basic SML types for booleans, integers, reals and strings, and their associatedmethods or operations. Next we will look at how the methods can be plugged together to form expressions. Wewill also introduce brie
y the representation of things as tuples.In chapter 3 we will look at abstraction over expressions to form functions. We will then consider how to callfunctions to specialise expression abstractions.In chapter 4 we will consider the use of pattern matching to enable the functional representation of a limitedform of collection of things. We will also look at recursion with integer values.In chapter 5 we will meet the list type for representing collections. We will then consider a wide variety offunctions for general purpose list manipulation. Here, the focus will be on lists of basic values.In chapter 6 we will take a further look at list processing, in particular at a number of list higher order functions.In chapter 7 we will move on to the manipulation of collections of things as lists of tuples. Here we will extendmany of the simple list processing approaches from chapters 5 and 6.In chapter 8 we will look at techniques for manipulating texts represented as lists of strings.In chapter 9 we will consider a more general representation for collections called concrete datatypes whichenable collections of mixed type. We will use concrete datatypes in building lexical analysers to recognise39

symbol sequences represented as strings.In chapter 10 we will look at the use of concrete datatypes to represent collections as tree structures. Afterdiscussing general tree manipulation, we will build simple syntax analysers to check that symbol sequencescorrespond to grammatical rules and to represent the sequences' structures as trees. We will then considerbrie
y how to manipulate such symbol sequences by traversing the equivalent trees.In chapter 11, we will consider simple techniques for input and output to let SML programs communicate withthe outside world.Finally, in chapter 12 we will look brie
y at further aspects of SML not covered here.Appendix A contains details of how to use a Standard ML system.1.26 Syntax notationIn introducing SML we will need to be clear about the general form of information and instructions. To be moreformal, we will need to specify the syntax of SML constructs, that is those combinations of SML words that arevalid parts of or whole programs. In particular, we will need to refer to arbitrary instances of constructs. Todo so, we will write down the names of constructs in italics.For example:namewill mean an arbitrary name,integerwill mean an arbitrary integer,expressionwill mean an arbitrary expression and so on.There is a full grammar in Appendix B for the parts of SML which we will study here.1.27 TypefacesDi�erent typefaces are used to distinguish di�erent contexts.English text is in Times Roman.SML programs and program fragments are in Courier.Computer responses are in Helvetica.As noted above, the names of SML program constructs are in italics.40

1.28 Exercises1) For each of the following descriptions of problems, identify the relevant initial collections, things and theirproperties. Specify the type of each propertya) �nd the capital of a speci�ed countryb) �nd the time of the next showing of a speci�ed play at a speci�ed theatrec) �nd the names of all the cacti in a plant shopd) count how many varieties of tree in a plant shop are evergreene) �nd the names of all the 6th form students over 1.5 metres tall in a schoolf) count how many items on a fast food restaurant menu cost more than $5g) �nd the names of all the people in the 5th form of a school with the same birthday as someonein the 4th form of the same schoolh) check if someone in a speci�c university department was born before 1977i) �nd the names of all the people in a cinema who wear glassesj) �nd the names of all the varieties of fruit from Namibia in a supermarket2) given the following table of city details:city area countryDundee Tayside ScotlandBrisbane Queensland AustraliaGlasgow Strathclyde ScotlandNewcastle New South Wales AustraliaVictoria British Columbia CanadaNewcastle Northumbria Englanddescribe how to solve the following problems in terms of doing something to the �rst entry having done somethingto the rest of the entries, or doing something with no entries:a) �nd all the citiesb) �nd all the areas and corresponding countriesc) �nd all the cities in Scotlandd) �nd all the cities and areas in Australiae) �nd all the countries with a city called Newcastlef) count all the entriesg) count all the Australian entriesIn each case, check your description by working through it by hand.3) given the following table of people:name sex age swimsChris female 22 yesPat male 17 noJo female 21 yesChris male 20 yesPat female 19 noJo male 18 yes 41

describe how to solve the following problems in terms of doing something to the �rst entry having done somethingto the rest of the entries, or doing something with no entries:a) count how many female people swimb) �nd the ages of all the male people who don't swimc) �nd the names and sexes of all the people whose ages are at least 20d) �nd the total age of all the peoplee) �nd the total age of all the people called Jof) �nd the total age of all the female people who swimg) count how many people are called Pat and are less than 20h) count how many people are called Pat or called Joi) check if everyone swimsj) check if everyone swims or is called Jok) check if everyone who is male also swimsl) check if everyone who is female is also over 19In each case, check your description by working through it by hand.

42

Chapter 2Basic types2.1 IntroductionIn this chapter we are going to look at the boolean, integer, real and string types. We will use them to representproperty values. We will also brie
y consider tuples as a way of making things as groups of �xed numbers ofproperty values.2.2 Expressions and typesSML programs consist of function de�nitions and expressions that use the de�ned functions. We will see howexpressions are formed as the book progresses. At simplest, an expression may be a value from a basic type.Types and typing are central to SML, as we shall see. They enable thorough checks on whether operations andfunctions are put together correctly.Types are described by what are called type expressions. We will see how type expressions are formed as thebook progresses. To begin with, we will note that a type expression may be the name of a basic type, alsoknown as a type constructor.2.3 Basic system useWhen an SML system is started up it displays a:-to prompt for input and waits for an expression to be entered followed by a ;:- expression ;After you enter an SML expression into the system, it carries it out and tells you its value and type, and promptsfor another expression:- expression ;> value : type- 43

We will use this convention throughout this book to present examples.There are more details of system use in Appendix A. Please read it now.2.4 Boolean typeThe boolean type has the type constructor bool and has the values true and false. For example:- true;> true : boolHere, the system tells us that the expression true consisting of a single boolean value has the value true andis a bool value.We use the boolean type to represent the presence or absence of some property.2.5 Case sensitivityIt is important to note that SML views upper and lower case letters as distinct. If, for example, you try to useTRUE or True instead of true then the SML system will reject them as unknown names.In the next chapters we will see how we can introduce our own new names to generalise values. Once we havechosen a name we must spell it consistently. Changing just one letter in a name from lower to upper case willresult in the SML system seeing it as a di�erent name.In general, SML's special words like bool, true and false are all lower case.2.6 Integer typeThe integer type has type constructor int and consists of positive and negative whole numbers and zero. Apositive integer is a sequence of the digits:1 2 3 4 5 6 7 8 9 0There is a convention in Computing that non-zero integers should not start with 0. For example:- 42;> 42 : intHere the system tells us that the expression 42 consisting of a single integer value has value 42 and is an intvalue.Negative integers start with ~ . For example:- ~42;> ~42 : intWe use the integer type to represent properties which involve a discrete quantity.44

2.7 Real typeThe real type has type constructor real and consists of negative, zero and positive real numbers, written as adecimal number:integer . integerfor example:- 4.2;> 4.2 : realReal numbers may also be written as
oating point numbers in the form:integer1 E integer2The idea here is that integer1 is multiplied by 10 to the power of integer2.For example:- 3E3;> 3000.0 : realbecause:3E3 ==> 3*10*10*10 ==> 3000.0integer2 is called the exponent.An exponent may also be a negative integer. Then, integer1 is divided by 10 to the power of integer2. Forexample:- 3E~3;> 0.003 : realbecause:3E~3 ==> 3/(10*10*10) ==> 0.003Finally, real numbers may be written as
oating point decimal numbers:integer1 . integer2 E integer3Here, the decimal fraction integer1.integer2 is multiplied by 10 to the power of integer3. For example:- 4.2E3;> 4200.0 : realbecause: 45

4.2E3 ==> 4.2*10*10*10 ==> 4200.0Once again, the exponent may be a negative integer.Negative real numbers also start with ~:- ~4.2E1;> ~42.0 : realWe use the real type to represent properties involving an e�ectively continuously varying amount.2.8 Numeric precisionIts usual to think that integer and real numbers may be arbitrarily large or small. In practice, computers canonly represent numbers to a �xed number of places. Furthermore, di�erent sorts of computer represent numbersto di�erent degrees of precision.You may hear of a computer performing 32 or 64 bit integer arithmetic. The word \bit" refers to the binaryrepresentation of integers as sequences of 1's and 0's. The number of bits is an indication of the range of valuesthat can be represented; in general, the more bits the wider the range of values. Very crudely, if a computerperforms N bit arithmetic then the biggest integer cannot be larger than 2N�1 � 1, and the smallest integercannot be smaller than 2N�1.Computers can represent substantially bigger and smaller real numbers than integers but nothing like as accu-rately. Very roughly, while integers are precise, the computer represents real numbers as decimal multiples ofpowers of two. This enables a much wider range of values to be covered but there are lots of gaps in the rangeeven with �xed precision. One real number representation e�ectively covers several real values both immediatelylarger and smaller.It is hard to explain this in more detail without a major digression on binary representation, which we will avoidhere. You might consult a textbook on computer organisation for more details. The point to bear in brain isthat if you get an error message referring to numeric over
ow or under
ow then you have tried to use a numberwhich is larger or smaller than those permitted.2.9 String typeThe string type has type constructor string and consists of zero or more characters between double quotes:"For example:- "banana";> "banana" : stringStrings may be entered over several lines, with a back slash:\at the end of each line and at the start of the next line. However, the string will be treated as if it were all onone line. For example: 46

- "This\\string\\is on four\\lines?";> "Thisstringis on fourlines?" : stringNote that the beginning of each line abuts the end of the previous line: we should have put spaces at the endsof the lines:- "This \\string \\is on four \\lines?";> "This string is on four lines?" : stringA double quote can be included in a string by preceding it with a back slash:- "double \" quote!";> "double \" quote!" : stringA back slash can also be included in a string by preceding it with a back slash:- "back \\ slash?";> "back \\ slash?" : stringFinally, for an explicit end of line character:\nis used. We will see the signi�cance of this much later on when we consider input and output.The empty string, that is a string with no letters, is:""We use the string type to represent properties described by words.2.10 Tuple typeTuples are �xed length sequences of mixed type and may be used to represent things as groups of propertyvalues. A tuple is written as a sequence of values separated by ,s within (and).For example, a car description might be:("Morris 1000",4,true)for a Morris 1000 with four wheels and an engine. This tuple consists of a string, an integer and a booleanvalue.Similarly, a cat description might be: 47

("Mog","black",4.0)for a black cat called Mog which weighs 4.0 kilogrammes. This tuple consists of a string, a string and a realvalue.For example, a given and family name might be represented as a tuple consisting of two strings.("Donald","Duck")For example, a department and phone number might be represented as a tuple of a string and an integer:("Emergency",999)For example, a volume description, consisting of a volume name, height, depth and length might be representedby a tuple of a string and three integers:("box",3,5,8)Tuples may contain tuples. For example, someone's full name and age might be represented as a tuple consistingof a tuple, consisting of two strings, and an integer:(("Minnie","Minx"),9)Tuples may be nested to arbitrary depth. For example:("Scotland",("Glasgow",("Caledonia","Glasgow","Paisley","Strathclyde")))is a tuple of a string and a tuple of a string and a tuple of four strings.The components of tuples are known as elements.The type of a tuple is given by the types of its elements separated by *s. For a tuple:(expression1 , expression2 , ... expressionN)if the types of the expressions are:expression1 : type1expression2 : type2...expressionN : typeNthen the tuple's type is:type1 * type2 * ... * typeNFor example:- ("Morris 1000",4,true);> ("Morris 1000",4,true) : string * int * bool48

- ("Mog","black",4.0);> ("Mog","black",4.0) : string * string * real- ("Donald","Duck");> ("Donald","Duck") : string * string- ("Emergency",999);> ("Emergency",999) : string * int- ("box",3,5,8);> ("box",3,5,8) : string * int * int * int- ("Minnie","Minx",9);> ("Minnie","Minx",9) : string * string * intFor tuples with tuples as elements, the element tuple types are bracketed in the overall type expression. Comparethe last example with:- (("Minnie","Minx"),9);> (("Minnie","Minx"),9) : (string * string) * intHere, the whole of the �rst element is a tuple so its type is in brackets.For example:- ("Scotland",("Edinburgh",("Edinburgh","Heriot-Watt","Napier")));> ("Scotland",("Edinburgh",("Edinburgh","Heriot-Watt","Napier"))) :string * (string * (string * string * string))Note that we refer to a tuple as a value even though it is made up of other values.Tuples are known as product types. A:type1 * type2tuple may consist of any value of type1 followed by any value of type2. If there are, say, M possible type1 valuesand, say, N possible type2 values then there are M � N possible type1 * type2 tuple values. Hence the name\product" type.2.11 Function type overviewAs we shall see, functions are central to programming in SML.Alas, SML systems cannot display the instructions for functions as they are converted into a special represen-tation for use by the computer hardware. For a function, only the type is displayed:- function ;> function typeWe saw in chapter 1 that a function has a number of named abstraction points. These are called formalparameters or bound variables. A function is de�ned from a domain, determined by the types of the formalparameters, to a range, determined by the types of the �nal result. Thus, a function type is displayed as:49

domain type -> range typeWhen a function is applied to values corresponding to domain type the result is a range type.The values a function is applied to are called its actual parameters or arguments. A function application hasthe general form:expression1 expression2where expression1 returns a function value and expression2 returns a value of the same type as the functionvalue's domain.A function application is itself an expression.Most SML functions are pre�x, that is they are written before their arguments. However, SML provides specialsyntax for type methods that are applied to two values and are usually written as in�x operators betweentheir arguments, such as arithmetic and comparison operators. In SML, almost all such operators are disguisedfunctions. The arguments of in�x operators are called operands.A function application with an in�x operator has the form:expression1 operator expression2and is also an expression.2.12 Boolean operatorsThe function not negates a boolean value, that is it converts true to false and false to true. For example:- not true;> false : boolIn this function call, the name not is the function expression and the value true is the argument expression.For example:- not false;> true : boolnot is a function from a boolean argument to a boolean result. We can enter not into the system to �nd itstype: - not;> fn : bool -> boolThis says that not has a boolean domain and a boolean range. That is, not takes a boolean argument andreturns a boolean result.SML has a special built in operator for testing if two boolean values are true. This is known as conjunction.The in�x operator for conjunction is andalso. We can explain how andalso behaves with the following truthtable. Here X and Y stand for arbitrary truth values. The table shows all possible combinations of values of Xand Y, and the �nal values of X andalso Y: 50

X Y X andalso Yfalse false falsefalse true falsetrue false falsetrue true trueNote that the result is true only when both X and Y are true. Otherwise, the result is false.For example:- true andalso false;> false : boolIn this function application with an in�x operator, the operands are true and false.SML also provides a special built in in�x operator orelse for testing if either or both of two values are true.This is known as disjunction. orelse has the following truth table:X Y X orelse Yfalse false falsefalse true truetrue false truetrue true trueNote that the result is true unless both values are false.For example:- true orelse false;> true : boolSML systems will not display the types of andalso and orelse.2.13 Precedence and boolean expressionsComplex boolean expressions may be built up by using expressions as arguments or operands in further expres-sions. The order in which expressions are carried out or evaluated is determined by what is called the precedenceof their operators. In boolean expressions, function applications have higher precedence than expressions withandalso, and expressions with andalso have higher precedence than those with orelse. Thus, the order ofevaluation is function applications, then andalso and �nally orelse.For example, in:- not true andalso false;> false : bool�rst of all:not true ==> falseis evaluated and then: 51

false andalso false ==> falseFor example, in:- true orelse not true andalso false;> true : bool�rst of all:not true ==> falsegiving:true orelse not true andalso false ==> true orelse false andalso falseNext:false andalso false ==> falsegiving:true orelse false andalso false ==> true orelse falseFinally:true orelse false ==> trueNote that each time, a function is applied to the value immediately to its right and an operator is applied tothe values immediately on either side.If we need to override the precedence of functions and operators then we can use the brackets (and) to groupparts of expressions together. Bracketed expressions have higher precedence than function calls, so they areevaluated right at the beginning. For example consider a bracketed variant of the previous example:- (true orelse not true) andalso false;> false : boolFirst of all:true orelse not trueis evaluated because it is bracketed. Here, �rst of all:not true ==> falseso: true orelse not true ==> true orelse false52

Next:true orelse false ==> trueso for the original expression:(true orelse not true) andalso false ==> true andalso falseFinally:true andalso false ==> falsePutting in those brackets made (true orelse not true) be evaluated as the left operand for andalso ratherthan not true.Note that brackets are always needed if the result of an operator expression is to be the argument for an in�xoperator or function. For example, in:- not true andalso false;> false : boolnot true is identi�ed as a function call and evaluated �rst. If not is to be applied to the result of true andalsofalse then the argument expression must be bracketed:- not (true andalso false);> true : boolThis is because function calls have higher precedence than operators in expressions.2.14 Integer operatorsSML provides a variety of in�x integer operators. The addition operator is:+for example:- 22+20;> 42 : intThe subtraction operator is:-for example:- 55-13;> 42 : int 53

The multiplication operator is:*for example:- 3*14;> 42 : intThe division operator is:divfor example:- 126 div 3;> 42 : intFinally:modwhich is short for \modulo" �nds the remainder after division. For example:- 171 mod 43;> 42 : intThe pre�x integer negation function is ~. These operators may again be used with the brackets (and) to buildup complex expressions.The precedence of brackets and operators in decreasing order is:(...)function call~* div mod+ -so bracketed expressions are evaluated before function calls which are evaluated before negation which is eval-uated before multiplication, division and remainder which are evaluated before addition and subtraction.For example, in:- 3+4*5;> 23 : int�rst of all:4*5 ==> 20so: 54

3+4*5 ==> 3+20 ==> 23However in:- (3+4)*5;> 35 : intbecause �rst:3+4 ==> 7so: (3+4)*5 ==> 7*5 ==> 35For example, in:- 16-9 mod 5;> 12 : int�rst of all:9 mod 5 ==> 4so: 16-9 mod 5 ==> 16-4 ==> 12However in:- (16-9) mod 5;> 2 : int�rst of all:16-9 ==> 7so: (16-9) mod 5 ==> 7 mod 5 ==> 2When operators of the same precedence are used they are evaluated from left to right. For example:- 6 div 3*2;> 4 : intbecause: 55

6 div 3 ==> 2so: 6 div 3*2 ==> 2*2 ==> 4This left to right order of evaluation is important because a di�erent order can give a di�erent result. Forexample, we could get the e�ect of evaluating the previous expression from right to left with some judiciousbrackets:- 6 div (3*2);> 1 : intThe same operator may be repeated in an expression without bracketing. As with operators of the sameprecedence, expressions involving a repeated operator are evaluated from left to right. For example:- 1+2+3;> 6 : intThis is signi�cant for -, div and mod. For example for left to right:- 6-4-2;> 0 : intbut for right to left:- 6-(4-2);> 4 : intFor reasons which will become apparent later, SML cannot display the types of ~, +, - and *. We will see howto display the types of div and mod below.2.15 Tuple type operatorsdiv and mod are really special SML notation for operators which apply to tuples of two integers. The functionop is used to convert such special operators into functions on tuples. For example:- (op div) (126,3);> 42 : intis the same as:- 126 div 3;> 42 : intSimilarly:- (op mod) (97,55);> 42 : int 56

is the same as:- 97 mod 55;> 42 : intThus, we can use op to convert such operators into functions and thence display their types. For example:- op div;> fn : int * int -> intand: - op mod;> fn : int * int -> intshows that op div and op mod are functions from int * int domains to int ranges.2.16 Real operatorsSML provides a variety of in�x real operators. The real addition operator is:+for example:- 3.3+38.7;> 42.0 : realThe real subtraction operator is:-for example:- 81.7-39.7;> 42.0 : realThe real multiplication operator is:*for example:- 8.0*5.25;> 42.0 : realThe real division operator is: 57

/for example:- 189.0/4.5;> 42.0 : realAs for integers, the pre�x real negation operator is ~.These operators may be used with the brackets (and) to build up complex expressions.The precedence of operators and brackets in decreasing order is:(...)function call~* /+ -For example:- 3.2*11.0+6.8;> 42.0 : realbecause:3.2*11.0 ==> 35.2so: 3.2*11.0+6.8 ==> 35.2+6.8 ==> 42.0However:- 3.2*(11.0+6.8);> 56.96 : realbecause:11.0+6.8 ==> 17.8so: 3.2*(11.0+6.8) ==> 3.2*17.8 ==> 56.96For reasons that we will consider next, SML cannot display the types of +, -, and *. However using op:- op /;> fn : real * real -> realshows that op / is a function from a tuple of two reals to a real:- (op /) (126.0,3.0);> 42.0 : real 58

2.17 Overloaded operatorsOperators which apply to di�erent types are said to be overloaded. Thus +, - and * are called overloadedoperators because they apply to two integers or to two reals. Similarly, ~ is overloaded because it applies toan integer or a real. SML cannot display the types of overloaded operators as it can not tell which version isrequired. Some languages provide di�erent operators to distinguish integer and real operations. Instead, SMLuses the same operator for both cases.2.18 Mixed type arithmeticIn SML, mixed type expressions are not allowed. The overloaded operators +, - and * must always be appliedto either two integers or two reals. div and mod can only be used with integers. / can only be used with reals.To enable mixed type arithmetic SML provides conversion functions.The function real converts an integer to a real. For example:- real 42;> 42.0 : realreal is a function with type:- real;> fn : int -> realThe function floor returns the largest integer not greater than a real argument. For example:- floor (84.6/2.0);> 42 : intfloor is a function with type:- floor;> fn : real -> intreal and floor must be used to carry out mixed mode arithmetic to ensure type consistency.For example, to multiply an integer by a real to get an integer:- 3*(floor 14.1);> 42 : intFor example, to multiply a real by an integer to get a real:- 3.0*(real 14);> 42.0 : real2.19 String operatorsThere are fewer operators for strings than for the other basic types. The function size returns the number ofcharacters in a string as an integer. For example: 59

- size "banana";> 6 : intThus, size's type is:- size;> fn : string -> intThe in�x operator ^ joins two strings end to end. For example:- "fish"^"finger";> "fishfinger" : stringThus, ^'s type is:- op ^;> fn : string * string -> string^s may be repeated in expressions. For example:- "fish"^" "^"finger";> "fish finger" : string2.20 Comparison operatorsSML provides overloaded in�x operators for comparing values of the same type. The operator:=checks if two values are the same and:<>checks if two values are di�erent. These return boolean values and are de�ned for most types of values. Notethat = and <> are not de�ned for functions.For example:- 2=2;> true : bool- "chalk"="cheese";> false : boolFor tuples, corresponding elements are compared. The tuples are the same if the corresponding elements arethe same. For example:- (42,42.0)=(42,42.0);> true : bool- ("forty","two")=("forty","three");> false : bool 60

Tuples must be of the same types to be compared.These operators may have expressions as operands as well as values. Both operands must be of the same type.The comparison operators have lower precedence than boolean, arithmetic, real and string expressions so theyare carried out after such operands. For example:- 2=1+1;> true : boolbecause:2=1+1 ==> 2=2 ==> trueFor example:- size "fish"=3;> false : boolbecause:size "fish"=3 ==> 4=3 ==> falseFor example:- floor 42.23=42;> true : boolbecause:floor 42.23=42 ==> 42=42 ==> trueFor example:- real (size "haddock")=6.0;> false : boolbecause:real (size "haddock")=6.0 ==> real 7=6.0 ==> 7.0=6.0 ==> falseThere are also overloaded in�x comparison operators for testing orderings on values of the same type. Theyare: <to see if one value is less than another:<=to see if one value is less than or equal to another: 61

>=to see if one value is greater than or equal to another and:>to see if one value is greater than another.These return boolean values and are de�ned for integers and reals. For example:- 42 <= 41;> falseMany SML systems also allow order comparisons on strings which test for alphabetic order. For example:- "haggis"<"oatcake";> true : boolAs with = and <>, these operators may have expressions as operands provided they return values of the sametype. These operators also have lower precedence than integer, real and string expressions so they are evaluatedlast. For example:- real 42>41.5;> true : boolbecause:real 42>41.5 ==> 42.0>41.5 ==> trueFor example:- "t"^"his"<"t"^"hat";> false : boolbecause:"t"^"his"<"t"^"hat" ==> "this"<"t"^"hat" ==> "this"<"that" ==> falseNote that these comparison operators return boolean values so they can be used to make expression operandsfor andalso and orelse. For example:- "a"<"b" andalso "b"<"c";> true : boolbecause:"a"<"b" andalso "b"<"c" ==> true andalso "b"<"c" ==>true andalso true ==> true 62

2.21 Boolean comparisonNote that a boolean expression returns a boolean value so there is never any point in comparing the result of aboolean expression with a boolean value. Consider:boolean expression = truewhere boolean expression is any expression returning a boolean value.When boolean expression is true then:boolean expression = trueis true. When boolean expression is false then:boolean expression = trueis false. Either way, the result of the comparison is the same as the result of boolean expression alone so thecomparison with true is not needed. Thus:boolean expression = trueis the same as:boolean expressionSimilarly:boolean expression = falseis true when boolean expression is false and false when boolean expression is true. Thus:boolean expression = falseis the same as:not (boolean expression)2.22 Real comparisonReal numbers may be stored in a computer to more places than they are represented. This can lead to problemswhen trying to compare real values.Consider calculating:20.0/6.0by hand: 63

20.0/6.0 ==> 3.3333333333333333333333...The 3 repeats endlessly. However, the computer can only hold a �xed number of decimal places and there arerounding errors for real arithmetic. Furthermore, the computer may display real numbers to less places thanare actually held.For example, with:- 20.0/6.0;> 3.33333333333333 : realthe result is displayed to 14 decimal places.Now consider:- 20.0/6.0=3.33333333333333;> false : boolHere, the comparison of 20.0/6.0 with its assumed value accurate to 14 decimal places fails because the resultof the calculation is actually held internally to more places than are displayed.In general comparisons of real expressions and real values should be avoided. Instead, such a comparison shouldbe recast as a subtraction and the result should be tested to see if it within an acceptable margin of a real value.If reals are displayed to N places then the acceptable margin is half the N + 1th place. Thus, here the marginis 0.000000000000005. For example, the above comparison could be recast as:- 20.0/6.0-3.33333333333333<0.000000000000005 orelse3.33333333333333-20.0/6.0<0.000000000000005 ;> true : boolWe do not know whether 20.0/6.0 is going to be slightly bigger or slightly smaller than 3.33333333333333 sowe test for both possibilities.We could avoid doing the main calculation twice by abstracting at those points.2.23 Division and remainder with a negative operandThe behaviours of div and mod with one negative operand are somewhat counter-intuitive. First of all, fordivision, the result is rounded down to the nearest integer. For example:- 7 div 3;> 2 : intbut in:- 7 div ~3;> ~3 : intand: - ~7 div 3;> ~3 : int 64

the result is ~3 rather than ~2.Secondly, for integer i and divisor d, SML requires that div and mod satisfy:i div d = q (quotient) i mod d = r (remainder)d * q + r = iso: r = i - d * qwhere:0 <= r < d or d < r <= 0so the remainder with mod always has the same sign as the divisor.Hence, for mod, because the quotient is rounded down, the remainder with one negative operand may be biggeror smaller than with two positive or two negative operands. For example:- 7 mod 3;> 1 : intbut: - 7 mod ~3;> ~2 : intbecause:7 div ~3 ==> ~3so: 7 - ~3 * ~3 ==> 7 - 9 ==> ~2Similarly:- ~7 mod 3;> 2 : intbecause:~7 div 3 ==> ~3so: ~7 - 3 * ~3 ==> ~7 - ~9 ==> 2Thus, you should be careful when using mod or div with one negative operand as the result may not be whatyou expect. 65

2.24 Tuples with expressionsTuples can be constructed from operator expressions as well as values. Each expression is evaluated and the�nal value placed in the tuple.For example:- (real 2,floor 2.8);> (2.0,2) : real * int- ("cat"^"food",3.0*0.2,"Mog"<"Spider");> ("catfood",0.6,true) : string * real * bool2.25 Function compositionFunction calls may be nested together by making the result of one call the argument in another call. This iscalled function composition. For example, to �nd the real value equivalent to the integer length of a string:- real (size "brolga");> 6.0 : realHere, size is applied to a string and returns an integer for real which returns a real:real (size "brolga") ==> real 6 ==> 6.0Functions may be composed to arbitrary depth.In SML, the in�x operator o may be used to compose functions. In general:(function1 o function2) expressionis the same as:function1 (function2 expression)Thus, we could have written:- (real o size) "bunyip";> 6.0 : real2.26 Introducing exceptionsSometimes things can go badly wrong in a computer program and the system has to stop running it. Thenormal sequence of evaluation is halted, the system displays an error message and returns to a state where theuser can correct the fault and reinitiate evaluation.Consider the div operator for dividing one integer by another. In arithmetic, dividing by 0 is a special caseand is often said to return in�nity. However, many programming languages cannot process in�nity as a value.Instead, the system halts the program after an attempt to divide by 0.66

In SML, a change in the normal
ow of evaluation may be initiated through what is called raising an exception.The system will then catch the exception and handle it. If the system does not know how to handle the exceptionthen it will halt evaluation and return to the system prompt after displaying a message. For example, if anattempt is made to divide by 0, the SML system will automatically raise an exception and stop evaluation. Onthe SML system I use, the e�ect is:- 11 div 0;uncaught exception Div-We will see later on that we can de�ne our own exceptions as a way of dealing with awkward situations.2.27 SummaryIn this chapter we met the SML basic types for booleans, integers, reals and strings and introduced the use oftuples to represent things as groups of property values. Then we looked at various operators for these basictypes and their use in forming expressions. We saw that we could build up more involved expressions by usingexpressions as operands of other expressions. Operators have precedence which determines the order in whichparts of expressions are evaluated and brackets are used to change the evaluation order. Some operators areoverloaded and can be used with di�erent types but mixed type expressions require explicit type conversion.Next, we discussed comparison operators and noted problems with real comparison. We considered buildingtuples from expressions. We also looked at function composition for nested function calls. Finally, we metexceptions as a way of halting evaluation in dubious circumstances.It is very important that you now tackle the exercises at the end of this chapter and run your solutions on aStandard ML system: the best way to learn to program is by doing it! Appendix A contains suggestions forStandard ML system use.2.28 Exercises1) Identify the types of the following values:a) 5b) 5.0c) "five"d) truee) 5.0E0f) 5E5g) ~5h) 5E~5i) (5,5,5)j) (5,5.0)k) ("five",5.0,5)l) (true,5,"true",5.0)m) (1,(1,1))n) ((2,2),2)o) (1.0,(2.0,3.0),4.0)p) ("one",(1,1.0))q) (("one",1),("two",2))r) ((1.0,("one",1)),(2.0,("two",2)))s) ((1,true),("one",false),(1.0,true))t) ((1,1,1),(2,4,8),(3,6,9))u) ((1,1),(1.1,1.1),("one","one")) 67

2) Find the values and types of the following expressions:a) true orelse falseb) true andalso falsec) not true andalso falsed) not (true andalso false)e) not true orelse falsef) not (true orelse false)g) false andalso false orelse trueh) false andalso (false orelse true)i) true orelse false andalso falsej) (true orelse false) andalso false3) Find the values and types of the following expressions:a) 6*3+4b) 6*(3+4)c) 6.0*3.0+4.0d) 6 mod 7*8e) 6 mod (7*8)f) floor 4.2E5g) floor 4.2E~5h) real 77i) real 42*real 42j) floor (real 42)k) real (floor 42.42))4) Find the values and types of the following expressions:a) size "barnacle"b) size ""c) "blistering"^"barnacles"d) "thundering"^" "^"typhoons"e) size ("Red"^"Rackham")f) real (size "Unicorn")g) floor (real (size ("Marlin"^"spike")))5) Find the values and types of the following expressions:a) "alphabetic"<="order"b) "alphabetic"<>"order"c) "alpha">"alphabet"d) "1"<"2"e) 100000000.0=1.0E8f) 1<>1 orelse 1=1g) 1<2 andalso "one"<"two"h) "1"<"2" andalso "3"<"4"i) not ((size "wingnut")<3)j) (1,"one")<>(1,"won")k) (true,"true")=(false,"false") orelse (true,"true")=(true,"true")6) Find the values and types of the following expressions:a) ("a","a"^"b","a"^"b"^"c")b) ("eleven",size "eleven",real (size "eleven"))68

c) (1+1,"one"^"one",1.0+1.0,true andalso true)d) (("one",size "one"),("two",size "two"))e) (not,size,real,floor)7) Write expressions to:a) check if "mulga" has more than 5 lettersb) check if the integer part of 6.54 is smaller than 7c) check if 99 as a real is bigger than 89.9d) join "fish" and "finger" with a space in between theme) check if ";" comes either before "a" or after "z" in alphabetic orderf) �nd the cost of 55 snow gum trees at $100.55 each, as a realg) �nd the cost of 77 wattle trees at $120.23 each, as an integerh) �nd the cost of 93 heath banksia bushes at $98.75 each with an additional sales tax at 15%, as areali) �nd the cost of 37 jacaranda trees at $246.64 each with an additional sales tax at 17.5%, as anintegerj) �nd the cost of 29 myrtle trees at $23.79 each, with a discount of 20%, as a realk) �nd the cost of 74 paper bark trees at $147.9 each, with a discount of 12% and an additionalsales tax at 12%, as an integer8) Explain why the following expressions are incorrectly formed:a) real "three"b) real 3.0c) floor 7d) size 33E33e) false andalso "true"f) 6.0+size "grapefruit"g) 72.4 div 4h) 48 mod 7.0i) 126/3j) size "Red"^"Rackham"k) not 3<4l) real 4+5m) floor 6.2+7.3n) 1 (not =) 2o) op +
69

Chapter 3Global declarations and functions3.1 IntroductionIn chapter 1 we saw that abstraction is based on generalisation through the introduction of names. Specialisingan abstraction then involves replacing the names with particular values. Abstraction mechanisms are centralto programming languages and provide a way of classifying and distinguishing between di�erent classes oflanguages.In this chapter we are going to start to look at how we can introduce names and associate them with valuesin SML. SML provides a variety of ways of associating names with values and we will discuss four in thisbook. Global declarations, which we will meet shortly, are a simple way of associating names and values forthe duration of an SML session. Functions, which we will consider in some detail for most of this chapter, areexpression abstractions where a formal parameter, a name, identi�es the abstraction point. A function call thenassociates the formal parameter, the abstraction name, with the actual parameter, the argument value, for theduration of that call. Local declarations and let expressions, which we will discuss in later chapters, are usefulfor structuring programs.To begin with we will use rather long winded notations for function descriptions and use. In the next chapterwe will see more succinct notations which are short hand for the long winded notations. However, we will startwith the longer notations to help to clarify the underlying concepts of function use.3.2 NamesIn SML, at simplest, a name may be a sequence of alphabetic, numeric and underbar characters, starting withan alphabetic character. For example:x banana legs_11 M90 Highway_61As we shall see later, names starting with ' are used to abstract over types, that is to name type variables.Recall from chapter 1 that a name serves both to identify an abstraction and to remind us of the intentionbehind the abstraction. The use of meaningful names is very important for clear programming. However, thereis a need for a judicious balance between the meaningfulness and length of names. Very long names clutter upprograms.It is sometimes tempting to introduce ad-hoc name shortening conventions which are perfectly understood bythe person that introduces them but incomprehensible to other people. For example, compare:initial_value init_val initval ival iv 70

The �rst is on the edge of being too long. The second and third are broadly comprehensible. In the last twothe signi�cance of i is not apparent. The last name could mean \four" in Roman or \intravenous" for drips or\image vector" for picture processing and so on.The use of such conventions is appropriate in programming if it is made clear what the conventions are and theconventions are applied consistently. Thus, we will adopt some conventions here to simplify presentation. Wewill sometimes use:i i1 i2 i3 ...or a name preceded or followed by an i for names associated with integers,r r1 r2 r3 ...or a name preceded or followed by a r for names associated with reals ands s1 s2 s3 ...or a name preceded or followed by a s for names associated with strings. We will also use:v v1 v2 v3 ...for names associated with arbitrary values andl l1 l2 l3 ...for names associated with arbitrary lists.Names are also known as identi�ers.3.3 Reserved wordsThere are a number of names which are of special signi�cance in SML. These are known as reserved words.They are:abstype and andalso as case do datatype else end eqtype exception fnfun functor handle if in include infix infixr let local nonfix of op openorelse raise rec sharing sig signature struct structure then type valwith withtype whileReserved words should not be used as names in programs as the system will always assume that they have thespecial SML signi�cance.3.4 Global declarationsA global declaration associates a name and a value for the duration of an SML session and takes the form:val name = expression 71

The system evaluates the expression to get a value value of type type, associates name with that value andresponds:> val name = value : typeFor example, to associate the name pay and the integer 12000:- val pay = 12000;> val pay = 12000 : intFor example, to associate the tuple:("Dennis","Menace")and the name name- val name = ("Dennis","Menace");> val name = ("Dennis","Menace") : string * stringThe name is then said to be globaly declared.Any subsequent mention of a globaly declared name returns the associated value. For example:- pay;> 12000 : int- name;> ("Dennis","Menace") : string * stringNames from global declarations may be used in expressions in place of constants and are e�ectively replaced bythe associated values.For example, to subtract a tax allowance of 4000 from the value in pay:- pay-4000;> 8000 : intFor example, to calculate tax at 25% on the value in pay and associate the resulting value with the name tax:- val tax = pay * 25 div 100;> val tax = 3000 : intFor example, to associate payslip with a tuple of the values from name, pay, tax and the net pay after tax oftax on pay:- val payslip = (name,pay,tax,pay-tax);> val payslip =(("Dennis","Menace"),12000,3000,9000) :(string * string) * int * int * intA typical SML program consists of a sequence of global declarations, followed by expressions that use them.72

3.5 FunctionsFunctions are used to abstract over expressions. The formal parameters make explicit the names that are usedfor generalisation. They are then used in the function body. When a function is called with actual parameters,the body is evaluated with the formal parameters replaced with the actual parameter values. Thus, de�ning afunction abstracts over an expression and calling a function specialises an abstracted expression.A function value has the form:fn name => expressionThis says:replace name in expression.The name is the formal parameter, also known as the bound variable. The expression is known as the body.If the name can be associated with values of type type1 and the expression returns a value of type type2 thenthe function's type is:type1 -> type2In other words, the function is a mapping from a domain of type type1 to a range of type type2.If the �nal result of an expression is a function then its type is displayed as:- function ;> fn : typeAn important aspect of SML is that the system can often deduce the type of the bound variable from the wayit is used in the body.Let us look at functions in more detail through some examples. Consider �nding income tax on 10000 at 25%;- 10000*25 div 100;> 2500 : intNow consider �nding income tax on 12000 at 25%:- 12000*25 div 100;> 3000 : intThese two expressions are the same except for the sum of money. We can abstract over the sum of money byintroducing a name sum to stand for an arbitrary sum of money:sum*25 div 100We then specify that sum is the bound variable, the abstraction point, for this expression:fn sum => sum*25 div 100 73

If we give this function value to the SML system:- fn sum => sum*25 div 100;> fn : int -> intthe system tells us that we have entered a function and deduces that the domain is an integer and the rangeis an integer. Remember that * must have two integer or two real operands. 25 is an integer so in sum*25 thename sum must stand for an integer as well. Hence the domain is an integer. Furthermore, if sum is an integerthen: sum*25 div 100is an integer value as * returns an integer and div takes two integers and returns an integer. Hence the rangeis an integer.A function is called (or \applied") with an expression of the following form:function expression argument expressionFirst the function expression is evaluated to return a function value, say:fn name => expressionof type:type1 -> type2Next the argument expression is evaluated to return a value, sayvaluewhich must be of type:type1the same as the function's domain type.Finally, all occurrences of the bound variable name in the body expression are replaced by the argument valuevalue and the body is then evaluated to return a result value of type:type2This is known as applicative order or strict or eager evaluation or call by value.If the function expression is a function value or call then it must be in brackets.If the argument expression is a function call, operator expression or function then it must be in brackets.For example, to �nd tax at 25% on 10000:- (fn sum => sum*25 div 100) 10000;> 2500 : int 74

sum is replaced with 10000 in the body:10000*25 div 100which is then evaluated.For example, to �nd tax at 25% on 12000:- (fn sum => sum*25 div 100) 12000;> 3000 : intsum is replaced with 12000 in the body:12000*25 div 100which is then evaluated.For example, consider making the word "banana" plural by putting an "s" on the end:- "banana"^"s";> "bananas" : stringFor example, consider making the word "fishcake" plural by putting an "s" on the end:- "fishcake"^"s";> "fishcakes" : stringThese expressions are the same except for the word. We can abstract by using the name word to stand for anarbitrary word:word^"s"We then make it explicit that word is the abstraction point:fn word => word^"s"The type of this function is:- fn word => word^"s";> fn : string -> stringThe operator ^ applies to two strings so word must be a string. Hence the domain is a string. The operator ^returns a string so the range must be a string. We can now apply this function to make a plural for "banana":- (fn word => word^"s") "banana";> "bananas" : stringThe bound variable word is replaced with the argument in the body:"banana"^"s" 75

which is then evaluated.Once again, to make a plural for "fishcake":- (fn word => word^"s") "fishcake";> "fishcakes" : stringThe bound variable word is replaced with the argument in the body:"fishcake"^"s"which is then evaluated.For example, the age for voting in the UK is 18 years. Consider checking whether or not someone of age 17 canvote in the UK:- 17 >= 18;> false : boolFor example, consider checking whether or not someone of age 19 can vote in the UK:- 19 >= 18;> true : boolThese expressions are the same apart from the age being checked. We abstract over the age using the nameage: age >= 18We then make the abstraction point explicit:fn age => age >= 18The type of this function is:- fn age => age >= 18;> fn : int -> boolThe operator >= must have two arguments of the same type. 18 is an integer so age must be an integer. Thusthe domain is an integer. Similarly, >= returns a boolean so the range must be a boolean.For example, to check if someone age 17 can vote:- (fn age => age >= 18) 17;> false : boolHere, age is replaced with 17:17 >= 18which is then evaluated. 76

3.6 Naming functionsGlobal declarations may be used to associate names with functions. For the global declaration:- val name = functionwhere function is a function, the system will respond:> val name = fn : typeto show that name is associated with a function of the given type.For example, to name the tax at 25% function:- val tax = fn sum => sum*25 div 100;> val tax = fn : int -> intFor example, to name the plural function:- val plural = fn word => word^"s";> val plural = fn : string -> stringFor example, to name the voter check function:- val voter = fn age => age >= 18;> val voter = fn : int -> boolA name associated with a function value may then be used as the function expression in a function call. Whenevera globaly declared name appears in an expression, it is replaced by the associated value. For example, to usethe tax function:- tax 20000;> 5000 : intHere, tax is replaced by fn sum => sum*25 div 100 giving:(fn sum => sum*25 div 100) 20000Next, sum is replaced by 20000 giving:20000*25 div 100 ==> 5000Similarly, the plural function:- plural "bat";> "bats" : stringand the voter function: 77

- voter 21;> true : boolcan be called by mentioning the associated names.In SML, something must be declared before it can be referred to. Thus, if one function calls another function byreferring to its associated name then the declaration for the called function must appear before the declarationfor the calling function. Sometimes several functions need to call each other: we will see how to deal with thisin chapter 9.3.7 CommentsSML allows textual comments to appear in programs. These may be used to clarify what is going on. Acomment consists of text within the comment brackets (* and *). Comments may appear anywhere and areignored by the SML system. Comments may extend over several lines.It is good practise to precede function declarations with comments to say brie
y what the functions do. Forexample:- (* find 25% of an integer *)val tax = fn sum => sum*25 div 100;> val tax = fn : int -> int- (* add "s" after a string *)val plural = fn word => word^"s";> val plural = fn : string -> string- (* check if an integer is more than 18 *)val voter = fn age => age >= 18;> val voter = fn : int -> boolIn these examples, the comments seem unnecessary because the functions are so simple and we have associatedthe functions with meaningful names. Nonetheless, it is worth commenting functions as you develop them bothto help other people understand what they do and to remind yourself.It can also be helpful to place comments on the right hand side of each line of longer functions to clarify whateach step does.It is a very common mistake to forget the closing comment bracket *)!3.8 Making the bound variable type explicitSuppose we try to de�ne a function to �nd the square of an integer:fn x => x*x;The system cannot type this function because * is overloaded. That is * can be used with either two reals ortwo integers and the system has no way of telling which x is. We have to specify the type of x explicitly.In general, a function's bound variable type may be speci�ed by:fn (name : type) => expression 78

This says that in expression it is assumed that name will only be associated with a value of type typeFor example, for the above function we need to make it explicit that x is an integer:- (* square an integer *)val sq = fn (x:int) => x*x;> val sq = fn : int -> intHere, because x is nominated as int then the integer version of * must be intended.If the system cannot deduce the type of a formal parameter from its use then its type must be stated explicitly.In fact, in SML any expression can be typed anywhere by bracketing it with a type. However, it is consideredgood style to type bound variables when they are �rst introduced as abstraction points. That way, the readerknows their types immediately.It is arguable as to whether it is sensible to always type all bound variables even where the system can deducetheir types. On the one hand, that certainly provides lots of information to someone who might want to reuse afunction somewhere else and is unsure as to what types of values the function may be used with. On the otherhand, as with long names, explicit type information can clutter up function declarations. Here, we will tend toonly specify a type explicitly if it is needed.3.9 Abstraction over functionsSo far, we have abstracted over an expression to form a function. Now we will look at abstracting over a functionto form a function that returns a function as result.Consider the function to �nd tax at 25%:- fn sum => sum*25 div 100;> fn : int -> intConsider the function to �nd tax at 30%:- (* find 30% of an integer *)fn sum => sum*30 div 100;> fn : int -> intThese are the same apart from the rate of tax. We can abstract for tax with a new bound variable tax:fn sum => sum*tax div 100and then make the abstraction point explicit:fn tax => fn sum => sum*tax div 100Now we have a function whose body is a function. The type offn sum => sum*25 div 100is: 79

int -> intso: fn tax => fn sum => sum*tax div 100must be:int -> int -> intThis is a function from an integer to a function from an integer to an integer:- (* find tax% of an integer *)val taxdue = fn tax => fn sum => sum*tax div 100;> val taxdue = fn : int -> int -> intThis function will �nd the tax at any rate tax on any sum sum by calling it �rst with a value for tax to get anew function which is then called with a value for sum.For example, to �nd tax at 40% on 20000:- (taxdue 40) 20000;> 8000 : intFirst of all, the function expression:taxdue 40is evaluated. taxdue is replaced with the associated function giving:(fn tax => fn sum => sum * tax div 100) 40This is evaluated so tax is associated with 40 giving:fn sum => sum * 40 div 100The original application is now:(fn sum => sum*40 div 100) 20000so sum is associated with 20000 and:20000*40 div 100is evaluated giving 8000.For example, to �nd tax at 50% on 30000:- (taxdue 50) 30000;> 15000 : int 80

First of all the function expression:taxdue 50is evaluated. taxdue is replaced giving:(fn tax => fn sum => sum * tax div 100) 50This is evaluated so tax is associated with 50 giving:fn sum => sum*50 div 100The original application is now:(fn sum => sum*50 div 100) 30000sum is associated with 30000 and:30000*50 div 100is evaluated giving 15000.We can use taxdue to de�ne functions to �nd the tax at speci�c rates. For example, to �nd tax at 20% wewant a function like taxdue but with tax set to 20:- (* find 20% of an integer *)val tax20 = taxdue 20;> val tax20 = fn : int -> intNote that taxdue is:int -> int -> intand 20 is int so:taxdue 20is: int -> intbecause tax has been frozen to the int value 20.Thus, tax20 is like taxdue but with tax set to 20.For example, in:- tax20 10000;> 2000 : int 81

tax20 is e�ectively replaced with its associated value:(fn tax => fn sum => sum*tax div 100) 20so, in e�ect, the expression:((fn tax => fn sum => sum*tax div 100) 20) 10000is evaluated as above.For example, to �nd tax at 60% we want a function like taxdue but with tax set to 60:- (* find 60% of an integer *)val tax60 = taxdue 60;> val tax60 = fn : int -> int- tax60 10000;> 6000 : intNow, tax60 is like taxdue with tax set to 60.Let us now look at another example. Consider the function to add an "s" on the end of a word:- fn word => word^"s";> fn : string -> stringConsider the function to add "ed" on the end of a word:- fn word => word^"ed";> fn : string -> stringThese functions are the same apart from the ending. We can abstract over the ending by introducing a newbound variable to stand for it:fn ending => fn word => word^endingOnce again we have a function whose body is a function. The type of:fn word => word^"s"is: string -> stringso the type of:fn ending => fn word => word^endingis: string -> string -> string 82

This is a function from a string to a function from a string to a string:- (* put string ending after string word *)val endword = fn ending => fn word => word^ending;> val endword = fn : string -> string -> stringFor example, to add "ing" to "walk":- (endword "ing") "walk";> "walking" : stringFirst of all the function expression:endword "ing"is evaluated. endword is replaced giving:(fn ending => fn word => word^ending) "ing"This is evaluated so ending is associated with "ing" giving:fn word => word^"ing"Next:(fn word => word^"ing") "walk"is evaluated. word is associated with "walk" giving:"walk"^"ing" ==> "walking"For example, to add "ed" to "fish":- (endword "ed") "fish";> "fished" : stringFirst of all the function expression:endword "ed"is evaluated. endword is replaced giving:(fn ending => fn word => word^ending) "ed"ending is associated with "ed" giving:fn word => word^"ed" 83

The function application is now:(fn word => word^"ed") "fish"which is evaluated. word is associated with "fish" giving:"fish"^"ed" ==> "fished"We can use endword to de�ne functions to add speci�c endings to words. For example, to add "ed":- (* put "ed" after a string *)val ended = endword "ed";> val ended = fn : string -> stringended is like endword but with ending set to "ed":- ended "talk";> "talked" : stringFor example, to add "s":- (* put "s" after a string *)val ends = endword "s";> val ends = fn : string -> stringends is like endword but with ending set to "s":- ends "swim";> "swims" : string3.10 Introducing higher order functionsThe last two functions were formed by abstracting over constants in the bodies of functions. Higher orderfunctions can be formed by abstracting over an operation in the bodies of functions. The abstraction pointmust then be specialised with a function value.Let us look at another example. Suppose we have the squaring function:- val sq = fn (x:int) => x*x;> val sq = fn : int -> int- sq 3;> 9 : intand the cubing function:- (* cube an integer *)val cube = fn (x:int) => x*x*x;> val cube = fn : int -> int- cube 3;> 27 : int 84

Consider �nding double the square of an integer:- (* double the square of an integer *)val doublesq = fn n => 2*sq n;> val doublesq = fn : int -> int- doublesq 3;> 18 : intConsider �nding double the cube of an integer:- (* double the cube of an integer *)val doublecube = fn n => 2*cube n;> val doublecube = fn : int -> int- doublecube 3;> 54 : intThese functions are the same apart from the function applied to the argument. We can abstract over thisfunction:fn func => fn (n:int) => 2*func nfunc's type is:int -> intbecause n is an integer and * with 2 must have another integer argument. Thus, the new function is:- (* double the result of applying a function to an integer *)val doublefunc = fn func => fn (n:int) => 2*func n;> val doublefunc = fn : (int -> int) -> int -> intAs we shall see later, we do not actually need to specify explicitly that n is of type int but it eases thepresentation.This is a function from a function from an integer to an integer, to a function from an integer to an integer.That is, it expects its argument to be an integer to integer function.We can use doublefunc to �nd two times the square of 4:- (doublefunc sq) 4;> 32 : intFirst of all the function expression:doublefunc sqis evaluated. doublefunc is replaced giving:(fn func => fn (n:int) => 2*func n) sqfunc is associated with the argument giving: 85

fn (n:int) => 2*sq nThe original function application is now:(fn (n:int) => 2*sq n) 4n is associated with 4 giving:2*sq 4 ==> 32Note that to simplify presentation we have left sq in place in fn (n:int) => 2*sq n instead of replacing itwith fn (x:int) => x*x.We can use doublefunc to �nd two times the cube of 4:- (doublefunc cube) 4;> 128 : intFirst of all the function expression:doublefunc cubeis evaluated. doublefunc is replaced giving:(fn func => fn (n:int) => 2*func n) cubefunc is associated with the argument giving:fn (n:int) => 2*cube nThe original function application is now:(fn (n:int) => 2*cube n) 4n is associated with 4 giving:2*cube 4 ==> 128We can use doublefunc to de�ne doublesq:- val doublesq = doublefunc sq;> val doublesq = fn : int -> intdoublesq is like doublefunc but with func set to sq.For example, in:- doublesq 3;> 18 : int 86

doublesq is replaced with the associated value e�ectively giving:((fn func => fn (x:int) => 2*func x) sq) 3 ==>(fn (x:int) => 2*sq x) 3 ==> 2*sq 3 ==> 18Similarly, we can use doublefunc to de�ne doublecube:- val doublecube = doublefunc cube;> val doublecube = fn : int -> intdoublecube is like doublefunc but with func set to cube:- doublecube 3;> 54 : intWe will now look at another simple higher order function. Consider applying sq twice to a value to raise it toa fourth power:- (* find the fourth power of an integer *)val fourth = fn n => sq (sq n);> val fourth = fn : int -> intsq is of type int -> int and is applied to n so n must be of type int and the result must also be of type int.Note the brackets round the argument (sq n).For example:- fourth 2;> 16 : intbecause:fourth 2is the same as:sq (sq 2) ==> sq 4 ==> 16Consider applying cube twice to an integer to raise it to a 9th power:- (* find the ninth power of an integer *)val ninth = fn n => cube (cube n);> val ninth = fn : int -> intcube is an int -> int function so n and the result must both be of type int. For example:- ninth 3;> 729 : intbecause: 87

ninth 3is like:cube (cube 3) ==> cube 27 ==> 729Now, compare the functions associated with fourth and ninthfn n => sq (sq n)fn s => cube (cube s)These are almost the same apart from the function which is applied twice; sq in fourth and cube in ninthWe could abstract over this function:fn f => fn (n:int) => f (f n);f's type is:int -> intbecause n is an integer and the result of the inner use of f:(f n)is the argument for the outer call of f:f (f n)f's result type must be the same as its argument's. Thus, the new function is:- (* apply a function twice to an integer *)val twice = fn f => fn (n:int) => f (f n);> val twice = fn : (int -> int) -> int -> intThis is a function from a function from an integer to an integer, to a function from an integer to an integer. Wecan use twice to �nd 4 to the fourth:- (twice sq) 4;> 256 : intFirst of all the function expression:twice sqis evaluated. twice is replaced giving:(fn f => fn (n:int) => f (f n)) sq 88

f is associated with the argument giving:fn (n:int) => sq (sq n)The original function application is now:(fn (n:int) => sq (sq n)) 4n is associated with 4 giving:sq (sq 4) ==> sq 16 ==> 256We can use twice to de�ne fourth:- val fourth = twice sq;> val fourth = fn : int -> intfourth is like twice but with f set to sq:- fourth 3;> 81 : intWe can use twice to de�ne ninth:- val ninth = twice cube;> val ninth = fn : int -> intninth is like twice but with f set to cube:- ninth 2;> 512 : int3.11 Introducing polymorphismConsider the function that doubles the result of applying a function to an integer:- val doublefunc = fn func => fn (n:int) => 2*func n;> val doublefunc = fn : (int -> int) -> int -> intHere func must be a function that takes an integer argument and returns an integer result.Suppose that we wanted func to be able to take an argument of any type and return an integer result. Forexample, we might want to �nd double the integer value of a real so func would be set to real. We might wantto �nd double the length of a string so func would be set to size.At present, func is applied to n and n is speci�ed as int so we might try dropping the int requirement:- (* double the result of applying a function *)val doublefunc = fn func => fn n => 2*func n;> val doublefunc = fn : ('a -> int) -> 'a -> int89

Now, the system tells us that n has type 'a and func has type 'a -> int'a is a type variable. Just as an integer bound variable can be associated with any integer value and a stringbound variable can be associated with any string value, a type variable can be associated with any type.Traditionally, Greek letters are used as the names of type variables:� == alpha� == beta
 == gamma� == delta...However, most keyboards and displays do not support directly the Greek alphabet so quoted Roman letters areused to stand for the equivalent Greek letter in alphabetical order:'a == �'b == �'c ==
'd == �...In doublefunc, n is not used as argument or operand for any type speci�c function or operation so it can beany type, say 'a. func has n as argument, so func's domain must be 'a for consistency.For example:- (* double the floor of a real *)val doublefloor = doublefunc floor;> val doublefloor = fn : real -> intwill double the integer value from a real value. Here, func is associated with the function from floor. flooris a: real -> intfunction and func is an:'a -> intfunction so for the types of func and sq to match, 'a must be set to real. n is also of type 'a in doublefuncso n must also be of type real in doublefloor.For example:- doublefloor 3.3;> 6 : intdoublefloor is like doublefunc floor so:doublefloor 3.3 ==> (doublefunc floor) 3.3Replacing doublefunc gives: 90

doublefunc floor ==> (fn func => fn n => 2*func n) floor ==>fn n => 2*floor nso: (doublefunc floor) 3.3 ==>(fn n => 2*floor n) 3.3 ==> 2* floor 3.3 ==> 6Suppose we wanted a function to �nd double the length of a string. We could replace func with size:- (* double the size of a string *)val doublesize = doublefunc size;> val doublesize = fn : string -> intHere, func is associated with the function from size. size is a:string -> intfunction and func is an:'a -> intfunction so for the types of func and size to match, 'a must be set to string. n is also of type 'a in doublefuncso n must also be of type string in doublesize.For example:- doublesize "banyan";> 12 : intdoublesize is like doublefunc size so:doublesize "banyan" ==> (doublefunc size) "banyan"Replacing doublefunc gives:doublefunc size ==> (fn func => fn n => 2*func n) size ==>fn n => 2*size nso: (doublefunc size) "banyan" ==>(fn n => 2*size n) "banyan" ==> 2* size "banyan" ==> 12In doublefunc, n is said to be a polymorphic variable. Polymorphic comes from the Greek and means \manyforms". A polymorphic variable can be associated with an argument of any type. By extension, func couldbe said to be polymorphic because it can be associated with any function from an arbitrary type argument toan integer result. Thus, doublefunc could be said to be a polymorphic function, because its argument func ispolymorphic.It is important to distinguish polymorphism from overloading. A polymorphic function can be applied in somesense to argument values of any type. However, an overloaded operation can only be applied to operand values91

of a �xed variety of types. Overloading could be viewed as a restricted form of polymorphism. For overloading,the types of operands must be made explicit or be deducible from other uses. Polymorphism is far more general.Let us look at another example. Consider:- val twice = fn f => fn (n:int) => f (f n);> val twice = fn : (int -> int) -> int -> intSuppose we drop the requirement that n is integer:- (* apply a function twice *)val twice = fn f => fn n => f (f n);> val twice = fn : ('a -> 'a) -> 'a -> 'aThis is an extremely polymorphic function! First of all, n is not used in any typed operation so it can be anytype, say 'a. Next, f has n as argument so its domain must be of type 'a. (f n) is an argument for f and weknow that f has an 'a argument so the result of (f n) must also be an 'a. Hence, f must be an:'a -> 'afunction. Finally, the result of twice is f (f n). f returns an 'a so twice must also return an 'a. Thus,twice is a function from a function from some type to that type, to a function from that type to that type.For example, we know that plural puts a "s" on the end of a string so to put two "s"s on the end of a string:- (* follow a string with "ss" *)val double_s = twice plural;> val double_s = fn : string -> stringIn twice, f is an:'a -> 'afunction and plural is a:string -> stringfunction so for consistency, 'a must be string. Hence in double s both n and the result must be string.For example:- double_s "lo";> "loss" : stringFirst of all:double_s "lo" ==>(twice plural) "lo"Next: 92

twice plural ==>(fn f => fn n => f (f n)) plural ==>fn n => plural (plural n)so: (twice plural) "lo" ==>(fn n => plural (plural n)) "lo" ==>plural (plural "lo") ==> plural "los" ==> "loss"3.12 Function composition functionWe will now look at a very general polymorphic function. Consider applying function f to the result of applyingfunction g to some value x. The only constraint is that the range of g must be the same as the domain of f:that is the result of g must be the same type as the argument of f:- (* apply f to the result of applying g *)val compose = fn f => fn g => fn x => f (g x);> val compose = fn : ('b -> 'c) -> ('a -> 'b) -> 'a -> 'cNo typed operations are performed on x so let us suppose it has arbitrary type 'a.g is applied to x so it must have domain 'a. We do not know what sort of type g returns so let us suppose it isthe arbitrary type 'b. Note that we use a di�erent type variable: we have no reason to assume that the domainand range of g are the same. Thus, g is an:'a -> 'bfunction. f is applied to g's result so its domain must be 'b. We do not know what sort of type f returns solet us suppose it is the arbitrary type 'c.Note that again we use a di�erent type variable: we have no reason to suppose that f's range is the same aseither g's domain or range. Thus, f is a:'b -> 'cfunction. Finally, compose returns whatever f returns so compose's range is also 'c.For example, to convert the size of a string to a real:- ((compose real) size) "whisky";> 6.0 : realIn compose, f is of type:'b -> 'cand real is of type:int -> real 93

so 'b must be int and 'c must be real. Thus:compose real ==>(fn f => fn g => fn x => f (g x)) real ==>fn g => fn x => real (g x)which is:('a -> int) -> 'a -> realNow, in:(compose real) sizeg is of type:'a -> intand size is of type:string -> intso 'a must be string.Thus:(compose real) size ==>(fn g => fn x => real (g x)) size ==>fn x => real (size x)which is a:string -> realfunction.Finally:((compose real) size) "whisky" ==>(fn x => real (size x)) "whisky" ==>real (size "whisky") ==> 6.0Note that compose can be used with any two functions provided that the domain of the �rst is the same as therange of the second.SML provides compose as the standard in�x operator o:(compose function1) function2 ==>function1 o function2For example: 94

- (real o floor) 4.2;> 4.0 : real;because:(real o floor) 4.2 ==>((compose real) floor) 4.2 ==>real (floor 4.2) ==>real 4 ==>4.03.13 ScopeWe need to be a bit clearer about precisely where we can use names. We saw above that for a function:fn name => expressionthe bound variable name is to be replaced in the body expression.However, we have also seen that we can nest functions. Thus there might be problems if nested functions sharethe same bound variable. For example, in:fn x => fn x => 2*xthe x in:2*xmight at �rst sight appear to correspond to either the outer function's or the inner function's bound variable.In programming languages, names are said to have scopes that determine where they can be referred to. InSML, the scope rule is that an outer bound variable is overriden by the introduction of an inner bound variablewith the same name. That is, in:fn name => expressionname is in scope in expression except where another function introduces the same name as a bound variable.Another way of expressing this is that a name in an expression corresponds to the bound variable of theinnermost enclosing function to introduce it.Thus, infn x => fn x => 2*xthe x in 2*x is the inner function's x. Thus, in:((fn x => fn x => 2*x) 2) 3x should be set to 2 in: 95

fn x => 2*xHowever, this function also introduces x overriding the outer function so there is nowhere corresponding to theouter x to be replaced. The 2 is discarded leaving:(fn x => 2*x) 3 ==> 2*3 ==> 6For example, consider:(fn x => ((fn x => 2*x) 3)+x) 4Here, the outer bound variable x is in +x in the body of the outer function but not in the body of the innerfunction. It is replaced by 4 giving:((fn x => 2*x) 3)+4 ==> 2*3+4 ==> 10It is generally safest to avoid nested introductions of the same bound variable name. Where they are unavoidable,look to the left from a use of a name to �nd the �rst place where it is introduced as a bound variable.3.14 Illustrating function applicationIn the above worked examples of function applications we have:i) evaluated the function expression to get a functionii) evaluated the argument expression to get a valueiii) replaced all occurrences of the bound variable in the function's body with the argument valueiv) evaluated the bodyWe are using this replacement of bound variables in function bodies with argument values as a way of illustratingor animating function applications. However it should not be thought that this is how SML systems actuallyimplement function application. What they do is certainly equivalent to our approach but very di�erent inpractise.Furthermore, while we have been exact so far about the order in which replacement and evaluation are carriedout, as examples become larger we will become less rigorous. Sometimes we will delay evaluating parts ofexpressions in order to make what is going on more explicit. At other times, we will apparently evaluatedi�erent parts of an expression at the same time to simplify the presentation.One of the pleasing properties of pure functional languages, like the SML subset we are studying here, is thatsome aspects of the order of evaluation need not be prescribed rigidly. For example, with arithmetic operatorsthe order of operand expression evaluation is not important. Similarly, with nested function applications it islegitimate to evaluate all the argument expressions at the same time rather than in strict sequence as each nestedlayer is evaluated. Provided we are consistent in always evaluating function arguments before the function bodythen we will get the same result.3.15 TestingA vital aspect of programming is testing. You may think that a function looks all right on paper but testingit will often show up problems or inconsistencies. It is not good enough to check out a function with just one96

test case as this may not try out all the circumstances of its use. Of course, you cannot try a function will allpossible argument values: there are an awful lot of strings and integers and reals. Instead, you should test eachfunction with a representative sample of values. If a function consists of nested functions then you should tryout di�erent combinations of argument values for each layer.Use the types of the arguments to guide testing. Check for limiting as well as typical cases. If the function hasa string argument then check that it works with the empty string "" as well as non-empty strings. For example,for: - val plural = fn word => word^"s";> val plural = fn : string -> stringwe might try:- plural "hat";> "hats" : stringand: - plural "";> "s" : stringIf a function has an integer argument then try it with 0 and negative values as well as positive values. Forexample, for:- val tax = fn sum => sum*25 div 100;> val tax = fn : int -> intwe might try:- tax 10000;> 2500 : intand: - tax 0;> 0 : intand: - tax ~2000;> ~500 : intFor example, for:- val endword = fn ending => fn word => word^ending;> val endword = fn : string -> string -> stringwe might try:- (endword "fish") "ed";> "fished" : string 97

and: - (endword "push") "";> "push" : stringand: - (endword "") "ing";> "ing" : stringIf a function has a boolean expression then try it with values to make the expression both true and false. Forexample, for:- val voter = fn age => age>=18;> val voter = fn : int -> boolwe might try:- voter 19;> true : booland: - voter 18;> true : booland: - voter 0;> false : booland: - voter ~19;> false : boolYou might also see what your function does with very big values as well as very small ones. For example, for:- val tax = fn sum => sum*25 div 100;> val tax = fn : int -> intwe might try:- tax 2000000000000000;Error: integer too largewhoops...! 98

3.16 SummaryIn this chapter we have focused on abstraction. First we considered how to associate names and values throughglobal declarations, to use an SML system like a souped up desk calculator. Next we looked at how to con-struct functions by generalising expressions through name introduction. We then saw how to call functions tospecialise the names. We next discussed the construction of functions that return functions as values as a wayof introducing multiple abstraction points for values in expressions. This was then extended to higher orderfunctions by abstracting over operations. Finally, we met polymorphism which enables the construction of verygeneral functions for manipulating values of arbitrary type.In the next chapter we are going to discuss pattern matching as a technique for structuring functions accordingto the information that they manipulate. We will also look at recursion as a means of dealing with a range ofvalues.3.17 Exercises1) Identify the types of the following functions:a) fn x => x div 2b) fn x => x/2.0c) fn x => x=2d) fn x => fn y => x mod ye) fn s1 => size s1*10f) fn s => s^"?"g) fn s => fn t => s^" "^th) fn s1 => fn s2 => size s1<size s2i) fn b1 => fn b2 => not b1 orelse b2j) fn s => fn n => size s<=nk) fn x => fn y => floor x+yl) fn s => fn x => floor s*size xm) fn f => fn x => f x div xn) fn f => fn x => x orelse f xo) fn f => fn x => x/f xp) fn f => fn x => f x+size xq) fn f => fn x => not (f (floor x))r) fn f => fn x => 1+f xs) fn f => fn x => size (f x)t) fn f => fn x => not (f x)u) fn f => fn x => f (x+1)v) fn f => fn x => f (not x)w) fn f => fn x => f xx) fn f => fn x => fn y => (f x) yy) fn f => fn x => fn y => fn z => ((f x) y) zz) fn f => fn g => fn x => fn y => (f x) mod (g y)A) fn f => fn g => fn x => fn y => size (f x^g y)B) fn x => xC) fn x => fn y => xD) fn x => fn y => y2) Explain why the following functions are incorrectly formed:a) fn x => x+xb) fn x => fn y => x*yc) fn x => fn y => x>yd) fn a => fn b => not a >= be) fn s1 => fn s2 => size s1^s2 99

f) fn x => size x andalso xg) fn p => fn q => (not p) qh) fn f => fn x => x*f x3) Write and test the following functions. Identify the type of each function:a) �nd half of integer x- half 4;> 2 : intb) �nd double real y- double 2.1;> 4.2 : realc) join string s onto itself- twice "very";> "veryvery" : string4) Write and test the following functions. Identify the type of each function:a) �nd net pay on gross pay gross after tax at 20%:- net20 20000;> 16000 : intb) �nd net pay on gross pay gross after tax at 30%:- net30 20000;> 14000 : intc) �nd net pay on gross pay gross after tax at tax%:- (net 20) 20000;> 16000 : intd) use net from c) above to de�ne functions which �nd tax ati) 20% ii) 30%5) Write and test the following functions. Identify the type of each function:a) put the string "Happy " before a string s:- happy "Birthday";> "Happy Birthday" : stringb) put the string "Merry " before a string s:- merry "Xmas";> "Merry Xmas" : stringc) put one string before another:- (sbefore "Jolly ") "good!";> "Jolly good!" : stringd) use sbefore from c) above to de�ne functions to puti) "Merry " ii) "Happy "before a string 100

6) Write and test the following functions. Identify the type of each function:a) return a boolean to indicate whether or not string s comes before neutral in alphabetic order:- lessneutral "banana";> true : boolb) return a boolean to indicate whether or not string s comes before "zoo" in alphabetic order:- lesszoo "zoo";> false : boolc) return a boolean to indicate whether or not a second string comes before a �rst string:- (less "guava") "avocado";> true : boold) use less from c) above to de�ne a function which returns a boolean to indicate whether or nota string comes beforei) "neutral" ii) "zoo"7) Write and test the following functions. Identify the type of each function:a) for integer n return a tuple consisting of n and a boolean which indicates whether or not it isgreater than 0:- (more0 22);> (22,true) : int * boolb) for string s return a tuple consisting of s and its plural, found by adding "s" on the end:- (plural "goat");> ("goat","goats") : string * stringc) for integer n return a tuple consisting of n, its square and its cube:- powers 3;> (3,9,27) : int * int * int8) Write and test the following functions. Identify the type of each function:a) evaluate:a*x*x+b*x+cfor integer values a, b, c and x:x*x+2*x+1 with x=3 ==- (((quad 1) 2) 1) 3;> 16 : intb) use quad from a) above to de�ne functions to return the values ofi) x*x+4*x+4ii) 2*x*x+3*x-3for unknown x9) Write and test the following functions. Identify the type of each function:101

a) return a sentence formed by joining strings article1, noun1, verb, article2 and noun2 with asingle space in between each string:- (((sentence "the") "cat") "sat on") "the") "mat"> "the cat sat on the mat" : stringb) use sentence from a) above to de�ne functions to start sentences with:i) "the mouse ran to" ii) "the cat ate"10) Write and test the following functions. Identify the type of each function:a) return a boolean to indicate whether or not string s is longer than integer l characters:- (longer 3) "huge";> true : boolb) return a boolean to indicate whether or a string is shorter than a second string:- (shorter "long") "short";> true : boolusing longer from a) above11) Write and test the following functions. Identify the type of each function:a) �nd if integer i1 is less than or equal to integer i2 without using <=:- (less_or_eq 2) 3;> true : boolb) �nd if string s1 is the same as string s2 without using = or <>:- (same "precise") "precise";> false : bool12) Write and test the following functions. Identify the type of each function:a) �nd the real cost of n items at real price p with discount of d real percent and additional salestax of t real percent:- (((cost 5) 12.6) 20.0) 10.0;> 55.44 : realb) use the function from a) above to de�ne a function to �nd the cost of an unknown number ofitems at unknown price and discount with additional sales tax of 12.5%c) use the function from a) above to de�ne a function �nd the cost of an unknown number of itemsat unknown price and additional sales tax with discount of 15%13) Write and test the following functions. Identify the type of each function:a) check if real value v1 is no more than error greater or less than real value v2:- ((close 12.01) 0.01) 12.00;> true : boolb) use the function from a) above to de�ne a function to check if two real values are within 0.0005of each other. 102

Chapter 4Pattern matching and recursion4.1 Simpli�ed notationsAs you may have noticed, the full notations for associating names with function values and for calling functionsare extremely long winded. We have used them so far to emphasise functions as values. We will now considersome simpli�cations. First of all, a function de�nition:val name1 = fn name2 => expressionmay be simpli�ed. val is changed to fun, the = and fn are dropped, and => is replaced with = giving:fun name1 name2 = expressionFor example, some of the functions from the previous chapter become:- fun tax sum = sum*25 div 100;> val tax = fn : int -> int- fun plural word = word^"s";> val plural = fn : string -> string- fun voter age = age >= 18;> val voter = fn : int -> bool- fun sq (x:int) = x*x;> val sq = fn : int -> int- fun taxdue tax = fn sum => sum*tax div 100;> val taxdue = fn : int -> int -> intso: - fun taxdue tax sum = sum*tax div 100;> val taxdue = fn : int -> int -> intSimilarly:- fun endword ending word = word^ending;103

> val endword = fn : string -> string -> string- fun doublefunc func (n:int) = 2*func n;> val doublefunc = fn : (int -> int) -> int -> intNote that fun is a shorthand for an association between a name and an explicit function value using val. Theval form must be retained to associate a name and the value of an expression, even when the expression returnsa function value. For example:fun ending = endword "ing"is incorrect because the expression:endword "ing"is not an explicit function value even though it returns one. The correct form is still:- val ending = endword "ing";> val ending = fn : string -> stringFunction calls may also be simpli�ed by dropping strict bracketing around function expressions. Thus:((function argument1) argument2) argument3becomes:function argument1 argument2 argument3which is evaluated from left to right.For example:- endword "jump" "ing";> "jumping" : stringHowever, bracketing is essential when a function call or operator expression is an argument to another function.Consider:sq sq 3This is interpreted as:(sq sq) 3which fails because sq requires an integer rather than a function as its argument. Instead:- sq (sq 3);> 81 : intshould be used. 104

4.2 Tables and functionsIn chapter 1, we looked at the use of tables to represent collections of things. In a table, each thing has a �xednumber of properties across the rows. While a table might in principle be any size, in practise it consists ofa �xed number of things at any given moment. Each thing is distinct and there is not necessarily any way of�nding one of its properties from its other properties.Consider the special case where the things are pairs of properties, for example cats and colours:name colourWallace tabbyMog blackSpider tabbyWe can use this table to �nd the colour of a cat from its name. We look down the column of names until we�nd the required name and then look across the row to �nd the associated colour.In chapter 3 we looked at making functions which performed calculations on general values abstracted throughbound variables. A table of pair associations is like a function in that we look up an argument value in onecolumn to �nd the result value in another column. However, a table of associations is rather more restrictivethan than the sorts of functions we have considered so far. A function can �nd the result from arbitrary valuesthrough calculation whereas a table can only be used with speci�c values. That is, with a table we can �nd resultvalues for individual cases but there is no general way to �nd the result for an arbitrary case. In particular, itis not clear what we should do when we get to the end of a column without �nding the required value. In theabove example, while a name could be absolutely any sequence of letters, we only know the associated colourin the three speci�c cases of \Wallace", \Mog" and \Spider". In general, there is no way of calculating a cat'scolour from its name.On the other hand, as yet we have no way of dealing with speci�c cases in SML functions. For example, consider�nding the past tense for an English verb. We can often put \ed" on the end of a verb, for example \walked"for \walk" and \�shed" for \�sh". However, there are speci�c exceptions to this rule, for example, \stood" for\stand", \swam" for \swim" and \ate" for \eat". We could use a table to represent the special cases:verb paststand stoodswim swameat atebut we do not have any obvious way of including the general case in a table.4.3 Pattern matchingSML enables the use of functions to deal with individual as well as general cases through what is called patternmatching. In the last chapter, we saw that a function has the form:fn name => expressionA function may also be de�ned with a number of optional cases, each with a distinct pattern rather than asingle bound variable:fn pattern1 => expression1 |pattern2 => expression2 |...patternN => expressionN 105

To begin with, patterns may be constants or bound variables.When the function is called, the argument is matched against each pattern in turn. When a match succeedsthe corresponding expression is evaluated. For a constant pattern, the argument must have the same value forthe match to succeed. A variable pattern will match any value and take on that value.The patterns must all be of the same type and the expressions must all return the same type of value.Note that there must be a case for every possible value of the pattern type. Usually, there will be a sequenceof constant cases and then a variable case to match all the other values. If you miss out a possible case thenthe system will give an \exhaustiveness check" warning message but still allow you to use the function. If youthen call the function with an unknown case then the system will stop running the calling expression with anerror message.There is a simpli�ed form of de�nition for multiple case functions:val name = fn pattern1 => expression1 |pattern2 => expression2 |...patternN => expressionNbecomes:fun name pattern1 = expression1 |name pattern2 = expression2 |...name patternN = expressionNPattern matching is a powerful programming technique which enables the structure of a function to re
ect thestructure of the data that it processes. This results in surprisingly small programs as conditional expressionsare not needed to discriminate between di�erent argument values. It also results in very readable programsbecause the program structure corresponds closely to the data.4.4 Pattern matching with stringsFor example, consider the table of past tenses:verb paststand stoodswim swameat atewhich augments the general rule of putting \ed" on the end of a verb. We can represent this in SML as afunction from a string verb to a string past tense. We will have a constant pattern for each individual case inthe table and a string bound variable for the general case:- (* find regular and irregular past tenses *)fun past "stand" = "stood" |past "swim" = "swam" |past "eat" = "ate" |past v = v^"ed";> val past = fn : string -> stringConsider: 106

- past "eat";> "ate" : string"eat" is matched with "stand" which fails. "eat" is matched with "swim" which fails. "eat" is matched with"eat" which succeeds so "ate" is returned.Consider:- past "talk";> "talked" : string"talk" is matched with "stand" which fails. "talk" is matched with "swim" which fails. "talk" is matchedwith "eat" which fails. Finally, the bound variable v, which matches anything, is set to "talk" so:"talk"^"ed" ==> "talked"is returned.For example, let us make a function for the table:name colourWallace tabbyMog blackSpider tabbyfun colour "Wallace" = "tabby" |colour "Mog" = "black" |colour "Spider" = "tabby" |We need to deal with a cat name which is unknown to us. All the speci�c cases return a string value so wecould match the unknown name to a bound variable and return a string message to say that we don't knowthat name:- (* find cat colour from name *)fun colour "Wallace" = "tabby" |colour "Mog" = "black" |colour "Spider" = "tabby" |colour name = name^" unknown";Consider:- colour "Fritz";> "Fritz unknown" : string"Fritz" fails to match "Wallace". "Fritz" fails to match "Mog". "Fritz" fails to match "Spider". name isbound to "Fritz" so:"Fritz"^" unknown" ==> "Fritz unknown"is returned.For example, consider UK tra�c light sequences: 107

old newred red & amberred & amber greengreen amberamber redWe can model light states as strings and the light sequence as a function from strings to strings:- (* find next traffic light state *)fun change "red" = "red & amber" |change "red & amber" = "green" |change "green" = "amber" |change "amber" = "red" |change s = "illegal light: "^s;> val change = fn : string -> string- change "green";> "amber" : stringAgain note the catch all variable s in case of a string argument which is not a light state:- change "banana";> "illegal light: banana" : string4.5 Raising exceptionsIn chapter 2 we met the idea of an exception as a way of changing the
ow of evaluation, in particular to haltevaluation. When an exception is raised, the system will catch it, stop evaluation and display a message tosay that the exception has happened. We can de�ne our own exceptions and raise them when we want to haltevaluation.At simplest, an exception is de�ned by:- exception name ;to which the system responds:> exception nameThen to raise the exception:raise namemay be used in place of an expression. The system will stop evaluation and display:uncaught exception nameFor example, we could de�ne an exception for tra�c lights:- exception Bad_light;> exception Bad_light 108

and, in the tra�c light change function, raise it instead of having the catch all case:- (* traffic light change with exception *)fun change "red" = "red & amber" |change "red & amber" = "green" |change "green" = "amber" |change "amber" = "red" |change s = raise Bad_light;> val change = fn : string -> stringNow, if change is called with an arbitrary string:- change "concertina";uncaught exception Bad_lightevaluation stops.There are also ways to catch a raised exception and continue processing, and to pass back information whenraising an exception. This is known as handling an exception. The message uncaught exception means thatthere is not a user de�ned handler to catch the exception so the system ended up catching it. We will look athow to handle exceptions in a later chapter.4.6 Wildcard pattern matchingConsider the table of cats and weights:name weightWallace 4.0Mog 4.5Spider 2.8We could use this as the basis of a function to �nd the weight from a name:fun weight "Wallace" = 4.0 |weight "Mog" = 4.5 |weight "Spider" = 2.8 |...So far this function is:string -> realWe need to decide what to do if the function is applied to an unknown name. We cannot return a string as allthe speci�c cases return reals. Instead, we could raise an exception as above:- exception Cat;> exception Cat- (* find cat weight from name *)fun weight "Wallace" = 4.0 |weight "Mog" = 4.5 |weight "Spider" = 2.8 |weight n = raise Cat;> val weight = fn : string -> real 109

Note the catch all variable n in the last case. Here, the argument value is never subsequently used.SML provides the wildcard pattern:_(underscore) which will match any argument value and e�ectively discard it. Here, we could use it instead of n:- (* cat weight with exception *)fun weight "Wallace" = 4.0 |weight "Mog" = 4.5 |weight "Spider" = 2.8 |weight _ = raise Cat;> val weight = fn : string -> realFor example:- weight "Fritz";uncaught exception CatHere, "Fritz" fails to match "Wallace", "Mog" and "Spider". Finally, "Fritz" is matched by the wildcardpattern, ignored and the cat exception is raised.In general, if a bound variable in a pattern is not used on the right hand side of a function de�nition then it canbe replaced by the wildcard pattern. Subsequently, during pattern matching the wildcard pattern will matchany value in an argument in the corresponding position. That value is then ignored. In general a variable shouldonly be used in a pattern if the value it will be matched with will be needed later on. Otherwise, the wildcardpattern should be used instead.4.7 Pattern matching and boolean operationsThe boolean type has the values true and false so we can de�ne boolean functions of the form:fn true => true option expression |false => false option expressionWhen such a function is applied to true then the value of the true option expression is returned. When it isapplied to false the value of the false option expression is returned.For example, consider the boolean negation operation, de�ned by the following truth table:X NOT Xtrue falsefalse trueWe can write this as:- val NOT = fn true => false |false => true;> val NOT = fn : bool -> boolor: 110

fun NOT true = false |NOT false = true;> val NOT = fn : bool -> boolThen, for:- NOT true;> false : booltrue matches true so false is returned. For:- NOT false;> true : boolfalse does not match true. false matches false so true is returned.In chapter 2 we met the SML andalso conjunction operator which returns true for two true operands andfalse otherwise. We can express this with the following table:X Y X andalso Yfalse false falsefalse true falsetrue false falsetrue true trueE�ectively, each thing in this table is a triple of an X, Y and X AND Y value. To use the table we need values forboth X and Y and we have to �nd a row corresponding to both values to get the result of X AND Y.We can write this as two cases for X each with two cases for Y:- val AND = fn false => (fn false => false |true => false) |true => (fn false => false |true => true);> val AND = fn : bool -> bool -> boolThus, if AND is applied to false then the �rst case for Y is applied:- AND false true;> false : booland if AND is applied to true then the second case is applied:- AND true true;> true : boolThis can be simpli�ed to:- (* logical conjunction *)fun AND false = (fn false => false |true => false) |AND true = (fn false => false |true => true);> val AND = fn : int -> int -> int 111

This can be simpli�ed again:- (* conjunction as table *)fun AND false false = false |AND false true = false |AND true false = false |AND true true = true;> val AND = fn : bool -> bool -> boolwhich is just like the table.There is a further simpli�cation. When X is false, the answer is always false and when X is true the answeris the same as Y:- (* conjunction through factorisation *)fun AND false Y = false |AND true Y = Y;> val AND = fn : bool -> bool -> boolHere, we have explicit cases for X and a catch all bound variable for Y.Note that the system deduces that Y is bool. Where the �rst case returns false, the second case returns Y andthe results of all function cases must have the same type.Note that Y is not used in the �rst case so it can be replaced by the wildcard pattern:- fun AND false _ = false |AND true Y = Y;> val AND = fn : bool -> bool -> boolIn chapter 2 we also looked at the boolean disjunction operator orelse. This returns true if either or bothoperands are true and false otherwise. We can express this with the following table:X Y X orelse Yfalse false falsefalse true truetrue false truetrue true trueThis can be written as a function of two cases for X with two cases each for Y:- (* logical disjunction *)val OR = fn false => (fn false => false |true => true) |true => (fn false => true |true => true);> val OR = fn : bool -> bool -> bool- OR true false;> true : boolOnce again, this can be simpli�ed to:- (* disjunction as table *) 112

fun OR false false = false |OR false true = true |OR true false = true |OR true true = true;> val OR = fn : bool -> bool -> boolNow, note that if X is false then the answer is Y and if X is true then the answer is true. Thus, we can againintroduce a catch all bound variable for Y:- (* disjunction through factorisation *)fun OR false Y = Y |OR true Y = true;> val OR = fn : bool -> bool -> boolAgain, note that Y is not used in the second case so it can be replaced by the wildcard pattern:- fun OR false Y = Y |OR true _ = true;> val OR = fn : bool -> bool -> bool4.8 Recursion with integersAs we discussed in chapter 1, recursion is used in functional languages, for repetitive processing of data.Recursion is based on a function invoking itself, which in turn creates new instances of the bound variables withnew values.In a recursive function, it is useful to distinguish base cases from recursion cases. For a base case, some propertyof the arguments is satis�ed, recursion stops and a value is returned. For a recursion case, that property is notsatis�ed and the function is called again to process some modi�cation of its arguments. The simplest propertyfor an argument to have is that it is some value. Thus, pattern matching with constants can often be used forbase cases. For a recursion case, arguments are modi�ed and reused. Thus for recursion case patterns boundvariables are often used.Recursion is usually de�ned over a range of values and some values, typically at the top or bottom of the range,are nominated as the base cases which terminate the recursion. Thus, for recursion to terminate there must beat least one base case.To begin with, we will look at recursion with integer values. Consider the non-negative integers starting at 0:0 1 2 3 4 5 6 7 8 9 10 ...In this sequence, each value is one more than the one before it. That is each value is the successor of the onebefore it. Now, note that:1 == 1+02 == 1+1 == 1+1+03 == 1+2 == 1+1+1 == 1+1+1+04 == 1+3 == 1+1+2 == 1+1+1+1 == 1+1+1+1+0...In general, any positive number is a �nite number of successors of 0. We can use this to give a formal de�nitionof a (non-negative) integer:0 is an integer1+N is an integer if N is an integer 113

Thus:1 == 1+0 is an integer2 == 1+1 is an integer3 == 1+2 is an integer...This is a recursive de�nition: being an integer is de�ned in terms of being an integer with 0 as the base case.Many algorithms involving integers can be de�ned recursively in terms of a base case for 0 and a recursion casefor a positive value. Then, an important component of a typical recursion case is to take the predecessor of thepositive value and call the function again. Thus, by repeatedly subtracting 1 the base case is reached.In general, to do something 0 times, do not do it and to do something N times do it once and then do it N-1times. We can express this as:fun name1 0 = base case expression |name1 name2 =recursion case expression using name2 - 1For example, consider �nding the sum of the �rst n numbers. The sum of the �rst 0 numbers is 0. The sum ofthe �rst n numbers is n added to the sum of the �rst n-1 numbers:- (* sum integers from 1 to n *)fun sum 0 = 0 |sum n = n+sum (n-1);> val sum = fn : int -> intn must be an integer because the pattern 0 is an integer. The result is an integer because the result of the basecase, 0, is an integer.Thus:- sum 4;> 10 : intbecause:sum 4 ==> 4+sum 3 ==> 4+3+sum 2 ==> 4+3+2+sum 1 ==>4+3+2+1+sum 0 ==> 4+3+2+1+0 ==> 10For example, consider �nding 2 to the power n. 2 to the 0 is 1. For 2 to the n, multiply 2 by 2 to the n-1:- (* 2 to the power n *)fun power2 0 = 1 |power2 n = 2*power2 (n-1);> val power2 = fn : int -> intn must be an integer because the pattern 0 is an integer. The function returns an integer because the base case,1, is an integer.Thus:- power2 3;> 8 : int 114

because:power2 3 ==> 2*power2 2 ==> 2*2*power2 1 ==>2*2*2*power2 0 ==> 2*2*2*1 ==> 8This function can be generalised to �nd the value of any number to the power of another number. For x to thepower n, x to the 0 is 1 and x to the n is x times x to the n-1: Thus, we can replace 2 with x:- (* x to the power n *)fun power x 0 = 1 |power x n = x*power x (n-1);> val power = fn : int -> int -> intThe function returns an integer because the base case, 1, is an integer. n must be an integer because the pattern0 is an integer. x must be an integer because power must return an integer and x is multiplied by power's result.Note that x is not used in the base case so it can be replaced by the wildcard pattern:- fun power _ 0 = 1 |power x n = x*power x (n-1);> val power = fn : int -> int -> intFor example:- power 4 4;> 256 : intbecause:power 4 4 ==> 4*power 4 3 ==> 4*4*power 4 2 ==>4*4*4*power 4 1 ==> 4*4*4*4*power 4 0 ==> 4*4*4*4*1 ==> 256We can use power to de�ne functions to �nd powers of given integers, for example 3:- val power3 = power 3;> val power3 = fn : int -> intpower3 is like power with x set to 3;- power3 3;> 27 : intConsider multiplying x by y. x times 0 is 0. x times y is x added to x times y-1:- (* multiply integers through addition *)fun mult x 0 = 0 |mult x y = x+mult x (y-1);> val mult = fn : int -> int -> intThe function must return an integer because the base case, 0, is an integer. y must be an integer because thepattern 0 is an integer. x is an integer because it is added to the result of the function.Note that x is not used in the base case so it can be replaced by the wildcard pattern:115

- fun mult _ 0 = 0 |mult x y = x+mult x (y-1);> val mult = fn : int -> int -> intThus:- mult 5 2;> 10 : intbecause:mult 5 2 ==> 5+mult 5 1 ==> 5+5+mult 5 0 ==> 5+5+0 ==> 10We can use mult to de�ne functions to multiply by speci�c integers, for example 3:- (* multiply by 3 *)val threetimes = mult 3;> val threetimes = fn : int -> intthreetimes is like mult with x set to 3:- threetimes 8;> 24 : intConsider adding x and y. x plus 0 is x. x plus y is one more than x plus y-1:- (* add integers through incrementing and decrementing *)fun add x 0 = x |add x y = 1+add x (y-1);> val add = fn : int -> int -> intThe function returns an integer because in the recursion case 1 is added to the function value. y is an integerbecause the pattern 0 is an integer. x is an integer because it is returned from the base case and must have thesame type as the recursion case.Thus:- add 4 3;> 7 : intbecause:add 4 3 ==> 1+add 4 2 ==> 1+1+add 4 1 ==> 1+1+1+add 4 0 ==>1+1+1+4 ==> 7We can use add to de�ne functions to add speci�c integers to other integers, for example 5:- (* add 5 *)val add5 = add 5;> val add5 = fn : int -> intadd5 is like add with x set to 5:- add5 6;> 11 : int 116

4.9 Generalising summing integer sequencesConsider the function to �nd the sum of the squares of the �rst n integers. The sum of the squares of the �rst0 integers is 0. The sum of the squares of the �rst n integers is n squared plus the sum of the squares of the�rst n-1 integers:- (* sum of squares from 1 to n *)fun sumsq 0 = 0 |sumsq n = sq n+sumsq (n-1);> val sumsq = fn : int -> int- sumsq 3;> 14 : intbecause:sumsq 3 ==> sq 3+sumsq 2 ==> sq 3+sq 2+sumsq 1 ==>sq 3+sq 2+sq 1+sumsq 0 ==> sq 3+sq 2+sq 1+0 ==>9+4+1+0 ==> 14Consider the function to �nd the sum of the doubles of the �rst n integers. The sum of the doubles of the �rst0 integers is 0. The sum of the doubles of the �rst n integers is n doubled plus the sum of the doubles of the�rst n-1- (* double an integer *)fun double x = 2*x;- val double = fn : int -> int- (* sum of doubles from 1 to n *)fun sumdouble 0 = 0 |sumdouble n = double n+sumdouble (n-1);> val sumdouble = fn : int -> int- sumdouble 3;> 12 : intbecause:sumdouble 3 ==> double 3+sumdouble 2 ==>double 3+double 2+sumdouble 1 ==>double 3+double 2+double 1+sumdouble 0 ==>double 3+double 2+double 1+0 ==> 6+4+2+0 ==> 12These functions are the same apart from the function applied to the argument n. sumsq uses sq and sumdoubleuse double; both are of type:int -> intWe can generalise sumsq and sumdouble to a function which �nds the sum of applying an arbitrary int ->int function to the �rst n integers:- (* sum function f from 1 to n *)fun sumfunc f 0 = 0 |sumfunc f n = f n+sumfunc f (n-1);> val sumfunc = fn : (int -> int) -> int -> int117

This function returns an integer because 0 is an int. n must be an integer because it has the same type asthe pattern 0 and because 1 is taken from it. Thus f must be an int -> int function because it is applied tothe integer n and it must return an integer for the addition in the recursion case because sumfunc returns aninteger.Note that f is not used in the base case so it could be replaced by the wildcard pattern:- fun sumfunc _ 0 = 0 |sumfunc f n = f n+sumfunc f (n-1);> val sumfunc = fn : (int -> int) -> int -> intFor example:- sumfunc sq 3;> 14 : intbecause:sumfunc sq 3 ==> sq 3+sumfunc sq 2 ==>sq 3+sq 2+sumfunc sq 1 ==> sq 3+sq 2+sq 1+sumfunc sq 0 ==>sq 3+sq 2+sq 1+0 ==> 9+4+1+0 ==> 14For example:- sumfunc double 3;> 12 : intbecause:sumfunc double 3 ==> double 3+sumfunc double 2 ==>double 3+double 2+sumfunc double 1 ==>double 3+double 2+double 1+sumfunc double 0 ==>double 3+double 2+double 1+0 ==> 6+4+2+0 ==> 12We can use sumfunc to de�ne sumsq. sumsq is like sumfunc with f set to sq:- val sumsq = sumfunc sq;> val sumsq = fn : int -> intNote that sumfunc is a:(int -> int) -> int -> intfunction and sq is a:int -> intfunction so:sumsq == sumfunc sq : int -> int 118

Now: - sumsq 3;> 14 : intbecause:sumsq 3 ==> sumfunc sq 3 ==> ... ==> 14Similarly, we can de�ne sumdouble to be like sumfunc with f set to double:- val sumdouble = sumfunc double;> val sumdouble = fn : int -> int- sumdouble 3;> 10 : intsumfunc is another higher order function because it takes a function as argument and returns a function asresult.4.10 Conditional expressionPattern matching is used to discriminate between values but can only identify their presence or absence. Whenother properties must be checked, the conditional expression is used. This has the form:if expression1then expression2else expression3expression1 must return a boolean value.expression2 and expression3 must return values of the same type.If expression1 is true then the value of expression2 is returned. If expression1 is false then the value ofexpression3 is returned.For example, suppose we want to �nd the absolute value of an integer, that is the value without regard forwhether it is negative. If it is greater than or equal to zero then leave it alone. Otherwise negate it to make itpositive:- (* absolute value of an integer *)fun abs x = if x>=0then xelse ~x;- val abs = fn : int -> intx is integer because it is compared with 0.Thus:- abs ~3;> 3 : int 119

abs is provided as a standard SML function.For example, to �nd the longer of strings s1 and s2, we compare their sizes. If the �rst string is longer thanthe second then we return the �rst. Otherwise we return the second string:- (* longer of two strings *)fun max s1 s2 = if size s1>size s2then s1else s2;> val max = fn : string -> string -> stringNote that size has a string argument so s1 and s2 must be strings. Note that size returns an integer so >must be integer comparison.Thus:- max "big" "small";> "small" : string4.11 Conditional expressions and boolean valuesThis is a good place to reiterate that the result of a boolean expression is a boolean value. Thus there is noneed to test a boolean expression to return explicitly a boolean value. For example, in:fun positive n = if n>0then trueelse falsewhenever n is greater than 0 then n>0 is true and whenever n is not greater than 0 then n>0 is false so theconditional expression is redundant. Hence:- (* is integer n positive? *)fun positive n = n>0;> val positive = fn : int -> boolis all that is needed.There is never any need to build a conditional expression which returns true from the then case and falsefrom the else case. Instead, the boolean expression alone will do. In general:if boolean expressionthen trueelse falseis the same as:boolean expressionSimilarly:if boolean expressionthen falseelse true 120

is the same as:not (boolean expression)4.12 Pattern matching with real valuesAs we saw in chapter 2, real arithmetic is not precise and comparison of real values is unreliable. Similarly,pattern matching with real values, though allowed in SML, is not recommended. For example, pattern matchingwith a case for 0.0 may not succeed even when a value is so small that it might as well be zero.Instead, with reals conditional expressions may be used to test whether potential result values are withinacceptable error ranges of a required values. In particular, conditional expressions should used for recursionwith real values.For example, consider �nding the sum of all the reals between n and 0.0 in steps of 0.1. Each time, n is addedto the result of �nding the sum from 0.0 to 0.1 less than n:- (* bad attempt to sum from 0.0 to n by pattern matching 0.0 *)fun rsum 0.0 = 0.0 |rsum n = n+rsum (n-0.1);> val rsum = fn : real -> realThe recursion is supposed to stop when the argument is 0.0.Running:- rsum 8.0;on the SML system I use ... it runs out of memory! Because of inaccuracies in real arithmetic, n is never exactly0.0 and so recursion continues with n becoming more and more negative.Instead, an explicit test should be used, for example to see if n is equal to or less than 0.00000000000005:- (* sum from 0.0 to n with acceptable bound for 0.0 *)fun rsum n = if n<=0.000000000000005then 0.0else n+rsum (n-0.1);> val rsum = fn : real -> realNow, running:- rsum 8.0;> 324.000000000001 : realthe answer should be 324.0 so an error of 0.000000000001 has accumulated. By printing out values of n asthe calculation proceeds (a technique we will look at in a later chapter) we get the series:8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 ...6.50000000000001 6.40000000000001 6.30000000000001 ...1.00000000000001 0.900000000000012 0.800000000000012 ...0.200000000000012 0.100000000000012 1.16850973341798E~14so the value of n drifts more and more as the error from n-0.1 mounts up. The last term is e�ectively0.00000000000001, close to 0.0 but not close enough for the pattern match in our �rst attempt at rsum.121

4.13 More testingIn the last chapter we wrote functions which carried out simple calculations. Testing them involved tryingout representative test cases. We have now seen a number of ways of structuring functions by cases and withconditional expressions. When testing such functions, it is important to ensure that they behave correctly onall possible paths through them.Thus, when you are testing a simple case structured function, you should really try it with argument values forevery case. If there are a lot of cases for which the action is similar then try out a small set of them. If thefunction has a catch all case or an exception case then check these out as well.For example, to test:- fun past "stand" = "stood" |past "swim" = "swam" |past "eat" = "ate" |past v = v^"ed";> val past = fn : string -> stringWe might try the typical cases:- past "stand";> "stood" : string- past "eat";> "ate" : stringand the special case:- past "walk";> "walked" : stringFor example, to test:- fun OR false Y = Y |OR true _ = true;> val OR = fn : bool -> bool -> boolwe might try:- OR false false;> false : booland: - OR true true;> true : boolWe have seen that recursive functions have base and recursion cases. Thus, you should test a recursive functionwith values to test all the base and recursion cases.For example, to test: 122

- fun power x 0 = 1 |power x n = x*power x (n-1);> val power = fn : int -> int -> intwe might try the recursion cases:- power 2 3;> 8 : intand: - power 0 3;> 0 : intand the base case:- power 3 0;> 1 : int;We might try:- power 0 0;> 1 : intDo we want 0 to the power of 0 to be 1...?We also looked at the use of conditional expressions. When a function has conditional expressions it shouldbe tested with di�erent values that will make the condition both true and false. If the function has nestedconditional expressions then test values should be chosen to try out all possible paths.For example, for:- fun max s1 s2 = if size s1>size s2then s1else s2;> val max = fn : string -> string -> stringwe might try:- max "enormous" "tiny";> "enormous" : stringwhere the condition is true, and:- max "big" "small";> "small" : stringwhere the condition is false. We could also try empty string arguments:- max "" "huge";> "huge" : string- max "vast" "";> "vast" : string 123

We might also try arguments of the same size:- max "tiny" "vast";> "vast" : stringHere, do we really want the second argument as the result...?Thus, testing throws up e�ects that we may not have considered when we wrote the function.4.14 SummaryIn this chapter we looked at how to use pattern matching to identify di�erent cases for a function's argument, inparticular to represent simple association tables as case structured functions. We saw how the wildcard patternis used to ignore unknown cases. We then considered pattern matching on booleans and saw how to representtables where two columns are consulted to return a result. We discussed recursion as a way of repeating anactivity by referring to a function through an associated name in that function's body. In particular, we lookedat processing descending ranges of integers. We constructed base cases for constants when repetition stopsand recursion cases where an argument is modi�ed before being passed to the next stage. Finally, we met theconditional expression which is used when properties other than speci�c values are needed to distinguish cases.The tables we represented in this chapter were of �xed size. In the next chapter we will meet the list type whichwe can use to represent collections of varying size.4.15 Exercises1) Identify the types of the following functions:a) fun f1 "a" = 1 |f1 "b" = 2 |f1 c = 0b) fun f2 0 = "zero" |f2 1 = "one" |f2 n = "???"c) fun f3 1 = ("one",1.0) |f3 2 = ("two",2.0) |f3 n = ("???",0.0)d) fun f4 1 1 = true |f4 2 2 = true |f4 n1 n2 = falsee) fun f5 "one" 1 = "o" |f5 "one" 2 = "n" |f5 "one" 3 = "e" |f5 s n = "?"^s^"?"f) fun f6 1 = 1 |f6 n = f6 (n-1)g) fun f7 m 0 = m |f7 m n = f7 m (n-1) 124

h) fun f8 _ _ s3 0 = s3 |f8 s1 s2 s3 n = f8 s1 s2 (s3^s2^s1) (n-1)i) fun f9 x = if x<1then "small"else "big"j) fun f10 x = if x>0.0then (x,"pos")else (x,"not pos")k) fun f11 x y = if x<ythen xelse f11 (x-0.1) y2) Explain why the following functions are badly formed:a) fun f1 1 = "one" |f1 1.0 = "one" |f1 n = "not one"b) fun f2 1 = "true" |f2 n = falsec) fun f3 "real" = 1.0 |f3 "int" = 1 |f3 "string" = "one" |f3 n = falsed) fun f4 x y = if x>ythen "yes"else "no"e) fun f5 x = if x>3then trueelse "no"f) fun f6 x y = if x<ythen xelse f6 (x-y) yg) fun f7 x y 0 = x |f7 x y z = f7 (x-y) y (z-1)3) Write and test the following functions. Identify the type of each function:a) In general, the plural of an English word is found by following it with "s". However, there are anumber of exceptions, for example:singular pluralsheep sheepmouse micefish fishdatum datalouse liceWrite a case structured function plural which given a string word returns it with "s" on the end,unless it is one of the above special cases in which case the appropriate plural should be returned.b) The following table might be used to translate between English and Spanish colour words:125

English Spanishblack negrawhite blancared rojayellow amarillablue azulgreen verdeWrite case structured functions to convert colour words from:i) English to Spanishii) Spanish to EnglishIn both cases, how do you deal with an unknown colour word?c) The following table might be used to �nd the number of legs for various creatures:animal legswhale 0swan 2drunk 0goat 4spider 8ant 6Silver 1Write a case structured function to return the number of legs for a given creature. How do you dealwith an unknown creature?4) Write and test the following functions. Identify the type of each function:a) The truth table for the boolean IMPLIES operator isX Y X IMPLIES Yfalse false truefalse true truetrue false falsetrue true trueWrite a case structured function for IMPLIESi) with 4 cases directly from the truth tableii) with 2 cases by �nding a pattern within the truth tableb) The truth table for the boolean NAND operator isX Y X NAND Yfalse false truefalse true truetrue false truetrue true falseWrite a case structured function for NANDi) with 4 cases directly from the truth tableii) with 2 cases by �nding a pattern within the truth table5) Write and test the following functions. Identify the type of each function:a) The �rst 7 terms of the factorial sequence are:n 0 1 2 3 4 5 6 ...n! 1 1 2 6 24 120 720 ... 126

In general, n factorial is n times n-1 factorial:0! == 1n! == n*(n-1)!Write a function to calculate n factorial for arbitrary non-negative integer n. Do not use a conditionalexpression.b) Consider x-y. If y is zero then the result is x. Otherwise the result is the di�erence between thepredecessor of x and the predecessor of y:x-0 == xx-y == (x-1)-(y-1)9-6 == 8-5 == 7-4 == 6-3 == 5-2 == 4-1 == 3-0 == 3Given:- fun pred n = n-1;> val pred = fn : int -> intwrite a recursive function to subtract one integer from another, without using - other than forsubtracting 1. Do not use a conditional expression.c) The �rst 10 terms of the Fibonacci series are:n 0 1 2 3 4 5 6 7 8 9 10 ...fib n 0 1 1 2 3 5 8 13 21 34 55 ...In general, the nth term is found by adding together the n-1th and n-2th terms.Write a recursive function to return the nth term of the Fibonacci series for non-negative integer n.Do not use a conditional expression.6) Write and test the following functions. Identify the type of each function:a) Write a recursive function to join string s onto itself non-negative integer n times:- sjoin 3 "very";> "veryveryvery" : stringDo not use a conditional expression.b) Use sjoin from a) above to de�ne a function to join a string onto itself the same number of timesas its length:- ljoin "huge";> "hugehugehugehuge" : stringc) Write a function to join string s1 onto the end of string s2 integer n times:- rjoin "!" "Help" 3;> "Help!!!" : stringIf n is 0 then return s2. Otherwise join s1 onto the result of joining s1 onto the end of s2 n-1 times.7) Use the following functionfun sumfunc _ 0 = 0 |sumfunc f n = f n+sumfunc f (n-1)to de�ne functions to �nd the sum of the �rst ni) cubesii) factorialsiii) integers 127

8) Write and test the following functions. Identify the type of each function:a) Write a function to �nd the bigger of two integers:- max 4 5;> 5 : intb) Write a function to �nd the biggest of three reals:- max3 1.2 3.4 3.2;> 3.4 : real9) Write a function of an integer n which returns a string as follows:n < 0 == "negative"n = 0 == "zero"n > 0 == "positive"Indentify the function's type.10) Write and test the following functions. Identify the type of each function:a) Write a function to divide integer x by integer y, by repeated subtraction and addition of 1, giventhat:x div 0 == errorx div y == 1+(x-y) div y if x>=y== 0 if x<y9 div 2 == 1+7 div 2 == 1+1+5 div 2 == 1+1+1+3 div 2 ==1+1+1+1+1 div 2 == 1+1+1+1+0 == 4For example:- DIV 12 5;> 2 : intDo not use div.b) Write a function to �nd the remainder on dividing integer x by integer y without using mod ordiv: - MOD 15 4;> 3 : intEach time, subtract y from x until x is smaller than y:15 mod 4 == 11 mod 4 == 7 mod 4 == 3 mod 4 == 311) Write and test the following functions. Identify the type of each function:a) Write a function which given two strings repeatedly joins spaces onto the end of the �rst to makeit the same length as the second:- extend_space "cat" "catamaran";> "cat " : stringb) Write a function which given three strings repeatedly joins the �rst onto the end of the secondto make it at least the same length as the third:- extend "." "cat" "catapult";> "cat....." : stringYou may assume that the �rst string has only one letter.c) Use the function from b) to de�ne the function from a).128

Chapter 5Introducing lists5.1 IntroductionIn chapter 1 we saw that models are made out of variable sized collections of things and that things are �xedsize groups of properties. In the last three chapters we have looked at how we can represent properties asvalues from basic types and how we can start to use operations on basic types to build functions which serve asmethods for the things so represented. In this and the next chapter we are going to discuss the representationof variable sized collections of individual values. In chapter 7, we will at last be able to manipulate collectionsof multi-valued things.5.2 Basic list propertiesSML provides the list type as one way of representing collections. A list is a variable length sequence of elementswhich are all of the same type. We can think of a list as being made up of cells with two �elds:CELL HEAD TAILknown as the head and the tail. If the head is a value of any type then the tail must be a list with elements ofthe same type as the head value.Lists always end with the empty list, also known as the null list, which is written as:nilor: []Lists are formed using the in�x constructor operator ::, sometimes called \cons". For:expression1 :: expression2expression2 must be a list of the same type as expression1.129

:: has greater precedence than comparison operators and less precedence than arithmetic operators and functioncalls. Thus, the latter need not be bracketed when used to �nd list elements.For example:1::[]which we could draw as the cell:[]1is an integer list with 1 in the head and the empty list in the tail. Similarly:2::(1::[])which we could draw as: []2 1is an integer list with 2 in the head and the integer list 1::[] in the tail. Thus:3::(2::(1::[]))which we could draw as: []3 2 1is an integer list with 3 in the head and the integer list 2::(1::[]) in the tail.For example:"ape"::[]drawn as: []"ape"is a string list with "ape" in the head and [] in the tail. Similarly:"bat"::("ape"::[])drawn as: []"bat" "ape"is a string list with "bat" in the head and the string list "ape"::[] in the tail. Thus:130

"cat"::("bat"::("ape"::[]))drawn as: []"cat" "bat" "ape"is a string list with "cat" in the head and the string list "bat"::("ape"::[]) in the tail.There are two simpli�cations to the list notation. First of all, if the tail of a list is a list then it need not bebracketed so:expression1 :: (expression2 :: expression3)simpli�es to:expression1 :: expression2 :: expression3For example:3::(2::(1::[]))simpli�es to:3::2::1::[]and: "cat"::("bat"::("ape"::[]))simpli�es to:"cat"::"bat"::"ape"::[]Secondly, lists that end in the empty list may be written within square brackets, with elements separated bycommas, without the empty list at the end. Thus:expression1 :: expression2 :: ... :: expressionN ::[]may be written as:[expression1 , expression2 , ... ,expressionN]For example:1::2::3::[]is the same as: 131

[1,2,3]and: "cat"::"bat"::"ape"::[]is the same as:["cat"::"bat"::"ape"]SML systems print list values using the [...] form.Lists can be made of elements of any type including tuples, functions and lists. For example, the list of names:[("Donald","Duck"),("Mickey","Mouse"),("Pluto","Pup")]is a list of string * string tuples.For example:[fn (x:int) => x*x,fn (x:int) => x*x*x,fn (x:int) => x*x*x*x]is a list of int -> int functions.For example:[[1,1,1],[2,4,8],[3,9,27]]drawn as:1 1 1 [] 2 4 8 [] 3 9 27 [][]is a list of integer lists of numbers and their powers:Note that:[expression]is a one element list of the same type as expression. For example:["dog"]drawn as: []"dog" 132

is a string list with one element.The list type is a polymorphic type; that is lists may have any type as element. Suppose 'a is any type. Thena list of that type of element has type:'a listlist is the type constructor for lists. ::'s type is:- (op ::);> fn : ('a * 'a list) -> 'a listso :: takes one argument of any type 'a and another argument of a list of that type, 'a list, and returns alist of that type.For example, an integer list:- 1::2::3::[];> [1,2,3] : int listand a string list:- "a"::"b"::"c"::[];> ["a","b","c"] : string listFor example, a list of tuples of integers and strings:- [(1,"one"),(2,"two"),(3,"three")];> [(1,"one"),(2,"two"),(3,"three")] : (int * string) listNote that because the list element type is a tuple it is bracketed in the list expression: list has greaterprecedence in type expressions than *. In contrast:int * string listis a tuple of an integer and a string list, for example:- (1,["yes","ja","si"]);> (1,["yes","ja","si"]) : int * string listFor example, a list of integer to integer functions:- [fn (x:int) => x*x,fn (x:int) => x*x*x,fn (x:int) => x*x*x*x];> (int -> int) listNote that again the function element type is bracketed because list has greater precedence than -> in typeexpressions. In contrast:int -> int listis a function from a function to an integer list, for example:133

- (* construct list with three integer x *)fun three (x:int) = [x,x,x];> val three = fn : int -> int list- three 3;> [3,3,3] : int listFor example, a list of integer lists:- [[1,1,1],[2,4,8],[3,9,27]];> [[1,1,1],[2,4,8],[3,9,27]] : int list listSo far we have concentrated on lists with values as elements. Lists may have expressions as elements, not justvalues, so long as those expressions must all return the same types. Like ::, the , in the bracketed list notationhas lower precedence than arithmetic expressions and function calls so they need not be bracketed. For example:- [2.0,2.0*2.0,2.0*2.0*2.0,2.0*2.0*2.0*2.0];> [2.0,4.0,8.0,16.0] : real listFor example:- [size "fish",floor 42.24,sq 3];> [4,42,9] : int listNote that some SML systems may not display all of very long lists. For example, on the system I use:- [1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0];> [1,2,3,4,5,6,7,8,9,0,1,2,...] : int listonly the �rst 12 elements are displayed.5.3 Pattern matching with listsA formal de�nition of a list is:[] is a listif expression1 is an 'a and expression2 is an 'a listthen expression1 :: expression2 is an 'a listFor recursive functions of lists we can now use [] for the base case and recursion cases with list patterns. Theseare formed from :: or [...,...] with constants, lists and names.fun name [] = base case |name (head :: tail) =recursion case using head and tailHere, head and tail are both constants or names or list patterns.For matching a list pattern, the argument must have the same structure as the pattern, with constants in thesame positions. Names in the list pattern match with and are set to values in the argument in the same position.To begin with we will use patterns of the form: 134

h::tso h will match the head of a list argument and t will match the tail.Note that a list pattern using :: must be bracketed.For example, consider �nding the length of a list. The empty list has no length. Otherwise, the length is onemore than the length of the tail:- (* length of list *)fun length [] = 0 |length (h::t) = 1+length t;> val length = fn : 'a list -> intThis is a polymorphic function: it will �nd the length of a list of any type. No operations are performed on thelist elements apart from pattern matching so the list's type is irrelevant.Note that h is not used in the recursion case so it can be replaced by the wildcard pattern:- fun length [] = 0 |length (_::t) = 1+length t;> val length = fn : 'a list -> intFor example:- length ["c","b","a"];> 3 : intbecause:length ["c","b","a"] ==> match _ with "c"take t as ["b","a"]1+length ["b","a"] ==> match _ with "b"take t as ["a"]1+1+length ["a"] ==> match _ with "a"take t as to []1+1+1+length [] ==>1+1+1+0 ==> 3Consider, for example, adding the elements of an integer list together. The sum of the elements of an emptylist is 0. The sum of the elements of a non-empty list is the head added to the sum of the tail:- (* sum an integer list *)fun sum [] = 0 |sum (h::t) = h+sum t;> val sum = fn : int list -> intsum returns an integer because 0 is integer. The argument is an integer list because h is an integer because h isadded to the result of sum.For example: 135

- sum [9,7,5,3];> 24 : intbecause:sum [9,7,5,3] ==> take h as 9take t as [7,5,3]9+sum [7,5,3] ==> take h as 7take t as [5,3]9+7+sum [5,3] ==> take h as 5take t as [3]9+7+5+sum [3] ==> take h as 3take t as []9+7+5+3+sum [] ==>9+7+5+3+0 ==> 24Consider, for example, counting how often 0 appears in an integer list. If the list is empty then 0 appears 0times. Otherwise, if 0 is the head then add 1 to the count for the tail. Otherwise, count 0 in the tail:- (* count 0 in an integer list *)fun count0 [] = 0 |count0 (0::t) = 1+count0 t |count0 (h::t) = count0 t;> val count0 = fn : int list -> intThe argument is an integer list because 0 in 0::t is an integer. The result is an integer because the base caseis 0.Note that h is not used in the second recursion case so it can be replaced by the wildcard pattern:- fun count0 [] = 0 |count0 (0::t) = 1+count0 t |count0 (_::t) = count0 t;> val count0 = fn : int list -> intFor example:- count0 [1,0,2,0,0,1];> 3 : intbecause:count0 [1,0,2,0,0,1] ==> match _ with 1take t as [0,2,0,0,1]count0 [0,2,0,0,1] ==> match 0take t as [2,0,0,1]1+count0 [2,0,0,1] ==> match _ with 2take t as [0,0,1]136

1+count0 [0,0,1] ==> match 0take t as [0,1]1+1+count0 [0,1] ==> match 0take t as [1]1+1+1+count0 [1] ==> match _ with 1take t as []1+1+1+count0 [] ==>1+1+1+0 ==> 35.4 Equality typesConsider counting how often value v appears in a list. v appears in the empty list 0 times. If the head of thelist is v then add 1 to the count of v in the tail. Otherwise, count v in the tail:- (* count value in list *)fun count v [] = 0 |count v (h::t) = if v=hthen 1+count v telse count v t;> val count = fn : ''a -> ''a list -> intHere, the type involves the variable ''a rather than the usual 'a.In length above, we saw that no operations were performed on the list elements so they could be any type.We represented such a polymorphic type with an 'a. Here, the operation performed on v and h is an equalitycomparison with =. Hence, v and h must be the same type and that type may be any for which equality isde�ned - an equality type. This is a slight restriction on a polymorphic type and so the variable is written withtwo primes in front of the alphabetic identi�er instead of one prime for a fully polymorphic type. Hence theuse of ''a in the type here:''a -> ''a list -> intFor example:- count "ash" ["oak","ash","elm","ash","oak"];> 2 : intbecause:count "ash" ["oak","ash","elm","ash","oak"] ==> take h as "oak"take t as ["ash"...]count "ash" ["ash","elm","ash","oak"] ==> take h as "ash"take t as ["elm"...]1+count "ash" ["elm","ash","oak"] ==> take h as "elm"take t as ["ash","oak"]1+count "ash" ["ash","oak"] ==> take h as "ash"137

take t as ["oak"]1+1+count "ash" ["oak"] ==> take h as "oak"take t as []1+1+count "ash" [] ==>1+1+0 ==>2This is a polymorphic function and may be used to count occurrences of any type of value in a list of appropriatetype. It may also be used to de�ne functions to count speci�c values in lists of speci�c types. For example, tocount 0 in integer lists:- val count0 = count 0;> val count0 = fn : int list -> intcount0 is like count with v set to 0.Note that the type ''a in count has been specialised to int, an equality type, in count0. v has been associatedwith an integer value. v was of type ''a so all occurrences of ''a must become int for consistency. Similarly,in: - (* count "ash" in string list *)val countash = count "ash";> val countash = fn : string list -> stringto count occurrences of "ash", ''a has been specialised to string.5.5 General list operationsThere are a number of useful general list operations which we will now consider. These are polymorphic andform the basis of many list functions.5.5.1 Add to end of listConsider adding a value to the end of a list. For example:- add 5 [1,2,3,4];> [1,2,3,4,5] : int listTo add a value to an empty list, make a new list with the value as the only element. Otherwise, put the headof the list onto the front of adding the value to the end of the tail of the list:- (* put value on the end of list *)fun add v [] = [v] |add v (h::t) = h::add v t;> val add = fn : 'a -> 'a list -> 'a listSuppose v is of unknown type 'a. Then the result of add is an 'a list because the base case returns a listwith v as head. Then h must be of type 'a because it is joined onto the front of the result of add so the listargument is an 'a list.For example: 138

- add "d" ["a","b","c"];> ["a","b","c","d"] : string listbecause:add "d" ["a","b","c"] ==> take h as "a"take t as ["b","c"]"a"::add "d" ["b","c"] ==> take h as "b"take t as ["c"]"a"::"b"::add "d" ["c"] ==> take h as "c"take t as []"a"::"b"::"c"add "d" [] ==>"a"::"b"::"c"::["d"] ==>"a"::"b"::["c","d"] ==>"a"::["b","c","d"] ==>["a","b","c","d"]This is a common technique: the list is unwound to the required point and then wound back up again.5.5.2 Append two lists end to endConsider joining two lists end to end:- append [1,2,3] [4,5,6];> [1,2,3,4,5,6] : int listJust using :: will not work. In:[1,2,3]::[4,5,6]the head is an int list and so is the tail. Instead, we have to unwind the head and join it from the back ontothe tail:append [1,2,3] [4,5,6] ==>1::append [2,3] [4,5,6] ==>1::2::append [3] [4,5,6] ==>1::2::3::append [] [4,5,6] ==>1::2::3::[4,5,6] ==>1::2::[3,4,5,6] ==>1::[2,3,4,5,6] ==>[1,2,3,4,5,6] 139

If the �rst list is empty then return the second list. Otherwise join the head of the �rst onto the result ofappending the tail of the �rst onto the second:- (* append a list onto the end of another *)fun append [] l2 = l2 |append (h::t) l2 = h::append t l2;> val append = fn : 'a list -> 'a list -> 'a listSuppose the �rst argument is an 'a list. Then h is of type 'a so the result is an 'a list because h is joinedonto it. l2 must also be an 'a list because it is the base case result. For example:append ["a","b","c"] ["d","e","f"] ==> take h as "a"take t as ["b","c"]"a"::append ["b","c"] ["d","e","f"] ==> take h as "b"take t as ["c"]"a"::"b"::append ["c"] ["d","e","f"] ==> take h as "c"take t as []"a"::"b"::"c"::append [] ["d","e","f"] ==>"a"::"b"::"c"::["d","e","f"] ==>"a"::"b"::["c","d","e","f"] ==>"a"::["b",c","d","e","f"] ==>["a","b","c","d","e","f"]SML systems provide the append function as the in�x operator @:- op @;> fn : 'a list * 'a list -> 'a listFor example:- ["alpha","beta"]@["gamma","delta","epsilon"];> ["alpha","beta","gamma","delta","epsilon"] : string list@ is a function and may not appear in patterns. In contrast, :: is a constructor and may appear in patterns.Expressions containing bracketed sequences of @ may be simpli�ed by dropping the brackets:(value1 @ value2) @ value3 ==>value1 @ value2 @ value3For example:- [1,2,3]@[4,5,6]@[7,8,9];> [1,2,3,4,5,6,7,8,9] : int list@ has the same precedence as the list constructor ::. 140

5.5.3 Insert before value in listConsider inserting value v1 before the �rst occurrence of value v2 in a list:- insertb "c" "d" ["a","b","d"];> ["a","b","c","d"] : string listIf the list is empty then there are no occurrences of v2. If the list starts with v2 then put v1 on the front ofthe list. Otherwise put the head of the list onto the result of inserting v1 before the �rst occurrence of v2 inthe tail of the list:- (* insert value v1 before value v2 in list *)fun insertb v1 v2 [] = [] |insertb v1 v2 (h::t) = if h=v2then v1::h::telse h::insertb v1 v2 t;> val insertb = fn : ''a -> ''a -> ''a list -> ''a listNo operations are performed on h and v2 apart from an equality comparison. Hence they must be equalitytypes, say ''a. Then the result must be ''a list because h is at the start of a result list. v1 must be of type''a because it is in that result list and starts a result list. Thus h::t must be a ''a list because it startswith a ''a.Note that v1 and v2 are not used in the base case so they can be replaced by the wildcard pattern:- fun insertb _ _ [] = [] |insertb v1 v2 (h::t) = if h=v2then v1::h::telse h::insertb v1 v2 t;> val insertb = fn : ''a -> ''a -> ''a list -> ''a listFor example:- insertb 3 4 [1,2,4];> [1,2,3,4] : int listbecause:insertb 3 4 [1,2,4] ==> take h as 1take t as [2,4]1::insertb 3 4 [2,4] ==> take h as 2take t as [4]1::2::insertb 3 4 [4] ==> take h as 4take t as []1::2::3::4::[] ==>[1,2,3,4]Consider inserting value v1 before all occurrences of value v2 in a list:- insertball 0 1 [1,2,1,3];> [0,1,2,0,1,3] : int list 141

If the list is empty then there are no occurrences of v2: v2 and v1 can be replaced by the wildcard pattern. Ifthe list starts with v2 then insert v1 after all occurrences of v2 in the tail of the list and put v1 and v2 on thefront of the new list. Otherwise, put the head of the list onto the result of inserting v1 before all occurrencesof v2 in the tail of the list:- (* insert v1 before all v2 in list *)fun insertball _ _ [] = [] |insertball v1 v2 (h::t) = if h=v2then v1::h::insertball v1 v2 telse h::insertball v1 v2 t;> val insertball = fn : ''a -> ''a -> ''a list -> ''a listFor example:- insertball "a" "b" ["b","c","d","b"];> ["a","b","c","b","a","b"] : string listbecause:insertball "a" "b" ["b","c","d","b"] ==> take h as "b"take t as ["c","d","b"]"a"::"b"::insertball "a" "b" ["c","d","b"] ==> take h as "c"take t as ["d","b"]"a"::"b"::"c"::insertball "a" "b" ["d","b"] ==> take h as "d"take t as ["b"]"a"::"b"::"c"::"d"::insertball "a" "b" ["b"] ==> take h as "b"take t as []"a"::"b"::"c"::"d"::"a"::"b"::insertball "a" "b" [] ==>"a"::"b"::"c"::"d"::"a"::"b"::[] ==>["a","b","c","d","a","b"]5.5.4 Delete value from listConsider deleting value v from a list of appropriate type:- delete 3 [1,2,3,4];> [1,2,4] : int listIf the list is empty then nothing can be deleted so return the empty list. Otherwise, if v is the head of the listthen return the tail. Otherwise, put the head onto the result of deleting v from the tail:- (* delete value from list *)fun delete _ [] = [] |delete v (h::t) = if v=hthen telse h::delete v t;> val delete = fn : ''a -> ''a list -> ''a list142

v and h are compared for equality so they must be equality types, say ''a. The list must be of type ''a listand the result must be of type ''a list because t must be of type ''a list. For example:delete 3 [1,2,3,4] ==> take h as 1take t as [2,3,4]1::delete 3 [2,3,4] ==> take h as 2take t as [3,4]1::2::delete 3 [3,4] ==> take h as 3take t as [4]1::2::[4] ==> 1::[2,4] ==> [1,2,4]Consider deleting all occurrences of value v in a list:- deleteall 0 [1,0,2,0,3];> [1,2,3] : int listIf the list is empty then there are no occurrences. If the list starts with v then delete all occurrences in the tail.Otherwise, put the head onto the result of deleting all occurrences of v in the tail:- (* delete all occurrences of value from list *)fun deleteall _ [] = [] |deleteall v (h::t) = if v=hthen deleteall v telse h::deleteall v t;> val deleteall = fn : ''a -> ''a list -> ''a listFor example:- deleteall "a" ["a","b","a","c","a"];> ["b","c"] : string listbecause:deleteall "a" ["a","b","a","c","a"] ==> take h as "a"take t as ["b","a","c","a"]deleteall "a" ["b","a","c","a"] ==> take h as "b"take t as ["a","c","a"]"b"::deleteall "a" ["a","c","a"] ==> take h as "a"take t as ["c","a"]"b"::deleteall "a" ["c","a"] ==> take h as "c"take t as ["a"]"b"::"c"::deleteall "a" ["a"] ==> take h as "a"take t as []"b"::"c"::deleteall "a" [] ==>"b"::"c"::[] ==>["b","c"] 143

5.5.5 Replace value in listConsider replacing value v1 with value v2 in a list:- replace "c" "C" ["A","B","c","D"];> ["A","B","C","D"] : string listIf the list is empty then there is nothing to replace so return the empty list. If the head of the list is v1 thenput v2 onto the tail of the list. Otherwise put the head onto the result of replacing v1 with v2 in the tail:- (* replace v1 with v2 in list *)fun replace _ _ [] = [] |replace v1 v2 (h::t) = if v1=hthen v2::telse h::replace v1 v2 t;> val replace = fn : ''a -> ''a -> ''a list -> ''a listv1 and h are compared for equality so they must be equality types, say ''a. The list argument is of type ''alist. The result must be of type ''a list because h is put onto it. v2 must be of type ''a because it is puton the front of t which is of type ''a list. For example:- replace "saw" "ate" ["the","cat","saw","the","rat"];> ["the","cat","ate","the","rat"] : string listbecause:replace "saw" "ate" ["the","cat","saw","the","rat"] ==>take h as "the"take t as ["cat","saw","the","rat"]"the"::replace "saw" "ate" ["cat","saw","the","rat"] ==>take h as "cat"take t as ["saw","the","rat"]"the"::"cat"::replace "saw" "ate" ["saw","the","rat"] ==>take h as "saw"take t as ["the","rat"]"the"::"cat"::"ate"::["the","rat"] ==>"the"::"cat"::["ate","the","rat"] ==>"the"::["cat","ate"::"the","rat"] ==>["the","cat","ate","the","rat"]Consider replacing all occurrences of value v1 with value v2 in a list:- replaceall 0 9 [1,0,2,0,3];> [1,9,2,9,3] : int listIf the list is empty then there are no occurrences to replace. If the list starts with v1 then put v2 onto theresult of replacing all v1 with v2 in the tail. Otherwise put the head onto the result of replacing all v1 in thetail with v2: 144

- (* replace all v1 with v2 in list *)fun replaceall _ _ [] = [] |replaceall v1 v2 (h::t) = if h=v1then v2::replaceall v1 v2 telse h::replaceall v1 v2 t;> val replaceall = fn : ''a -> ''a -> ''a list -> ''a listFor example:- replaceall "a" "@" ["a","b","a","c"];> ["@","b","@","c"] : string listbecause:replaceall "a" "@" ["a","b","a","c"] ==> take h as "a"take t as ["b","a","c"]"@"::replaceall "a" "@" ["b","a","c"] ==> take h as "b"take t as ["a","c"]"@"::"b"::replaceall "a" "@" ["a","c"] ==> take h as "a"take t as ["c"]"@"::"b"::"@"::replaceall "a" "@" ["c"] ==> take h as "c"take t as []"@"::"b"::"@"::"c"::replaceall "a" "@" [] ==>"@"::"b"::"@"::"c"::[] ==>["@","b","@","c"]5.6 Explicit list element selectionAs we have seen, list elements are selected by pattern matching. However, it is sometimes convenient to accessthe head or tail of a list explicitly. We can de�ne list head and tail selection functions ourselves through listpattern matching.We know that an empty list does not have a head or tail. We can de�ne an exception:- exception Hd;> exception Hdto cater for taking the head of an empty list. Now, for the head of a list:- (* head of list *)fun hd (h::_) = h |hd [] = raise Hd;> val hd = fn : 'a list -> 'awe either select it through pattern matching on a non-empty list or raise the exception for an empty list.For example: 145

- hd [1,2,3];> 1 : intSimilarly, for the tail of a list:- exception Tl;> exception Tl- (* tail of list *)fun tl (_::t) = t |tl [] = raise Tl;> val tl = fn : 'a list -> 'a listwe either select it through pattern matching or raise the exception for an empty list.For example:- tl [1,2,3];> [2,3] : int listhd and tl may be nested to select inner elements. For example, to select the second element in a list:- hd (tl [3,2,1]);> 2 : intThe tail of [3,2,1] is [2,1] so the head of the tail of [3,2,1] is 2.For example, to drop the �rst two elements from a list:- tl (tl [3,2,1]);> [1] : int listThe tail of [3,2,1] is [2,1] so the tail of the tail is [1].For example, to take the third element in a list:- hd (tl (tl [3,2,1]));> 1 : intThe tail of the tail of [3,2,1] is [1] so its head is 1.For example, to drop the �rst three elements from a list:- tl (tl (tl [3,2,1]));> [] : int listNote that [] can end any list but here the list is of type int list so in this context [] is of type int list aswell.In general it is clearer to use pattern matching rather than hd and tl. First of all, the structure of the list canbe read o� from the pattern. Secondly, the nested use of hd and tl is hard to read.For example, suppose we have a list of lists and we want to �nd the second element of the second list. Compare:146

- fun element_2_2 l = hd (tl (hd (tl l)));> val element_2_2 = fn : 'a list list -> 'awith: - fun element_2_2 (_::(_::e::_)::_) = e;> val element_2_2 = fn : 'a list list -> 'aIn the second case the element of interest is clearly identi�ed, as is the surrounding structure.5.7 Indexed list accessSometimes it is useful to be able to access elements by specifying their position relative to the start of a list.For example, if we have a list of things in order and we want to �nd the �rst or the second or the third and soon. Consider the list:[value1 , value2 , value3 , value4 , ...]Consider �nding each element using hd and tl. To �nd the �rst:hd [value1 , value2 , value3 , value4 , ...] ==>value1To �nd the second:hd (tl [value1 , value2 , value3 , value4 , ...]) ==>value2To �nd the third:hd (tl (tl [value1 ,value2 , value3 , value4 , ...])) ==>value3To �nd the fourth:hd (tl (tl (tl [value1 ,value2 , value3 , value4 , ...]))) ==>value4In general, the �rst element in a list is the head. Otherwise, to �nd the ith value in a list, take the tail i-1times and then take the head:- fun find 1 (h::_) = h |find i (_::t) = find (i-1) t |Note that the head is ignored in the recursion case and the tail is ignored in the base case.So far, this function is of type: 147

int -> 'a list -> 'ai and 1 are both integers. Suppose h::t is an 'a list. Then the result is an 'a.However, this function is incomplete: there is no case for an empty list! An empty list does not have an ithelement so some value must be returned to indicate failure. Alas, there is no value which is that of all types 'a.We have to be more speci�c about the type of list. Suppose it's an integer list. We could return ~1 to indicatefailure, assuming that ~1 is not in the list:- (* find ith in integer list *)fun findi 1 (h::_) = h |findi i (_::t) = findi (i-1) t |findi _ [] = ~1;> val findi = fn : int -> int list -> intThe last case returns an integer so all cases must return integers so h must be an integer so the list argumentmust be an integer list.Note that the index value is ignored in the last case.Similarly, for a string list, we supply a string value for when we reach the end of the list:- (* find ith in string list *)fun finds 1 (h::_) = h |finds i (_::t) = finds (i-1) t |finds _ [] = "fail";> val finds = fn : int -> string list -> stringNow, the last case returns a string so all cases must return strings so h must be a string so the list argumentmust be a string list.For example:- findi 3 [1,4,9,16];> 9 : intbecause:findi 3 [1,4,9,16] ==>findi 2 [4,9,16] ==>findi 1 [9,16] ==>9For example:- finds 4 ["apple","banana","cherry"];> "fail" : stringbecause:finds 4 ["apple","banana","cherry"] ==> 148

finds 3 ["banana","cherry"] ==>finds 2 ["cherry"] ==>finds 1 [] ==>"fail"Note that this function has both a speci�c type and a list bound variable. Thus, there must be enough cases tosatisfy all possible combinations of that type and lists.An alternative is to de�ne an exception:- exception Find;> exception Findand then make a general function which raises an exception if the required value is not found:- (* find ith in list *)fun find 1 (h::_) = h |find i (_::t) = find (i-1) t |find _ [] = raise Find;> val find = fn : int -> 'a list -> 'aNow there is no restriction on the type of or the values in the list.Consider deleting the ith in a list:- idelete 3 [1,4,8,16];> [1,4,16] : intThe empty list has no ith element, so ignore the index. To delete the �rst element, ignore the head and returnthe tail. Otherwise, put the head onto the result of deleting the i-1th in the tail:- (* delete ith in list *)fun idelete _ [] = [] |idelete 1 (_::t) = t |idelete i (h::t) = h::idelete (i-1) t;> val idelete = fn : int -> 'a list -> 'a listThis is a polymorphic function. Suppose h::t is an 'a list. Then t is an 'a list and so is the result.For example:- idelete 3 ["a","b","z","d"];> ["a","b","d"] : string listbecause:idelete 3 ["a","b","z","d"] ==>"a"::idelete 2 ["b","z","d"] ==> 149

"a"::"b"::idelete 1 ["z","d"] ==>"a"::"b"::["d"] ==>["a","b","d"]Consider inserting a value v before the ith element in a list:- iinsertb 3 "c" ["a","b","d"];> ["a","b","c","d"] : string listIf the list is empty then it has no ith element: the index and value can be ignored. Otherwise, to insert beforethe �rst element, put the value on the front of the list. Otherwise, put the �rst element onto the front of theresult of inserting before the i-1th element in the list:- (* insert before ith in list *)fun iinsertb _ _ [] = [] |iinsertb 1 v l = v::l |iinsertb i v (h::t) = h::iinsertb (i-1) v t;> val iinsertb = fn : int -> 'a -> 'a list -> 'a listThis is a polymorphic function. If the list argument l is an 'a list then v is an 'a because it is put on thefront of l. The result is also an 'a list because v is put on the front of l. For example:- iinsertb 3 3 [1,2,4];> [1,2,3,4] : int listbecause:iinsertb 3 3 [1,2,4] ==>1::iinsertb 2 3 [2,4] ==>1::2::iinsertb 1 3 [4] ==>1::2::3::[4] ==>[1,2,3,4]Consider replacing the ith element in a list with value v:- ireplace 3 "c" ["a","b","?","d"];> ["a","b","c","d"] : string listIf the list is empty then there is nothing to replace. If i is one then replace the head of the list with v. Otherwiseput the head onto the result of replacing the i-1th in the tail:- (* replace ith in list *)fun ireplace _ _ [] = [] |ireplace 1 v (_::t) = v::t |ireplace i v (h::t) = h::ireplace (i-1) v t;> val ireplace = fn : int -> 'a -> 'a list -> 'a list150

If the list is an 'a list then t is an 'a list and v must be an 'a because it is joined onto t. The result is an'a list because v::t is a 'a list.For example:- ireplace 3 true [true,true,false,true];> [true,true,true,true] : bool listbecause:ireplace 3 true [true,true,false,true] ==>true::ireplace 2 true [true,false,true] ==>true::true::ireplace 1 true [false,true] ==>true::true::true::[true] ==>[true,true,true,true]An alternative way to replace the ith in a list is to delete the ith and then insert before the ith:- fun ireplace i v l = iinsertb i v (idelete i l);> val replace = fn : int -> 'a -> 'a list -> 'a listHowever, this is less e�cient than the �rst version as the list must be scanned twice: once to delete the elementand once to insert the new one.5.8 Testing list functionsWe have seen that a typical function to process a list has one or more base cases and one or more recursioncases. To try and ensure that every path through the function works then, as for integer recursive functions,we should test list functions with values for all the base and recursion cases. For example, for:- fun append [] l2 = l2 |append (h1::t1) l2 = h1::append t1 l2;> val append = fn : 'a list -> 'a list -> 'a listwe might try the base case:- append [] [1,2,3];> [1,2,3] : int listand the recursion case:- append [1,2,3] [4,5,6];> [1,2,3,4,5,6] : int listFor example, for: 151

- fun ireplace _ _ [] = [] |ireplace 1 v (_::t) = v::t |ireplace i v (h::t) = h::ireplace (i-1) v t;> val ireplace = fn : int -> 'a -> 'a list -> 'a listwe might try the base cases:- ireplace 3 "cat" [];> [] : string listand: - ireplace 1 "ant" ["ape","bat","cat"];> ["ant","bat","cat"] : string listand the recursion case:- ireplace 3 "cow" ["ape","bat","cat","dog"];> ["ape","bat","cow","dog"] : string listIf we try:- ireplace 0 0 [1,2,3,4];> [1,2,3,4] : int listthen we may be surprised but relieved to �nd that recursion stops when the list is empty rather than it continuingfor ever with i getting more and more negative...5.9 SummaryIn this chapter we have met the list as a way of representing variable length sequences of the same type. Wehave looked at how to construct list patterns for recursion over patterns and met a variety of general purposelist functions.In the next chapter, we are going to consider further techniques for list processing. In particular, we willconstruct a number of higher order functions for lists.5.10 Exercises1) Identify the types of the following expressions:a) [2,4,6,8]b) [2.2,4.4,6.6,8.8]c) [fn s => s^"s",fn s => s^"ed",fn s => s^"ing"]d) [true]e) [(1,1.0,"one"),(2,2.0,"two"),(3,3.0,"three")]f) [(1,(1.0,"one")),(2,(2.0,"two")),(3,(3.0,"three"))]g) [[1.0,1.0],[2.0,4.0],[3.0,9.0]]h) [[[1,1],[2,4],[3,9]],[[1,1],[2,8],[3,27]]]i) [("Pat",["Patricia","Patrick"]), 152

("Jo",["Josephine","Joseph"])]j) [[("a",1),("b",2)],[("c",3),("d",4)]]k) [(1,[(2,2),(3,3)]),(2,[(2,4),(3,6)])]l) [[1.0,2.0,3.0]]m) [1,2,3]::[[4,5,6]]2) Explain why the following expressions are badly formed:a) [1,2,3.0]b) [true,"false",true]c) [(1,1),(2,4.0),(3,9)]d) [fn x => x+1,fn x => x+1.0,fn x => x^"1"]e) [1,2,3]::4f) ["a","b","c"]::["d","e","f"]3) Identify the types of the following functions:a) fun f1 [] = 0 |f1 (h::t) = 2*h+f1 tb) fun f2 [] = 0.0 |f2 (h::t) = h+f2 tc) fun f3 [] = [] |f3 (0::t) = 0::(f3 t) |f3 (_::t) = f3 td) fun f4 [] = [] |f4 ("a"::t) = true::f4 t |f4 (_::t) = false::f4 te) fun f5 [] = "" |f5 (h::t) = h^h^f5 tf) fun f6 [] = (0.0,0.0) |f6 (h::t) = (h,h/2.0)::f6 tg) fun f7 [] = [] |f7 (h::t) = (h,h)::f7 th) fun f8 [] = [] |f8 (h::t) = [h]::f8 t4) Explain why the following functions are badly formed:a) fun f1 [] = [] |f1 (h::t) = h*h::f1 tb) fun f2 v [] = v |f2 v (h::t) = v+h::f2 tc) fun f3 [] = [] |f3 (h::t) = [h]::f3 [t]d) fun f4 [] = [] |f4 (0::t) = f4 t |f4 (h::t) = h/2.0::f4 t 153

e) fun f5 [] = [] |f5 (h::t) = [h]::[f5 t]5) Write and test the following functions. Identify the type of each function:a) return a list of the �rst n integers in descending order;- intlist 5;> [5,4,3,2,1] : int listb) return a list of the �rst n squares in descending order:- sqlist 5;> [25,16,9,4,1] : int listc) return a list of tuples of the �rst n integers and their squares in descending order:- intsqlist 5;> [(5,25),(4,16),(3,9),(2,4),(1,1)] : (int * int) listd) return a list of n occurrences of string s:- repeat 5 "very";> ["very","very","very","very","very"] : string list6) Write and test the following functions. Identify the type of each function:a) conjoin all elements of a boolean list together. If the list is empty then return true. Otherwiseconjoin the head onto the result of conjoining the tail:- andlist [true,false,true,true,false];> false : boolb) join all elements of a string list end to end. If the list is empty then return the empty string.Otherwise join the head onto the result of joining together the tail:- sjoin ["many","happy","returns"];> "manyhappyreturns" : stringc) join all elements in a string list end to end with spaces in between:- spjoin ["many","happy","returns"];> "many happy returns" : stringThe function should have cases for an empty list, a one element list and several elements in the list.It should only put a space after a string if it is not the last element in the list.7) Write and test the following functions. Identify the type of each function:a) count how many elements of an integer list are positive- poscount [1,0,2,~3,4];> 3 : intb) count how many elements of a string list have more than 3 characters:- more3 ["cat","goat","dog","horse"];> 2 : intc) count how many elements of an arbitrary list have elements with property p. If the list is of type'a then p is an 'a -> bool function: 154

- countprop (fn r => r<0.0) [1.1,~2.2,3.3,~4.4];> 2 : intd) use the function from c) to de�ne the functions from a) and b)8) Write and test the following functions. Identify the type of each function:a) check whether all elements of an integer list are non-zerob) check whether all elements of a string list have at least 4 lettersc) check whether all elements of an arbitrary list have property pd) use the function from c) to de�ne the functions from a) and b)9) Write and test the following functions. Identify the type of each function:a) check whether at least one element of an integer list is bigger than 42b) check whether at least one element of a string list is "banana"c) check whether at least one element of an arbitrary list has property pd) use the function from c) to de�ne the functions from a) and b)10) Write and test the following functions. Identify the type of each function:a) delete the last in a list. If the list is empty, return the empty list. If the list has one element,return the empty list. Otherwise put the head onto the result of deleting the last in the tail:- dellast [5,4,3,2,1];> [5,4,3,2] : int listb) insert value v1 after the �rst occurrence of value v2 in a list:- inserta "d" "c" ["a","b","c","e"];> ["a","b","c","d","e"] : string listc) insert value v1 after all occurrences of value v2 in a list:- insertaall 1 0 [0,0,0];> [0,1,0,1,0,1] : int list11) Write and test the following functions. Identify the type of each function:a) return the position of a value in a list:- pos "c" ["a","b","c","d"];> 3 : intIf the list does not contain the value then return 1. Thus, its position will be one more than thelength of the list:- pos 99 [1,2,3,4];> 5 : intb) insert value v1 after the ith element of a list:- iinserta "@" 3 ["a","b","c","d"];> ["a","b","c","@","d"] : string list155

Chapter 6List higher order functions6.1 Accumulation variablesSometimes it is necessary to pass intermediate information from stage to stage in a recursion.For example, consider �nding the biggest in an integer list. Here, we have to keep track of the biggest so far.If the list is empty then the biggest is the biggest so far. If the head is bigger than the biggest so far then thebiggest so far becomes the head for �nding the biggest in the tail. Otherwise, the biggest so far remains thesame for �nding the biggest in the tail:- (* find biggest in integer list given biggest so far *)fun max1 (bsf:int) [] = bsf |max1 bsf (h::t) = if h>bsfthen max1 h telse max1 bsf t;> val max1 = fn : int -> int list -> intAssuming that there is at least one member in the list, we can start with the �rst as the initial biggest so far:- exception Max;> exception Max- (* find biggest in integer list *)fun max (h::t) = max1 h t |max [] = raise Max;> val max = fn : int list -> intWe raise an exception if max is called with an empty list: an empty list does not have a largest value. Forexample:- max [1,3,2,4,7,5,6];> 7 : intbecause:max [1,3,2,4,7,5,6] ==>max1 1 [3,2,4,7,5,6] ==> 156

max1 1 [3,2,4,7,5,6] ==>max1 3 [2,4,7,5,6] ==>max1 3 [4,7,5,6] ==>max1 4 [7,5,6] ==>max1 7 [5,6] ==>max1 7 [6] ==>max1 7 [] ==>7Here, bsf is called an accumulation variable because it accumulates the intermediate information about thebiggest so far.6.2 Encapsulation with local declarationsAn important principle in programming is that of encapsulation. The idea is that when providing a solutionto a problem, only the salient things should be generally accessible. Anything which is part of the overallsolution but not used independently of it should only be accessible to the things that use it. This is particularlyimportant where several people are cooperating to build a large system and each requires components from theothers. Each individual only needs to know about the overall behaviour of other components in terms of thevalues they manipulate and the results they return. How those results are found is irrelevant. Thus, lower leveldetails may be hidden from them. Furthermore, if all the sub-components of a system are visible other peoplemay be tempted to change them for their own purposes without appreciating the implications of those changesfor the original component.In the problems we are now considering, the �nal function often calls one or more auxiliary functions that onlyit needs to know about. These auxiliary functions can be grouped together so that they are accessible to thecalling function but not outside it. The function and its grouped auxiliary form a closed unit. Thus, thereis no possibility of trying to change an auxiliary function for use elsewhere which might have unexpected orunpredictable e�ects at the site of its original use. For example, above we only ever access max1 inside max.Thus, the use of max1 might be restricted to only within max.A local declaration is a way of providing a function with those functions that only it uses so that they are notaccessible outside that function. A local declaration takes the form:local declaration1in declaration2endThis says that the declaration declaration1 is only visible within declaration2.For example after:- localfun max1 (bsf:int) [] = bsf |max1 bsf (h::t) = if h>bsfthen max1 h telse max1 bsf tinfun max (h::t) = max1 h t | 157

max [] = raise Maxend;> val max = fn: int list -> intonly max can access max1.Note the end at the end of the local declaration. It is a common mistake to forget it.6.3 Ascending sequencesConsider building a list of squares in ascending order. We want to generate:[sq 1,sq 2, ... sq n]for some integer n. Suppose we are generating squares between m and n. If m is bigger than n then return theempty list. Otherwise put the square of m onto the list of squares from m+1 to n:- (* list squares from m to n *)fun sqlist1 m n = if m>nthen []else sq m::sqlist1 (m+1) n;> val sqlist1 = fn : int -> int -> int listWe then start the list at 1:- (* list squares from 1 to n *)val sqlist = sqlist1 1;> val sqlist = fn : int -> int listNote that we use a conditional expression to control the generation of a range of values. Pattern matching candetect the presence of a particular value but not a value meeting an arbitrary condition.Once again, we can hide the declaration of sqlist1 within sqlist:- localfun sqlist1 m n = if m>nthen []else sq m::sqlist1 (m+1) ninval sqlist = sqlist1 1end;> val sqlist = fn : int -> int listFor example:- sqlist 4;> [1,4,9,16] : int listbecause:sqlist 4 ==> 158

sqlist1 1 4 ==>sq 1::sqlist1 2 4 ==>sq 1::sq 2::sqlist1 3 4 ==>sq 1::sq 2::sq 3::sqlist1 4 4 ==>sq 1::sq 2::sq 3::sq 4::sqlist1 5 4 ==>sq 1::sq 2::sq 3::sq 4::[] ==>[1,4,9,16]Here, m accumulates the starting point for the next range to be generated.6.4 List reversalConsider reversing a list. We keep track of the reversed list so far. If the list is empty then return the reversedlist so far. Otherwise put the head of the list onto the reversed list so far and use it to reverse the tail of thelist: - (* reverse second list onto first list *)fun rev1 rlsf [] = rlsf |rev1 rlsf (h::t) = rev1 (h::rlsf) t;> val rev1 = fn : 'a list -> 'a list -> 'a listTo start, set the reversed list so far to the empty list:- (* reverse list *)val rev = rev1 [];> val rev = fn : 'a list -> 'a listHere again, rev1 can be hidden within reverse:- localfun rev1 rlsf [] = rlsf |rev1 rlsf (h::t) = rev1 (h::rlsf) tinval rev = rev1 []end;> val rev = fn : 'a list -> 'a listFor example:- rev ["a","b","c","d"];> ["d","c","b","a"] : string listbecause:rev ["a","b","c","d"] ==> 159

rev1 [] ["a","b","c","d"] ==>rev1 "a"::[] ["b","c","d"] ==>rev1 "b"::"a"::[] ["c","d"] ==>rev1 "c"::"b"::"a"::[] ["d"] ==>rev1 "d"::"c"::"b"::"a"::[] [] ==>"d"::"c"::"b"::"a"::[] ==>["d","c","b","a"]Here rlsf accumulates the reversed list under construction.rev is a prede�ned SML function.6.5 List mappingAs with numbers, common list processing functions can be generalised through higher order functions. Indeed,list processing in the LISP language was one of the �rst areas in which higher order functions were used.Consider squaring every element of an integer list:- (* square each in integer list *)fun sqs [] = [] |sqs (h::t) = sq h::sqs t;> val sqs = fn : int list -> int listsq is of type int -> int so h must be an integer, and h::t and the result must be integer lists:- sqs [1,2,3];> [1,4,9] : int listbecause:sqs [1,2,3] ==>sq 1::sqs [2,3] ==>sq 1::sq 2::sqs [3] ==>sq 1::sq 2::sq 3::sqs [] ==>sq 1::sq 2::sq 3::[] ==>[1,4,9]Consider, putting "s" on the end of every element of a string list:- (* end string with"s" *)fun plural s = s^"s"; 160

> val plural = fn : string -> string- (* end each in string list with "s" *)fun plurals [] = [] |plurals (h::t) = plural h::plurals t;plural is of type string -> string so h must be a string, and h::t and the result must be string lists:- plurals ["ape","bat","cat"];> ["apes","bats","cats"] : string listbecause:plurals ["ape","bat","cat"] ==>plural "ape"::plurals ["bat","cat"] ==>plural "ape"::plural "bat"::plurals ["cat"] ==>plural "ape"::plural "bat"::plural "cat"::plurals [] ==>plural "ape"::plural "bat"::plural "cat"::[] ==>["apes","bats","cats"]sqs and plurals have similar structure but di�er in the action performed on the head. We can generalise byreplacing the action with an arbitrary function:- (* apply function to each in list *)fun map _ [] = [] |map f (h::t) = f h::map f t> val map = fn : ('a -> 'b) -> 'a list -> 'b listmap applies function f to each element of a list to form a new list. Suppose f is an 'a -> 'b function. Then hmust be an 'a, h::t must be an 'a list and the result must be a 'b list.Note that when the list is empty, the function f is not used so it can be ignored.map may be used to de�ne sqs:- val sqs = map sq;> val sqs = fn : int list -> int listsqs is like map with f set to sq. f is of type 'a -> 'b and sq is of type int -> int so 'a and 'b are int insqs.For example:- sqs [4,5,6];> [16,25,36] : int listbecause:sqs [4,5,6] ==> 161

map sq [4,5,6] ==>sq 4::map sq [5,6] ==>sq 4::sq 5::map sq [6] ==>sq 4::sq 5::sq 6::map sq [] ==>sq 4::sq 5::sq 6::[] ==>[16,25,36]Similarly, plurals is:- val plurals = map plural;> val plurals = fn : string list -> string listplurals is like map with f set to plural. plural is of type string -> string and f is of type 'a -> 'b so'a and 'b are string in plurals.For example:- plurals ["dog","emu","frog"];> ["dogs","emus","frogs"] : string listbecause:plurals ["dog","emu","frog"] ==>map plural ["dog","emu","frog"] ==>plural "dog"::map plural ["emu","frog"] ==>plural "dog"::plural "emu"::map plural ["frog"] ==>plural "dog"::plural "emu"::plural "frog"::map plural [] ==>plural "dog"::plural "emu"::plural "frog"::[] ==>["dogs","emus","frogs"]Now consider converting a binary digit into the equivalent string:- (* convert binary digit string to integer *)fun conv 0 = "zero" |conv 1 = "one" |conv _ = "not binary";> val conv = fn : int -> stringWe can use map to de�ne a function to convert a list of digits into strings:- (* convert each binary digit string in list to integer *)val convs = map conv;> val convs = fn : int list -> string list162

convs is like map with f set to conv. conv is of type int -> string and f is of type 'a -> 'b so 'a is intand 'b is string in convs.For example:- convs [1,0,1];> ["one","zero","one"] : string listbecause:convs [1,0,1] ==>map conv [1,0,1] ==>conv 1::map conv [0,1] ==>conv 1::conv 0::map conv [1] ==>conv 1::conv 0::conv 1::map conv [] ==>conv 1::conv 0::conv 1::[] ==>["one","zero","one"]map is a prede�ned SML function.6.6 List �lteringmap applies a function to all elements of a list. Another common operation is to extract all the members of alist satisfying some property.Consider checking whether or not a word is an article or pronoun:- (* is word an article or pronoun? *)fun isap "a" = true |isap "an" = true |isap "the" = true |isap "his" = true |isap "her" = true |isap "their" = true |isap "our" = true |isap "my" = true |isap _ = false;> val isap = fn : string -> boolConsider extracting all the articles and pronouns from a list of words. Each time, a head element is includedonly if it is an article or pronoun:- (* find all articles or pronouns in list *)fun getaps [] = [] |getaps (h::t) = if isap hthen h::getaps telse getaps t;> val getaps = fn : string list -> string list163

For example:- getaps ["the","cat","ate","my","pie"];> ["the","my"] : string listbecause:getaps ["the","cat","ate","my","pie"] ==>"the"::getaps ["cat","ate","my","pie"] ==>"the"::getaps ["ate","my","pie"] ==>"the"::getaps ["my","pie"] ==>"the"::"my"::getaps ["pie"] ==>"the"::"my"::getaps [] ==>"the"::"my"::[] ==>["the","my"]Consider checking whether or not a number is even, by dividing by 2 and checking for no remainder:- (* is integer even? *)fun even x = x mod 2=0;> val even = fn : int -> boolConsider �nding the even elements of an integer list. Each time, the head is only included if it is even:- (* find even integers in list *)fun getevens [] = [] |getevens (h::t) = if even hthen h::getevens telse getevens t;> val getevens = fn : int list -> int listFor example:- getevens [1,2,3,4,5];> [2,4] : int listbecause:getevens [1,2,3,4,5] ==>getevens [2,3,4,5] ==>2::getevens [3,4,5] ==>2::getevens [4,5] ==>2::4::getevens [5] ==> 164

2::4::getevens [] ==>2::4::[] ==>[2,4]getaps and getevens have similar structure but use di�erent predicates to test the list head. We can generaliseby introducing an arbitrary predicate p:- (* find list elements with property p *)fun filter _ [] = [] |filter p (h::t) = if p hthen h::filter p telse filter p t;> val filter = fn : ('a -> bool) -> 'a list -> 'a listfilter checks each element with p and selects those which satisfy it. Suppose p is of type 'a -> bool. h mustbe of type 'a and h::t and the result must be of type 'a list.Note that the predicate function p is not used in the base case so it can be ignored.We can use filter to de�ne getaps:- val getaps = filter isap;> val getaps = fn : string list -> string listgetaps is like filter with p set to isap. isap is a string -> bool function and p is a 'a -> bool functionso 'a is string in getaps.For example:- getaps ["his","or","her","hat"];> ["his","her"] : string listbecause:getaps ["his","or","her","hat"] ==>filter isap ["his","or","her","hat"] ==>"his"::filter isap ["or","her","hat"] ==>"his"::filter isap ["her","hat"] ==>"his"::"her"::filter isap ["hat"] ==>"his"::"her"::filter isap [] ==>"his"::"her"::[] ==>["his","her"]We can use filter to de�ne getevens:- val getevens = filter even;> val getevens = fn : int list -> int list165

getevens is like filter with p set to even. even is of type int -> bool and p is of type 'a -> bool so 'ais int in getevens.For example:- getevens [9,8,7,6];> [8,6] : int listbecause:getevens [9,8,7,6] ==>filter even [9,8,7,6] ==>filter even [8,7,6] ==>8::filter even [7,6] ==>8::filter even [6] ==>8::6::filter even [] ==>8::6::[] ==>[8,6]6.7 Ordered listsA list is said to be ordered if some relationship holds between successive elements. A common relationship isthat of increasing or decreasing values where the list is said to be in ascending or descending order.First of all, consider checking whether or not an integer list is in ascending order. The empty list is ordered. Alist with one element is in order, otherwise the head must come before the head of the tail and the tail must bein order:- (* is integer list in ascending order? *)fun iorder [] = true |iorder [(h:int)] = true |iorder (h1::h2::t) = h1 <= h2 andalso iorder (h2::t);> val iorder = fn : int list -> boolNote that in the second case, the head h is nominated as int. Thus, the list argument must be an integer listand the system knows that integer comparison is to be used in the third case.In fact, as h is not used in the second case, it can be ignored:- fun iorder [] = true |iorder [(_:int)] = true |iorder (h1::h2::t) = h1 <= h2 andalso iorder (h2::t);> val iorder = fn : int list -> boolFor example:- iorder [1,3,5,7];> true : bool 166

because:iorder [1,3,5,7] ==>true andalso iorder [3,5,7] ==>true andalso true andalso iorder [5,7] ==>true andalso true andalso true andalso iorder [7] ==>true andalso true andalso true andalso true ==>trueTo generalise this to arbitrary lists we need to abstract over the comparison. Now, we check that relationshipp holds between successive elements:- (* is list ordered by property p? *)fun order _ [] = true |order p [_] = true |order p (h1::h2::t) = p h1 h2 andalso order p (h2::t);> val order = fn : ('a -> 'a -> bool) -> 'a list -> boolSuppose the list argument is an 'a list. Then h1 and h2 must be of type 'a so p must be of type 'a -> 'a-> bool.For example, given:- (* is integer x smaller than y? *)fun iless (x:int) y = x<=y;> val iless = fn : int -> int -> boolthe integer order checker is:- val iorder = order iless;> val iorder = fn : int list -> booliorder is like order with p set to iless. iless is of type int -> int -> bool and p is of type 'a -> 'a ->bool so 'a is int in iorder.For example:- iorder [2,4,6];> true : boolbecause:iorder [2,4,6] ==>order iless [2,4,6] ==>true andalso order iless [4,6] ==>true andalso true andalso order iless [6] ==>167

true andalso true andalso true ==>trueWe can de�ne a string version. Given:- (* does string s1 precede s2? *)fun sless (s1:string) s2 = s1<=s2;> val sless = fn : string -> string -> boolthen: - (* is string list in ascending order? *)val sorder = order sless;> val sorder = fn : string list -> boolsorder is like order with p set to sless. sless is a string -> string -> bool function and p is an 'a ->'a -> bool function so 'a is string in sorder.For example:- sorder ["ape","bat","dog","cat"];> false : boolbecause:sorder ["ape","bat","dog","cat"] ==>order sless ["ape","bat","dog","cat"] ==>true andalso order sless ["bat","dog","cat"] ==>true andalso true andalso order sless ["dog","cat"] ==>true andalso true andalso false andalso order sless ["cat"] ==>true andalso true andalso false ==>falseNote that andalso does not evaluate its second argument if the �rst argument is false.6.8 Insertion into ordered listsConsider inserting a new integer into a list of integers in ascending order. If the list is empty then make a newlist for the new value. If the new value comes before the �rst in the head then put it on the front of the list.Otherwise, put the head onto the result of inserting the new value into the list tail:- (* insert into ascending integer list *)fun inserti (v:int) [] = [v] |inserti v (h::t) = if v<=h 168

then v::h::telse h::inserti v t;> val inserti = fn : int -> int list -> int listNote that v is marked as int so that integer comparison is used.For example:- inserti 3 [1,2,4];> [1,2,3,4] : int listbecause:inserti 3 [1,2,4] ==>1::inserti 3 [2,4] ==>1::2::inserti 3 [4] ==>1::2::3::[4] ==>[1,2,3,4]Once again, we can generalise insertion to an arbitrary relationship between successive list members. Here p isthe relation which must hold for the new value to be positioned:- (* insert into list with order property p *)fun insert _ v [] = [v] |insert p v (h::t) = if p v hthen v::h::telse h::insert p v t;> val insert = fn : ('a -> 'a -> bool) -> 'a -> 'a list -> 'a listSuppose the list and the new value are of type 'a. Then p must be an 'a -> 'a -> bool function.For example, the integer insertion function is:- val inserti = insert iless;> val inserti = fn : int -> int list -> int listinserti is like insert with p set to iless. iless is of type int -> int -> bool and p is of type 'a -> 'a-> bool so 'a is int in inserti.For example:- inserti 5 [1,3,7];> [1,3,5,7] : int listbecause:inserti 5 [1,3,7] ==>insert iless 5 [1,3,7] ==> 169

1::insert iless 5 [3,7] ==>1::3::insert iless 5 [7] ==>1::3::5::[7] ==>[1,3,5,7]Similarly, a string insertion function is:- (* insert into ascending string list *)val inserts = insert sless;> val inserts = fn : string -> string list -> string listinserts is like insert with p set to sless. sless is of type string -> string -> bool and p is of type 'a-> 'a -> bool so 'a is string in inserts.For example:- inserts "cat" ["ape","bat","dog"];> ["ape","bat","cat","dog"] : string listbecause:inserts "cat" ["ape","bat","dog"] ==>insert sless "cat" ["ape","bat","dog"] ==>"ape"::insert sless "cat" ["bat","dog"] ==>"ape"::"bat"::insert sless "cat" ["dog"] ==>"ape"::"bat"::"cat"::["dog"] ==>["ape","bat","cat","dog"]6.9 Layered patternsIn insert:fun insert _ v [] = [v] |insert p v (h::t) = if p v hthen v::h::telse h::insert p v twe use the pattern h::t so that we can access the head and tail of the list argument independently. However,we then have to use the construct h::t in order to put v on the front of the list.The SML layered pattern provides a means of relating a bound variable with a pattern so that after matchingthey both refer to the same thing. It takes the form:name as pattern 170

and may be used anywhere a pattern is valid. name and pattern may be used interchangeably: they both referto the same value. Furthermore, the bound variables withing pattern may be used to access the correspondingelements of that value.Above, we might use:l as h::tso l and h::t would refer to the same list. We could then use l when we want the whole list and h or t whenwe want the head or tail:fun insert _ v [] = [v] |insert p v (l as h::t) = if p v hthen v::lelse h::insert p v t6.10 Insertion sortConsider sorting an unordered list of integers into ascending order. If the list is empty then it is sorted.Otherwise, insert the head into the result of sorting the tail:- (* sort integer list in ascending order *)fun sorti [] = [] |sorti (h::t) = inserti h (sorti t);> val sorti = fn : int list -> int listinserti returns an integer list: so must sorti. inserti has an integer as �rst argument. Thus, h is an integerand h::t is an integer list.For example:- sorti [4,3,2,1];> [1,2,3,4] : int listbecause:sorti [4,3,2,1] ==>inserti 4 (sorti [3,2,1]) ==>inserti 4 (inserti 3 (sorti [2,1])) ==>inserti 4 (inserti 3 (inserti 2 (sorti [1]))) ==>inserti 4 (inserti 3 (inserti 2 (inserti 1 (sorti [])))) ==>inserti 4 (inserti 3 (inserti 2 (inserti 1 []))) ==>inserti 4 (inserti 3 (inserti 2 [1])) ==>inserti 4 (inserti 3 [1,2]) ==>inserti 4 [1,2,3] ==>[1,2,3,4] 171

We can generalise sorting to lists of arbitrary type. First of all, we can abstract over the insertion function:- (* sort list using specialised insert *)fun sort _ [] = [] |sort insert (h::t) = insert h (sort insert t);Suppose h::t is an 'a list. Suppose sort returns a 'b list. Then insert is of type 'a -> 'b list ->'b list so sort is of type:> val sort = fn : ('a -> 'b list -> 'b list) -> 'a list -> 'b listThus, integer sort is:- val sorti = sort inserti;> val sorti = fn : int list -> int listsorti is sort with insert set to inserti. inserti is of type int -> int list -> int list and insert isof type 'a -> 'b list -> 'b list so 'a is int and 'b is int in sorti.For example:- sorti [5,3,1];> [1,3,5] : int listbecause:sorti [5,3,1] ==>sort inserti [5,3,1] ==>inserti 5 (sort inserti [3,1]) ==>inserti 5 (inserti 3 (sort inserti [1])) ==>inserti 5 (inserti 3 (inserti 1 (sort inserti []))) ==>inserti 5 (inserti 3 (inserti 1 [])) ==>inserti 5 (inserti 3 [1]) ==>inserti 5 [1,3] ==>[1,3,5]However, we have been making insertion functions by specialising insertwith speci�c predicates. An alternativegeneralisation for sorting is to use the general insert and abstract over the predicate:- (* sort list on order property p *)fun sort _ [] = [] |sort p (h::t) = insert p h (sort p t);We know from the previous section that insert is of type ('a -> 'a -> bool) -> 'a -> 'a list -> 'alist so p is of type 'a -> 'a -> bool, h is of type 'a and h::t is of type 'a list so sort is of type:172

> val sort = fn : ('a -> 'a -> bool) -> 'a list -> 'a listThus, a string sort is:- (* sort string list in ascending order *)val sorts = sort sless;> val sorts = fn : string list -> string listsorts is like sort with p set to sless. sless is a string -> string -> bool function and p is an 'a ->'a-> bool function so 'a is string in sorts.For example:- sorts ["cat","bat","ape"];> ["ape","bat","cat"] : string listbecause:sorts ["cat","bat","ape"] ==>sort sless ["cat","bat","ape"] ==>insert sless "cat" (sort sless ["bat","ape"])) ==>insert sless "cat" (insert sless "bat" (sort sless ["ape"])) ==>insert sless "cat"(insert sless "bat" (insert sless "ape" (sort sless []))) ==>insert sless "cat" (insert sless "bat" (insert sless "ape" [])) ==>insert sless "cat" (insert sless "bat" ["ape"]) ==>insert sless "cat" ["ape","bat"] ==>["ape","bat","cat"]6.11 Mapping over two listsConsider forming a new list by adding corresponding elements of both lists together. If both lists are emptythen return the empty list. Otherwise put the sum of the heads onto the result of adding corresponding elementsin the tails:- (* add corresponding elements of two integer lists *)fun add2 [] [] = [] |add2 ((h1:int)::t1) (h2::t2) = h1+h2::add2 t1 t2 |add2 _ _ = [];> val add2 = fn : int list -> int list -> int listNote that h1 is tagged as int: + is overloaded.Note that we assume that both lists are the same length. The last case is if one is longer than the other. Weonly reach this case when one list is empty and the other is not. Here, we return an empty list, discarding allof the rest of the non-empty list. For example: 173

- add2 [1,2,3] [4,5,6];> [5,7,9] : int listbecause:add2 [1,2,3] [4,5,6] ==>1+4::add2 [2,3] [5,6] ==>1+4::2+5::add2 [3] [6] ==>1+4::2+5::3+6::add2 [] [] ==>1+4::2+5::3+6::[] ==>[5,7,9]Consider ANDing corresponding elements of two lists together. If both are empty then return the empty list.Otherwise, AND the heads and join the result onto the list from ANDing corresponding tail elements:- (* conjoin corresponding elements of two boolean lists *)fun and2 [] [] = [] |and2 (h1::t1) (h2::t2) = (h1 andalso h2)::and2 t1 t2 |and2 _ _ = [];> val and2 = fn : bool list -> bool list -> bool listFor example:- and2 [true,false,true] [false,false,true];> [false, false, true] : bool listbecause:and2 [true,false,true] [false,false,true] ==>(true andalso false)::and2 [false,true] [false,true] ==>(true andalso false)::(false andalso false)::and2 [true] [true] ==>(true andalso false)::(false andalso false)::(true andalso true)::and2 [] [] ==>(true andalso false)::(false andalso false)::(true andalso true)::[] ==>[false,false,true]We can generalise by abstracting over the operation applied to the list heads:- (* apply function to corresponding elements of two lists *)fun map2 _ [] [] = [] |map2 f (h1::t1) (h2::t2) = f h1 h2::map2 f t1 t2 |map2 _ _ _ = [];> val map2 = fn : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list174

Suppose h1::t1 is an 'a list, h2::t2 is a 'b list and the result is a 'c list. Then, f must be of type 'a-> 'b -> 'c.The �rst and last cases return the same result so they can be folded together into a single case:- fun map2 f (h1::t1) (h2::t2) = f h1 h2::map2 f t1 t2 |map2 _ _ _ = [];> val map2 = fn : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c listHere, if either or both lists do not have the structure h::t, i.e. one or both are empty, then the empty list isreturned.For example, add2 is like map2 with f set to add:- fun add (x:int) y = x+y;> val add = fn : int -> int -> int- val add2 = map2 add;> val add2 = fn : int list -> int list -> int listf is an 'a -> 'b -> 'c function and add is a int -> int -> int function so 'a, 'b and 'c are all int. Forexample:- add2 [7,8,9] [10,11,12];> [17,19,21] int listbecause:add2 [7,8,9] [10,11,12] ==>map2 add [7,8,9] [10,11,12] ==>add 7 10::map2 add [8,9] [11,12] ==>add 7 10::add 8 11::map2 add [9] [12] ==>add 7 10::add 8 11::add 9 12::map2 add [] [] ==>add 7 10::add 8 11::add 9 12::[] ==>[17,19,21]6.12 Merge sortConsider merging two integer lists which are both in ascending order:- merge [1,3,4,7] [2,5,6];> [1,2,3,4,5,6,7] : int listIf the head of the �rst is bigger than the head of the second then put it onto merging the tail of the �rst andthe second. If the head of the second is bigger than the head of the �rst then put it onto merging the �rst andthe tail of the second. If one is empty then return the other:- (* merge two ascending ordered integer lists *)175

fun merge (l1 as (h1:int)::t1) (l2 as h2::t2) =if h1<h2then h1::merge t1 l2else h2::merge l1 t2 |merge l1 [] = l1 |merge [] l2 = l2;> val merge = fn : int list -> int list -> int listFor example:merge [1,3,4,7] [2,5,6] ==>1::merge [3,4,7] [2,5,6] ==>1::2::merge [3,4,7] [5,6] ==>1::2::3::merge [4,7] [5,6] ==>1::2::3::4::merge [7] [5,6] ==>1::2::3::4::5::merge [7] [6] ==>1::2::3::4::5::6::merge [7] [] ==>1::2::3::4::5::6::[7] ==>[1,2,3,4,5,6,7]6.13 Folding lists of listsConsider appending a list of lists end to end:- appendall [[1,2,3],[4,5,6],[7,8,9]];> [1,2,3,4,5,6,7,8,9] : int listIf the list is empty then return the empty list. Otherwise, append the head list onto appending all the lists inthe tail:- (* append a list of lists end to end *)fun appendall [] = [] |appendall (h::t) = append h (appendall t);> val appendall = fn : ('a list) list -> 'a listappend is an 'a list -> 'a list -> 'a list function so h must be an 'a list and h::t must be an 'alist list.For example:appendall [[1,2,3],[4,5,6],[7,8,9]] ==>append [1,2,3] (appendall [[4,5,6],[7,8,9]]) ==>append [1,2,3] (append [4,5,6] (appendall [[7,8,9]])) ==>176

append [1,2,3] (append [4,5,6] (append [7,8,9] (appendall []))) ==>append [1,2,3] (append [4,5,6] (append [7,8,9] [])) ==>append [1,2,3] (append [4,5,6] [7,8,9]) ==>append [1,2,3] [4,5,6,7,8,9] ==>[1,2,3,4,5,6,7,8,9]Consider merging a list of ordered integer lists:- mergeall [[1,4,7,10],[2,5,8,11],[3,6,9]];> [1,2,3,4,5,6,7,8,9,10,11] : int listIf the list is empty then return the empty list. Otherwise merge the list in the head into the result of mergingthe lists in the tail:- (* merge a list of ascending order integer lists together *)fun mergeall [] = [] |mergeall (h::t) = merge h (mergeall t);> val mergeall = fn : int list list -> int listFor example:mergeall [[1,4,7,10],[2,5,8,11],[3,6,9]] ==>merge [1,4,7,10] (mergeall [[2,5,8,11],[3,6,9]]) ==>merge [1,4,7,10] (merge [2,5,8,11] (mergeall [[3,6,9]])) ==>merge [1,4,7,10] (merge [2,5,8,11] (merge [3,6,9] (mergeall []))) ==>merge [1,4,7,10] (merge [2,5,8,11] (merge [3,6,9] [])) ==>merge [1,4,7,10] (merge [2,5,8,11] [3,6,9]) ==>merge [1,4,7,10] [2,3,5,6,8,9,11] ==>[1,2,3,4,5,6,7,8,9,10,11]We can generalise these examples by abstracting over the operation applied to the head and the result ofprocessing the tail of the list:- (* fold function across list of lists from right *)fun listfoldr _ [] = [] |listfoldr f (h::t) = f h (listfoldr f t);> val listfoldr =fn : ('a -> 'b list -> 'b list) -> 'a list -> 'b listSuppose h::t is a list of 'a. Suppose listfoldr returns a 'b list. Then f must be applied to an 'a from thehead of h::t and the 'b list returned by listfoldr. Thus f must also return a 'b list.For example, mergeall is like listfoldr with f set to merge:- val mergeall = listfoldr merge;> val mergeall = int list list -> int list177

In listfoldr, f is an 'a -> 'b list -> 'b list function and merge is an int list -> int list -> intlist function so 'a must be int list and 'b must be int.For example:- mergeall [[2,5,9],[1,3,4],[6,7,8]];> [1,2,3,4,5,6,7,8,9] : int listbecause:mergeall [[2,5,9],[1,3,4],[6,7,8]] ==>listfoldr merge [[2,5,9],[1,3,4],[6,7,8]] ==>merge [2,5,9] (listfoldr merge [[1,3,4],[6,7,8]]) ==>merge [2,5,9](merge [1,3,4] (listfoldr merge [[6,7,8]])) ==>merge [2,5,9](merge [1,3,4](merge [6,7,8] (listfoldr merge []))) ==>merge [2,5,9](merge [1,3,4](merge [6,7,8] [])) ==>merge [2,5,9](merge [1,3,4] [6,7,8]) ==>merge [2,5,9] [1,3,4,6,7,8] ==>[1,2,3,4,5,6,7,8,9]Similarly, appendall is like listfoldr with f set to append:- val appendall = listfoldr append;> val appendall = fn : 'a list list -> 'a listf is of type 'a -> 'b list -> 'b list and append is of type'a list -> 'a list -> 'a list so in appendall 'a must be 'a list and 'b must be 'a.For example:- appendall [["a","b","c"],["d","e"],["f","g","h"]];> ["a","b","c","d","e","f","g","h"] : string listbecause:appendall [["a","b","c"],["d","e"],["f","g","h"]] ==>listfoldr append [["a","b","c"],["d","e"],["f","g","h"]] ==>append ["a","b","c"](listfoldr append [["d","e"],["f","g","h"]]) ==>178

append ["a","b","c"](append ["d","e"](listfoldr append [["f","g","h"]])) ==>append ["a","b","c"](append ["d","e"](append ["f","g","h"](listfoldr append []))) ==>append ["a","b","c"](append ["d","e"](append ["f","g","h"] [])) ==>["a","b","c","d","e","f","g","h"]Note that listfoldr is the same as the �rst generalisation of sorting:- fun sort _ [] = [] |sort insert (h::t) = insert h (sort insert t);> val sort = fn : ('a -> 'b list -> 'b list) -> 'a list -> 'b list6.14 Generalised foldingThe function listfoldr folds a function across a list of lists to form a new list. We can abstract again to folda function across a list to form a value:- (* fold function across list from left to right *)fun foldr _ b [] = b |foldr f b (h::t) = f h (foldr f b t);> val foldr = fn : ('a * 'b -> 'b) -> 'b -> 'a list -> 'bHere, when the list is empty we return a base value b. Otherwise we apply f to the list head and the result offolding f with b over the list tail.Consider the list:[e1 , e2 , ... , eN]If we fold some arbitrary function f over this list then the e�ect is:foldr f b [e1 , e2 , ... , eN] ==>f e1 (foldr f b [e2 , ... , eN]) ==>f e1 (f e2 (foldr f b [... , eN])) ==>f e1 (f e2 (... (f eN b) ...))to apply the function to each element and the result of folding the function across the rest of the elements.For example, we can sum an integer list:- fun add (i1:int) i2 = i1+i2;> val add = fn : int -> int -> int- val sum = foldr add 0;> val sum = fn : int list -> int 179

Here, we fold add over the list using the base value 0 at the end. For example:- sum [1,2,3,4];> 10 : intbecause:sum [1,2,3,4] ==>foldr add 0 [1,2,3,4] ==>add 1 (foldr add 0 [2,3,4]) ==>add 1 (add 2 (foldr add 0 [3,4])) ==>add 1 (add 2 (add 3 (foldr add 0 [4]))) ==>add 1 (add 2 (add 3 (add 4 (foldr add 0 [])))) ==>add 1 (add 2 (add 3 (add 4 0)))) ==>10Our list of lists fold function listfoldr is like foldr but with an empty list as the base value:- fun listfoldr f = foldr f [];> val listfoldr =fn : ('a -> 'b list -> 'b list) -> 'a list -> 'b list6.15 Testing groups of functionsOur functions are now somewhat more complicated and often call other functions. It is important to test outfunctions individually before using them in other functions, to reassure ourselves that each stage works.For example, suppose we want to sort a list of real numbers in descending order. We need a real comparisonfunction:(* is one real greater than another? *)- fun rmore (r1:real) r2 = r1>=r2;> val rmore = fn : real -> real -> boolwhich we should test �rst with values to make the boolean expression both true and false:- rmore 6.1 6.2;> false : bool- rmore 8.9 7.6;> true : boolSuppose we are using the insertion function:- fun insert _ v [] = [v] | 180

insert p v (l as h::t) = if p v hthen v::lelse h::insert p v t;> val insert = fn : ('a -> 'a -> bool) -> 'a -> 'a list -> 'a listWe next de�ne a real insertion function:(* insert into descending order real list *)- val rinsert = insert rmore;> val rinsert = fn : real -> real list -> real listand test the base case:- rinsert 3.4 [];> [3.4] : real listand the recursion case:- rinsert 3.4 [5.6,4.5,2.3,1.2];> [5.6,4.5,3.4,2.3,1.2] : real listWe will use the �rst version of sort:- fun sort _ [] = [] |sort insert (h::t) = insert h (sort insert t);> val sort = fn : ('a -> 'b list -> 'b list) -> 'a list -> 'b listso we de�ne a real sorting function:(* sort real list in descending order *)- val rsort = sort rinsert;> val rsort = fn : real list -> real listFinally, we test the sort function base case:- rsort [];> [] : real listand recursion case:- rsort [1.2,2.3,3.4,4.5,5.6];> [5.6,4.5,3.4,2.3,1.2] : real listSimilarly, when using a local declaration to hide auxiliary functions, it is important to test each auxiliaryfunction before combining them to test calling functions.Testing alone cannot guarantee that a program is correct for all possible argument values. For that, mathemat-ical proof techniques are needed. Nonetheless, thorough testing can give us con�dence that our programs doindeed do what they are supposed to do. 181

6.16 SummaryIn this chapter we started by looking at the use of accumulation variables to pass intermediate values betweenrecursive function calls. We then considered the use of local declarations to encapsulate functions and theauxiliaries that they call. We next discussed the map higher order function for applying a function to eachelement in a list and the filter higher order function for selecting list elements with particular properties.Then we looked at generalising insertion into ordered lists to form a general purpose higher order sortingfunction. Finally, we looked mapping over two lists and at folding functions over lists of lists.We are now in a position to start looking at the use of lists to represent collections of things as groups of valuesrepresented as tuples. In the next chapter we will use directly or modify the functions from the previous andthis chapter to manipulate lists of tuples.6.17 Exercises1) Identify the types of the following functions:a) fun a _ [] = [] |a f (h::t) = (2*(f h))::(a f t)b) fun b _ [] = 0 |b f (h::t) = (f h)+(b f t)c) fun c _ [] = [] |c f (h::t) = if f hthen (f h)::(c f t)else c f td) fun d _ _ [] = [] |d p f (h::t) = if p hthen (f h)::(d p f t)else d p f te) fun e _ _ [] = [] |e f1 f2 (h::t) = (f1 (f2 h))::(e f1 f2 t)f) fun f _ _ [] = [] |f p1 p2 (h::t) = if p1 (p2 h)then h::(f p1 p2 t)else f p1 p2 tg) fun g _ [] [] = [] |g f (h1::t1) (h2::t2) = if f h1then h2::(g f t1 t2)else g f t1 t2h) fun h _ _ [] [] = [] |h f1 f2 (h1::t1) (h2::t2) = if f1 h1then (f2 h2)::(f f1 f2 t1 t2)else f f1 f2 t1 t22) Write and test the following functions. Identify the type of each functions:a) �nd the shortest element in a string listb) generate a list of cubes of integers between m and n in ascending order182

c) generate a list by applying function f to each integer value between m and n in ascending orderd) de�ne function b) using the function from c)e) generate a list of halves of integers between m and n in steps of s:- halves 1 10 2;> [0,1,2,3,4] : int listf) generate a list by applying function f to each integer value between m and n in steps of sg) de�nei) function e)ii) function b)iii) a function to return a list of integers from m to n in steps of susing the function from f).3) Write and test a function to check if a list is a palindrome i.e. is the same when reversed:- palin ["m","a","d","a","m","i","m","a","d","a","m"];> true : boolWhat is the type of this function?4) Write and test the following functions. Identify the type of each function:a) use map to generate a list of tuples of numbers and squares from a list of numbers:- numsq [1,2,3,4];> [(1,1),(2,4),(3,9),(4,16)] : int listb) use map to generate a list of booleans indicating whether or not each of a list of integers is odd:- odds [1,2,3,4,5];> [true,false,true,false,true] : bool listc) use map to generate a list of tuples of strings and integer sizes from a list of strings:- sizes ["time","for","a","cup","of","tea"];> [("time",4),("for",3),("a",1),("cup",3),("of",2),("tea",3)];5) Write and test the following functions. Identify the type of each function:a) use filter to select all the strings in a list which have at least 3 letters:- more3 ["time","to","wake","up"];> ["time","wake"] : string listb) use filter to select all the negative numbers from a list of integers:- getnegs [1,~1,2,~2,3,~3];> [~1,~2,~3] : int listc) use map, filter and 1)g)iii) above to �nd all the even squares of integers between m and n whichdivide by 7. Test the function on the range 1 to 1000.6) Write and test the following functions. Identify the type of each function:a) use sort to sort a list of integers in descending order:183

- sortdi [1,2,3,4,5];> [5,4,3,2,1] : int listb) use sort to sort a list of strings in ascending order of their lengths:- sortas ["how","long","is","the","longest","word"];> ["is","how","the","long","word","longest"] : string list7) Write and test the following functions. Identify the type of each function:a) use map2 to join corresponding elements of two string lists together:- join2 ["a","b","c"] ["1","2","3"];> ["a1","b2","c3"] : string listb) use map2 to form a list of tuples of corresponding list elements from two lists:- zip [1,2,3,4] ["one","two","three","four"];> [(1,"one"),(2,"two"),(3,"three"),(4,"four")] : (int * string) list8) Write and test the following functions. Identify the type of each function:a) use listfoldr to add together corresponding elements of a list of integer lists:- addall [[1,2,3],[4,5,6],[7,8,9]];> [12,15,18] : int listHint: write a function that adds together corresponding elements of two integer lists but if eitherlist is empty then return the other.b) use listfoldr to �nd the longest list in a list of lists:- longest [[1,2,3],[4,5,6,7],[8,9]];> [4,5,6,7] : int listHint: write a function that returns the longer of two lists.9) A botanist is experimenting with a new fertiliser. Every week the lengths of plants are measured in cm andmaintained in individual lists. For example:[1.2,1.7,1.9,2.3,2.5,2.6]a) Write a function to return a list of how much a plant has grown week by week from a list oflengths. For an empty list or a list with one element return the empty list. Otherwise, subtract thehead from the head of the tail and put the result in front of the growth list from the tail:- growth [1.2,1.7,1.9,2.3,2.5,2.6];> [0.5,0.2,0.4,0.2,0.1] : real listWhat is the type of this function?b) Write a function to �nd the average weekly growth from a growth list. What is the type of thisfunction?c) Write a function which, given a list of growth lists, uses map and the function from b) to returna list of average weekly growths. What is the type of this function?d) Write a function which given a list of growth lists, uses filter and the function from b) toreturn a list of growth lists whose average weekly growth is at least 0.3 cm. What is the type of thisfunction?e) Write a function which, given a list of average weekly growths, counts how many average weeklygrowths are less than 0.4 cm. What is the type of this function?f) Write a function which, given a growth list, returns a string list to indicate whether or not eachelement represents high, medium or low growth:184

"high" == growth > 2*average"medium" == growth <= 2*average and growth >= average/2"low" == growth < average/2Use map and the function from b). What is the type of this function?10) Write and test the following functions. Identify the type of each function:a) given a list of integers, return a list of sums of each element and the next:- sum2 [1,2,3,4,5,6];> [2,5,7,9,11] : int listFor an empty or one element list, an empty list should be returned.b) given a list of strings, return a list formed by joining each element to the next:- join2 ["happy","birthday","party","time"];> ["happybirthday","birthdayparty","partytime"] : string listFor an empty or one element list, an empty list should be returned.c) given a list, return a list formed by applying function f to each element and the next. For anempty or one element list, an empty list should be returned.d) de�ne the functions from a) and b) using the function from c).11) Write and test the following functions. Identify the type of each function:a) return a list consisting of twice every non-zero element in an integer list:- twicenot0 [1,0,2,0,3];> [2,4,6] : int listb) return a list consisting of the string "s" joined to the end of every element in a list of stringswith more than 4 letters:- pluralmore4 ["ape","beaver","cow","dragon"];- ["beavers","dragons"] : string listc) return a list resulting from applying function f to every element of a list satisfying predicate p.d) de�ne the functions from a) and b) using the function from c).12) Write and test the following functions. Identify the type of each function:a) return the sum of all odd elements in a list of integers.b) return the sum of all elements greater than 10 in a list of integers.c) return the sum of all elements satisfying predicate p in a list of integers.d) de�ne the functions from a) and b) using the function from c).e) return a string formed by joining together all the elements of a string list satisfying predicate p.f) return the result of applying function f cumulatively to all the elements of a list satisfying predicatep. For an empty list the function should return value v.g) de�ne the functions from a), b), c) and e) using the function from f).13) Write and test the following functions. Identify the type of each function:185

a) count how often a 1 is followed by a 2 in a list of integers.b) count how often value v1 is followed by value v2 in a list of appropriate type.c) de�ne the function from a) using the function from b).d) count how often an odd integer is followed by an even integer in a list of integers.e) count how often an element satisfying predicate p1 is followed by an element satisfying predicatep2 in a list of appropriate type.f) de�ne the functions from a), b) and d) using the function from e).

186

Chapter 7Tuple lists7.1 IntroductionWe can now complete the Odyssey we started in chapter 1. We said that model making is based on collections ofthings and things are groups of properties. We have seen that properties may be represented as values of typesand that �xed size groups of properties may be represented by tuples. We have also seen that lists may be usedto represent collections as variable length sequences of values. We will now look at the use of list processingtechniques to manipulate collections of things represented as lists of tuples.7.2 Pattern matching with tuplesUntil now we have been rather coy about tuples. We have seen how tuples may be formed and typed but havenot yet seen how to extract their values. As with lists, functions may be de�ned with tuples of patterns. Whensuch a function is applied to a tuple value, the tuple of patterns is matched against the value tuple. If theyhave the same structure, that is the same number of elements with elements of corresponding type in the samepositions, then each bound variable in the tuple pattern is set to the corresponding element of the tuple valuetuple.Thus, tuple pattern matching may be used to extract elements from tuples. For example, suppose we wish toextract the �rst element from a tuple with 3 elements:- (* select first element from three element tuple *)fun first (x,y,z) = x;> val first = fn : 'a * 'b * 'c -> 'aThis function is de�ned with a tuple of bound variables x, y and z. In the body of the function, no operationsare performed on x, y or z. Thus, they may be of any types, say:x : 'ay : 'bz : 'cThe function returns the value of x which is an 'a. Thus, the function type is:'a * 'b * 'c -> 'aConsider: 187

- first (1,1.0,"one");> 1 : intHere, x is set to 1, y is set to 1.0, z is set to "one" and 1 is returned from x.Consider:- first (("one",1),("two",2),("three",3));> ("one",1) : string * intHere, x is set to ("one",1), y is set to ("two",2), z is set to ("three",3) and ("one",1) is returned from x.Note that y and z are not used so they can be ignored:- fun first (x,_,_) = x;> val first = fn : 'a * 'b * 'c -> 'aSimilarly, we could select the second in a 3 element tuple with:- (* select second element from three element tuple *)fun second (_,y,_) = y;> val second = fn : 'a * 'b * 'c -> 'bFor example, in:- second ("Dennis","Menace",8);> "Menace" : string"Dennis" and 8 are ignored, y is set to "Menace" and "Menace" returned.Similarly, we could select the third in a 3 element tuple with:- (* select third element from three element tuple *)fun third (_,_,z) = z;> val third = fn : 'a * 'b * 'c -> 'cFor example, in:- third (2,2.0,[2,4,8,16]);> [2,4,8,16] : int list2, and 2.0 are ignored. z is set to [2,4,8,16] which is returned.Elements may be selected from nested tuple values by pattern matching with nested tuples of patterns. Ateach level of matching, the bound variable structure is matched against the element structure. For example, atelephone book entry might be represented by:((forename , surname), department , extension)for example:- (("Alice","Apple"),"Accounts",2222);- (("Alice","Apple"),"Accounts",2222) : (string * string) * string * int188

Suppose we want to �nd someone's surname from their entry:- (* select surname *)fun surname ((f,s),d,e) = s;> val surname = fn : ('a * 'b) * 'c * 'd -> 'bHere no operations are performed on f, s, d or e so they can be any types, say:f : 'as : 'bd : 'ce : 'dConsider:- surname (("Bill","Banana"),"Bakery",3210);> "Banana" : stringHere (f,s) matches ("Bill","Banana"), d matches "Bakery" and e matches 3210. Furthermore, f matches"Bill" and s matches "Banana" so "Banana" is returned from s.Once again, as f, d, and e are not used they may be ignored:- fun surname ((_,s),_,_) = s;> val surname = fn : ('a * 'b) * 'c * 'd -> 'bFor pattern matching with tuples, constants may appear in the bound variable structure. Then, the tuple valueto which the function is applied must have the same constants in the same position. For example, to return thename of someone if they are in the "Cookery" department:- (* select name from tuple with "Cookery" department *)fun cookname (n,"Cookery",_) = n;> val cookname = fn : 'a * string * 'b -> 'aHere, no operations are performed on n or _ so they can be any types, say:n : 'a_ : 'bbut the second element must be a string. Furthermore, for the match to succeed it must have the value"Cookery". For example:- cookname (("Clare","Cherry"),"Cookery",2345);> ("Clare","Cherry") : string * stringHere n is set to ("Clare","Cherry"), "Cookery"matches "Cookery", 2345 is ignored and ("Clare","Cherry")is returned from n.If the second element was not "Cookery" then the match would fail and a system exception would be raised.This function has only one case so a warning will be issued when the function is �rst de�ned that not all valueshave been catered for. 189

7.3 Tuples for accumulation variablesTuples are useful when we want to accumulate a variety of information about a sequence of values. Here, afunction might be de�ned with a tuple of accumulation variables. The tuple is initialised to appropriate values,updated as each element of the sequence is considered and passed on to the next stage. At the end of thesequence, the whole tuple is returned.For example, suppose we want to �nd how many integers in a list are equal to, less than or greater than 0. Wecan record the counts for each possibility in a tuple and return it when the end of the list is reached:- fun count1 (less,equal,greater) [] = (less,equal,greater) |If the list starts with a 0 then we add 1 to equal and check the tail:- fun count1 (less,equal,greater) [] = (less,equal,greater) |count1 (less,equal,greater) (0::t) =count1 (less,equal+1,greater) t |Similarly, if the list head is positive then greater is incremented. Otherwise less is incremented:- (* count integers less than, equal to or greater than zeroin a list with accumulation tuple *)fun count1 (less,equal,greater) [] = (less,equal,greater) |count1 (less,equal,greater) (0::t) =count1 (less,equal+1,greater) t |count1 (less,equal,greater) (h::t) =if h>0then count1 (less,equal,greater+1) telse count1 (less+1,equal,greater) t;> val count1 = fn : int * int * int -> int list -> int * int * intInitially, all counts are set to 0:- localfun count1 ... = ...in(* count integers less than, equal to orgreater than zero in a list *)val count = count1 (0,0,0)end;> val count = fn : int list -> int * int * intFor example:- count [1,0,~2,0,3,0,~4,0,5];> (2,4,3) : int * int * intbecause:count [1,0,~2,0,3,0,~4,0,5] ==>count1 (0,0,0) [1,0,~2,0,3,0,~4,0,5] ==>190

count1 (0,0,1) [0,~2,0,3,0,~4,0,5] ==>count1 (0,1,1) [~2,0,3,0,~4,0,5] ==>count1 (1,1,1) [0,3,0,~4,0,5] ==>count1 (1,2,1) [3,0,~4,0,5] ==>count1 (1,2,2) [0,~4,0,5] ==>count1 (1,3,2) [~4,0,5] ==>count1 (2,3,2) [0,5] ==>count1 (2,4,2) [5] ==>count1 (2,4,3) [] ==>(2,4,3)7.4 Pattern matching with lists of tuplesA tuple of patterns is itself a pattern and so can appear in any other pattern. As well as list patterns withconstants, variables and lists, we can now use tuple patterns as parts of list patterns. We will now use tuples torepresent things and lists of tuples to represent collections of things. Many of the functions from the last twochapters can be used directly with tuple lists or with a little modi�cation to re
ect particular sorts of tuples.When we are writing recursive functions to process a list of tuples it is typical to have a recursion case with atuple pattern as the head of a list pattern.For example, suppose we have a list of tuples of pairs and we want to swap the order of the elements in thetuple:- swap [("Anna","Ant"),("Bill","Bee"),("Clea","Cicada")];> [("Ant","Anna"),("Bee","Bill"),("Cicada","Clea")] :(string * string) listswap is like map applied to a function that inverts the element of one pair:- (* reverse elements of two element tuple *)fun inv (x,y) = (y,x);> val inv = 'a * 'b -> 'b * 'a- (* reverse all tuple elements in two element tuple list *)val swap = map inv;> val swap = fn : ('a * 'b) list -> ('b * 'a) listFor the above example:swap [("Anna","Ant"),("Bill","Bee"),("Clea","Cicada")] ==>map inv [("Anna","Ant"),("Bill","Bee"),("Clea","Cicada")] ==>inv ("Anna","Ant")::map inv [("Bill","Bee"),("Clea","Cicada")] ==>inv ("Anna","Ant"):: 191

inv ("Bill","Bee")::map inv [("Clea","Cicada")] ==>inv ("Anna","Ant")::inv ("Bill","Bee")::inv ("Clea","Cicada")::map inv [] ==>("Ant","Anna")::("Bee","Bill")::("Cicada","Clea")::[] ==>[("Ant","Anna"),("Bee","Bill"),("Cicada","Clea")]For example, suppose we have a list of two element tuples and we want a list of the �rst elements only:- getfirsts [(1,1),(2,4),(3,9),(4,16)];> [1,2,3,4] : int listOnce again, getfirsts is like map applied to a function to get the �rst from a tuple:- (* select first element from two element list *)fun first (x,_) = x;> val first = fn : 'a * 'b -> 'a- (* select first elements from list of two element tuples *)val getfirsts = map first;> val getfirsts = fn : ('a * 'b) list -> 'a listThus:getfirsts [(1,1),(2,4),(3,9),(4,16)] ==>map first [(1,1),(2,4),(3,9),(4,16)] ==>first (1,1)::map first [(2,4),(3,9),(4,16)] ==>first (1,1)::first (2,4)::map first [(3,9),(4,16)] ==>first (1,1)::first (2,4)::first (3,9)::map first [(4,16)] ==>first (1,1)::first (2,4)::first (3,9)::first (4,16)::map first [] ==>1::2::3::4::[] ==> [1,2,3,4]All our polymorphic and higher order list functions apply to tuple lists.7.5 Accumulation with listsConsider separating a list of 2 element tuples into two lists, one for the �rst elements and one for the secondelements:- unzip [("a",1),("b",2),("c",3)];> (["c","b","a"],[3,2,1]) : string list * int listThe two lists are accumulated in a tuple which is returned when the end of the original list is found:192

- fun unzip1 (f,s) [] = (f,s) |If the list is not empty then the �rst element is added to the �rst list, the second element is added to the secondlist and the tuple is passed to the next stage:- (* split two element tuple list into twosingleton lists using accumulation lists *)fun unzip1 (f,s) [] = (f,s) |unzip1 (f,s) ((e1,e2)::t) = unzip1 (e1::f,e2::s) t;> val unzip1 = fn : 'a list * 'b list ->('a * 'b) list -> 'a list * 'b listNo operations are performed on e1 or e2 so they may be any types, say:e1 : 'ae2 : 'bThus, (e1,e2)::t is an ('a * 'b) list. e1 is joined to f so f must be an 'a list. e2 is joined to s so smust be a 'b list. Thus, the result must be an:'a list * 'b listInitially, the accumulation lists are empty:- localfun unzip1 ... = ...in(* split two element list into two singleton lists *)val unzip = unzip1 ([],[])end;> val unzip = fn : ('a * 'b) list -> 'a list * 'b listFor example:- unzip [(1.0,1),(2.0,2),(3.0,3)];> ([3.0,2.0,1.0],[3,2,1]) : real list * int listbecause:unzip [(1.0,1),(2.0,2),(3.0,3)] ==>unzip1 ([],[]) [(1.0,1),(2.0,2),(3.0,3)] ==>(f,s) == ([],[])(e1,e2) == (1.0,1)t == [(2.0,2),(3.0,3)]unzip1 ([1.0],[1]) [(2.0,2),(3.0,3)] ==>(f,s) == ([1.0],[1])(e1,e2) == (2.0,2)t == [(3.0,3)]unzip1 ([2.0,1.0],[2,1]) [(3.0,3)] ==>(f,s) == ([2.0,1.0],[2,1]) 193

(e1,e2) == (3.0,3)t == []unzip1 ([3.0,2.0,1.0],[3,2,1]) [] ==>([3.0,2.0,1.0],[3,2,1])Note that the element lists are in reverse order. We will see how to assemble them in the correct order later.7.6 Generalised list �nd, delete and replaceIn chapter 5 we met functions to see if a list contained a value, to delete a value from a list and to replace avalue in a list. We will now generalise these functions so that rather than looking for a speci�c value we lookfor a value satisfying some predicate p.Consider �nding the �rst element of a list satisfying predicate p:- (* find list element with property p *)fun findp _ b [] = b |findp p b (h::t) = if p hthen helse findp b p t;> val findp = fn : ('a -> bool) -> 'a -> 'a list -> 'aIf the list does not contain the value then return the base value b. Otherwise, if the �rst element satis�es pthen return it. Otherwise look in the rest of the list.For example, to �nd the �rst record in a list of names and ages, represented as string * int tuples, with nameset to "jo":- fun isjo (name,_) = name="jo";> val isjo = fn : string * 'a -> bool- findp isjo [("pat",1),("chris",2),("jo",3),("les",4)];> ("jo",3) : string * intbecause:findp isjo ("fail",0) [("pat",1),("chris",2),("jo",3),("les",4)] ==>findp isjo ("fail",0) [("chris",2),("jo",3),("les",4)] ==>findp isjo ("fail",0) [("jo",3),("les",4)] ==>findp isjo ("fail",0) [("jo",3),("les",4)] ==>("jo",3)Consider deleting the �rst element of a list satisfying predicate p:- (* delete list element with property p *)fun deletep _ [] = [] |deletep p (h::t) = if p hthen telse h::deletep p t;> val deletep = fn : ('a -> bool) -> 'a list -> 'a list194

If p is true for the list head then return the list tail. Otherwise, put the head back onto deleting the �rstsatisfying p in the tail.For example, to delete the record with name "jo" in a list of name/age records:- deletep isjo [("pat",1),("chris",2),("jo",3),("les",4)];> [("pat",1),("chris",2),("les",4)] : (string * int) listbecause:deletep isjo [("pat",1),("chris",2),("jo",3),("les",4)] ==>("pat",1)::deletep isjo [("chris",2),("jo",3),("les",4)] ==>("pat",1)::("chris",2)::deletep isjo [("jo",3),("les",4)] ==>("pat",1)::("chris",2)::[("les",4)] ==>[("pat",1),("chris",2),("les",4)]Similarly, consider replacing the �rst value satisfying predicate p in a list:- (* replace list element with property p *)fun replacep _ _ [] = [] |replacep p v (h::t) = if p hthen v::telse h::replacep p v t;> val replacep = fn : ('a -> bool) -> 'a -> 'a list -> 'a listIf p is true for the list head then it is replaced with the new value. Otherwise the list head is joined to the resultof making the replacement in the tail.For example, to replace the record with name "jo" with a new record ("jo",4):- replacep isjo ("jo",4) [("pat",1),("chris",2),("jo",3),("les",4)];> [("pat",1),("chris",2),("jo",4),("les",4)] : (string * int) listbecause:replacep isjo ("jo",4) [("pat",1),("chris",2),("jo",3),("les",4)] ==>("pat",1)::replacep isjo ("jo",4) [("chris",2),("jo",3),("les",4)] ==>("pat",1)::("chris",2)::replacep isjo ("jo",4) [("jo",3),("les",4)] ==>("pat",1)::("chris",2)::("jo",4)::[("les",4)] ==>[("pat",1),("chris",2),("jo",4),("les",4)]7.7 Example - telephone directoryWe might represent someone's departmental telephone number as a tuple consisting of:195

name - stringdepartment - stringextension - integerFor example:name department extensionAnna Anatomy 123can be represented as:- ("Anna","Anatomy",123);> ("Anna","Anatomy",123) : string * string * intA telephone directory might then be represented as a list of phone number tuples. For example the table:name department extensionAnna Anatomy 123Bill Biology 234Clea Chemistry 345Doug Dentistry 456Ellen Biology 567can be represented by the tuple list:- val dir = [("Anna","Anatomy",123),("Bill","Biology",234),("Clea","Chemistry",345),("Doug","Dentistry",456),("Ellen","Biology",567)];> val dir = [("Anna","Anatomy",123),("Bill","Biology",234),("Clea","Chemistry",345),("Doug","Dentistry",456),("Ellen","Biology",567)] : (string * string * int) listFor example, to �nd the number for given name we can use findp again:- (* find record for given name in directory *)fun find n = findp (fn (n1,_,_) => n1=n) ("fail","fail",0);> val find = fn : string -> (string * string * int) list ->string * string * intNote that we cannot use findp directly. Instead we de�ne a predicate:fn (n1,_,_) => n1=nthat refers to the bound variable n for the required name.Note that n1 and n are compared so they must have the same equality type, say ''a. No operations areperformed on the other anonymous tuple elements so they can be any types.For example: 196

- find "Clea" [("Anna","Anatomy",123),("Bill","Biology",234),("Clea","Chemistry",345)];> ("Clea","Chemistry",345) : string * string * intFor example, we can insert a new entry into a directory in name alphabetic order using the general purposeinsertion function from chapter 6:fun insert _ v [] = [v] |insert p v (l as h::t) = if p v hthen v::lelse h::insert p v tWe need to de�ne a comparison function for directory records which checks if one record's name comes beforeanother record's name:- (* does one record come before another in name order? *)fun nless (n1:string,_,_) (n2,_,_) = n1<n2;> val nless = fn : string * 'a * 'b -> string * 'c * 'd -> boolNow we can de�ne the directory insertion function:- (* insert record into directory in name order *)val dinsert = insert nless;> val dinsert = fn : string * 'a * 'b -> (string *'a *'b) list(string *'a *'b) listFor example:- dinsert ("Dora","Debts",777) [("Anna","Anatomy",123),("Bill","Biology",234),("Clea","Chemistry",345)];> [("Anna","Anatomy",123),("Bill","Biology",234),("Clea","Chemistry",345),("Dora","Debts",777)] : (string * string * int) listSuppose we want to �nd all the people in the same department. We can use filter with a new predicate tomatch the department in a tuple with a required department:- (* find all records in directory with given department *)fun samedept d = filter (fn (_,d1,_) => d=d1);> val samedept = fn : ''a -> ('b * ''a * 'c) list -> ('b * ''a * 'c) listFor example:- samedept "Biology" dir;> [("Bill","Biology",234),("Ellen","Biology",567)] : (string * string * int) listSuppose we want to change someone's record with replacep:197

- (* replace record with given name in directory *)fun change (n,d,e) = replacep (fn (n1,_,_) => n1=n) (n,d,e);> val change = fn : ''a * 'b * 'c ->(''a * 'b * 'c) list ->(''a * 'b * 'c) listFor example:- val newdir = change ("Clea","Computing",987) dir;> val newdir = [("Anna","Anatomy",123),("Bill","Biology",234),("Clea","Computing",987),("Doug","Dentistry",456),("Ellen","Biology",567)] : (string * string * int) list7.8 Example - stock controlConsider a stock record:(item , stock level , reorder level)The item is the name of an item held in stock. The stock level is the number of item currently in stock. Whenthe stock level falls below the reorder level the �item should be reordered.For example:item level reorderbath 200 150which could be represented as a tuple:- ("bath",200,150);> ("bath",200,150) : string * int * intAn example table of stock records is:item level reorderbath 200 150tap 200 300sink 75 200tile 3000 1500which can be represented as a list of tuples:- [("bath",200,150),("tap",200,300),("sink",75,200),("tile",3000,1500)];> [("bath",200,150),("tap",200,300),("sink",75,200),("tile",3000,1500)] : (string * int * int) list198

Consider deleting the record for item i using deletep:- (* delete record with name i from stock list *)fun delete i = deletep (fn (i1,_,_) => i1=i);> val delete = fn : ''a -> (''a * 'b * 'c) list -> (''a * 'b * 'c) listdelete is polymorphic and will delete the tuple with a given �rst element from a list of arbitrary three elementtuples.For example:- delete "sink" [("bath",200,150),("tap",200,300),("sink",75,200),("tile",3000,1500)];> [("bath",200,150),("tap",200,300),("tile",3000,1500)] : (string * int * int) listConsider �nding all the records for items whose stock level's are less than the reorder level's. Here we can usefilter applied to a function to check if the stock level is less than the reorder level:- (* is stock level less than reorder level? *)fun less_stock (_,s:int,r) = s<r;> val less_stock = fn : 'a * int * int -> bool- (* find all stock with stock level lessthan reorder level in stock list *)val reorder = filter less_stock;> val reorder = fn : ('a * int * int) list -> ('a * int * int) listFor example:- reorder [("bath",200,150),("tap",200,300),("sink",75,200),("tile",3000,1500)];> [("tap",200,300),("sink",75,200)] :(string * int * int) listConsider �nding out how many of each item need to be reordered to bring the stock level back to the reorderlevel. If the list is empty then return the empty list. If the �rst item needs to be reordered then put a tuple forthe item and the di�erence between the reorder and stock levels onto the result of checking the rest of the list.Otherwise check the rest of the list:- (* for each record with stock level less than reorder levelin a stock list, find quantity needed to bring stock levelup to reorder level *)fun needed [] = [] |needed ((i,(l:int),r)::t) =if l<rthen (i,r-l)::needed telse needed t;> val needed = fn : ('a * int * int) list -> ('a * int) listOne of l and r must be typed as they are compared with the overloaded <. i may be any type.For example:- needed [("bath",200,150),("tap",200,300),199

("sink",75,200),("tile",3000,1500)];> [("tap",100),("sink",125)] : (string * int) listbecause:needed [("bath",200,150),("tap",200,300),("sink",75,200),("tile",3000,1500)] ==>needed [("tap",200,300),("sink",75,200),("tile",3000,1500)] ==>("tap",100)::(needed [("sink",75,200),("tile",3000,1500)]) ==>("tap",100)::("sink",125)::(needed [("tile",3000,1500)]) ==>("tap",100)::("sink",125)::(needed []) ==>("tap",100)::("sink",125)::[] ==>[("tap",100),("sink",125)]Consider updating the stock level for a given item i by a given amount a. If the list is empty then return theempty list. If the �rst record is for the required item then add the amount to the stock level making a newtuple and put it in front of the rest of the records. Otherwise put the �rst tuple onto the result of performingthe update in the rest of the records:- (* increment stock level in record for given item in stock list *)fun update _ [] = [] |update (i,a:int) ((i1,l1,r1)::t) =if i=i1then (i1,l1+a,r1)::telse (i1,l1,r1)::update (i,a) t;> val update = fn : ''a * int -> (''a * int * 'b) list-> (''a * int * 'b) listi1 and i are only compared with the polymorphic = so they may have the same equality type ''a. r1 is notused so it may have any type, say 'b. a or l1 must be typed explicitly for the addition. They have the sameint type.For example:- update ("sink",200) [("bath",200,150),("tap",200,300),("sink",75,200),("tile",3000,1500)];> [("bath",200,150),("tap",200,300),("sink",275,200),("tile",3000,1500)] : (string * int * int) listbecause:update ("sink",200) [("bath",200,150),("tap",200,300),("sink",75,200),("tile",3000,1500)] ==>200

("bath",200,150)::update ("sink",200) [("tap",200,300),("sink",75,200),("tile",3000,1500)] ==>("bath",200,150)::("tap",200,300)::update ("sink",200) [("sink",75,200),("tile",3000,1500)] ==>("bath",200,150)::("tap",200,300)::("sink",275,200)::[("tile",3000,1500)] ==>[("bath",200,150),("tap",200,300),("sink",275,200),("tile",3000,1500)]A list of updates might be represented by a list of tuples of items and amounts, for example:- [("tap",150),("tile",200),("bath",50)];> [("tap",150),("tile",200),("bath",50)] : (string * int) listConsider updating a list of stock records from a list of updates. If the update list is empty then return therecord list. Otherwise, use the �rst update record to update the new record list from using the rest of theupdate records to process the original record list. Here we can use foldr to apply update with each of theupdate records in turn. We use the original record list as the base case to be returned by foldr when there areno update records left:- (* update stock list from reorder list *)val updateall = foldr update;> val updateall = fn : (''a * int * 'b) list ->(''a * int) list ->(''a * int * 'b) listFor example:- updateall [("bath",200,150),("tap",200,300),("sink",75,200),("tile",3000,1500)][("tap",150),("tile",200),("bath",50)];> [("bath",250,150),("tap",350,300),("sink",75,200),("tile",3200,1500)] : (string * int * int) listbecause:updateall [("bath",200,150),("tap",200,300),("sink",75,200),("tile",3000,1500)][("tap",150),("tile",200),("bath",50)] ==>foldr update [("bath",200,150),("tap",200,300),("sink",75,200),("tile",3000,1500)][("tap",150),("tile",200),("bath",50)] ==>update ("tap",150)(foldr update [("bath",200,150),("tap",200,300),("sink",75,200),("tile",3000,1500)][("tile",200),("bath",50)]) ==>201

update ("tap",150)(update ("tile",200)(foldr update [("bath",200,150),("tap",200,300),("sink",75,200),("tile",3000,1500)][("bath",50)])) ==>update ("tap",150)(update ("tile",200)(update ("bath",50)(foldr update [("bath",200,150),("tap",200,300),("sink",75,200),("tile",3000,1500)][]))) ==>update ("tap",150)(update ("tile",200)(update ("bath",50)[("bath",200,150),("tap",200,300),("sink",75,200),("tile",3000,1500)])) ==>update ("tap",150)(update ("tile",200)[("bath",250,150),("tap",200,300),("sink",75,200),("tile",3000,1500)]) ==>update ("tap",150)[("bath",250,150),("tap",200,300),("sink",75,200),("tile",3200,1500)] ==>[("bath",250,150),("tap",350,300),("sink",75,200),("tile",3200,1500)]7.9 Type expressions and type abbreviationsWe have seen that we can specify a variable's type with a type expression built from type constructors like int,real, string, bool and list. So far, a type expression may be a single type constructor or a type variable or afunction type or a tuple type or a bracketed type expression or a type expression or the list type constructor.SML enables the use of abbreviated types as a shorthand for type expressions. A name may be associated witha type expression using a type binding of the form:type name = type expressionThe name is an identi�er which may be used in subsequent type expressions.For example, in the telephone directory example we are using entries of type:string * string * intand entry lists of type(string * string * int) listThese do not tell us much about what they represent. We might rename the directory entry type by:202

- type person = string;> type person = string- type department = string;> type department = string- type extension = int;> type extension = int- type entry = person * department * extension;> type entry = person * department * extensionand the directory type by:- type directory = entry list;> type directory = entry listWe could now write a function to �nd everyone on the same extension using the new types:- (* find all records in directory with given extension *)fun findext e [] = [] |findext (e:extension) (((n1,d1,e1)::t):directory) =if e = e1then (n1,d1,e1)::findext e telse findext e t> val findext = fn : extension ->(person * department * extension) list ->(person * department * extension) listHere, we have been explicit about e being an extension and the list (n1,d1,e1)::t being a directory. Thisis a bit more long winded than the lack of explicit types in the previous section but it makes it easier to readthe function. Here, the type de�nitions help us rather than the computer: they make us focus on the intendedmeaning of the data values rather than the way in which they are represented.Note that a new type constructor is syntactically equivalent to its de�ning expression. Thus, if we de�ne:- type whole_numb = int;> type whole_numb = int- type integer = int;> type integer = intthen values of type whole_numb, integer and int may be used in the same places without causing type errors.This form of type binding just disguises a longer type expression.7.10 Curried and uncurried functionsYou may have noticed that a function with a tuple argument is apparently similar to nested functions of singlearguments. For example, suppose we want to calculate:a*x*x+b*x+cWe could write:- fun quad1 a b c (x:int) = a*x*x+b*x+c;> val quad1 = fn : int -> int -> int -> int -> int203

For example:- quad1 1 2 1 3;> 16 : intAlternatively, we could put a, b, c and x together into a tuple:- fun quad2 (a,b,c,x:int) = a*x*x+b*x*c;> val quad2 = fn : int * int * int * int -> intand pass the values in all together:- quad2 (1,2,1,3);> 16 : intThe �rst form, where functions of single bound variables are nested, is known as a curried function, after HaskellCurry, the American mathematical logician. The second form, using a single function with a tuple of boundvariables, is known as an uncurried function.Curried functions may be converted to uncurried by running all the nested bound variables into a single tuple.We can generalise for speci�c depth of nesting with a higher order function. For example, consider a functionof an arbitrary bound variable whose body is another function of an arbitrary bound variable:- fun F X Y = ...> val F = fn : 'a -> 'b -> 'cThis may be converted to an uncurried function, that is a function which is called with a tuple of argumentsfor x and y:- (* convert curried to uncurried *)fun uncurry f (x,y) = f x y;> val uncurry = fn : ('a -> 'b -> 'c) -> 'a * 'b -> 'cWe can use this to uncurry F above:- val uncurry_F = uncurry F;> val uncurry_F = fn : 'a * 'b -> 'cThus, calling uncurry_F with a tuple of two values, say value1 and value2, is equivalent to calling F with the�rst value and calling the result with the second value:uncurry_F (value1 , value2) ==>uncurry F (value1 , value2) ==>F value1 value2Here, the uncurried function uncurry_F was called with a tuple of two values which were unpacked throughpattern matching and passed to the curried function F.Similarly, an arbitrary two variable uncurried function:204

- fun G (X,Y) = ...> val G = fn : 'a * 'b -> 'cmay be converted to curried form with a higher order function which parcels up the nested arguments into atuple:- (* convert uncurried to curried *)fun curry f x y = f (x,y);> val curry = fn : ('a * 'b -> 'c) -> 'a -> 'b -> 'cFor example, we can curry G:- val curry_G = curry G;> val curry_G = fn : 'a -> 'b -> 'cCalling curry_G with two nested values is equivalent to calling G with a tuple of those variables:curry_G value1 value2 ==>curry G value1 value2 ==>G (value1 , value2)Here, the curried function curry_g was called with two values which were packed up into a tuple and passedto the uncurried function G.In general, curried functions have equivalent uncurried versions and vice versa. The advantage of the curriedform is that the outer bound variables can be frozen to make a specialised function. For example, for:x*x+2*x+3we can write:- val quad1_123 = quad1 1 2 3;> val quad1_123 = fn: int -> intwith the curried version. The same e�ect with the uncurried version is much more long winded:- fun quad2_123 x = quad2 (1,2,3,x);> val quad2_123 = fn : int -> intas we have to make the bound variable x explicit to place it in the tuple. However, uncurried functions may beimplemented more e�ciently as the system does not need to keep track of the function nesting.7.11 SummaryIn this chapter we have looked at list processing with tuples. We have seen how we can use tuples to representthings as �xed groups of di�erent types of property values and lists to represent variable length collections ofthe same type of thing. We have used or modi�ed our list processing functions from the previous chapters tomanipulate tuple lists. We also looked at type abbreviations as a way of specifying types with names that aremeaningful to us. Finally, we looked at the relationship between curried and uncurried functions.In the next chapter, we will consider the use of list processing techniques for elementary text processing.205

7.12 Exercises1) Identify the types of the following functions:a) fun a [] = [] |a ((x,y)::t) = x::a tb) fun b [] = [] |b ((x,y,z)::t) = x+y/z::b tc) fun c _ [] = [] |c f ((x,y)::t) = f x y::c f td) fun d [] = [] |d ((p,q)::t) = p q::d te) fun e _ [] = [] |e f ((x,y)::t) = (f x,f y)::e f tf) fun f ((x1,y1)::t1) ((x2,y2)::t2) =(x1,x2,y1,y2)::f t1 t2 |f _ _ = []g) fun g f ((x1,y1)::t1) ((x2,y2)::t2) =if f x1 x2then (y1,y2)::g f t1 t2else g f t1 t2 |g _ _ _ = []h) fun h ((x1,y1)::t1) ((x2,y2)::t2) =(x1 x2,y1 y2)::h t1 t2h _ _ _ = []2) Write functions to solve the following problems.a) Given a list of pairs of integers, write a function to form a new list by adding the elements fromeach pair together:- addpair [(1,1),(2,2),(3,3)];> [2,4,6] : int listwithout using map.What is the type of this function?b) Given a list of pairs of strings, form a new list by joining the elements from each pair together:- joinpair [("Happy","Birthday"),("Good","Morning"),("Hot","Dog")];> ["HappyBirthday","GoodMorning","HotDog"] : string listwithout using map.What is the type of this function?c) Given a list of pairs of strings and integers, form a list of booleans which indicates whether ornot each string has the associated integer as its length:- checksize [("cat",4),("dog",3),("ant",2)];> [false,true,false] : bool list 206

without using map.What is the type of this function?d) Use map to de�ne the functions from a), b) and c) above.3) A name may be represented as a tuple of a given name and a family name.a) Write a function which inserts a name into a list of names in ascending alphabetical order offamily name. For two names with the same family name, the given name is used to determine theorder:- ninsert ("Pat","Penguin") [("Chris","Cat"),("Zoe","Zebra")];> [("Chris","Cat"),("Pat","Penguin"),("Zoe","Zebra")] :(string * string) list- ninsert ("Ziggy","Zebra") [("Chris","Cat"),("Zoe","Zebra")];> [("Chris","Cat"),("Ziggy","Zebra"),("Zoe","Zebra")] :(string * string) listWhat is the type of this function?b) Write a function to sort a list of names in order of the length of the family name:- nsort [("Chris","Cat"),("Pat","Penguin"),("Zoe","Zebra")];> [("Chris","Cat"),("Zoe","Zebra"),("Pat","Penguin")] :(string * string) listWhat is the type of this function?c) Use map to de�ne a function which given a list of names returns a list of tuples of given name andfamily name lengths:- initial [("Chris","Cat"),("Pat","Penguin"),("Zoe","Zebra")];> [(5,3),(3,7),(3,5)] : (int * int) listWhat is the type of this function?4) Exam marks for one person may be held as a tuple of their name, as in 3) above, and a list of integer marks.For example, the following table:given family mark1 mark2 mark3 ...Allan Anchor 45 56 78Betty Boat 75 80Colin Compass 33 39 41would be represented as:- [(("Allan","Anchor"),[45,56,78]),(("Betty","Boat"),[75,80]),(("Colin","Compass"),[33,39,41])];> [(("Allan","Anchor"),[45,56,78]),(("Betty","Boat"),[75,80]),(("Colin","Compass"),[33,39,41])] :(string * string) * int lista) Write a function which given a name, a mark and a list of exam marks adds the mark to theinteger mark list for the name. If the name is not in the list then add a new pair for that name witha list with that mark: 207

- addmark ("Betty","Boat") 55[(("Allan","Anchor"),[45,56,78]),(("Betty","Boat"),[75,80]),(("Colin","Compass"),[33,39,41])];> [(("Allan","Anchor"),[45,56,78]),(("Betty","Boat"),[55,75,80]),(("Colin","Compass"),[33,39,41])] : (string * int list) list- addmark ("Betty","Boat") 55[(("Allan","Anchor"),[45,56,78]),(("Colin","Compass"),[33,39,41])];> [(("Allan","Anchor"),[45,56,78]),(("Colin","Compass"),[33,39,41]),(("Betty","Boat"),[55])] : (string * int list) listWhat is the type of this function?b) Write a function which given a name and a list of exam marks returns the list of individual marksfor the name:- getmarks ("Colin","Compass")[(("Allan","Anchor"),[45,56,78]),(("Betty","Boat"),[55,75,80]),(("Colin","Compass"),[33,39,41])];> [33,39,41] : int listWhat is the type of this function?c) Write a function which given a list of exam marks �nds the average mark for each person, usingmap: - avmark [(("Allan","Anchor"),[45,56,78]),(("Betty","Boat"),[55,75,80]),(("Colin","Compass"),[33,39,41])];> [(("Allan","Anchor"),66),(("Betty","Boat"),70)(("Colin","Compass"),37)] : ((string * string) * int) listWhat is the type of this function?5) In a simple graphics system, lines are represented by tuples of start and �nish x/y coordinates. For example:from 4,5 to 8,9 ==x1 y1 x2 y24 5 8 9is represented by:(4,5,8,9)Similarly, a table of lines, for example:x1 y1 x2 y24 5 8 91 1 1 72 3 6 33 3 8 8is represented as a list of tuples: 208

- [(4,5,8,9),(1,1,1,7),(2,3,6,3),(3,6,6,3)];> [(4,5,8,9),(1,1,1,7),(2,3,6,3),(3,6,6,3)] :(int * int * int * int) listLines may be horizontal from left to right, vertical from top to bottom, or diagonal from top or bottom leftto bottom or top right. For horizontal lines the x coordinates must be the same. For vertical lines the ycoordinates must be the same. For diagonal lines, the di�erence between the x coordinates must be the sameas the di�erence betweeen the y coordinates.a) Write a function to return a tuple to indicate the class of a line:- lclass (4,3,7,3);> ("horiz",(4,3,7,3)) : string * (int * int * int * int)- lclass (3,4,3,7);> ("vert",(3,4,3,7)) : string * (int * int * int * int)- lclass (7,9,11,13);> ("diag",(7,9,11,13) : string * (int * int * int * int)What is the type of this function?b) Write a function which given a list of lines returns a list of line class tuples, using map and thefunction from a). What is the type of this function?c) Write a function which given a horizonal line tuple returns all the points on the line as x/ycoordinate tuples:- hpoints (4,3,7,3);> [(4,3),(5,3),(6,3),(7,3)] : (int* int) listIf the start x coordinate is bigger than the �nish x coordinate then return the empty list. Otherwiseput a tuple for the start point onto the list for the line from the start point with incremented xcoordinate. What is the type of this function?d) Write a function which given a vertical line tuple returns all the points on the line as a list of x/ycoordinates tuples:- vpoints (3,4,3,7);> [(3,4),(3,5),(3,6),(3,7)] : (int * int) listWhat is the type of this function?e) Write a function which give a predicate final and a function next and a line tuple, returns theempty list if final is true for the line tuple. Otherwise, it joins the start point from the tuple ontothe result of applying the function itself to the line tuple after next is applied to it. What is thetype of this function?f) de�ne the functions from c) and d) using the function from e).g) Write a function which gven a list of line classes returns a list of lists of points for all the horizontallines. What is the type of this function?6) A car park computer holds records of when cars enter as integer hours, minutes and seconds. A time:hour minute second12 35 16may be represented as a tuple:- (12,35,16);> (12,35,16) : int * int * inta) Write a function to convert a time tuple into seconds. What is the type of this function?b) Write a function to convert a time in seconds into a time tuple. What is the type of this function?209

When a car enters the car park, a record is kept of the registration code as a string and the entry time. Arecord, for examplenumber hour minute secondABC 123 15 9 27may be represented by tuple of the registration number and time:- ("ABC 123",(15,9,27));> ("ABC 123",(15,9,27)) : string * (int * int * int)and a table of car entry records:number hour minute secondABC 123 15 9 27XSG 309 17 15 40OSX 786 21 37 17may be represented by a tuple list:- [("ABC 123",(15,9,27)),("XSG 309",(17,15,40)),("OSX 786",(21,37,17))];> [("ABC 123",(15,9,27)),("XSG 309",(17,15,40)),("OSX 786",(21,37,17))] : (string * (int * int * int)) listc) Write a function which adds an entry record to a list of entry records in ascending order ofregistration number. What is the type of this function?d) Write a function which given a registration code, an exit time and an entry list, returns the timespent by the car in the car park in seconds. What is the type of this function?A long term list is kept of how long each car spends in the car park. Each record consists of a tuple of aregistration code and a cummulative time in seconds.e) Write a function which, given a car's registration code, a time in seconds and a long term list,updates the cummulative time for that car by adding the new time to the cummulative time in itsrecord. If there is no record in the list for that registration code then a new one should be createdwith the time as the initial cummulative time. What is the type of this function?f) Write a function which returns the record in the long term list with the longest cummulative time.What is the type of this function?7) Dates consisting of integer day, month and year, for example:day month year15 2 1997may be represented as tuples:- (15,2,1997);> (15,2,1997) : int * int * int 210

a) Write a function to convert an integer month to the equivalent string, for example:- month 5;> "May" : stringWhat is the type of this function?A table of dates, for example:day month year17 3 199724 9 20015 11 1995may be represented as a list of tuples:- [(17,3,1997),(24,9,2001),(5,11,1995)];> [(17,3,1997),(24,9,2001),(5,11,1995)] : (int * int * int) listb) Write a function which given a list of dates converts it to a list of dates with string months usingmap: - mconv [(17,3,1997),(24,9,2001),(5,11,1995)];> [(17,"March",1997),(24,"September",2001),(5,"November",1995)] :(int * string * int) listWhat is the type of this function?c) Write a function which given a list of dates returns all those in a given year. The result list shouldhave string months. What is the type of this function?d) Write a function which adds a value to a list provided that value is not in the list already. Whatis the type of this function?e) Use the function from d) to write a function which, given one date and a list of years, adds theyear from that date to the list of dates if it is not already in the list. What is the type of thisfunction?f) Use the function from e) to write a function to �nd all the unique years in a list of dates. It willbe applied to a list of unique years, initially empty, and a list of dates. What is the type of thisfunction?g) Write a function which adds a date to a list of dates in ascending date order. What is the typeof this function?h) Write a function that counts how many dates in a list have a speci�c year. What is the type ofthis function?8) A road monitor notes that vehicles that pass it. When a sequence of the same vehicle passes the monitor theyare counted. At the end of the day all the vehicle sequence records are returned with the records in the order inwhich the corresponding sequences passed the monitor. A record is a string vehicle name and an integer countof the number of vehicles in that sequence. For example, the table of records:vehicle numbercar 3bus 1car 5lorry 2bus 1may be represented by the list of tuples: 211

- [("car",3),("bus",1),("car",5),("lorry",2),("bus",1)];> [("car",3),("bus",1),("car",5),("lorry",2),("bus",1)] :(string * int) lista) Write a function to �nd all the sequence records with a given name using filter. What is thetype of this function?b) Write a function to count how many vehicles with a given name passed the monitor in total.What is the type of this function?c) Write a function to insert a sequence record into a list of sequence records in ascending vehiclename order. Where two records have the same name they should be inserted in ascending vehiclenumber order. What is the type of this function?d) Write a function to delete the �rst sequence record with a given vehicle name from a list ofrecords. What is the type of this function?e) Write a function to delete the ith sequence record with a given vehicle name from a list of records.What is the type of this function?f) Write a function to �nd the name of the vehicle with the longest sequence number from a list ofrecords. What is the type of this function?9) In a bank, exchange rate records are held for each currency. For example, if 1 pound is worth 9.8 Francs,2161.1 Lire or 1.4 ECU then the record is:currency rate1 to1 rate2 to2 rate3 to3 ...pound 9.8 franc 2161.1 lire 1.4 ecuwhich may be represented as a tuple of a string and a list of tuples:- ("pound",[(9.8,"franc"),(2161.1,"lire"),(1.4,"ecu")]);> ("pound",[(9.8,"franc"),(2161.1,"lire"),(1.4,"ecu")]) :string * (real * string) lista) Write a function which, given a record for a currency and the string name of another currency,�nds the exchange rate for converting from the �rst to the second currency.What is the type of this function?b) Write a function which, given a currency and a list of exchange rate records, �nds the record forthat currency.What is the type of this function?Exchange rate request records are held as tuples. For example, if 5 pounds is to be converted to ECU then therequest record is:- ("pound",5.0,"ecu");> ("pound",5.0,"ecu") : string * real * stringc) Write a function which, given an exchange request record and a list of exchange rate records,�nds the result of converting the speci�ed amount of the �rst currency in the request record to thesecond currency in the request record. The result should be returned as a tuple of a currency nameand an amount.What is the type of this function?d) Write a function using that from c) which, given a list of exchange rate records and a list ofexchange request records, returns a list of results for those requests.What is the type of this function? 212

Chapter 8Text processing8.1 IntroductionIn this chapter we are going to apply the list processing techniques from chapters 5 and 6 to text processing.We will treat a text as a list of single letter strings and develop general list processing functions for locatingand manipulating one list within another list.8.2 String to list conversionSML provides built in functions for converting between strings and lists of strings. The function:explodeturns a string into a list of single letter strings:- explode "banana";> ["b","a","n","a","n","a"] : string list- explode;> fn : string -> string listThe function:implodeturns a list of strings into a single string by joining the strings end to end:- implode ["p","o","t","a","t","o"];> "potato" : string- implode;> fn : string list -> stringFor text processing based on strings, it is most e�cient to have an outer level function which explodes thestrings, calls other functions to process them and then implodes the result. Text processing then reduces to listprocessing. 213

8.3 Text editingEditors usually provide facilities to �nd, add, delete and replace text. We will now look at how to implementequivalent low level editing functions based on string processing.8.3.1 Does one string start another?Consider checking whether a string starts with another string:- starts "the" "the cat sat on the dog";> true : boolWe explode the strings and call an auxiliary function to check if the �rst list starts the second list:- localfun starts1 ... = ...in(* does one string start another? *)fun starts s1 s2 = starts1 (explode s1) (explode s2)end;> val starts = fn : string -> string -> boolWe assume that starts1 returns a bool. s1 and s2 must be of type string because they are arguments toexplode.The problem now reduces to checking if one list starts another list. If the �rst list is empty then checking hassucceeded: it has been found completely in the second list. If the second list is empty then checking has failed:there is no more second list to check. If the �rst element of the �rst list is the �rst element of the second listthen check if the tail of the �rst list starts the tail of the second list. Otherwise, the check fails:- (* does one list start another? *)fun starts1 [] _ = true |starts1 _ [] = false |starts1 (h1::t1) (h2::t2) =if h1=h2then starts1 t1 t2else false;> val starts1 = fn : ''a list -> ''a list -> boolh1 and h2 are compared with polymorphic = but no other operations are applied to them. Thus, they can bothhave the same equality type ''a.For example:- starts "the" "the cat";> true: boolbecause:starts "the" "the cat" ==>starts1 ["t","h","e"] ["t","h","e"," ","c","a","t"] ==>214

starts1 ["h","e"] ["h","e"," ","c","a","t"] ==>starts1 ["e"] ["e"," ","c","a","t"] ==>starts1 [] [" ","c","a","t"] ==>trueNote that:h1=h2 andalso starts1 t1 t2could be used instead of:if h1=h2then starts1 t1 t2else falseandalso is a sequential operator which returns false if the �rst operand is false, without evaluating thesecond operand.8.3.2 Does one string contain another?Consider checking if one string is contained in another string:- contains "beans" "eat beans";> true : boolOnce again, the strings are exploded and an auxiliary function is called:- localfun contains1 ... = ...in(* does one string contain another? *)fun contains s1 s2 = contains1 (explode s1) (explode s2)end;> val contains = fn : string -> string -> boolWe assume that contains1 returns a value of type bool.contains1 checks if an arbitrary typed list is contained in another list of the same type. If the second list isempty then the check fails. If the �rst list starts the second list then the check succeeds. Otherwise check if the�rst list is contained in the tail of the second list:- (* does one list contain another? *)fun contains1 _ [] = false |contains1 l1 (l2 as _::t2) =if starts1 l1 l2then trueelse contains1 l1 t2;> val contains1 = fn : ''a list -> ''a list -> boolAs before, l1 and (h2::t2) may be arbitrary equality typed lists but of the same type.For example: 215

- contains "and" "stand up";> true : boolbecause:contains "and" "stand up" ==>contains1 ["a","n","d"] ["s","t","a","n","d"," ","u","p"] ==>starts1 ["a","n","d"] ["s","t","a","n","d"," ","u","p"] ==>falsecontains1 ["a","n","d"] ["t","a","n","d"," ","u","p"] ==>starts1 ["a","n","d"] ["t","a","n","d"," ","u","p"] ==>falsecontains1 ["a","n","d"] ["a","n","d"," ","u","p"] ==>starts1 ["a","n","d"] ["a","n","d"," ","u","p"] ==>trueNote that:starts1 l1 (h2::t2) orelse contains l1 t2could be used instead of:if starts1 l1 (h2::t2)then trueelse contains l1 t2orelse is a sequential operator which returns true if its �rst operand is true, without evaluating the secondoperand.8.3.3 Delete one string from anotherConsider deleting a string from another string:- delete "cat" "the cat sat";> "the sat" : stringFirst of all, both strings are exploded and an auxiliary function is called to delete one list from another. Theresultant list is then imploded- localfun delete1 ... = ...in(* delete one string from another *)fun delete s1 s2 = implode (delete1 (explode s1) (explode s2))end;> val delete = fn : string -> string -> string216

We assume that delete1 returns a string list.To delete one list from another list, we need to check if the �rst list starts the second list and then remove itfrom the start of the second list. We can do this by dropping elements from both lists until the �rst is empty.To drop the number of elements in one list from another list, if the �rst list is empty then return the secondlist. Otherwise drop the number of elements in the tail of the �rst from the tail of the second:- (* drop the number of elements in a first list from a second list *)fun drop [] l2 = l2 |drop (_::t1) (_::t2) = drop t1 t2;> val drop = fn : 'a list -> 'b list -> 'b listNo operations are performed on the list heads so they may be of arbitrary di�erent types. Note that drop ispolymorphic. For example:- drop [1,2,3] [1,2,3,4,5,6];> [4,5,6] : int listbecause:drop [1,2,3] [1,2,3,4,5,6] ==>drop [2,3] [2,3,4,5,6] ==>drop [3] [3,4,5,6] ==>drop [] [4,5,6] ==>[4,5,6]Note that the lists may be of di�erent types and that the �rst list need not start the second list. The length ofthe �rst list determines how many elements are dropped from the second list. For example:- drop [true,false,true] ["a","b","c","d","e"];> ["d","e"] : string listbecause:drop [true,false,true] ["a","b","c","d","e"] ==>drop [false,true] ["b","c","d","e"] ==>drop [true] ["c","d","e"] ==>drop [] ["d","e"] ==>["d","e"]To return to deleting one list from another list. If the second list is empty then deletion fails so return the emptylist. If the �rst list starts the second list then drop the �rst list from the start of the second list. Otherwise,drop the �rst list from the tail of the second list and put the head of the second list back onto the result:- (* delete one list from another *) 217

fun delete1 _ [] = [] |delete1 l1 (l2 as h2::t2) =if starts1 l1 l2then drop l1 l2else h2::delete1 l1 t2;> val delete1 = fn : ''a list -> ''a list -> ''a listWe know that starts1 is of type ''a list -> ''a list -> bool so l1 and h2::t2 must be of type ''alist. This is another polymorphic function.For example:- delete1 [3,4,5] [1,2,3,4,5,6];> [1,2,6] : int listbecause:delete1 [3,4,5] [1,2,3,4,5,6] ==>starts1 [3,4,5] [1,2,3,4,5,6] ==>false1::delete1 [3,4,5] [2,3,4,5,6] ==>starts1 [3,4,5] [2,3,4,5,6] ==>false1::2::delete1 [3,4,5] [3,4,5,6] ==>starts1 [3,4,5] [3,4,5,6] ==>truedrop [3,4,5] [3,4,5,6] ==>[6]1::2::[6] == [1,2,6]For example:delete "cat" "the cat sat" ==>implode (delete1 ["c","a","t"]["t","h","e"," ","c","a","t"," ","s","a","t"]) ==>starts1 ["c","a","t"]["t","h","e"," ","c","a","t"," ","s","a","t"] ==>falseimplode ("t"::delete1 ["c","a","t"]["h","e"," ","c","a","t"," ","s","a","t"]) ==>218

starts1 ["c","a","t"]["h","e"," ","c","a","t"," ","s","a","t"] ==>falseimplode ("t"::"h"::delete1 ["c","a","t"]["e"," ","c","a","t"," ","s","a","t"]) ==>starts1 ["c","a","t"]["e"," ","c","a","t"," ","s","a","t"] ==>falseimplode ("t"::"h"::"e"::delete1 ["c","a","t"][" ","c","a","t"," ","s","a","t"]) ==>starts1 ["c","a","t"][" ","c","a","t"," ","s","a","t"] ==>falseimplode ("t"::"h"::"e"::" "::delete1 ["c","a","t"]["c","a","t"," ","s","a","t"]) ==>starts1 ["c","a","t"]["c","a","t"," ","s","a","t"] ==>truedrop ["c","a","t"]["c","a","t"," ","s","a","t"])) ==>[" ","s","a","t"]implode ("t"::"h"::"e"::" "::[" ","s","a","t"]) ==>implode ["t","h","e"," "," ","s","a","t"] ==>"the sat"Note that we have not made drop local to delete1 because we will need it later on.8.3.4 Insert one string before another in a third stringConsider inserting one string before another string in a third string:- insertb "kidney " "beans" "eat beans";> "eat kidney beans" : stringThe three strings are exploded and passed to an auxiliary function for list insertion. The result is then imploded- local 219

fun insertb1 ... = ...in(* insert one string before another in a third *)fun insertb s1 s2 s3 =implode (insertb1 (explode s1) (explode s2) (explode s3))end;> val insertb = fn string -> string -> string -> stringTo insert one list before another list in a third list, if the third list is empty then the second list cannot be foundso return the third list. If the second list starts the third list then put the �rst list on the front of the third list.Otherwise insert in the tail of the third list and put the head of the third list onto the result:- (* insert one list before another in a third *)fun insertb1 _ _ [] = [] |insertb1 l1 l2 (l3 as h3::t3) =if starts1 l2 l3then l1@l3else h3::insertb1 l1 l2 t3;> val insertb1 = fn : ''a list -> ''a list -> ''a list -> ''a liststarts1 is of type ''a list -> ''a list -> bool so l2 and h3::t3 must be of type ''a list. l1 isappended to h3::t3 so it must also be of type ''a list. This is another polymorphic function for lists ofequality type.For example:- insertb1 [3,4] [5,6] [1,2,5,6];> [1,2,3,4,5,6] : int listbecause:insertb1 [3,4] [5,6] [1,2,5,6] ==>starts1 [5,6] [1,2,5,6] ==>false1::insertb1 [3,4] [5,6] [2,5,6] ==>starts1 [5,6] [2,5,6] ==>false1::2::insertb1 [3,4] [5,6] [5,6] ==>starts1 [5,6] [5,6] ==>true1::2::[3,4]@[5,6] ==>[1,2,3,4,5,6]Thus:insertb "cat" "fish" "the fish" ==> 220

implode (insertb1 ["c","a","t"] ["f","i","s","h"]["t","h","e"," ","f","i","s","h"]) ==>starts1 ["f","i","s","h"]["t","h","e"," ","f","i","s","h"] ==>falseimplode ("t"::insertb1 ["c","a","t"] ["f","i","s","h"]["h","e"," ","f","i","s","h"]) ==>starts1 ["f","i","s","h"]["h","e"," ","f","i","s","h"] ==>falseimplode ("t"::"h"::insertb1 ["c","a","t"] ["f","i","s","h"]["e"," ","f","i","s","h"]) ==>starts1 ["f","i","s","h"]["e"," ","f","i","s","h"] ==>falseimplode ("t"::"h"::"e"::insertb1 ["c","a","t"] ["f","i","s","h"][" ","f","i","s","h"]) ==>starts1 ["f","i","s","h"][" ","f","i","s","h"] ==>falseimplode ("t"::"h"::"e"::" "::insertb1 ["c","a","t"] ["f","i","s","h"]["f","i","s","h"]) ==>starts1 ["f","i","s","h"]["f","i","s","h"] ==>true["c","a","t"]@["f","i","s","h"] ==>["c","a","t","f","i","s","h"]implode ("t"::"h"::"e"::" "::["c","a","t","f","i","s","h"]) ==>implode ["t","h","e"," ","c","a","t","f","i","s","h"] ==>"the catfish"8.3.5 Insert one string after another in a third stringConsider inserting one string after another string in a third string:- inserta "more " "eat " "eat beans";> "eat more beans" : string 221

The three strings are exploded and passed to an auxiliary function for list insertion. The result is then imploded- localfun inserta1 ... = ...in(* insert one string after another in a third *)fun inserta s1 s2 s3 =implode (inserta1 (explode s1) (explode s2) (explode s3))end;> val inserta = fn string -> string -> string -> stringTo insert one list after another list in a third list, if the third list is empty then the second list cannot be foundso return the third list. If the second list starts the third list then drop the second list, put the �rst list on thefront of the remains of the third list and put the second list before the �rst list. Otherwise insert in the tail ofthe third list and put the head of the third list onto the result:- (* insert one list after another in a third *)fun inserta1 _ _ [] = [] |inserta1 l1 l2 (l3 as h3::t3) =if starts1 l2 l3then l2@l1@drop l2 l3else h3::inserta1 l1 l2 t3;> val inserta1 = fn : ''a list -> ''a list -> ''a list -> ''a liststarts1 is of type ''a list -> ''a list -> bool so l2 and h3::t3 must be of type ''a list. l1 isappended to the remains of h3::t3 so it must also be of type ''a list. This is another polymorphic functionon lists of equality type.For example:- inserta1 [4,5] [2,3] [1,2,3,6];> [1,2,3,4,5,6] : int listbecause:inserta1 [4,5] [2,3] [1,2,3,6] ==>starts1 [2,3] [1,2,3,6] ==>false1::inserta1 [4,5] [2,3] [2,3,6] ==>starts1 [2,3] [2,3,6] ==>true[2,3]@[4,5]@drop [2,3] [2,3,6] ==>[2,3]@[4,5]@[6] ==>[2,3,4,5,6]1::[2,3,4,5,6] ==>[1,2,3,4,5,6] 222

Thus:- inserta "more " "eat " "eat beans";> "eat more beans" : stringbecause:inserta "more " "eat " "eat beans" ==>implode (inserta1 ["m","o","r","e"," "]["e","a","t"," "]["e","a","t"," ","b","e","a","n","s"]) ==>starts1 ["e","a","t"," "]["e","a","t"," ","b","e","a","n","s"] ==>true["e","a","t"," "]@["m","o","r","e"," "]@drop ["e","a","t"," "]["e","a","t"," ","b","e","a","n","s"] ==>["e","a","t"," "]@["m","o","r","e"," "]@["b","e","a","n","s"] ==>["e","a","t"," ","m","o","r","e"," ","b","e","a","n","s"]implode ["e","a","t"," ","m","o","r","e"," ","b","e","a","n","s"] ==>"eat more beans"In inserta1 the expression:l2@l1@drop l2 l3is not very e�cient. First of all l2 is dropped from l3 which involves going along l3 for the length of l2. Thenl1 is joined to the remains. But then l2 is appended back on which again involves going down the length of l2.We could write a new function to combine dropping l2 and putting it back on the front of l1. Instead of simplydropping each element of l2 we can join them back on to the result of appending l1 once all of l2 is dropped:- (* drop the number of elements from a second list in athird list and append a first list preceded by theelements of the second list *)fun dropjoin l1 [] l3 = l1@l3 |dropjoin l1 (h2::t2) (_::t3) = h2::dropjoin l1 t2 t3;> val dropjoin = fn : 'a list -> 'a list -> 'a list -> 'a listappend is of type 'a list -> 'a list -> 'a list so l1 and l3 must b of type 'a list as must the �nalresult. h2 is joined onto the �nal result so it must be of type 'a.For example:- dropjoin [4,5] [2,3] [2,3,6];> [2,3,4,5,6] : int listbecause: 223

dropjoin [4,5] [2,3] [2,3,6] ==>2::dropjoin [4,5] [3] [3,6] ==>2::3::dropjoin [4,5] [] [6] ==>2::3::[4,5]@[6] ==>[2,3,4,5,6]Now, we can de�ne:- localfun dropjoin ... = ...infun inserta1 l1 l2 [] = [] |inserta1 l1 l2 (l3 as h3::t3) =if starts1 l2 l3then dropjoin l1 l2 l3else h3::inserta1 l1 l2 t3end;> val inserta1 = fn : ''a list -> ''a list -> ''a list -> ''a listNote that dropjoin is local to inserta1 which is local to inserta.8.3.6 Replace one string with another in a third stringFinally, consider replacing one string with a second string in a third string:- replace "cat" "dog" "a catfish";> "a dogfish" : stringThe strings are exploded and passed to an auxiliary function to replace one list with another in a third list.The result is then imploded:- localfun replace1 ... = ...in(* replace one string with another in a third *)fun replace s1 s2 s3 =implode (replace1 (explode s1) (explode s2) (explode s3))end;> val replace = fn : string -> string -> string -> stringTo replace one list with another in a third list, if the third list is empty then the �rst list cannot be found soreturn the empty list. If the �rst list starts the third list then drop it from the start of the third list and appendthe second list. Otherwise, replace in the tail of the third list and put the head of the third list onto the result:- (* replace one list with another in a third *)fun replace1 _ _ [] = [] |replace1 l1 l2 (l3 as h3::t3) =if starts1 l1 l3then l2@drop l1 l3else h3::replace1 l1 l2 t3;> val replace1 = fn : ''a list -> ''a list -> ''a list -> ''a list224

For example:- replace1 [4,3] [3,4] [1,2,4,3,5,6];> [1,2,3,4,5,6] : int listbecause:replace1 [4,3] [3,4] [1,2,4,3,5,6] ==>starts1 [4,3] [1,2,4,3,5,6] ==>false1::replace1 [4,3] [3,4] [2,4,3,5,6] ==>starts1 [4,3] [2,4,3,5,6] ==>false1::2::replace1 [4,3] [3,4] [4,3,5,6] ==>starts1 [4,3] [4,3,5,6] ==>true[3,4]@drop [4,3] [4,3,5,6] ==>[3,4]@[5,6] ==>[3,4,5,6]1::2::[3,4,5,6] ==>[1,2,3,4,5,6]Thus:- replace "cat" "dog" "a catfish";> "a dogfish" : stringreplace "cat" "dog" "a catfish" ==>implode (replace1 ["c","a","t"] ["d","o","g"]["a"," ","c","a","t","f","i","s","h"]) ==>starts1 ["c","a","t"] ["a"," ","c","a","t","f","i","s","h"] ==>falseimplode ("a"::replace1 ["c","a","t"] ["d","o","g"][" ","c","a","t","f","i","s","h"]) ==>starts1 ["c","a","t"] [" ","c","a","t","f","i","s","h"] ==>falseimplode ("a"::" "::replace1 ["c","a","t"] ["d","o","g"]225

["c","a","t","f","i","s","h"]) ==>starts1 ["c","a","t"] ["c","a","t","f","i","s","h"] ==>true["d","o","g"]@drop ["c","a","t"]["c","a","t","f","i","s","h"] ==>["d","o","g"]@["f","i","s","h"] ==>["d","o","g","f","i","s","h"]implode ("a"::" "::["d","o","g","f","i","s","h"]) ==>implode ["a"," ","d","o","g","f","i","s","h"] ==>"a dogfish"8.4 Digit string to number value conversionSuppose we have a string made up of digits and we want to convert it to the equivalent integer value. First ofall, let's look at the form of an integer. Consider:4637We can factor this as multiples of powers of ten:4 � 1000 + 6 � 100 + 3 � 10 + 7 � 1 ==>4 � 103 + 6 � 102 + 3 � 101 + 7 � 100Thus, each digit in an integer represents a multiple of a power of 10. If we number the digits from 0 to N fromright to left then the general form is:digitN ... digit2 digit1 digit0 ==>digitN � 10N :::digit2 � 102 + digit1 � 101 + digit0 � 100It is impractical to hold a table of all possible powers of 10 and expensive computationaly to generate them asthey are needed. Instead, we can factor the expression for the value of a digit sequence to identify a recursiveform. Consider again:4637 ==>4 � 103 + 6 � 102 + 3 � 101 + 7 � 100 ==>10 � (4 � 102 + 6 � 101 + 3 � 100) + 7 � 100 ==>10 � (10 � (4 � 101 + 6 � 100) + 3 � 100) + 7 � 100 ==>10 � (10 � (10 � (4 � 100) + 6 � 100) + 3 � 100) + 7 � 100 ==>10 � (10 � (10 � 4 + 6) + 3) + 7 226

The general form is:digitN ... digit2 digit1 digit0 ==>digitN � 10N :::+ digit2 � 102 + digit1 � 101 + digit0 � 100 ==>10 � (digitN � 10N�1 + :::+ digit2 � 101 + digit1 � 100) + digit0 � 100 ==>10 � (10 � (digitN � 10N�2 + :::) + digit2 � 100) + digit1 � 100) + digit0 � 100 ==>10 � (10 � (:::(10 � digitN � 100) + :::) + digit2 � 100) + digit1 � 100) + digit0 � 100 ==>10 � (10 � (:::(10 � digitN + :::) + digit2) + digit1) + digit0We can evaluate this from the inside out. For example:10*(10*(10*4+6)+3)+710*(10*(40+6)+3)+7 ==>10*(10*46+3)+7 ==>10*(460+3)+7 ==>10*463+74630+7 ==>4637This suggests that we keep a running total and work from left to right. Each time we multiply the runningtotal by 10 and then add the next digit value to it. For example:RT == 0 digits == 4637RT == 10*0+4 == 4 digits == 637RT == 10*4+6 == 46 digits == 37RT == 10*46+3 == 463 digits == 7RT == 10*463+7 == 4637Let us assume that we will be working with a list of single digit strings. We explode the initial string and callanother function to process it:- (* convert digit string to integer *)fun value intstring = getval 0 (explode intstring);> val value = fn : string list -> intThe 0 is the initial value for the running total.If the list is empty, return the running total. Otherwise, �nd the value of the tail with the running totalmultiplied by 10 and the value of the head digit added to it:227

- (* convert list of digit strings to integer using running total *)fun getval rt [] = rt |getval rt (h::t) = getval (10*rt+conv h) t;> val getval = fn : int -> string list -> intHere, conv is a function which will return the integer value corresponding to a string digit.There are two ways to convert a digit string to the equivalent value. One is to use a lookup function:- exception CONV;> exception CONV- (* convert single digit string to integer by pattern matching *)fun conv "0" = 0 |conv "1" = 1 |...conv "9" = 9 |conv _ = raise CONV;> val conv = fn : string -> intNote the exception which is raised when a non-digit string is the argument.ASCII, the American Standard Code for Information Interchange, is an international standard for representingcharacters as integers. We could also convert digit strings to values using the built in function ord which returnsthe ASCII value of a single letter string:- ord "0";> 48 : int- ord;> fn : string -> intNow, the ASCII value of each digit is one more than the previous digit:ord "0" == 48ord "1" == 49ord "2" == 50...ord "9" == 57so a digit string can be converted to its integer value by taking the ASCII value for 0 away from its ASCIIvalue:ord "0" - ord "0" == 48-48 == 0ord "1" - ord "0" == 49-48 == 1ord "2" - ord "0" == 50-48 == 2...ord "9" - ord "0" == 57-48 == 9Thus:- (* convert single digit string to integer by ASCII value arithmetic *)fun conv d = ord d-ord "0";> val conv = fn : string -> intTo return to �nding the value of a string of digits: 228

- value "3241";> 3241 : intbecause:value "3241" ==>getval 0 ["3","2","4","1"] ==>getval (10*0+conv "3") ["2","4","1"] ==>getval (0+3) ["2","4","1"] ==>getval 3 ["2","4","1"] ==>getval (10*3+conv "2") ["4","1"] ==>getval (30+2) ["4","1"] ==>getval 32 ["4","1"] ==>getval (10*32+conv "4") ["1"] ==>getval 320+4 ["1"] ==>getval 324 ["1"] ==>getval (10*324+conv "1") [] ==>getval (3240+1) [] ==>getval 3241 [] ==>32418.5 Let expressionSometimes it is useful to be able to introduce a temporary variable to hold a partial result during evaluation.SML provides let expressions to do this. At simplest one may write:let val name = expression1in expression2endThis associates the value of expression1 with name for the evaluation of expression2. After the end the namemay no longer be used: it is local to expression2The type of a let expression is that of the �nal expression expression2.Note the val before the name. A common mistake is to forget the val.Note the end at the end. A common mistake is to forget the end.For example, to work out 3*3+4*4 with a local squaring function:- let val sq = fn (x:int) => x*x 229

in sq 3+sq 4end;> 25 : intHere, sq is local to sq 3+sq 4.For a local function declaration, the fun form may be used, for example:- let fun sq (x:int) = x*xin sq 3+sq 4end;> 25 : intInstead of a name a pattern of names may be used. Then, the value of the de�ning expression must have thesame structure as the pattern. Names in the pattern are bound to corresponding components of the value ofthe de�ning expression.For example, to multiply the �rst two elements of a list together:- let val (h1::h2::_) = [22,33,44,55,66]in h1*h2end;> 726 : intHere: h1 == 22h2 == 33_ == [44,55,66]in h1*h2.A particularly useful form is to have a tuple pattern to pick up components of a tuple value from a function.Then the tuple components may be manipulated locally.8.6 Unzip revisitedIn the last chapter, we looked at turning a list of pair tuples into a tuple of lists:- localfun unzip1 (f,s) [] = (f,s) |unzip1 (f,s) ((f1,s1)::t) = unzip1 (f1::f,s1::s) tinval unzip = unzip1 ([],[])end;> val unzip1 = fn : ('a * 'b) list -> 'a list * 'b listand saw that we built the lists in reverse order:- unzip [(1,1),(2,4),(3,9),(4,16)];> ([4,3,2,1],[16,9,4,1]) : (int list) * (int list)230

because the elements from the Nth pair always precede those from the N-1th pair.Now we can use a let expression to match the tuple of lists from processing the tail of the original list and thenput the elements from the head pair in the right positions. If the tuple list is empty then return a tuple ofempty lists. If the tuple list is not empty then process the tail to form a tuple of a list of the �rst elements fromthe tail and a list of the second elements from the tail. Then put the �rst element from the head tuple onto the�rst elements list and the second element from the head tuple onto the second elements list:- (* convert list of two element tuples to two singleton lists *)fun unzip [] = ([],[]) |unzip ((f,s)::t) = let val (fl,sl) = unzip tin (f::fl,s::sl)end;> val unzip = fn : ('a * 'b) list -> ('a list) * ('b list)Here fl holds the list of �rst elements from the tail and sl holds the list of second elements from the tail.For example:- unzip [(1,1),(2,4),(3,9),(4,16)];> ([1,2,3,4],[1,4,9,16]) : (int list) * (int list)because:unzip [(1,1),(2,4),(3,9),(4,16)] ==>f == 1s == 1t == [(2,4),(3,9),(4,16)]let val (fl,sl) = unzip [(2,4),(3,9),(4,16)] ==>f == 2s == 4t == [(3,9),(4,16)]let val (fl,sl) = unzip [(3,9),(4,16)] ==>f == 3s == 9t == [(4,16)]let val (fl,sl) = unzip [(4,16)] ==>f == 4s == 16t == []let val (fl,sl) = unzip [] ==>([],[])f == 4s == 16t == []let val (fl,sl) = ([],[])fl == []sl == []in (f::fl,s::sl) ==>([4],[16]) 231

f == 3s == 9t == [(4,16)]let val (fl,sl) = ([4],[16])fl == [4]sl == [16]in (f::fl,s::sl) ==>([3,4],[9,16])f == 2s == 4t == [(3,9),(4,16)]let val (fl,sl) = ([3,4],[9,16])fl == [3,4]sl == [9,16]in (f::fl,s:;sl) ==>([2,3,4],[4,9,16])f == 1s == 1t == [(2,4),(3,9),(4,16)]let val (fl,sl) = ([2,3,4],[4,9,16])fl == [2,3,4]sl == [4,9,16]in (f::fl,s::sl) ==>([1,2,3,4],[1,4,9,16])Instead of passing an accumulation tuple we now hold the same information in local variables.8.7 Finding words in a stringSuppose we have a string and we want to convert it to a list of words:- getwords "the cat went to sleep";> ["the","cat","went","to","sleep"] : string listAs always, we explode the string into individual letters:- localfun getwords1 ... = ...in(* convert string to list of words *)fun getwords s = getwords1 (explode s)end;> val getwords = fn : string -> string listWe assume that getwords1 returns a string list.The original string list contains letter sequences separated by space sequences.To get a word, we need to pick up each letter until we �nd a space and then return a tuple of the word and therest of the list following the space. For example: 232

- getword ["t","h","e"," "," ","c","a","t"];> ("the",[" ","c","a","t"]) : string * string listIf the letters list is empty then return the empty string and the empty list in a tuple. If the letters list startswith a space then return the empty string and the rest of letters list after the space. Otherwise the list startswith the �rst letter of the word. Process the rest of the letters list, which starts with the rest of the word, toform a tuple of the rest of the word and the letters after it. Then put the �rst letter of the word list onto therest of the word and return it with the rest of the letters:- (* return, from singleton string list, next word andlist of singleton strings following it *)fun getword [] = ("",[]) |getword (" "::t) = ("",t) |getword (h::t) =let val (rw,rl) = getword tin (h^rw,rl)end;> val getword = fn : string list ->string * string listNote the tuple pattern (rw,rl). getword is called recursively to return a tuple of the rest of the word and therest of the letters. Thus rw matches the rest of the word and rl matches the rest of the letters. For example:- getword ["t","h","e"," "," ","c","a","t"]);> ("the",[" ","c","a","t"]) : string * string listbecause:getword ["t","h","e"," "," ","c","a","t"]) ==>h == "t"t == ["h","e"," "," ","c","a","t"]) ==>let val (rw,rl) =getword ["h","e"," "," ","c","a","t"]) ==>h == "h"t == ["e"," "," ","c","a","t"]) ==>let val (rw,rl) =getword ["e"," "," ","c","a","t"]) ==>h == "e"t == [" "," ","c","a","t"]) ==>let val (rw,rl) =getword [" "," ","c","a","t"]) ==>("",[" ","c","a","t"])h == "e"t == [" "," ","c","a","t"]) ==>let val (rw,rl) = ("",[" ","c","a","t"])rw == ""rl == [" ","c","a","t"]in (h^rw,rl) ==>("e",[" ","c","a","t"])h == "h" 233

t == ["e"," "," ","c","a","t"]) ==>let val (rw,rl) = ("e",[" ","c","a","t"])rw == "e"rl == [" ","c","a","t"]in (h^rw,rl) ==>("he",[" ","c","a","t"])h == "t"t == ["h","e"," "," ","c","a","t"]) ==>let val (rw,rl) = ("he",[" ","c","a","t"])rw == "he"rl == [" ","c","a","t"]in (h^rw,rl) ==>("the",[" ","c","a","t"])To �nd all the words, we need to skip spaces until we �nd a letter. Then we pick up the �rst word and put iton the front of processing the rest of the list:- (* get list of words from list of singleton strings *)fun getwords1 [] = [] |getwords1 (" "::t) = getwords1 t |getwords1 l =let val (w1,rl) = getword lin w1::getwords1 rlend;> val getwords1 = fn : string list -> string listRemember that getword returns a tuple of the next word and the list of letters after it. w1 will match the wordand rl with match the rest of the list. For example:- getwords "the cat sat down";> ["the","cat","sat","down"] : string listbecause:getwords "the cat sat down" ==>getwords1 ["t","h","e"," ","c","a","t"," ","s","a","t"," ","d","o","w","n"] ==>let val (w1,rl) =getword ["t","h","e"," ","c","a","t"," ","s","a","t"," ","d","o","w","n"] ==>("the",["c","a","t"," ","s","a","t"," ","d","o","w","n"])w1 == "the"rl == ["c","a","t"," ","s","a","t"," ","d","o","w","n"]in w1::getwords1 rl ==>"the"::(getwords1 ["c","a","t"," ","s","a","t"," ","d","o","w","n"]) ==>let val (w1,rl) =getword ["c","a","t"," ","s","a","t",234

" ","d","o","w","n"] ==>("cat",["s","a","t"," ","d","o","w","n"])w1 == "cat"rl == ["s","a","t"," ","d","o","w","n"]in w1::getwords1 rl ==>"the"::"cat"::getwords1 ["s","a","t"," ","d","o","w","n"] ==>let val (w1,rl) =getword ["s","a","t"," ","d","o","w","n"] ==>("sat",["d","o","w","n"])w1 == "sat"rl == ["d","o","w","n"]in w1::getwords1 rl ==>"the"::"cat"::"sat"::getwords1 ["d","o","w","n"] ==>let val (w1,rl) =getword ["d","o","w","n"] ==>("down",[])w1 == "down"rl == []in w1::getwords1 rl ==>"the"::"cat"::"sat"::"down"::getwords1 [] ==>"the"::"cat"::"sat"::"down"::[] ==>["the","cat","sat","down"]8.8 Counting wordsConsider counting how often each word occurs in a list of words. For each distinct word, a count is held as atuple of the word and the number found so far. All the count tuples are held in a list which is initially empty.For each word, the count list is updated. If the count list is empty then the word has not yet been found so anew list is made with a tuple for that word with a count of 1. If the word is that in the �rst tuple in the countlist then the count in the tuple is incremented and the new tuple is put back onto the rest of the count list.Otherwise, the �rst tuple is put onto the result of updating the tail of the count list for the word:- (* increment count for given word in count list *)fun wupdate w [] = [(w,1)] |wupdate w ((w1,c1)::t) = if w=w1then (w1,c1+1)::telse (w1,c1)::wupdate w t;> val wupdate = fn : ''a -> (''a * int) list -> (''a * int) listThis function will serve to update the count in a tuple list for any equality type of index element. For example:- wupdate "beans" [("eat",2),("more",1),("beans",3)];> [("eat",2),("more",1),("beans",4)] : (string * int) list235

because:wupdate "beans" [("eat",2),("more",1),("beans",3)] ==>("eat",2)::wupdate "beans" [("more",1),("beans",3)] ==>("eat",2)::("more",1)::wupdate "beans" [("beans",3)] ==>("eat",2)::("more",1)::("beans",4)::[] ==>[("eat",2),("more",1),("beans",4)]Now to count the occurrence of each distinct word in a word list, if it is empty an empty count list is returned.Otherwise, use the �rst word to update the count list from processing the rest of the words. We can use foldrto apply wupdate to each word in turn with an empty count list as the base case:- localfun wupdate ... = ...in(* update count list from word list *)val count = foldr wupdate []end;> val count = fn : ''a list -> (''a * int) listFor example:- count ["the","cat","saw","the","saw"];> [("saw",2),("the",2),("cat",1)] : (string * int) listbecause:count ["the","cat","saw","the","saw"] ==>foldr wupdate [] ["the","cat","saw","the","saw"] ==>wupdate "the" (foldr wupdate [] ["cat","saw","the","saw"]) ==>wupdate "the"(wupdate "cat" (foldr wupdate [] ["saw","the","saw"])) ==>wupdate "the"(wupdate "cat"(wupdate "saw" (foldr wupdate [] ["the","saw"]))) ==>wupdate "the"(wupdate "cat"(wupdate "saw"(wupdate "the" (foldr wupdate [] ["saw"])))) ==>wupdate "the"(wupdate "cat"(wupdate "saw"(wupdate "the"(wupdate "saw" (foldr wupdate [] []))))) ==>wupdate "the"(wupdate "cat" 236

(wupdate "saw"(wupdate "the"(wupdate "saw" [])))) ==>wupdate "the"(wupdate "cat"(wupdate "saw"(wupdate "the" [("saw",1)]))) ==>wupdate "the"(wupdate "cat"(wupdate "saw" [("saw",1),("the",1)])) ==>wupdate "the"(wupdate "cat" [("saw",2),("the",1)]) ==>wupdate "the" [("saw",2),("the",1),("cat",1)] ==>[("saw",2),("the",2),("cat",1)] ==>8.9 SummaryIn this chapter we looked at the use of explode to turn a string into a list and implode to turn a list of stringsinto a single string. We then wrote functions to �nd, delete, insert and replace text in text by manipulatinglists of single letters. Next we met the let expression for introducing temporary local variables. We then usedlet expressions to accumulate partial results when processing lists. Typically, we accumulated a tuple of theresult so far and what was left over. At the end, we had nothing left over and returned the �nal result.In the next chapter we are going to look at a technique for de�ning our own data types. We will use this torepresent the results of more elaborate text processing, including simple lexical analysis.8.10 Exercises1) Write a function to �nd the length of a string using explode and length. Do not use the built in size.What is the type of this function?2) Write a function which counts how often a string occurs in another string:- scount "the" "the pathetic bathe theory with lather";> 5 : intWhat is the type of this function?3) Write a function which deletes all occurrences of a string in another string:- deleteall "the" "the cat ate the haggis";> " cat ate haggis" : stringWhat is the type of this function?4) Write a function which replaces all occurrences of a string with another string in a third string:- replaceall "the" "our" "the cat stole the pie";237

> "our cat stole our pie" : stringWhat is the type of this function?5) Write a function which inserts a string after all occurrences of another string in a third string:- insertafterall " big" "the" "the dog saw the cat";> "the big dog saw the big cat" : stringWhat is the type of this function?6) Write a function which inserts a string before all occurrences of another string in a third string:- insertbeforeall "happy " "happy" "happy happy";> "happy happy happy happy" : stringWhat is the type of this function?7) Write a function to convert an integer into a string of digits:- iconv 312;> "312" : stringUse the system function chr which turns an ASCII value into the equivalent single letter string:- chr 48;> "0" : string- chr;> fn : int -> stringCan your function deal with an initial value of 0?What is the type of this function?8) Octal integers use the digits:0 1 2 3 4 5 6 7Each place indicates a multiple of a power of 8:452 == 4*8*8+5*8+2Write a function to convert an octal number represented as a string of octal digits to a decimal integer:- oconv "452";> 298 : intWhat is the type of this function?9) A string contains a sequence of octal and decimal integers separated by spaces. An octal integer starts:#O 238

A decimal integer starts:#DWrite a function which given such a string returns an equivalent list of tuples of string number type and integernumber value:- numbs "#O32 #D32 #O45";> [("octal",26),("decimal",32),("octal",37)] : (string * int) listWhat is the type of this function?

239

Chapter 9Concrete data types9.1 IntroductionIn chapter 1 we talked about how model making is based on constructing new types for a problem. Programmingthen involves using the given types in a programming language to represent those new types. We have seen thatSML provides base types for integers, reals, booleans and strings and we have used these directly to representproperty values. However, sometimes the types we want for a problem can be represented by a subset of oneof the base types but we still have to deal with all possible values for that base type. We have used catch allvariables to pick up the base type values we are not really interested in but this can distort our functions.For example, in the tra�c light function from chapter 4:- fun change "red" = "red & amber" |change "red & amber" = "green" |change "green" = "amber" |change "amber" = "red" |change s = s^" not a light state";> val change = fn : string -> stringwe represented light states as strings. However, there are only four light states and an in�nite variety of stringsso we had to introduce the �nal case for s to catch any other string and return a plausible value. If this functionwere part of a larger system then we would need special cases all over the place to deal with an invalid lightstate.We also saw that we could use exceptions to stop evaluation when something goes wrong. However, it wouldbe nice to exclude the possibility of a function being called with an inappropriate value right from the start.SML enables the de�nition of new types as ranges of discrete values represented as names. These are known asconcrete data types. Patterns for a new concrete type may only take those de�ned values. Thus, there is noneed to worry about values outside of those required.9.2 New typesA new type may be introduced by what is called a datatype binding. At simplest, this may be used to de�nethe constituent values for a new type by listing base values explicitly. The binding is said to introduce newvalue constructors, that is the names representing the discrete values. These are used to build new values ofthat type just by mentioning them in expressions.This simple form of datatype binding takes the form:240

datatype type constructor = value constructor1 |value constructor2 |value constructor3 ...which de�nes the base values of type type constructor, a name, to be the value constructor names value constructor1or value constructor2 or value constructor3 etc.The new type is an equality type, that is = and <> are de�ned for its values.For example, we could represent tra�c light states with the datatype:- datatype traffic_light = red | red_amber | green | amber;> datatype traffic_light = red | red_amber | green | ambercon red = red : traffic_lightcon red_amber = red_amber : traffic_lightcon green = green : traffic_lightcon amber = amber : traffic_lightHere, the system tells us that we have de�ned the datatype traffic_light with the value constructors red,red_amber, green and amber with the same constructor names as values. An equality test for traffic_lightvalues is also de�ned so these values may appear in patterns. We can now de�ne a function to change a tra�clight from one state to the next:- (* change traffic light state *)fun change red = red_amber |change red_amber = green |change green = amber |change amber = red;> val change = fn : traffic_light -> traffic_light- change amber;> red : traffic_lightNote that we no longer need the catch all case. We can only use the values red, red_amber, green and amber.For example, we could de�ne the boolean type bool with:- datatype bool = true | false;> datatype bool = true | falsecon true = true : boolcon false = false : boolThis de�nes the value constructors true and false for the new type bool. An equality test for bool is alsode�ned so that the values true and false may be tested explicitly and used in pattern matching. Thus, wecould de�ne negation:- (* boolean negation *)fun not true = false |not false = true;> val not = fn : bool -> bool- not true;> false : boolWe can also de�ne other boolean operations, for example conjunction:- (* conjunction *) 241

fun band false false = false |band false true = false |band true false = false |band true true = true;> val band = fn: bool -> bool -> bool9.3 Example - simple lexical analysisFor example, suppose we are told about the following word classes:article - the, anoun - cat, mat, ratverb - sat on, ateWe might represent word classes as a datatype:- datatype class = article | noun | verb;> datatype class = article | noun | verbcon article = article : classcon noun = noun : classcon verb = verb : classSuppose we are given a sentence as a string and we want to turn it into a list of the corresponding word classes:- lex "the cat sat on the mat";> [article,noun,verb,article,noun] : class listThis is the problem of lexical analysis: the recognition of individual lexemes or symbols from a characterrepresentation of a lexeme sequence. We can use string matching to identify each word:- (* recognise word classes in singleton sting list *)fun lex1 [] = [] |lex1 ("a"::"t"::"e"::t) = verb::lex1 t |lex1 ("a"::t) = article::lex1 t |lex1 ("c"::"a"::"t"::t) = noun::lex1 t |lex1 ("m"::"a"::"t"::t) = noun::lex1 t |lex1 ("r"::"a"::"t"::t) = noun::lex1 t |lex1 ("s"::"a"::"t"::" "::"o"::"n"::t) = verb::lex1 t |lex1 ("t"::"h"::"e"::t) = article::lex1 t |lex1 (_::t) = lex1 t;> val lex1 = fn: string list -> class listFor each word we list its characters followed by a variable t to pick up the tail of the string list. Havingrecognised a word, we return its class followed by the result of recognising the words in the rest of the list.The order of the clauses is alphabetical but with long words before short words starting with the same letters.Pattern matching is top to bottom. If two words start with the same letters then we must check for the longerone �rst. Otherwise, the shorter one will be matched in instances of the longer one.The last clause has a wildcard match to ignore any other characters, including spaces, and just check the restof the list. Instead, we could have de�ned an error class and returned that. Alternatively, we could have raisedan exception.Given a string, we �explode it and pass it to lex1: 242

- localfun lex1 ... = ...in(* lexical analyser *)fun lex words = lex1 (explode words)end;> val lex = fn: string -> class listFor example:- lex "the cat sat on";> [article, noun,verb] : class listbecause:lex "the cat sat on" ==>lex1 ["t","h","e"," ","c","a","t"," ","s","a","t"," ","o","n"] ==>article::lex1 [" ","c","a","t"," ","s","a","t"," ","o","n"] ==>article::lex1 ["c","a","t"," ","s","a","t"," ","o","n"] ==>article::noun::lex1 [" ","s","a","t"," ","o","n"] ==>article::noun::lex1 ["s","a","t"," ","o","n"] ==>article::noun::verb::lex1 [] ==>article::noun::verb::[] ==>[article,noun,verb]9.4 Structured datatype bindingIn the above example, we constructed a datatype to represent a discrete range of values. We can also de�nediscrete values which are associated with other values which need not be discrete.For example, in the above lexical analyser it would be useful to know not just what classes of words were foundbut also which words were found. That is we would like each discrete class value to be associated with a stringvalue. For this example, we could do this already with a tuple of a class and a string. However, every tuplewould have to consist of a class value and a string.SML generalises datatype bindings to associate discrete value constructors with arbitrary values. Within thevalues of a datatype, di�erent value constructors may be associated with di�erent types. Such associationsmight be termed structured concrete types.Here, the datatype binding form is extended to:datatype type constructor =value constructor1 of type expression1 |value constructor2 of type expression2 | ...where the extension: 243

of type expressionis optional. This speci�es a new type type constructor with values of the form:value constructor1 value1value constructor2 value2...where value1 is a value corresponding to type expression1, value2 is a value corresponding to type expression2,and so on. Here:value constructor1value constructor2...are functions which build structured values of type type constructor. They do so by associating the valueconstructors with the values. Thus, they look like function calls for which evaluation stopped after the argumentwas evaluated.Note that the values may be of any types including arbitrary structures of lists, tuples, datatypes and functions.For example, supposing we want the lexical analyser to return the word as well as the class. We could add astring �eld to each class constructor:- datatype class = article of string |noun of string | verb of string;> datatype class = article of string |noun of string | verb of stringcon article = fn: string -> classcon noun = fn: string -> classcon verb = fn: string -> classOnce again, we have the discrete value constructors article, noun and verb but now each is a function froma string to a class. E�ectively, each value constructor may be associated with any string value. For example:article "the"noun "cat"verb "sat on"are all valid class values.Let us now modify the lexical analyser to return the words as well as the classes:- lex "the cat ate the rat";> [article "the",noun "cat",verb "ate",article "the",noun "rat"] : class listFor each word, we apply the value constructor to the appropriate string:- (* find words and their classes from singleton string list *)fun lex1 [] = [] |lex1 ("a"::"t"::"e"::t) = verb "ate"::lex1 t |lex1 ("a"::t) = article "a"::lex1 t |lex1 ("c"::"a"::"t"::t) = noun "cat"::lex1 t |244

lex1 ("m"::"a"::"t"::t) = noun "mat"::lex1 t |lex1 ("r"::"a"::"t"::t) = noun "rat"::lex1 t |lex1 ("s"::"a"::"t"::" "::"o"::"n"::t) = verb "sat on"::lex1 t |lex1 ("t"::"h"::"e"::t) = article "the"::lex1 t |lex1 (_::t) = lex1 t;> val lex1 = fn : string list -> class listFor example:- lex1 ["a"," ","r","a","t"," ","a","t","e"];> [article "a",noun "rat",verb "ate"] : class listbecause:lex1 ["a"," ","r",a",t"," ","a",t","e"] ==>article "a"::lex1 [" ","r",a",t"," ","a",t","e"] ==>article "a"::lex1 ["r",a",t"," ","a",t","e"] ==>article "a"::noun "rat"::lex1 [" ","a",t","e"] ==>article "a"::noun "rat"::lex1 ["a",t","e"] ==>article "a"::noun "rat"::verb "ate"::lex1 [] ==>article "a"::noun "rat"::verb "ate"::[] ==>[article "a",noun "rat",verb "ate"]9.5 Structured pattern matchingStructured datatype patterns consist of a value constructor followed by a pattern for the associated value.For example, to extract the string from a class: we match each discrete value:- (* select word value from word class *)fun word (article a) = a |word (verb v) = v |word (noun n) = n;> val word = fn : class -> stringHere, we have a datatype pattern consisting of a constructor name followed by a variable for the associatedvalue.Note that the whole datatype pattern is in brackets, as if it were a function call argument for another function.For example:- word (article "an");> "an" : stringNow we can convert a list of class back into a string sentence:245

- (* convert word class list to string *)fun words [] = "" |words [w] = word w |words (h::t) = word h^" "^words t;> val words = fn: class list -> stringNote the case for one word to avoid putting a space at the end of the sentence.For example:- words [article "the",noun "cat",verb "sat on",article "the",noun "rat"];> "the cat sat on the rat" : stringbecause:words [article "the",noun "cat",verb "sat on",article "the",noun "rat"] ==>"the"^" "^words [noun "cat",verb "sat on",article "the",noun "rat"] ==>"the"^" "^"cat"^" "^words [verb "sat on",article "the",noun "rat"] ==>"the"^" "^"cat"^" "^"sat on"^" "^words[article "the",noun "rat"] ==>"the"^" "^"cat"^" "^"sat on"^" "^"the"^" "^words [noun "rat"] ==>"the"^" "^"cat"^" "^"sat on"^" "^"the"^" ""rat" ==>"the cat sat on the rat"This is a simple example of a pretty printer, a program to recreate a textual representation from an internalrepresentation.For example, we can count how often each word class appears in a list of word classes, using accumulationvariables for the di�erent classes:- (* count word classes with accumulation tuple *)fun count1 (ac,nc,vc) [] = (ac,nc,vc) |count1 (ac,nc,vc) (article _::t) = count1 (ac+1,nc,vc) t |count1 (ac,nc,vc) (noun _::t) = count1 (ac,nc+1,vc) t |count1 (ac,nc,vc) (verb _::t) = count1 (ac,nc,vc+1) t;> val count1 = fn: int * int * int -> class list -> int * int * int- localfun count1 ... = ...in(* count word classes *)val count = count1 (0,0,0)end;> val count = fn : class list -> int * int * intFor example:- count [article "the",noun "cat", 246

verb "sat on",article "the",noun "rat"];> (2,2,1) : int * int * intbecause:count [article "the",noun "cat",verb "sat on",article "the",noun "rat"] ==>count1 (0,0,0) [article "the",noun "cat",verb "sat on",article "the",noun "rat"] ==>count1 (1,0,0)[noun "cat",verb "sat on",article "the",noun "rat"] ==>count1 (1,1,0) [verb "sat on",article "the",noun "rat"] ==>count1 (1,1,1) [article "the",noun "rat"] ==>count1 (2,1,1) [noun "rat"] ==>count1 (2,2,1) [] ==>(2,2,1)Note, that in structured datatype patterns, the wildcard pattern may only be substituted for value constructorswith no arguments. That is, it is not possible to write a pattern to match arbitrary value constructors. Forexample, we cannot simplify:- fun getword (article a) = a |(noun n) = n |(verb v) = v;> val getword = fn : class -> stringto: fun getword (_ w) = wThe system cannot deduce what type is intended.9.6 Union typesDatatypes are particularly useful when we wish to construct functions to handle mixed types. In SML, afunction's range and domain must be of single types. To get the e�ect of mixed type domains and ranges wecan unite di�erent types using a datatype.For example, suppose we want to construct a function which will take either an integer or a real argument andreturn the equivalent integer. If we write:- fun makeint (x:int) = x |makeint (y:real) = floor y;then a type error occurs because x and y have di�erent types. We can get round this by de�ning:247

- datatype numb = itype of int | rtype of real;> datatype numb = itype of int | rtype of realcon itype = fn: int -> numbcon rtype = fn: real -> numbHere, an integer is represented by:itype integerand a real by:rtype realFor example:- itype 4;> itype 4 : numb- rtype 4.2;> rtype 4.2 : numbWe can now de�ne the function to convert an integer or a real to an integer as:- (* convert integer or real to numb *)fun makeint (itype i) = i |makeint (rtype r) = floor r;> val makeint = fn : numb -> intso: - makeint (itype 3);> 3 : int- makeint (rtype 4.71);> 4 : intNote that we must disguise the integer and real values with a layer of constructor to make them both numbtype.For example, suppose we want to represent various shapes of boxes. We have cubes, where all sides are thesame, cubic rectangles where two sides are the same, and rectangles where all sides are di�erent. We can usedatatype to represent boxes:- datatype box = cube of int |cubic of int * int |rectangle of int * int * int;> datatype box = cube of int |cubic of int * int |rectangle of int * int * intcon cube = fn : int -> boxcon cubic = fn : int * int -> boxcon rectangle = fn : int * int * int -> boxFor example, a cube with 3 metre sides is: 248

cube 3a cubic rectangle with two 3 metre sides and a 4 metre side is:cubic (3,4)and a rectangle with 3 metre, 4 metre and 5 metre sides is:rectangle (3,4,5)Suppose we have a list of boxes and we require a list of volumes. First of all, to �nd the volume of each boxcase: - (* find box volume *)fun vol (cube s) = s*s*s |vol (cubic (s,d)) = s*s*d |vol (rectangle (l,b,h)) = l*b*h;> val vol = fn : box -> intNote that there is a separate pattern for each box type, with an appropriate pattern following the valueconstructor.We can then map this over a list of boxes:- (* find box volumes from box list *)val vols = map vol;> val vols = fn : box list -> int listFor example:- vols [cube 3,cubic (3,4),rectangle (3,4,5)];> [27,36,60] : int listbecause:vols [cube 3,cubic (3,4),rectangle (3,4,5)] ==>map vol [cube 3,cubic (3,4),rectangle (3,4,5)] ==>vol (cube 3)::vol (cubic (3,4))::vol (rectangle (3,4,5))::[] ==>[27,36,60]9.7 Example - converting digit strings to number listsFor example, suppose we have a sequence of integer and decimal numbers with spaces in between them repre-sented as a string, for example:- "3 4.2 7 8.91";> "3 4.2 7 8.91" : string 249

Suppose we want to convert this to a list of numb type as used above:- findnumbs "3 4.2 7 8.91";> [itype 3,rtype 4.2,itype 7,rtype 8.91] : numb listFirst of all, we could use getwords from the last chapter to split the string up:- getwords "3 4.2 7 8.91";> ["3","4.2","7","8.91"] : string listgetwords does not know about the di�erence between letters and digits. All it does is split a string up whereit �nds spaces.Next we could construct a function which given a string number returns the appropriate numb. First of all, wewill modify getval from the last chapter to return a tuple of an integer and rest of list from a list of singlecharacter strings. For an integer string, the rest of list will be empty. For a real string, the rest of the list willstart with the decimal point:- (* find integer at start of singleton string list,returning rest of list also *)fun findint i [] = (i,[]) |findint i ("."::t) = (i,t)|findint i (h::t) = findint (10*i+ord h-ord "0") t;> val findint = fn : int -> string list -> int * string listFor example:- findint 0 ["1","2","3"];> (123,[]) : int * string listand: - findint 0 ["4","5",".","6","7"];> (45,["6","7"]) : int * string listNext we require a function to convert the digit string after the decimal point to a real value. Note that thedecimal part of a real number may be factored as a sum of digits divided by decreasing negative powers of ten.For example:0.3124 ==> 3/10+0.0124 ==> 3/10+1/100+0.0024 ==>3/10+1/100+2/1000+0.0004 ==> 3/10+1/100+2/1000+4/10000+0.0To convert the string representation of the decimal part we we need to multiply each digit by the appropriatenegative power of 10.0, and then generate the next negative power of 10.0 for the next digit:- (* convert singleton digit list to decimal fraction *)fun findreal p10 r [] = r |findreal p10 r (h::t) =findreal (p10/10.0) (r+real (ord h-ord "0")*p10) t;> val findreal = fn : real -> real -> string list -> realHere, r accumulates the decimal part of the real number and p10 is the next power of 10. For example:250

- findreal 0.1 0.0 ["2","4","1"];> 0.241 : realbecause:findreal 0.1 0.0 ["2","4","1"] ==>findreal 0.01 0.2 ["4","1"] ==>findreal 0.001 0.24 ["1"] ==>findreal 0.0001 0.241 [] ==>0.241 : realTo return to our number to numb conversion, we call findint with the digit sequence to return an initial integerand the rest of the string list. If the rest of string list is empty then we return an itype for the integer.Otherwise we call findreal to convert the decimal part and then form the �nal rtype:- (* convert singleton digit list to numb *)fun findnumb (i,[]) = itype i |findnumb (i,t) = rtype (real i+findreal 0.1 0.0 t);> val findnumb = fn : int * string list -> numb- (* convert string to numb *)fun nconv l = findnumb (findint 0 (explode l));> val nconv = fn : string -> numbFor example:- nconv "123";> itype 123 : numbbecause:nconv "123" ==>findnumb (findint 0 (explode "123")) ==>findnumb (findint 0 ["1","2","3"]) ==>findnumb (123,[]) ==>itype 123For example:- nconv "12.34";> rtype 12.34 : realbecause:nconv "12.34" ==> 251

findnumb (findint 0 (explode "12.34")) ==>findnumb (findint 0 ["1","2",".","3","4"]) ==>findnumb (12,[".","3","4"]) ==>rtype (real 12+findreal ["3","4"]) ==>rtype (real 12+0.34) ==>rtype 12.34Finally, given the initial string, we use getwords to break it up into a list of separate number strings and thenmap nconv over the list:- (* convert string of numbers to list of numb *)fun findnumbs l = map nconv (getwords l);> val findnumbs = fn : string -> numb listFor example:- findnumbs "1 2.3 4";> [itype 1,rtypr 2.3,itype 4] : numb listbecause:findnumbs "1 2.3 4" ==>map nconv (findwords "1 2.3 4") ==>map nconv ["1","2.3","4"] ==>nconv "1"::map nconv ["2.3","4","5.6"] ==>nconv "1"::nconv "2.3"::map nconv ["4","5.6"] ==>nconv "1"::nconv "2.3"::nconv "4"::map nconv [] ==>[itype 1,rtype 2.3,itype 4]9.8 Example - lexical analysis of arithmetic expressions9.8.1 IntroductionSuppose we are processing strings representing arithmetic expressions consisting of:operators - + - * / ()identifiers - one or more lettersintegers - one or more digitsAs above, we wish to construct a list of individual symbols from a string.252

For an identi�er, we will return the string and for an integer we will return the value. For an operator, we'llreturn a constant:(== lbra) == rbra+ == add- == diff* == mult/ == divideWe will use di�erent value constructors to di�erentiate the di�erent types:- datatype symbol = ident of string | numb of int |lbra | rbra | add | diff | mult | divide;> datatype symbol = ident of string | numb of int |lbra | rbra | add | diff | mult | dividecon ident = fn: string -> symbolcon numb = fn: int -> symbolcon lbra = lbra : symbol...so examples of valid symbols include:numb 42ident "total"lbraadd9.8.2 Analyser functionWe will develop the techniques used in the lexical analyser discussed above to extract a symbol list from astring. First of all, we recognise the operators:- (* recognise arithmetic symbols from singleton string list *)fun arithlex1 [] = [] |arithlex1 ("("::t) = lbra::arithlex1 t |arithlex1 (")"::t) = rbra::arithlex1 t |arithlex1 ("+"::t) = add::arithlex1 t |arithlex1 ("-"::t) = diff::arithlex1 t |arithlex1 ("*"::t) = mult::arithlex1 t |arithlex1 ("/"::t) = divide::arithlex1 t |...For an identi�er, we recognise that the string list starts with a letter and for an integer we recognise that itstarts with a digit:arithlex1 (l as h::t) =if h>="a" andalso h<="z"then getident lelseif h>="0" andalso h<="9"then getint lelse arithlex1 tOtherwise, we have an invalid character so we ignore it.253

9.8.3 Mutual de�nitionsIn arithlex1 above, two auxiliary functions getident and getint are called. These will also need to callarithlex1 to continue processing. If we try and de�ne them independently, say getint and getident be-fore arithlex1, then the system will complain that arithlex1 has not been de�ned. Similarly, if we de�nearithlex1 �rst then the system will object that getint and getident have not been de�ned.SML allows such mutual references through the simultaneous declaration:fun name1 ... = ...and name2 ... = ...and name3 ... =Here, the bodies of name1, name2, name3 and so on may all refer to each other. In the above example we need:fun arithlex1 ... = ... getident ... getint ...and getident ... = ... arithlex1 ...and getint ... = ... arithlex1 ...9.8.4 Recognising identi�ersThe function getident will call another function to split the character sequence into the letter sequence for thename and the rest of the character sequence:(* find identifier starting singleton string list,returning rest of list also *)and get_letters [] = ("",[]) |get_letters (l as h::t) =if h >= "a" andalso h <= "z"thenlet val (rest_of_name,rest_of_chars) = get_letters tin (h^rest_of_name,rest_of_chars)endelse ("",l)> val get_letters = fn : string list -> string * string listNow, getident will convert the letters into a symbol and call the analyser arithlex1 recursively:(* find identifier followed by symbols in singleton string list *)and getident c =let val (name_letters,rest_of_chars) = get_letters cin ident name_letters::arithlex1 rest_of_charsend> val getident = fn : string list -> symbol list9.8.5 Recognising integersThe function getint will call another function to split the character sequence into the digit sequence for thenumber and the rest of the character sequence:(* find number in singleton string list, returning rest of list also *)254

and get_digits [] = ([],[]) |get_digits (l as h::t) =if h >= "0" andalso h <= "9"thenlet val (rest_of_number,rest_of_chars) = get_digits tin (h::rest_of_number,rest_of_chars)endelse ([],l)> val get_digits = fn : string list -> string list * string listIt will then use getval from chapter 8 to convert the number digits into the numb datatype value and call theanalyser arithlex1 recursively:(* find number followed by symbols in singleton string list *)and getint c =let val (number_digits,rest_of_chars) = get_digits cin numb (getval 0 number_digits)::arithlex1 rest_of_charsend;> val getint = fn : string list -> symbol list9.8.6 Complete analyserFinally, we need to de�ne the top-level lexical analysis function:- localfun arithlex1 ... = ...and get_letters ... = ...and getident ... = ...and get_digits ... = ...and getint ... = ...in(* arithmetic lexical analyser *)fun arithlex s = arithlex1 (explode s)end;> val arithlex = fn: string -> symbol list- arithlex "(total+57)/(19-sum)";> [lbra,ident "total",add,numb 57,rbra,divide,lbra,numb 19,diff,ident "sum",rbra] : symbol list9.8.7 Pretty printerWe can convert a sequence of symbols back into the original string:- symbs_to_string [lbra,ident "total",add,numb 57,rbra,divide,lbra,numb 19,diff,ident "sum",rbra];> "(total+57)/(19-sum)": stringAs for our simple sentences above, we write a function to convert an individual symbol into the equivalentstring:- (* convert symbol to string *)fun sconv lbra = "("|sconv rbra = ")" | 255

sconv add = "+" |sconv diff = "-" |sconv mult = "*" |sconv divide = "/" |sconv (ident i) = i |sconv (numb n) = iconv n> val sconv = fn : symbol -> stringNote that we need to convert a number to a string. We can do so with iconv from the chapter 8 exercise 7which you will have already solved...- fun iconv 0 = "0" |iconv n = iconv1 n> val iconv = fn : int -> stringand iconv1 0 = "" |iconv1 n = (iconv1 (n div 10))^(chr (n mod 10+ord "0"))> val iconv1 = fn : int -> stringFinally, we apply sconv to each element of the symbol list:(* arithmetic symbol list pretty printer *)fun symbs_to_string [] = "" |symbs_to_string (h::t) = sconv h^symbs_to_string t;> val symbs_to_string = fn : symbol list -> string9.9 Pattern matching summaryIn general a function may be de�ned by:fn pattern1 => expression1 |pattern2 => expression2 | ...where a pattern may be:i) a constantii) a bound variableiii) a list of patternsiv) a tuple of patternsv) a datatype patternvi) the wildcard pattern _When a function is called with an argument, the argument is matched against each pattern in turn until a matchis found. That is:i) constants in the pattern must be in the same positions in the argumentii) bound variables in the pattern will be set to the values in the corresponding argument positionsiii) tuples in the pattern must correspond in position and structure to tuples in the argumentiv) lists in the pattern must correspond in position and structure to lists in the argumentv) datatypes in the pattern must correspond in position, constructor and structure to datatypes inthe argumentvi) wildcard patterns match any values in the corresponding argument positions256

Once a match is found, the value of the corresponding expression is returned.9.10 SummaryIn this chapter we have looked at the use of datatypes to de�ne new types. First of all we saw how to de�ne atype with a �xed number of discrete values, identi�ed as constructor names. We then saw how to parameteriseconstructor names with associated further values. Finally, we looked at forming discriminated union typeswhere disparate types are combined into a single type. We also met mutual declarations as a way of enablingfunctions to refer to each other.In the next chapter we will use datatypes to de�ne recursive structures. In particular, we will see how to de�nean equivalent to the SML list type and how to build tree structures. We will then use tree structures torepresent the result of parsing symbol sequences from lexical analysers, for subsequent manipulation.9.11 Exercises1) A group of functions is required to produce an index from a book.An index is a list of word records. Each word record is a tuple of a string word followed by a list of integer pagenumbers. The list is in ascending alphabetical word order, for example:- [("apple",[1,2,3]),("banana",[2]),("cherry",[2,4])];> [("apple",[1,2,3]),("banana",[2]),("cherry",[2,4])] :(string * int list) lista) Write a function to add an integer page number to the end of a list of integer page numbersprovided that the new page number is not already in the list.What is the type of this function?b) Write a function to add a word and page number to an index. It should �nd the word in theindex and add the page number to the page number list if it is not already in the list. If the wordis not in the index then a new entry should be made.What is the type of this function?A book is preprocessed to produce a list of entries which may be string words or integer page numbers, usingthe following concrete datatype:datatype entry = word of string | page of intFor example:- [page 1,word "the",word "cat",word "sat",word "by",word "the",page 2,word "dog",word "by",word "the",page 3,word "mat"];> [page 1,word "the",word "cat",word "sat",word "by",word "the",page 2,word "dog",word "by",word "the",page 3,word "mat"] : entry listc) Write a function to update an index from an entry list. The function should have bound variablesfor the entry list, the current page number and the index. If the �rst entry is a word then it is addedto the index at the current page and the rest of the entry list is used to update the new index. If the257

�rst entry is a page number then that page number is used as the current page number for updatingthe index from the rest of the entry list.What is the type of this function?d) Write a function to create an index from an entry list, for example:index [page 1,word "the",word "cat",word "sat",word "by",word "the",page 2,word "dog",word "by",word "the",page 3,word "mat"] ==>[("by",[1,2]),("cat",[1]),("dog",[2]),("mat",[3]),("sat",1),("the",[1,2])]What is the type of this function?2) Yet another automatic car park records the registration number of every car that enters and leaves in a list.It also adds a time signature to the list every hour. Registration numbers and times are represented by theconcrete datatype:datatype park = enter of string | exit of string | time of intAn example list is:- [time 5,enter "ABC123",enter "DEF456",time 6,exit "ABC123",enter "GHI789",time 7,exit "GHI789",exit "DEF456"];> [time 5,enter "ABC123",enter "DEF456",time 6,exit "ABC123",enter "GHI789",time 7,exit "GHI789",exit "DEF456"] : park listCar park lists are to be processed to produce a list of tuples of car registration numbers and times spent in thecar park. In the list, a positive time is the time spent in the car park and a negative time is the entry time.a) Write a function to add a registration number and an entry time as a tuple to a tuple list inregistration number alphabetic order. For example:- addrn "DEF456" ~4 [("ABC13",~2),("GHI789",~3)];> [("ABC13",~2),("DEF456",~4),("GHI789",~3)] : (string * int) listWhat is the type of this function?b) Write a function which updates a tuple list by �nding the tuple for a given registration numberand adding a given exit time to the negative entry time in the tuple. For example::- updatern "DEF456" 7 [("ABC13",~2),("DEF456",~4),("GHI789",~3)];> [("ABC13",~2),("DEF456",3),("GHI789",~3)] : (string * int) listWhat is the type of this function?c) Write a function which given a car park list, the current time, and a tuple list, processes the carpark list to produce a �nal tuple list as follows. If the car park list is empty then return the tuple list.If the car park list starts with a time then process the rest of the list using that time as the currenttime. If the car park list starts with a registration number for a vehicle entering the car park thenadd a new tuple the for registration number and negated current time to the tuple list, and processthe rest of the car park list. If the car park list starts with the registration number for a vehicleleaving the car park then add the current time to the negated entry time in the corresponding tupleand process the rest of the car park list.What is the type of this function?3) A road is used by cars, buses and lorries. A roadside detector records in a list every vehicle that passes by.Every 10 minutes it also records the time. The following datatype is used to represent these events:258

datatype event = car | bus | lorry | time of int * intAn example list is:- [time(14,10),bus,car,car,lorry,time(14,20),car,car,lorry,car];> [time(14,10),bus,car,car,lorry,time(14,20),car,car,lorry,car] :event listA summary list is required with a record for each time period giving the start time and number of cars, busesand lorries before the next time. For example, for the above list:- [(time(14,10),2,1,1),(time(14,20),3,0,1)];> [(time(14,10),2,1,1),(time(14,20),3,0,1)] :(event * int * int * int) lista) Write a function that converts a vehicle list into a summary list. It has bound variables for thecurrent time, a tuple of counts for cars, buses and lorries, and a vehicle list. If the list starts witha vehicle then the appropriate count is incremented and the rest of the list is processed with thecurrent time. If the list starts with a time then a tuple for the current time and counts is put onthe front of the result of processing the rest of the list with the current time set to the time fromthe list and all counts set to 0.What is the type of this function?b) Write a function of a summary list which returns a list of all time periods for which there wereno buses.What is the type of this function?c) Write a function of a summary list which returns a list of all summary entries for which the timeis a precise hour.What is the type of this function?d) Write a function that returns the result of applying function f to all elements of a list satisfyingproperty p.What is the type of this function?e) De�ne the functions from b) and c) using the function from d).4) In a cafe, menu items are represented by the following datatype:datatype item = vgn of string * real |vgt of string * real |omn of string * realThe constructors are:vgn == vegan == no animal producevgt == vegetarian == no meatomn == omnivorous == may contain animal produceThe string is the item's name and the real is its price.A menu is held as a list, for example:- [vgn("tofu",3.6),vgt("quiche",2.7),omn("haggis",1.9)];> [vgn("tofu",3.6),vgt("quiche",2.7),omn("haggis",1.9)] : item list259

a) Write a function to �nd all the vegan items on a list.What is the type of this function?b) Write a function to �nd the cheapest omnivorous item on the list.What is the type of this function?An order is a tuple of a food item and a quantity, for example:("tofu",3) == 3 orders of tofuc) Write a function which looks up an item and returns the price.What is the type of this function?d) Write a function which, given an order tuple and a menu, returns the total cost of the order.What is the type of this function?e) Write a function which given, a list of order tuples and a menu, returns the total cost of all theorders.What is the type of this function?f) Write a function which, given a list of lists of order tuples and a menu, returns a list of total ordercosts, one for each order list.What is the type of this function?5) Logical expressions are composed of truth values and operators, for example:TRUETRUE OR FALSENOT TRUE AND FALSENOT (TRUE AND FALSE)NOT (TRUE AND FALSE) OR TRUENOT (TRUE AND FALSE) OR TRUE AND FALSENOT (TRUE AND FALSE) OR (TRUE AND FALSE)NOT (TRUE AND FALSE) OR (TRUE AND FALSE) OR FALSESymbols for logical values and operators may be represented by the datatype:datatype symbol = STRUE | SFALSE | SAND | SOR | SNOT | LBRA | RBRAWrite a lexical analysis function to produce a list of symbols from a string representing a logical expression.6) Polynomials are composed of names, integers and the operators +, * and ^, for example:3*x^3+4*x^2+6*x+8Here, ^ means \to the power of".a) de�ne a datatype to represent polynomial symbols.b) write a lexical analysis function to produce a list of symbols from a string representing a polyno-mial.7) A simple programming language consists of bracketed pre�x integer arithmetic operations, functions intro-ducing bound variables and function calls. For example:260

((+ 2) 3)(fn x => ((+ x) 1) 3)(fn y => ((* y) y) (fn x => ((+ x) 1) 4))(fn x => (fn y => ((* x) y) 3) 5)a) de�ne a datatype to represent symbols for bound variable names, integers and:() + - * / fn =>b) write a lexical analysis function to produce a list of symbols from a string representing a program.

261

Chapter 10De�ning lists and trees10.1 Linked structuresSML provides lists as a universal linked structure. We can now use datatypes to de�ne specialised linkedstructures and then generalise to universal lists.Consider a linked list of integers: []21 3Here, we have a sequence of nodes. Each node holds an integer value and a link to the next node. The end ofthe sequence is marked by a terminating link.A datatype for this structure is:- datatype ilist = icons of int * ilist | INIL;> datatype ilist = icons of int * ilist | INILcon icons = fn: int * ilist -> ilistcon INIL = INIL : ilistHere we have a base case for an empty list:INILand a recursion case:icons of int * ilistfor a integer followed by another integer list.Note the recursive reference to ilist in the recursion case.The above example is:- icons(1,icons(2,icons(3,INIL)));> icons(1,icons(2,icons(3,INIL))) : ilist262

We can now write functions to process linked lists of integers. Once again, the structure of the datatype helpsdetermine the structure of the function with a base case for a terminating link INIL and a recursion case for anicons. For example, to �nd the sum of the elements of an integer list:- (* sum ilist *)fun isum INIL = 0 |isum (icons(v,l)) = v+isum l;> val isum = fn: ilist -> intFor example:- isum (icons(1,icons(2,icons(3,INIL))));> 6 : intbecause:isum (icons(1,icons(2,icons(3,INIL)))) ==>1+isum (icons(2,icons(3,INIL))) ==>1+2+isum (icons(3,INIL)) ==>1+2+3+isum INIL ==>1+2+3+0 ==>610.2 String linked listsSuppose we now want to de�ne linked lists of strings, for example:[]"bat""ape" "cat"we can use a similar datatype to that for integer lists:- datatype slist = scons of string * slist | SNIL;> datatype slist = scons of string * slist | SNILcon scons = fn: string * slist -> slistcon SNIL = SNIL : slistso the above example is:- scons("ape",scons("bat",scons("cat",SNIL)));> scons("ape",scons("bat",scons("cat",SNIL))) : slistOnce again, we can write functions with a base case for the terminating link SNIL and a recursion case for anscons. For example, to join all the elements of a string list together:- (* implode slist *) 263

fun implode SNIL = "" |implode (scons(s,l)) = s^implode l;> val implode = fn: slist -> stringFor example:- implode (scons("ape",scons("bat",scons("cat",SNIL))));> "apebatcat" : stringbecause:implode (scons("ape",scons("bat",scons("cat",SNIL)))) ==>"ape"^implode (scons("bat",scons("cat",SNIL))) ==>"ape"^"bat"^implode (scons("cat",SNIL)) ==>"ape"^"bat"^"cat"^implode SNIL ==>"ape"^"bat"^"cat"^"" ==>"apebatcat"10.3 Generalised listsIf we compare the datatypes for integer lists:datatype ilist = icons of int * ilist | INILand string lists:datatype slist = scons of string * slist | SNILwe can see that they are essentially the same apart from the use of the types int and string. We can generaliseto lists of any type by replacing the speci�c type with a type variable:- datatype 'a list = cons of 'a * 'a list | NIL;> datatype 'a list = cons of 'a * 'a list | NILcon cons = fn: 'a * 'a list -> 'a listcon NIL = NIL : 'a listNow, we can write the above examples as:- cons(1,cons(2,cons(3,NIL)));> cons(1,cons(2,cons(3,NIL))) : int list- cons("ape",cons("bat",cons("cat",NIL)));> cons("ape",cons("bat",cons("cat",NIL))) : string listNote that, in the �rst example, the system deduces that the whole structure is of type int list because theindividual elements are of type int. Similarly, in the second example, the system deduces that the wholestructure is a string list because the individual elements are string.264

Now, as earlier, we can write polymorphic functions to process lists of arbitrary type. For example, to �nd thelength of a list:- (* length of list *)fun length NIL = 0 |length (cons(h,t)) = 1+length t;> val length = fn: 'a list -> intor to map a function over a list:- (* apply function to each in list *)fun map f NIL = NIL |map f (cons(h,t)) = cons(f h,map f t);> val map = fn: ('a -> 'b) -> 'a list -> 'b listIn SML systems, lists are based on a similar datatype: the constructor equivalent to cons is changed into thein�x operator :: and the constructor NIL is changed to nil.10.4 List e�ciencyA disadvantage of list structures is that they are not very e�cient to access. To get to an arbitrary element,it is necessary to go past all the preceding elements. Suppose a list has N elements. Then, at worst N � 1elements must be ignored to get to the last one. On average, �nding an arbitrary element involves scanning theN=2 preceding elements.For example, with a 5 element list:to get to skipelement 5 4 elementselement 4 3 elementselement 3 2 elementselement 2 1 elementelement 1 0 elementsThus to get to each of these 5 elements in succession involves skipping:4+3+2+1+0 == 10elements in total or:10 div 5 == 2elements on average, which is close to N=2.For long lists, this overhead can becomes prohibitive. For example, with a million elements, half a million mustbe skipped on average.10.5 Introducing treesFor data with an order between elements, tree structures enable far faster access at the cost of an increase instorage requirements. 265

In general, a tree consists of a hierarchy of nodes. Each node has a value and branches to sub-nodes. In anordered tree, the placing of values in sub-nodes is determined by some relationship between those values andthe node's value. The top-most node is called the root. Nodes with empty branches are called leaves.Here, we will consider ordered binary trees where each node has at most two branches, called the left and rightbranches:left rightvalueFor a given node, all the values on a node's left branch are less than the node value and all the values on anode's right branch are greater than the node's value.For example, let us construct a binary tree from the values:7 3 1 5 10 8 12We start with a node for 7 as the root:73 comes before 7 so we add it on a new left branch:731 comes before 7 so it goes on 7's left branch. 1 comes before 3 so we add it on a new left branch:71 35 comes before 7 so it goes on 7's left branch. 5 comes after 3 so we add it on a new right branch:71 3 510 comes after 7 so we add it on a new right branch: 266

71 103 58 comes after 7 so it goes on 7's right branch. 8 comes before 10 so we add it on a new left branch:71 8 103 512 comes after 7 and after 10 so we add it on a new right branch:71 8 10 123 5This is called a balanced binary tree: each node has the same number of sub-nodes on the left and right branches.With 1 node in a balanced binary tree there is one layer:node1With 3 nodes in a balanced binary tree there are two layers:node1node2 node3With 7 nodes in a balanced binary tree there are three layers:node1node2 node3node4 node5node6 node7In general, with N nodes in a balanced binary tree, the number of layers is one more than the number of timesN can be divided by 2: 267

(log2 N) + 1Thus: N (log2 N)+1 N div 21 1 03 2 17 3 315 4 731 5 1563 6 31...1023 10 511Hence, searching for a value in a balanced binary tree takes at most (log2 N) + 1 steps because that is themaximum number of layers.For example, the above tree has 7 nodes and so there are (log2 7) + 1 == 3 layers. Consider �nding 12 in theabove tree:1) 12 after 7 - right and down2) 12 after 10 - right and down3) 12 is 12 == 3 stepsIn the equivalent ordered linear list:1 73 5 8 10 12 []�nding 12 takes 7 steps.10.6 Binary tree datatypeImplicit in the above description of binary trees is a recursive de�nition:a binary tree is emptyora binary tree is a node with:a valueandleft and right branches to binary treesWe can represent binary trees of integers with the datatype:- datatype itree = iempty | inode of int * itree * itree;> datatype itree = iempty | inode of int * itree * itreecon iempty = iempty : itreecon inode = fn: int * itree * itree -> itreeiempty is the empty node.Note the recursive references to itree in: 268

inode of int * itree * itreeFor example, the above tree is:inode(7,inode(3,inode(1,iempty,iempty),inode(5,iempty,iempty)),inode(10,inode(8,iempty,iempty),inode(12,iempty,iempty)))To add a value to a binary tree: if the tree is empty then make a new node for that value with empty branches.Otherwise, if the new value comes before the node value then add it to the left branch. Otherwise add it to theright branch:- (* add integer to ascending order binary tree *)fun iadd v iempty = inode(v,iempty,iempty) |iadd v (inode(iv,l,r)) =if v<=ivthen inode(iv,iadd v l,r)else inode(iv,l,iadd v r);> val iadd = fn: int -> itree -> itreeNote that this does not build a balanced tree.For example, adding 7 to an empty tree:iadd 7 iempty ==> inode(7,iempty,iempty)Now adding 3:iadd 3 (inode(7,iempty,iempty)) ==>inode(7,iadd 3 iempty,iempty) ==>inode(7,inode(3,iempty,iempty),iempty)Next adding: 1:iadd 1 (inode(7,inode(3,iempty,iempty),iempty)) ==>inode(7,iadd 1 (inode(3,iempty,iempty)),iempty) ==>inode(7,inode(3,iadd 1 iempty,iempty),iempty) ==> 269

inode(7,inode(3,inode(1,iempty,iempty),iempty),iempty)Then adding 5:iadd 5 (inode(7,inode(3,inode(1,iempty,iempty),iempty),iempty)) ==>inode(7,iadd 5 (inode(3,inode(1,iempty,iempty),iempty)),iempty) ==>inode(7,inode(3,inode(1,iempty,iempty),iadd 5 iempty),iempty) ==>inode(7,inode(3,inode(1,iempty,iempty),inode(5,iempty,iempty)),iempty)To traverse an ordered binary tree to construct a list of elements in ascending order: if the tree is empty thenreturn the empty list; otherwise append the list from the left branch onto the node value and the list from theright branch:- (* traverse ascending order binary integer tree *)fun itrav iempty = [] |itrav (inode(v,l,r)) = (itrav l)@(v::itrav r);> val itrav = fn: itree -> int listFor example:- itrav (inode(7,inode(3,inode(1,iempty,iempty),inode(5,iempty,iempty)),iempty));> [1,3,5,7] : int listbecause:itrav (inode(7,inode(3,inode(1,iempty,iempty),inode(5,iempty,iempty)),iempty)) ==>itrav (inode(3,inode(1,iempty,iempty),inode(5,iempty,iempty)))@ 270

7::itrav iempty ==>itrav (inode(1,iempty,iempty))@3::itrav (inode(5,iempty,iempty))@7::itrav iempty ==>itrav iempty@1::(itrav iempty)@3::itrav iempty@5::itrav iempty7::itrav iempty ==>[]@1::[]@3::[]@5::[]@7::[] ==>1::3::5::7::[]10.7 Polymorphic treesWe can now generalise the above tree datatype to binary trees of arbitrary type. Once again, we replace intwith a type variable 'a:- datatype 'a tree = empty | node of 'a * 'a tree * 'a tree;> datatype 'a tree = empty | node of 'a * 'a tree * 'a treeAcon empty = empty : 'a treecon node = fn: 'a * 'a tree * 'a tree -> 'a treeConsider the function to add a value to an integer tree:fun iadd v iempty = inode(v,iempty,iempty) |iadd v (inode(iv,l,r)) =if v<ivthen inode(iv,iadd v l,r)else inode(iv,l,iadd v r);Here, the comparison operator < is used on iv which is the value from an inode and therefore an int. Hence< denotes integer "less than". To generalise this function we need to abstract from the comparison operator:- (* add value to polymorphic binary tree *)fun add less v empty = node(v,empty,empty) |add less v (node(nv,l,r)) =if less v nvthen node(nv,add less v l,r)else node(nv,l,add less v r);> val add = fn: ('a -> 'a -> bool) -> 'a -> 'a tree -> 'a treeso less is a:'a -> 'a -> boolfunction.add will operate on a tree of arbitrary type provided it is supplied with an appropriate comparison operator forthat type. For example, for trees of strings:- fun sless (s1:string) s2 = s1<=s2; 271

- val sless = fn: string -> string -> bool- val sadd = add sless;> val sadd = fn: string -> string tree -> string treeSimilarly, for trees of reals:- fun rless (r1:real) r2 = r1<=r2;> val rless = fun: real -> real -> bool- val radd = add rless;> val radd = fn: real -> real tree -> real treeThe traversal function for polymorphic trees is more or less the same as that for integer trees, as no type speci�coperations are carried out:- (* inorder polymorphic binary tree traversal *)fun trav empty = [] |trav (node(v,l,r)) = trav l@v::trav r;> val trav = fn: 'a tree -> 'a listThis function is polymorphic.10.8 Grammar and parsingConsider the English sentences:The mouse saw a big peachThe mouse ate the peachA big cat saw the mouseThe big cat ate the small mouseWe can characterise the structure of these sentences with a set of rules:A sentence is a noun phrase followed by a verb followed by a noun phraseA noun phrase is an article followed by a noun partA noun part is an adjective followed by a nounA noun part is a nounAn article is one of: a theA noun is one of: mouse cat peachAn adjective is one of: big smallA verb is one of: saw ateThese rules or grammar de�ne the syntax of a class of sentences: that is, they specify which sequences ofsymbols are considered to be well formed.For computer use, syntax is often de�ned using a notation called BNF (Backus Naur Form). BNF was originallydeveloped to de�ne the syntax of ALGOL 60, an early and extremely in
uential language. BNF and variantsare now widely used to de�ne programming language syntax.A BNF rule or production consists of a left hand side and a right hand side separated by the symbol ::=, whichis read as \is". The left hand side is the rule name or non-terminal symbol within angle brackets < and >. Theright hand side is a sequence of options separated by the option symbol |, which is read as \or". Each optionis a sequence of terminal symbols or lexemes and non-terminal symbols. Thus, the above grammar is:272

<sentence> ::= <noun phrase> <verb> <noun phrase><noun phrase> ::= <article> <noun part><noun part> ::= <adjective> <noun> | <noun><article> ::= a | the<noun> ::= cat | mouse | peach<adjective> ::= big | small<verb> ::= saw | ateA set of productions may be used to check whether or not a sequence of symbols is well formed, by starting withthe �rst rule and trying to match one of its right hand side options. To match a right hand side option, matcheach element in the sequence. To match a terminal symbol, look for that symbol. To match a non-terminalsymbol, try to match one of its options. If a match fails then back up a stage and try again.Consider checking:the cat ate the small peachstarting with sentence:To �nd a <sentence> �nd a <noun phrase> followed by a <verb> followed by a <noun phrase>.To �nd a <noun phrase> �nd an <article> followed by a <noun part>.To �nd an <article> �nd an a, which fails.To �nd an <article> �nd a the which succeeds.To �nd a <noun part>, �nd an <adjective>followed by a <noun>.To �nd an <adjective> �nd a big, which fails.To �nd an <adjective> �nd a small, which fails.To �nd a <noun part>, �nd a <noun>.To �nd a <noun> �nd a cat, which succeeds.To �nd a <verb>, �nd a saw, which fails.To �nd a <verb>, �nd an ate, which succeeds.To �nd a <noun phrase> �nd an <article> followed by a <noun part>.To �nd an <article> �nd an a, which fails.To �nd an <article> �nd a the which succeeds.To �nd a <noun part>, �nd an <adjective>followed by a <noun>.To �nd an <adjective> �nd a big, which fails.To �nd an <adjective> �nd a small, which succeeds.To �nd a <noun> �nd a cat, which fails.To �nd a <noun> �nd a mouse, which fails.To �nd a <noun> �nd a peach, which succeeds.We can write SML functions to parse sentences directly from the rules. For each rule, a function processes asequence of symbols and returns a tuple consisting of a boolean to indicate whether or not the function hassucceeded and the rest of the symbols.We assume that we have a datatype:datatype symbol = art of string | adj of string |n of string | v of string | sfailto represent symbols and a lexical analyser which generates a symbol list from a string. Note the constructorsfail which is used later to indicate a failure to �nd a symbol. We do not want to use an exception becausethat would halt the parsing. Instead, we need to note that an option has failed and try another one.First of all, to �nd an <article>: 273

- (* recognise <article> and return rest of symbols *)fun article (art a::t) = (true,t) |article s = (false,s)> val articel = fn: symbol list -> bool * symbol listlook for an art symbol. If one is not found then return false and the whole symbol sequence. Otherwise,return true and the rest of the symbols following the art.For example:- article [art "the",n "cat",v "ate"];> (true,["n "cat",v "ate"]) : bool * symbol listSimilarly, to �nd an <adjective>:(* recognise <adjective> and return rest of symbols *)and adjective (adj a::t) = (true,t) |adjective s = (false,s)> val adjective = fn : symbol list -> bool * symbol listlook for an adj symbol. If one is not found then return false and the whole symbol sequence. Otherwise,return true and the rest of the symbols following the adj.For example:- adjective [n "cat",v "ate"];> (false,[n "cat",v "ate"]) : bool * symbol listOnce again, to �nd a <noun>:(* recognise <noun> and return rest of symbols *)and noun (n nn::t) = (true,t) |noun s = (false,s)> val noun = fn: symbol list -> bool * symbol listlook for an n symbol. If one is not found then return false and the whole symbol sequence. Otherwise, returntrue and the rest of the symbols following the n.Finally, to �nd a <verb>:(* recognise <verb> and return rest of symbols *)and verb (v vv::t) = (true,t) |verb s = (false,s)> val verb = fn: symbol list -> bool * symbol listlook for a v symbol. If one is not found then return false and the whole symbol sequence. Otherwise, returntrue and the rest of the symbols following the v.Next, to �nd a <noun part>:(* recognise <noun part> and return rest of symbols *)and nounpart [] = (false,[]) |nounpart s =let val (a,r1) = adjective s 274

inif not athenlet val (nn,r2) = noun sinif not nnthen (false,s)else (true,r2)endelselet val (nn,r2) = noun r1inif not nnthen (false,s)else (true,r2)endend> val nounpart = fn: symbol list -> bool * symbol listlook for an <adjective>. If one is not found then look for a <noun>. If one is not found then return false andthe whole symbol sequence. Otherwise, return true and the rest of the symbol sequence following the <noun>.If, however, an <adjective> is found then look for a <noun> following the <adjective>. If one is not foundthen return false and the whole symbol sequence. Otherwise, return true and the rest of the symbol sequencefollowing the <noun>.For example:- nounpart [adj "big",n "cat",v "sat"];> (true,[v "sat"]) : bool * symbol listbecause:nounpart [adj "big",n "cat",v "sat"] ==>let val (a,r1) = adjective sadjective [adj "big",n "cat",v "sat"] ==>(true,[n "cat",v "sat"])in ...let val (n,r2) = noun r1noun [n "cat",v "sat"] ==>(true,v "sat")in ... (true,r2) ==>(true,v "sat")For example:- nounpart [n "cat",v "sat"];> (true,[v "sat"]) : bool * symbol listbecause:nounpart [n "cat",v "sat"] ==> 275

let val (a,r1) = adjective sadjective [adj "big",n "cat",v "sat"] ==>(false,[n "cat",v "sat"])in ...let val (n,r2) = noun snoun [n "cat",v "sat"] ==>(true,v "sat")in ... (true,r2) ==>(true,v "sat")Thus, to �nd a <noun phrase>:(* recognise <noun phrase> and return rest of symbols *)and nounphrase [] = (false,[]) |nounphrase s =let val (a,r1) = article sinif not athen (false,s)elselet val (np,r2) = nounpart r1inif not npthen (false,r1)else (true,r2)endend> val nounphrase = fn: symbol list -> bool * symbol listlook for an <article>. If one is not found then return false and the whole symbol sequence. Otherwise, lookfor a <noun part>. If one is not found then return false and the whole symbol sequence. Otherwise, returntrue and the rest of the symbols following the <noun part>.For example:- nounphrase [art "the",n "cat",v "ate",art "the"];> (true,[art "the"]) : bool * symbol listbecause:nounphrase [art "the",n "cat",v "ate",art "the"] ==>let val (a,r1) = article sarticle [art "the",n "cat",v "ate",art "the"] ==>(true, [n "cat",v "ate",art "the"])in ...let val (np,r2) = nounpart r1nounpart [n "cat",v "ate",art "the"] ==>(true,[v "ate",art "the"]) 276

in ... (true,r2) ==>(true,[v "ate",art "the"])Finally, to �nd a <sentence>:(* recognise <sentence> and return rest of symbols *)and sentence [] = (false,[]) |sentence s =let val (np1,r1) = nounphrase sinif not np1then (false,s)elselet val (vv,r2) = verb r1inif not vvthen (false,r1)elselet val (np2,r3) = nounphrase r2inif not np2then (false,r2)else (true,r3)endendend;> val sentence = fn: symbol list -> bool * symbol listlook for a <noun phrase>. If one is not found then return false and the whole symbol sequence. Otherwiselook for a <verb> following the <noun phrase>. If one is not found then return false and the whole symbolsequence. Otherwise, look for a <noun phrase> following the <verb>. If one is not found then return false andthe whole symbol sequence. Otherwise, return true and the rest of the symbols following the <noun phrase>.For example, to check:the cat ate the small peachwe assume that:lex "the cat ate the small peach" ==>[art "the",n "cat",v "ate",art "the",adj "small",n "peach"]so: - sentence [art "the",n "cat",v "ate",art "the",adj "small",n "peach"];> (true,[]) : bool * symbol listbecause:sentence [art "the",n "cat",v "ate",art "the",adj "small",n "peach"] ==>277

nounphrase [art "the",n "cat",v "ate",art "the",adj "small",n "peach"] ==>article [art "the",n "cat",v "ate",art "the",adj "small",n "peach"] ==>(true,[n "cat",v "ate",art "the",adj "small",n "peach"])nounpart [n "cat",v "ate", art "the",adj "small",n "peach"] ==>adjective [n "cat",v "ate",art "the",adj "small",n "peach"] ==>(false,[n "cat",v "ate",art "the",adj "small",n "peach"])noun [n "cat",v "ate",art "the",adj "small",n "peach"] ==>(true,[v "ate",art "the",adj "small",n "peach"])(true,[v "ate",art "the",adj "small",n "peach"])verb [v "ate",art "the",adj "small",n "peach"] ==>(true,[art "the",adj "small",n "peach"])nounphrase [art "the",adj "small",n "peach"] ==>article [art "the",adj "small",n "peach"] ==>(true,[adj "small",n "peach"])nounpart [adj "small",n "peach"] ==>adjective [adj "small",n "peach"] ==>(true,[n "peach"])noun [n "peach"] ==>(true,[])(true,[])(true,[])(true,[])10.9 Parse treesA successful recognition sequence or parse may be represented as a parse tree, where each node is marked witha non-terminal symbol and each leaf is a terminal symbol. For the above example, we could represent the parsesequence as: 278

<sentence><noun phrase> <noun phrase><verb><article> <noun part><noun> <article> <noun part><adjective>the cat ate the <noun>peachsmallParse trees are a useful intermediate representation for subsequent processing of structured information de�nedby syntax rules. In SML, we can use datatypes to represent parse trees. We will start with an option for eachproduction. For example:datatype tree = sentnode of tree * tree * tree |nounphrnode of tree * tree |nounprt1node of tree * tree |nounprt2node of tree |artnode of symbol |vnode of symbol |nnode of symbol |adjnode of symbol |failHere, the node for a <sentence> has three branches for the two <nounphrase>s and the <verb>.The node for a <nounphrase> has two branches for the <article> and the <nounpart>.There are two cases for <nounpart>: the �rst for an <adjective> followed by a <noun> and the second for asingle <noun>.Finally, there are single branch nodes for each of <article>, <verb>, <noun> and <adjective>, each with asymbol as the leaf.Note the inclusion of the constructor fail. As before, this will be used to indicate failure during parsing.Thus, the <verb> ate would be:vnode (v "ate").The <noun part> big cat would be:nounprt1node (adjnode (adj "big"),nnode (n "cat")).The <noun part> mouse would be:nounprt2node (nnode (n "mouse")).The <noun phrase> the big cat would be:nounphrnode (artnode (art "the"),nounprt1node (adjnode (adj "big"),nnode (n "cat"))).279

The above tree would be:sentnode (nounphrnode (artnode (art "the"),nounprt2node (nnode (n "cat"))),vnode (v "ate"),nounphrnode (artnode (art "the"),nounprt1node (adjnode (adj "small"),nnode (n "peach"))))Note that there is excess information in this tree. For each terminal symbol we already have a lexical constructorso we do not need a syntactic constructor as well to identify it. Thus, we could simplify the datatype to:datatype tree = sentnode of tree * symbol * tree |nounphrnode of symbol * tree |nounprt1node of symbol * symbol |nounprt2node of symbol |failby dropping the constructors for rules which only recognise terminal symbols. Now the above tree simpli�es to:sentnode (nounphrnode (art "the",nounprt2node (n "cat")),v "ate",nounphrnode (art "the",nounprt1node (adj "small",n "mouse")))We can now modify the above parser to build the tree during the parse.For an <article>:- (* recognise <article>,return symbol leaf and rest of symbols *)fun article (art a::t) = (art a,t) |article s = (sfail,s)> val article = fn: symbol list -> symbol * symbol listreturn the art and the rest of the symbols or sfail and all the symbols.For example:- article [art "the",n "cat",v "ate"];> (art "the",[n "cat",v "ate"]) : symbol * symbol listSimilarly, for an <adjective>:(* recognise <adjective>,return return symbol leaf and rest of symbols *)and adjective ((adj a)::t) = (adj a,t) |adjective s = (sfail,s)> val adjective = fn: symbol list -> symbol * symbol listFor example: 280

- adjective [n "cat",v "ate"];> (sfail,[n "cat",v "ate"]) : symbol * symbol listreturn the adj and the rest of the symbols or sfail and all the symbols.For a <noun>:(* recognise <noun>,return symbol leaf and rest of symbols *)and noun ((n nn)::t) = (n nn,t) |noun s = (sfail,s)> val noun = fn: symbol list -> symbol * symbol listreturn the n and the rest of the symbols or sfail and all the symbols.For a <verb>:(* recognise <verb>,return symbol leaf and rest of symbols *)and verb ((v vv)::t) = (v vv,t) |verb s = (sfail,s)> val verb = fn: symbol list -> symbol * symbol listreturn the v and the rest of the symbols or sfail and all the symbols.Next, for a <noun part>:(* recognise <noun part>,return tree node and rest of symbols *)and nounpart [] = (fail,[]) |nounpart s =let val (a,r1) = adjective sinif a=sfailthenlet val (nn,r2) = noun sinif nn=sfailthen (fail,s)else (nounprt2node nn,r2)endelselet val (nn,r2) = noun r1inif nn=sfailthen (fail,s)else (nounprt1node(a,nn),r2)endend> val nounpart = fn: symbol list -> tree * symbol listif there is not an <adjective> then return a nounprt2node and the rest of the symbols after �nding a <noun>.If there is an <adjective> then return a nounprt1node and the rest of the symbols after �nding a <noun> afterthe <adjective>. Otherwise return fail and all the symbols.For example: 281

- nounpart [n "cat",v "ate"];> (nounpart2node (n "cat"),[v "ate]) : tree * symbol list- nounpart [adj "big",n "mouse",v "ate"];> (nounpart1node (adj "big",n "mouse"),[v "ate"]) : tree * symbol listFor a <noun phrase>:(* recognise <noun phrase>,return tree node and rest of symbols *)and nounphrase [] = (fail,[]) |nounphrase s =let val (a,r1) = article sinif a=sfailthen (fail,s)elselet val (np,r2) = nounpart r1inif np=failthen (fail,s)else (nounphrnode(a,np),r2)endend> val nounphrase = fn: symbol list -> tree * symbol listreturn a nounphrnode and the rest of the symbols after �nding a <article> and a <noun part>. Return failand all the symbols if any element fails.For example:- nounphrase [art "a",adj "small",n "cat",v "ate"];> (nounphrnode (art "the",nounpart1node (adj "small",n "cat")),[v "ate"]) :tree * symbol listFinally, for a <sentence>:(* recognise <sentence>,return tree node and rest of symbols *)and sentence [] = (fail,[]) |sentence s =let val (np1,r1) = nounphrase sinif np1=failthen (fail,s)elselet val (vv,r2) = verb r1inif vv=sfailthen (fail,s)elselet val (np2,r3) = nounphrase r2inif np2=failthen (fail,s)else (sentnode(np1,vv,np2),r3)282

endendend;> val sentence = fn: symbol list -> tree * symbol listreturn a sentnode and the rest of the symbols after �nding a <noun phrase>, <verb> and <noun phrase>.Return fail and all the symbols if any of the elements fail.Assuming that we have an appropriate lexical analyser, we can now parse sentences. For example:- sentence (lex "the cat ate the small peach");> (sentnode(nounphrnode(art "the",nounprt2node (n "cat")),v "ate",nounphrnode(art "the",nounprt1node(adj "small",n "peach"))),[]) : tree * symbol listbecause:sentence (lex "the cat ate the small peach") ==>sentence [art "the",n "cat",v "ate",art "the",adj "small",n "peach"] ==>nounphrase [art "the",n "cat",v "ate",art "the",adj "small",n "peach"] ==>article [art "the",n "cat",v "ate",art "the",adj "small",n "peach"] ==>(art "the",[n "cat",v "ate",art "the",adj "small",n "peach"])nounpart [n "cat",v "ate",art "the",adj "small",n "peach"] ==>adjective [n "cat",v "ate",art "the",adj "small",n "peach"] ==>(sfail,[n "cat",v "ate",art "the",adj "small",n "peach"])noun [n "cat",v "ate",art "the",adj "small",n "peach"] ==>(n "cat",[v "ate",art "the",adj "small",n "peach"])(nounprt2node (n "cat"),[v "ate",art "the",adj "small",n "peach"])(nounphrnode(art "the", nounprt2node (n "cat")),[v "ate",art "the",adj "small",n "peach"])verb [v "ate",art "the",adj "small",n "peach"] ==>(v "ate",[art "the",adj "small",n "peach"])nounphrase [art "the",adj "small",n "peach"] ==>article [art "the",adj "small",n "peach"] ==>(art "the",[adj "small",n "peach"])nounpart [adj "small",n "peach"] ==>adjective [adj "small",n "peach"] ==>(adj "small",[n "peach"]) 283

noun [n "peach"] ==>(n "peach",[])(nounprt1node(adj "small",n "peach"),[])(nounphrnode(art "the",nounprt1node(adj "small",n "peach")),[])(sentnode(nounphrnode(art "the",nounprt2node (n "cat")),v "ate",nounphrnode(art "the",nounprt1node(adj "small",n "peach"))),[])10.10 Concrete and abstract syntaxIt is useful to distinguish between concrete syntax, the structure of representation, and abstract syntax, themeaningful structure. Concrete syntax often contains details which, while fundamental to checking that asymbol sequence is well formed, are not relevant to subsequent processing.Consider the following grammar of arithmetic expressions:<expression> ::= <term> + <term> |<term> - <term> |<term><term> ::= <factor> * <factor> |<factor> / <factor> |<factor><factor> ::= - <base> | <base><base> ::= <integer> | (<expression>)Consider the parse tree for the expression:(6+7)*8
284

<expression><term> <factor><base><base> <integer><expression><term> <term><factor> <factor>()
<integer> <integer><base><base>

* 8
76

+<factor>
From the point of view of processing arithmetic expression parse trees this contains unnecessary structuralinformation. For example, there are chains of nested subtrees where each level has only one branch. Thus, wesee that an <integer> is a <base> is a factor is a <term> when all we need to know about is the <integer>.For example, the brackets appear explicitly but their presence is already indicated by the nesting of the expres-sion they enclose in the tree. If we miss such details out then we are left with the minimal structural detailsnecessary for further processing.For example, the above tree might be simpli�ed to:<expression><expression> 8+<integer>6 7<integer> <integer>*An abstract syntax for arithmetic expressions is:<expression> ::= <expression>+<expression> |<expression>-<expression> |<expression>*<expression> |<expression>/<expression> |285

-<expression> |<integer>Note that this abstract syntax cannot be used to parse arithmetic expressions because information aboutoperator precedence and brackets is lost. Rather, it de�nes the structure of resultant parse trees. An equivalentdatatype for this abstract syntax is:datatype exp = addexp of exp * exp |diffexp of exp * exp |multexp of exp * exp |divexp of exp * exp |negexp of exp |integer of int |failNote that operators are not present explicitly but are implied by the corresponding constructors.For example:42 == integer 426*7 == multexp (integer 6,integer 7)6*7+8 == addexp (multexp (integer 6,integer 7),integer 8)(6+7)*8 == multexp (addexp (integer 6,integer 7),integer 8)10.11 Parsing arithmetic expressionsSuppose we wish to construct abstract syntax trees for arithmetic expressions, given the datatype:datatype symbol = lbra | rbra | add | diff | mult | divide | numb of intfor symbols.We will use the exception:- exception Pfail;> exception Pfailto terminate parsing when the �rst error occurs.To �nd an <expression>:- (* recognise <expression>,return exp node and rest of symbols *)fun exp [] = raise Pfail |exp e =let val (t1,r1) = term einif r1=[] orelse (hd r1<>add andalso hd r1<>diff)then (t1,r1)elselet val (t2,r2) = term (tl r1)inif hd r1=add 286

then (addexp(t1,t2),r2)else (diffexp(t1,t2),r2)endend> val exp = fn: symbol list -> exp * symbol list�nd a <term>. If it is not followed by an add or a diff then return the datatype for the <term> and the restof the symbols. Otherwise, �nd a <term> after the add or diff and return an addexp or diffexp and the restof the symbols.To �nd a <term>:(* recognise <term>,return exp node and rest of symbols *)and term [] = raise Pfail |term t =let val (f1,r1) = factor tinif r1=[] orelse (hd r1<>mult andalso hd r1<>divide)then (f1,r1)elselet val (f2,r2) = factor (tl r1)inif hd r1=multthen (multexp(f1,f2),r2)else (divexp(f1,f2),r2)endend> val term = fn: symbol list -> exp * symbol list�nd a <factor>. If it is not followed by a mult or a divide then return the datatype for the <factor> andthe rest of the symbols. Otherwise, �nd a <factor> after the mult or divide and return a multexp or divexpand the rest of the symbols.To �nd a <factor>:(* recognise <factor>,return exp node and rest of symbols *)and factor [] = raise Pfail |factor (diff::t) =let val (b1,r1) = base tin (negexp b1,r1)end |factor f = base f> val factor = fn: symbol list -> exp * symbol listif there is a diff then �nd a <base> after it and return a negexp and the rest of the symbols. Otherwise lookfor a <base>.To �nd a <base>:(* recognise <base>,return exp node and rest of symbols *)and base (numb ii::t) = (integer ii,t) |base (lbra::t) =let val (e1,r1) = exp tin 287

if r1=[] orelse hd r1<>rbrathen raise Pfailelse (e1,tl r1)end |base _ = raise Pfail;> val base = fn: symbol list -> exp * symbol listeither �nd a numb symbol and return an integer and the rest of the symbols or �nd an <expression> betweenlbra and rbra and return its datatype and the rest of the symbols.For example, again assuming a suitable lexical anlyser:- exp (arithlex "(2+3)*4");> (multexp (addexp(integer 2,integer 3),integer 4),[]) :exp * symbol listbecause:exp [lbra,numb 2,add,numb 3,rbra,mult,numb 4] ==>term [lbra,numb 2,add,numb 3,rbra,mult,numb 4] ==>factor [lbra,numb 2,add,numb 3,rbra,mult,numb 4] ==>base [lbra,numb 2,add,numb 3,rbra,mult,numb 4] ==>exp [numb 2,add,numb 3,rbra,mult,numb 4] ==>term [numb 2,add,numb 3,rbra,mult,numb 4] ==>factor [numb 2,add,numb 3,rbra,mult,numb 4] ==>base [numb 2,add,numb 3,rbra,mult,numb 4] ==>(integer 2,[add,numb 3,rbra,mult,numb 4])(integer 2,[add,numb 3,rbra,mult,numb 4])(integer 2,[add,numb 3,rbra,mult,numb 4])term [numb 3,rbra,mult,numb 4] ==>factor [numb 3,rbra,mult,numb 4] ==>base [numb 3,rbra,mult,numb 4] ==>(integer 3,[rbra,mult,numb 4])(integer 3,[rbra,mult,numb 4])(integer 3,[rbra,mult,numb 4])(integer 3,[mult,numb 4])(addexp(integer 2,integer 3),[rbra,mult,numb 4])(addexp(integer 2,integer 3),[mult,numb 4])term [numb 4] ==> 288

factor [numb 4] ==>base [numb 4] ==>(integer 4,[])(integer 4,[])(integer 4,[])(multexp (addexp(integer 2,integer 3),integer 4),[])(multexp (addexp(integer 2,integer 3),integer 4),[])10.12 Case expressionIn exp, term and base above we used rather clumsy nested conditional expressions to decide what to do aftertrying to �nd something at the start of a symbol sequence. For example, in exp, after trying to �nd a <term>we have:...if r1=[] orelse (hd r1<>add andalso hd r1<>diff)then ...else ...to see if there is an appropriate operator after the term. Later on we have:if hd r1=addthen ...else ...to discriminate between �nding an addition or a subtraction operator.SML provides the case expression as a way using pattern matching to discriminate between cases within ex-pressions. It has the form:case expression of matchwhere the match is a sequence of optional patterns and associated expressions:pattern1 => expression1 |pattern2 => expression2 |...as in a function value.Here, the expression is evaluated and matched against each pattern in the match in turn. When a matchsucceeds the expression associated with the pattern is evaluated, with the pattern's bound variables set to thecorresponding values from the expression's value.We can use a case expression to simplify exp by factoring out the cases for an addition operator, a subtractionoperator or nothing appropriate after a <term>: 289

fun exp [] = raise Pfail |exp e =let val (t1,r1) = term eincase r1 of(add::r2) => let val (t2,r3) = term r2in (addexp(t1,t2),r3)end |(diff::r2) => let val (t2,r3) = term r2in (diffexp(t1,t2),r3)end |_ => (t1,r1)endWe can also rebuild term:and term [] = raise Pfail |term t =let val (f1,r1) = factor tincase r1 of(mult::r2) => let val (f2,r3) = factor r2in (multexp(f1,f2),r3)end |(divide::r2) => let val (f2,r3) = factor r2in (divexp(f1,f2),r3)end |_ => (f1,r1)endand base:and base (numb ii::t) = (integer ii,t) |base (lbra::t) =let val (e1,r1) = exp tincase r1 of(rbra::r2) => (e1,r2) |_ => raise Pfailend |base _ = raise Pfail;> val base = fn: symbol list -> exp * symbol listbut not factor.10.13 Multiple exceptionsWe used a single exception to indicate failure during parsing. There are several ways in which parsing can failand we can de�ne di�erent exceptions to discriminate amongst them. In expr, term, factor and base we canencounter an empty list when we are expecting an expression, term, factor or base respectively. In all cases, theproblem is that there is no more text to be parsed. In base we can fail to �nd a closing right bracket or we canfail to �nd any of the symbols that start a base, that is a left bracket or a number. Thus, we can de�ne threeexceptions:- exception No_text; (* text expected *)290

> exception No_text- exception Rbra; (* right bracket expected *)> exception Rbra- exception Numb_or_lbra; (* number or left bracket expected *)> exception Numb_or_lbraand call them at the appropriate points:fun exp [] = raise No_text | ...and term [] = raise No_text | ...and factor [] = raise No_text | ...and base [] = raise No_text |base (numb ii::t) = (integer ii,t) |base (lbra::t) =let val (e1,r1) = exp tincase r1 of(rbra::r2) => (e1,r2) |_ => raise Rbraend |base _ = raise Numb_or_lbra;Now, the raised exception gives slightly more indication as to what has gone wrong:- exp (arithlex "2*");uncaught exception No_text- exp (arithlex "2*(3+4");uncaught exception Rbra- exp (arithlex "2*+4");uncaught exception Numb_or_lbra10.14 Interpreting arithmetic expressionsWe can now write an interpreter to evaluate parse trees for arithmetic expressions. It consists of a functionwith a case for each sort of exp which calls itself recursively for the sub exps and then applies the correspondingarithmetic operator:- (* interpret arithmetic tree *)fun arith (integer i) = i |arith (addexp(e1,e2)) = arith e1+arith e2 |arith (diffexp(e1,e2)) = arith e1-arith e2 |arith (multexp(e1,e2)) = arith e1*arith e2 |arith (divexp(e1,e2)) = arith e1 div arith e2 |arith (negexp e) = ~(arith e);> val arith = fn: exp -> intFor example:- arith (multexp (addexp (integer 6,integer 7),integer 8));> 104 : int 291

because:arith (addexp(integer 6,integer 7))*arith (integer 8) ==>(arith (integer 6)+arith (integer 7))*arith (integer 8) ==>(6+7)*8 ==>104We can sew together the lexical analyser arithlex from chapter 9 with the parser exp and the arithmeticinterpreter arith to form a complete calculator:- (* interpret arithmetic expression string *)fun calc s =let val (tree,rest) = exp (arithlex s)inif rest<>[]then raise Pfailelse arith treeend;> val calc = fn : string -> intWe call exp to parse the sequence of symbols from arithlex. If there is anything left of the symbols afterparsing then rest will not be empty and the parsing exception is raised. Otherwise arith is called to evaluatethe tree. For example:- calc "(3+4)*6";> 42 : int- calc "(3+4) 6";uncaught exception Pfail10.15 Arithmetic pretty printerWe can also write a pretty printer function which converts an exp into an equivalent string:- (* convert arithmetic tree to string *)fun atos (integer i) = iconv i |atos (addexp(e1,e2)) = "("^atos e1^"+"^ atos e2^")" |atos (diffexp(e1,e2)) = "("^atos e1^"-"^atos e2^")" |atos (multexp(e1,e2)) = "("^atos e1^"*"^atos e2^")" |atos (divexp(e1,e2)) = "("^atos e1^"/"^atos e2^")" |atos (negexp e) = "("^"-"^atos e^")";> val atos = fn: exp -> stringNote the use of the function iconv, which converts an integer into a string, and which you wrote for chapter8 exercise 7.Note that iconv cannot convert negative integers.For example:- atos (integer 42);> "42" : string 292

Note that all expressions are strictly bracketed, that is brackets are placed round all sub-expressions. Forexample:- atos (addexp (integer 6,integer 7));> "(6+7)" : stringbecause:atos (addexp (integer 6,integer 7)) ==>"("^atos (integer 6)^"+"^atos (integer 7)^")" ==>"("^"6"^"+"^"7"^")" ==>"(6+7)"For example:- atos (multexp (addexp (integer 6,integer 7),integer 8));> "((6*7)+8)" : stringbecause:atos (multexp (addexp (integer 6,integer 7),integer 8)) ==>"("^atos (addexp (integer 6,integer 7))^"*"^atos (integer 8)^")" ==>"("^"("^atos (integer 6)^"+"^atos (integer 7)^")"^"*"^atos (integer 8)^")" ==>"("^"("^"6"^"+"^"7"^")"^"*"^"8"^")" ==>"((6+7)*8)"It is possible to pretty print arithmetic expressions without unnecessary brackets by constructing additionalcases to consider the precedence of operators in subtrees relative to the operator in the current tree.10.16 SummaryIn this chapter we have looked at the use of datatypes in de�ning our own recursive structures. We sawhow to construct type speci�c and polymorphic lists and binary trees. We then looked at parsing as a way ofrecognising structured symbol sequences and constructing parse trees. Finally, we considered parse tree traversaland interpretation. Along the way we met the case expression for pattern matching within expressions.In the next chapter, we are going to discuss techniques for input and output. This will enable our programs tointeract with the screen and keyboard, and with �les.10.17 ExercisesFor the �rst three exercises, assume the datatype de�nition:293

datatype 'a tree = empty | node of 'a * 'a tree * 'a treeIt is worth giving some thought to the generation of suitable test trees from lists for these three exercises.1) write the following functions. In each case, identify the function's type.a) check if a tree appears as a subtree of another treeb) generate a list from a tree with reverse in-order traversal i.e visit the right branch, the node andthe left branchc) generate a list from a tree with pre-order traversal i.e visit the node, the left branch and the rightbranchd) generate a list from a tree with post-order traversal i.e visit the left branch, the right branch andthe node2) Write the following functions. Identify each function's type:a) copy a string tree, putting "s" on the end of each node valueb) copy an integer tree, doubling each node valuec) copy a tree, applying function f to each node valued) de�ne the functions from a) and b) using the function from c)e) copy an real tree, squaring each node value provided it is not within 0.001 of 0f) copy a string tree, ending each node value with an "s", provided it does not already end with an"s"g) copy a tree, applying function f to each node if it satis�es predicate ph) de�ne the functions from a), b), e) and f) using the function from g)3) Write the following functions. Identify the type of each function:a) join together all the node values of a string tree in in-orderb) add together all the node values of an integer treec)
atten a tree by applying function f to the node value and the result of
attening the left andright branches. For an empty branch, return value vd) de�ne the functions from a) and b) using the function from c)e) de�ne the functions from 1)b), 1)c) and 1)d) using the function from c)4) Logical expressions have the form:<expression> ::= <term> AND <expression> | <term><term> ::= <factor> OR <term> | <factor><factor> ::= NOT <base> | <base><base> ::= TRUE | FALSE | (<expression>)For example:TRUETRUE OR FALSENOT TRUE AND FALSENOT (TRUE AND FALSE)NOT (TRUE AND FALSE) OR TRUENOT (TRUE AND FALSE) OR TRUE AND FALSENOT (TRUE AND FALSE) OR (TRUE AND FALSE)NOT (TRUE AND FALSE) OR (TRUE AND FALSE) OR FALSE294

a) using the lexical analyser from chapter 9 exercise 5, write a function to check if a string has thisformb) modify the functions from a) to build an <expression> parse tree from a string using the followingdatatype:datatype logic = TRUE | - for TRUEFALSE - for FALSEAND of logic * logic | - for <term> AND <expression>OR of logic * logic | - for <factor> OR <term>NOT logic - for NOT <base>Note that brackets are discarded.c) write a function to pretty print a parse tree from b)d) write a function to evaluate logical expression parse trees using the following rules:evaluate NOT TRUE == FALSEevaluate NOT FALSE == TRUEevaluate FALSE AND FALSE == FALSEevaluate FALSE AND TRUE == FALSEevaluate TRUE AND FALSE == FALSEevaluate TRUE AND TRUE == TRUEevaluate FALSE OR FALSE == FALSEevaluate FALSE OR TRUE == TRUEevaluate TRUE OR FALSE == TRUEevaluate TRUE OR TRUE == TRUEevaluate NOT <base> == evaluate NOT (evaluate <base>)evaluate <base> OR <term> ==evaluate (evaluate <base>) OR (evaluate <term>)evaluate <term> AND <expression> ==evaluate (evaluate <term>) AND (evaluate <expression>)5) Polynomials have the form:<polynomial> ::= <term>+<polynomial> | <term><term> ::= <integer>*<power> | <power> | <integer><power> ::= <name>^<integer> | <name><integer> == any sequence of digits<name> == any sequence of lower case lettersFor example:3*x^3+4*x^2+6*x+8a) de�ne a datatype to represent <polynomial> parse treesb) using the lexical analyser from chapter 9 exercise 6, write a function to parse a <polynomial>string and return a <polynomial> parse treec) write a function to check that all <name>s in a <polynomial> parse tree are the samed) write a function to evaluate a <polynomial> parse tree satisfying c) with a given integer valueof the <name>, according to the following rules: 295

evaluate <name> == value for <name>evaluate <name>^<integer> ==value for <name> to the power of <integer>evaluate <integer>*<power> == <integer>*(evaluate <power>)evaluate <term>+<polynomial> ==(evaluate <term>)+(evaluate <polynomial>)e) write a pretty printer to generate <polynomial> strings from <polynomial> parse treesf) write a function to di�erentiate a polynomial according to the following rules:differentiate <integer> == 0differentiate <name> == 1differentiate <name>^<integer> ==<integer>*<name>^(<integer>-1)differentiate <integer>*<power> ==<integer>*(diferentiate <power>)differentiate <term>+<polynomial> ==(differentiate <term>)+(differentiate <polynomial>)It should be applied to a <polynomial> parse tree and return a <polynomial> parse tree.6) A simple programming language has the form:<expression> ::= <name> | <integer> | <call><call> ::= (fn <name> => <expression> <expression>) |((<operator> <expression>) <expression>)<operator> ::= + | - | * | /<integer> == any sequence of digits<name> == any sequence of lower case lettersFor example:((+ 2) 3)(fn x => ((+ x) 1) 3)(fn y => ((* y) y) (fn x => ((+ x) 1) 4))(fn x => (fn y => ((* x) y) 3) 5)Note that function calls are strictly bracketed.Note that arithmetic operations are pre�x and strictly bracketed as if arithmetic operators were functions oftype: <integer> -> <integer> -> <integer>a) design a datatype to represent <expression> parse treesb) using the lexical analyser from chapter 9 exercise 7, write functions to parse <expression> stringsand return <expression> parse treesc) write a pretty printer to generate <expression> strings from <expression> parse treesd) write a function that checks that no <name>s in expressions are free i.e. that every <name> in an<expression> is introduced by an enclosing <function>. For example, in:296

(fn x => ((+ x) y) 3)and: (fn y => ((* y) y) (fn x => ((+ x) y) 11))the y in the body of fn x => ... is free as it is not introduced anywhere.e) write a function which given an <expression> parse tree checks that every <function> introducesa unique <name> so, for example:(fn x => ((+ x) 1) (fn x => ((- x) 1) 2))is not allowed as both functions introduce xf) write a function that evaluates <expression> parse trees satisfying d) and e) according to thefollowing rules:evaluate ((+ <expression1>) <expression2>) ==(evaluate <expression1>)+(evaluate <expression2>)evaluate ((- <expression1>) <expression2>) ==(evaluate <expression1>)-(evaluate <expression2>)evaluate ((* <expression1>) <expression2>) ==(evaluate <expression1>)*(evaluate <expression2>)evaluate ((/ <expression1>) <expression2>) ==(evaluate <expression1>)/(evaluate <expression2>)evaluate (fn <name> => <expression1> <expression2>) ==evaluate replace <name> in <expression1>with (evaluate <expression2>)The result should be an integer.g) change the function from f) so that the �nal evaluate rule is:evaluate (fn <name> => <expression1> <expression2>) ==evaluate replace <name> in <expression1> with <expression2>

297

Chapter 11Input and output11.1 IntroductionSo far we have worked exclusively within SML; that is, our input data have been SML values as have our outputresults. We are now going to look at how to acquire input data from beyond the SML system from a keyboardor a �le. Similarly, we will also look at how to present results on screens or in �les without being restricted toSML's value forms.At simplest SML input and output (I/O) is based on sequences of characters. System functions are providedfor acquiring character sequences as strings from input sources and sending them to output destinations. Wewill use these as the basis of more elaborate I/O.There are two complementary approaches to I/O. First of all, for output, a whole string may be assembled,and displayed or sent to a �le all at once. Similarly, for input a whole string may be read at once andthen the lexical and string processing techniques discussed in previous chapters may be used to extract therepresented information. An alternative approach is to output and input values item by item rather thanpacking or unpacking them all together. Here, nested let expressions are very useful for sequencing I/O. Thesetwo approaches may be combined for interactive I/O where a program prompts a user for information and thendisplays results before prompting for more information.SML I/O is based on what are called streams as the sources and destinations of data. A stream may either beused for input, in which case its type is:instream,or for output, in which case its type is:outstream,but not both at the same time.In general, a stream is established by opening a �le. The system will allocate a new stream. Stream valuescannot be displayed but there is never any need to do so. Instead, the stream value is associated with a nameand that name is used to pass the stream to the I/O functions.The built in stream std_in may be used for input from the keyboard. Similarly, the built in stream std_outmay be used for output to the display.Note that instream and outstream are not equality types; that is, it is not possible to identify a stream bycomparing it with another stream. 298

11.2 Unit typeThe unit type has one value:()For example:- ();> () : unitThe unit type is used to give a neutral result after an activity or to pass a neutral argument to a function.() may be used in pattern matching as a dummy argument. For example:- fun hello() = "hello";> val hello = fn : unit -> string- hello();> "hello" : string() might be thought of as an empty tuple. Many I/O functions return () as result.11.3 Screen outputFor basic output, the system function output is used:- output;> fn : outstream * string -> unitThis takes a tuple argument consisting of an output stream and a string. That string is then displayed on thedesignated output stream without quotes. output returns the unit value ().For example, to display "banana" on the screen:- output (std_out,"banana");banana> () : unitNote that the string "banana" has been displayed on the same line as the SML result. A newline character:\nmay be used to make the result of any subsequent output use or system output appear on a new line. Forexample:- output (std_out,"banana\n");banana> () : unitWe can disguise the use of output with std_out to make a string to screen function:299

- (* string write to standard output *)fun swrite s = output (std_out,s);> val swrite = fn : string -> unitfor example:- swrite "fritters";fritters> (): unitFrom this we can write a function to follow the display of a string with a newline:- (* newline terminated string write to standard output *)fun swriteln s = swrite (s^"\n");> val swriteln = fn : string -> unitfor example:- swriteln "split";split> () : unit11.4 String list outputSuppose we have a list of strings and we want to display it on the screen. We could implode the list and thenprint it directly. For example:- swrite (implode ["water","for","wetness"]);waterforwetness> () : unitHowever, implode joins all the list elements together without intervening spaces.Instead, we could write a recursive function to join the strings together with spaces in between:- (* space separated implode *)fun spimplode [] = "" |spimplode [s] = s |spimplode (h::t) = h^" "^spimplode t;> val spimplode = fn : string list -> stringFor example:- spimplode ["water","for","wetness"];> "water for wetness" : stringso we can de�ne:- (* space separated string list write to standard output *)fun slwrite s = swrite (spimplode s);> val slwrite = fn : string list -> unitto write a space separated sequence from a list of strings. For example:300

- slwrite ["water","for","wetness"];water for wetness> () : unitTo generate a newline after the string sequence, a newline character may be added to the end of the joined upstrings:- (* newline terminated,space separated string list write to standard output *)fun slwriteln s = swriteln (spimplode s);> val slwriteln = fn : string list -> unitFor example:- slwriteln ["water","for","wetness"];water for wetness> () : unitA list of strings may be displayed on separate lines by adding a newline character to the end of each:- (* join newline to each in string list *)val addnl = map (fn s => s^"\n");> val addnl = fn : string list -> string listFor example:- addnl ["able","baker","charlie"];> ["able\n","baker\n","charlie\n"] : string listThe list can then be imploded for display:- (* separate line string list write to standard output *)fun slwritelns s = swrite (implode (addnl s));> val slwritelns = fn : string list -> unitFor example:- slwritelns ["able","baker","charlie"];ablebakercharlie> () : unit11.5 Integer list outputIn chapter 8 exercise 7 you wrote a function to convert an integer to a string:- (* convert integer to string *)fun iconv 0 = "0" |iconv n = iconv1 n> val iconv = fn : int -> string 301

(* convert integer to string ignoring single 0 *)and iconv1 0 = "" |iconv1 n = iconv1 (n div 10)^chr (n mod 10+ord "0");> val iconv1 = fn : int -> stringThis may be used to output an integer to the screen by converting it to a string:- (* integer write to standard output *)fun iwrite i = swrite (iconv i);> val iwrite = fn : int -> unitFor example:- iwrite 777;777> () : unitSimilarly, to display an integer as the last item on a line, its string is followed by a newline character:- (* newline terminated integer write to standard output *)fun iwriteln i = swriteln (iconv i);> iwriteln = fn : int -> unitfor example:- iwriteln 888;888> () : unitA list of integers could be displayed by mapping iconv over it to produce a list of strings and then callingslwrite to display a space separated sequence:- (* space separated integer list write to standard output *)fun ilwrite l = slwrite (map iconv l);> val ilwrite = fn : int list -> unitFor example:> ilwrite [1,3,5,7];1 3 5 7> () : unitAs for a string list, an integer list display may be followed by a newline by placing a newline character at theend of the space separated joined up strings for the integers:- (* newline terminated,space separated integer list write to standard output *)fun ilwriteln s = slwriteln (map iconv s);> val ilwriteln = fn : int list -> unitfor example:- ilwriteln [3,6,9,12];3 6 9 12> () : unit 302

11.6 Formatted outputIt is often desirable to print out items within constant width �elds, for example to lay out tables. For a stringwhich is shorter than the width, spaces might be added on the left. This is said to right justify the string withinthe width:- (* right justify string in given width field *)fun rjustify i s = if size s<ithen rjustify i (" "^s)else s;> val rjustify = fn : int -> string -> stringFor example:- rjustify 8 "banana" ;> " banana" : stringFor example, to display a list of integers right justi�ed within 6 character �elds on separate lines:- slwritelns (map ((rjustify 6) o iconv) [1,22,333,4444,55555,666666]);122333444455555666666> () : unitRecall that:(f o g) x == f (g x)so: map ((rjustify 6) o iconv)applies rjustify 6 to the result of applying iconv to each element of an integer list.Similarly, to left justify a string, spaces are added to the right:- (* left justify string in given width field *)fun ljustify i s = if size s<ithen ljustify i (s^" ")else s;> val ljustify = fn : string -> stringFormatted output is particularly useful for displaying tables from tuple lists. Each tuple may be assembled intothe equivalent table row as a string for display.For example, suppose we have a list of tuples of names and ages:- [("Agnes",35),("Bill","3),("Clare",21)];> [("Agnes",35),("Bill","3),("Clare",21)] : (string * int) list303

We want to produce a table with the name left justi�ed in a 10 width column and the age right justi�ed in a 3width column, with a space in between the name and age. First of all, for one tuple:- (* layout name/age entry *)fun layout (n,a) = ljustify 10 n^" "^rjustify 3 (iconv a)^"\n";> val layout = fn : string * int -> stringFor example:- layout ("Agnes",35);> "Agnes 35\n" : stringThen for a list of tuples layout may be maped over it:- map layout [("Agnes",35),("Bill",3),("Clare",21)];> ["Agnes 35\n","Bill 3\n","Clare 21\n"] : string listFinally, the list may be imploded for display:- (* tabulate name/age table *)fun tabulate t = swrite (implode (map layout t));> val tabulate= fn : string -> unitFor example:- tabulate [("Agnes",35),("Bill",3),("Clare",21)];Agnes 35Bill 3Clare 21> () : unitWe may precede the table with headings by displaying an appropriate string:- (* tabulate name/age table with heading *)fun table t = swrite ("Name Age\n"^ (implode (map layout t)));> val table = fn : string -> unitFor example:- table [("Agnes",35),("Bill",3),("Clare",21)];Name AgeAgnes 35Bill 3Clare 21> () : unitThe above example is a tri
e dense. We could be slightly more long winded by carrying out each stage of thedisplay explicitly:- fun table t =let val heading = swriteln "Name Age"in tabulate t 304

end> val table = fn : (string * int) list -> unitand tabulate [] = () |tabulate (h::t) =let val line = swrite (layout h)in tabulate tend;> val tabulate = fn : (string * int) list -> unitFirst table writes the heading. It then calls tabulate to repeatedly layout and display each tuple on aseparate line.Note the use of let expressions to sequence the display.11.7 Keyboard inputFor input, the system function input is used:- input;> fn : instream * int -> stringThis takes a tuple argument consisting of an input stream and the number of characters to be read from thatinput stream, and returns that number of characters as a single string.For example, to read a single letter from the keyboard:- input (std_in,1);#> "#" : stringOn most systems, the `Enter' or `Return' key must be pressed before input will start taking in characters. Bothwill insert a newline character into the stream which the system will input as "\n".For example, suppose we want to read a line terminated by a newline from the standard input, and return thatline as a list of single characters. The next character is read. If it is a newline character then the empty list isreturned. Otherwise that character is placed on the front of reading the rest of the line:- (* read newline terminate input from standard input *)fun sreadln() = let val ch = input (std_in,1)inif ch="\n"then []else ch::sreadln ()end;> val sreadln = fn: unit -> string listNote the use of the unit argument ().For example:- sreadln();time for tea> ["t","i","m","e"," ","f","o","r"," ","t","e","a"] : string list305

We can use this to read a single integer from the keyboard:- (* read newline terminated integer from standard input *)fun ireadln() = getval 0 (sreadln());> val ireadln = fn : unit -> intHere, sreadln is used to get a whole line which is assumed to be a single integer. getval is then used to convertthe corresponding string to an integer. For example:- ireadln()2331> 2331 : int11.8 Interactive I/OA simple way to interact with a program is for it to prompt for input to the screen, read input up to some endcharacter from the keyboard, process the input, display the output to the screen and prompt for input again.For example, suppose we have a sequence of pairs of integers and we want to �nd the �rst as a percentage ofthe second. We could:a) prompt for the �rst numberb) read the �rst numberc) prompt for the second numberd) read the second numbere) calculate the �rst as a percentage of the secondf) display the resultg) initiate the whole process again:- (* interactive percent calculator *)fun percents () =let val prompt1 = swrite "1st number: "inlet val n1 = ireadln()inlet val prompt2 = swrite "2nd number: "inlet val n2 = ireadln()inlet val result = iwriteln (n1*100 div n2)in percents ()endendendendend;> val percents = fn : unit -> 'aFor example:- percents();1st number: 45 306

2nd number: 90501st number: 702nd number: 80871st number: ...Note this function never stops! The SML system gives it the arbitrary type 'a as result.We could end the function by prompting for a character to decide whether or not to continue:- (* user terminatable interactive percent calculator *)fun percents () =let val prompt1 = swrite "1st number: "inlet val n1 = ireadln()inlet val prompt2 = swrite "2nd number: "inlet val n2 = ireadln()inlet val result = iwriteln (n1*100 div n2)inlet val q = swrite "more? enter y or n: "inlet val a = sreadln()inif a=["n"]then ()else percents ()endendendendendendend;> val percents = fn : unit -> unitNow, the function will continue unless an \n" on a line by itself is entered. For example:- percents();1st number: 242nd number: 4060more? enter y or n: y1st number: 242nd number: 3080more? enter y or n: n> () : unitWe can now make an interactive calculator by using the lexical analyser arithlex from chapter 9 with theparser exp and evaluator arith from chapter 10:- (* interactive arithmetic calculator *)fun intcalc () = 307

let val prompt = swrite "enter an expression: "inlet val e = sreadln()inlet val (tree,rest) = exp (arithlex1 e)inif rest<>[]then raise Pfailelselet val result = iwriteln (arith tree)in intcalc()endendendend;> val intcalc = fn : unit -> 'aWe prompt for input, read a line and parse the result of lexically analysing the input string. If the tree is afailure node or there are symbols left after parsing we halt. Otherwise we output the result of evaluating thetree. In either case we repeat the whole process again.For example:- intcalc();enter an expression: 3*4+517enter an expression: ...11.9 Handling exceptionsIn the above calculator, processing terminates if a parse error is encountered and an exception is raised. Itwould be more satisfactory if we could intercept the exception, provide an appropriate error message and inputanother expression.SML enables the construction of exception handlers which can catch a raised exception before it is detected bythe system. An exception handling expression has the form:expression handle matchwhere a match is a sequence of alternative patterns and associated expressions:pattern1 => expression1 |pattern2 => expression2 |...as in a function de�nition. At simplest, each pattern is the constructor for an exception.The match is known as the handler for the expression.When the expression is evaluated, the system remembers that it has an associated handler. Sub-expressionsmay also have handlers and they are remembered in sequence. If an exception is raised during evaluation thencontrol is returned to the most recent handler. The exception's constructor is matched in turn against each ofthe handler's patterns. If a match is found then the value of the corresponding expression is returned. If nomatch is found then control is returned to the next most recent handler and so on. If none of the rememberedhandlers has a pattern for the exception then ultimately the system will display an uncaught exception message.308

The type of each expressionI in the handler must be the same as the type of the original expression.To apply this to the calculator, �rst of all we will separate out the input/output from the actual interpretation:- fun interpret e = ...and intcalc () =let val prompt = swrite "enter an expression: "inlet val e = sreadln()inlet val result = writeln (interpret e)in intcalc()endendend;> val intcalc = fn : unit -> 'aAs before, the interpreter calls the parser followed by the calculator. In addition, there is a handler with a casefor each possible parsing error:- fun interpret e =let val (tree,rest) = exp (arithlex1 e)inif rest<>[]then "extra text at end of expression"else iconv (arith tree)endhandle No_text => "end of text encountered" |Rbra => ") expected" |Numb_or_lbra => "number or (expected"> val interpret = fn : string list -> stringNote that the handler returns strings. The interpreter must also return strings if no exceptions are raised,that is a string error message if the expression text is not empty after parsing or a string for the result of thecalculation.For example:- intcalc();enter an expression: 3*end of text encounteredenter an expression: 3*+5number or (expectedenter an expression: 3*(4+5) expectedenter an expression: 3*(4+5) 6extra text at end of expressionenter an expression: ...Exceptions may also be used to pass back values. They are then declared with associated types, like a datatype:exception name of typeSuch an exception is raised with a speci�c value. For example, we could declare a single parser error exceptionwhich returns a string: 309

- exception Error of string;> exception Error of stringand call it with di�erent strings to re
ect the di�erent errors:fun exp [] = raise Error "end of text encountered" | ...and term [] = raise Error "end of text encountered" | ...and factor [] = raise Error "end of text encountered" | ...and base [] = raise Error "end of text encountered" |base (numb ii::t) = (integer ii,t) |base (lbra::t) =let val (e1,r1) = exp tincase r1 of(rbra::r2) => (e1,r2) |_ => raise Error ") expected"end |base _ = raise Error "number or (expected";An exception handler pattern may now include appropriate constants, constructors and bound variables. Forexample:- fun interpret e =let val (tree,rest) = exp (arithlex1 e)inif rest<>[]then "extra text at end of expression"else iconv (arith tree)endhandle Error s => s;> val interpret = fn : string list -> stringHere, s matches the string value passed back with Error.The advantage of this approach is that the error message is identi�ed at the point where the error is detected.11.10 File outputFor output to a �le, the �le must be opened for output. The system function open_out:- open_out;> fn : string -> outstreamtakes a �le name string as argument, creates a new �le with that name, having thrown away any existing �lewith the same name, and returns an output stream which may then be used in output.After output the �le on the stream should be closed by the system function close_out:- close_out;> fn : outstream -> unit 310

which takes an output stream argument and returns ().Thus, to send a string to a �le:- (* write string to file *)fun fswrite f s =let val outs = open_out finlet val ss = output (outs,s)in close_out outsendend;> val fswrite = fn : string -> string -> unitFirst of all, the �le with string name associated with f is opened, returning a stream value to outs. Next, thestring s is sent to the �le on stream outs. Finally, the �le on stream outs is closed.For example, to send the string "time for tea" to the �le: myfile.txt:- fswrite "myfile.txt" "time for tea";> () : unitNote that we never need to see or know how the stream is represented. We just pass around the name associatedwith the stream value.We can use this function to send an arbitrary string to an arbitrary �le. For example, to send the tuple ofnames and ages in list s to a �le f, we map layout over it and implode the result as before:- (* write name/age table to file *)fun out_age_name f s = fswrite f (implode (map layout s));> val out_age_name = fn : string -> string -> unitNote that attempting to output to a closed �le raises an exception.11.11 Sequenced �le outputSometimes, it may be more convenient to write to a �le item by item rather than assembling all the items into astring and sending them at once. For example, many interactive systems update a �le in response to user inputfrom a keyboard. The danger is that if anything goes wrong and the process stops abnormally then the output�le will be left open. The underlying computer system should notice this when you leave the SML system andclose the �le: however, it is bad practise to rely on the underlying system to do so.We can adapt our screen display functions to write to an explicit output stream by abstracting for the stream.Thus, to write a string we e�ectively rename output:- (* write string to output stream *)fun fswrite stream s = output (stream,s);> val fswrite = fn : outstream -> string -> unitSimilarly, to put a string at the end of a line:- (* write newline terminated string to output stream *)fun fswriteln stream s = fswrite stream (s^"\n");> val fswriteln = fn : outstream -> string -> unit311

To send a list of strings separated by spaces to a �le:- (* write space separated string list to output stream *)fun fslwrite stream s = fswrite stream (spimplode s);> val fslwrite = fn : outstream -> string list -> unitand to end the space separated sequence with a new line:- (* write newline terminated,space separated string list to output stream *)fun fslwriteln stream s = fswriteln stream (spimplode s);> val fslwriteln = fn : outstream -> string list -> unitFinally, to display a list of strings on separate lines:- (* write string list on separate lines to output stream *)fun fslwritelns stream s = fswrite stream (implode (addnl s));> val fslwritelns = fn : outstream -> string list -> unitWe may also generalise the integer display functions. Thus, to send an integer to an output stream:- (* write integer to output stream *)fun fiwrite stream i = fswrite stream (iconv i);> val fiwrite = fn : outstream -> int -> unitand to send a integer followed by a newline character:- (* write newline terminated integer to output stream *)fun fiwriteln stream i = fswriteln stream (iconv i);> val fiwriteln = fn : outsream -> int -> unitFor a list of integers, we map iconv over it to produce a list of strings and then call fslwrite to write a spaceseparated sequence:- (* write space separated integer list to output stream *)fun filwrite stream l = fslwrite stream (map iconv l);> val filwrite stream = fn : outstream -> int list -> unitFinally, an integer list may be followed by a newline:- (* write newline terminated,space separated integer list to output stream *)fun filwriteln stream s = fslwriteln stream (map iconv s);> val filwriteln = fn : outstream -> int list -> unitFor example, consider reading a sequence of lines from the keyboard and writing them to a �le. The last linehas a `!' on its own at the start:- (* copy from keyboard to named file *)fun keytofile () =let val prompt = swrite "file name: "in copylines (open_out (implode (sreadln())))312

end> val keytofile = fn : unit -> unit(* copy from keyboard to output stream *)and copylines stream =let val prompt = swrite "next line: "inlet val l = implode (sreadln())inif l = "!"then close_out streamelselet val fw = fswriteln stream lin copylines streamendendend;> val copylines = fn : outstream -> unitkeytofile prompts for and reads the �le name. It opens the �le and passes the associated stream to anotherfunction copylines. This prompts for and reads a line. If the line is the last one then the �le is closed.Otherwise the line is written to the stream for the �le and the process continues.For example:- keytofile();file name: tempfile.txtnext line: Once upon a time there were three littlenext line: computers called Freyr, Aurora and Anubis.next line: !> () : unitwill write two lines of text to the �le tempfile.txt.11.12 File inputTo input from a �le, the �le must be opened for input with the system function open_in:- open_in;> fn : string -> instreamThis takes a �le name string argument and returns the corresponding input stream.Note that attempting to open a nonexistent �le causes an exception to be raised.At the end of input, the �le should be closed with the system function close_in:- close_in;> fn : instream -> unitwhich also returns the unit value.The system function end_of_stream: 313

- end_of_stream;> fn : instream -> boolchecks whether an input stream has no more characters, that is whether the associated �le is empty. It returnstrue at the end of a stream and false if there are more characters to come.For example, to read an entire �le and return it as a list of single characters:- (* read file as string *)fun fread f = let val ins = open_in finlet val ff = fread1 insinlet val ci = close_in insin ffendendend> val fread = fn : string -> string(* read input stream as string *)and fread1 ins = if end_of_stream insthen []elselet val ch = input (ins,1)in ch::fread1 insend;> val fread1 = fn: instream -> string listIn fread, the �le named by the string associated with f is opened for input returning a stream to ins. fread1is called to read each character in turn from stream ins and assemble them into a list of strings, until the endof the stream is detected. Finally, the �le attached to the input stream is closed.11.13 Sequenced �le inputIt may also be useful to read a �le bit by bit rather than all at once, for example in a system where a �le isdisplayed on the screen under the control of the user. Care must be taken to ensure that the �le is always closedat the end. As for output, we may abstract over the keyboard functions.For example, suppose we want to read a line terminated by a newline from a stream, and return that line as alist of single characters:- (* read singleton string list from input stream *)fun fsreadln stream = let val ch = input (stream,1)inif ch="\n"then []else ch::fsreadln streamend;> val fsreadln = fn: instream -> string listFor example, suppose we want to read up to a certain character from a stream:- (* read singleton string list up to given char from input stream *)fun fread stop stream = let val ch = input (stream,1)314

inif ch=stopthen []else ch::fread stop streamend;> val fsreadln = fn: instream -> string -> string listso fsreadln is:- val fsreadln = fread "\n";> val fsreadln = fn: instream -> string listAlternatively, we could read until some condition is met:- (* read singleton string list until condition from input stream *)fun fread p stream = let val ch = input (stream,1)inif p chthen []else ch::fread p streamend;> val fread = fn : (string -> bool) -> instream -> string listThus, fsreadln is:- val fsreadln = fread (fn ch => ch="\n");> val fsreadln = fn : instream -> string listFor example, to display all the lines in a �le containing a speci�ed string:- (* display lines from file containing string *)fun findlines() =let val prompt1 = swrite "file name: "inlet val file = implode (sreadln())inlet val prompt2 = swrite "search text: "inlet val s = sreadln()in search (open_in file) sendendendend> val findlines = fn : unit -> unitand search stream s =if end_of_stream streamthen close_in streamelselet val next = fsreadln streaminif contains1 s nextthenlet val l = swriteln (implode next)in search stream s 315

endelse search stream send;> val search = fn : instream -> string list -> unitfindlines prompts for and reads a �le name and search text. It then opens the �le and passes the associatedstream and exploded search text to search. search checks to see if the end of stream has been reached. If ithas then the stream is closed. Otherwise, the next line from the stream is read and contains1 from chapter8 is used to see if the line contains the text. If it does then the line is displayed. In either case, processingcontinues.11.14 SummaryIn this �nal practical chapter we have seen how to connect our programs to the outside world through inputand output. We looked at simple output to the screen and input from the keyboard, and how to interleavethem for interaction. We also saw how to extend these techniques to simple �le handling.The next chapter is the last in this book. It provides a brief survey of more advanced aspects of SML and makessuggestions for further reading.11.15 Exercises1) Write a function to display a real number r on the screen with d places after the decimal point.2) Write functions to display a list of real numbers on the screen:i) all on one line, with spaces in between each numberii) with each number on a separate line3) Write a function to print the n times table for integer n. For example,- timestable 4;1*4 = 42*4 = 8...12*4 = 48> () : unitThe columns of numbers should be right justi�ed.4) Write a function that prompts for and reads a sequence of integers ending with 0 from the keyboard, one oneach line, and displays a count of the integers, and their total and average.5) Write a function which prompts for an reads an integer and then displays a table of all values from 0 to thatinteger with their squares and cubes, in left justi�ed columns, with a suitable heading. For example:- powers ();enter integer < 100: 3n n*n n*n*n1 1 12 4 83 9 27> () : unit 316

You may assume that the initial integer is no bigger than 100.6) Write a function that repeatedly prompts for and reads a line of text from the keyboard, and prints a messageto say whether or not it is a palindrome ie reads the same from left to right and right to left, after all spaceshave been removed:- palin();text: madam im adammadam im adam is a palindrometext: ...7) Write a function that, using the functions from chapter 10 exercise 4, prompts for and reads a logicalexpression, and displays the result of evaluating the expression.8) Write a function that, using the functions from chapter 10 exercise 5, prompts for and reads a polynomial,and displays the result of di�erentiating the polynomial.9) Write a function that, using the functions from chapter 10 exercise 6, prompts for and reads a program inthe simple language, and displays the result of evaluating it.10) Write a function to copy all of one �le to another �le. Both �le names should be string arguments.11) Write a function to display a �le on a screen after prompting for the �le name. On displaying a screen fullof text, it should pause and prompt for a key to be pressed before displaying the next screen full.12) Write a function to edit �les of lines of text. It should prompt for and read a �le name, and read the �le intoa list of string lists, one for each line. It should then repeatedly prompt for a single letter command followedby optional arguments and carry them out. The commands are:T == display list as a sequence of linesF/<text> == find and display all lines containing the text<text> in the listD/<text> == delete all occurences of the text <text> in the listI/<text1>/<text2> == insert text <text1> before all occurences oftext <text2> in the listR/<text1>/<text2> == replace all occurences of text <text1> withtext <text2> in the listQ == write the list back to the file as a sequence of linesand halt13) Stock control records consisting of item names, stock levels and reorder levels may be held in a text �le, forexample:socks 200 250hats 15 10coats 75 80pants 30 35vests 45 40Write a function that prompts for and reads a �le name, and reads the �le into a suitable tuple list. It thenrepeatedly prompts for and reads a single letter command followed by optional arguments and carries out thecommand. The commands are:D == display the list as a table with a suitable headingF <name> == find and display the entry for item <name> in the listD <name> == delete the entry for item <name> from the listA <name> <stock> <reorder> == add a new entry to the list for item317

<item> with stock level <stock> andreorder level <reorder>O == display all entries in the list whose order level is belowthe stock level, showing the difference between thereorder level and the stock levelO <file> == write the name and difference between the reorderlevel and stock level for all entries in the listwhose order level is below the stock level to file <file>C <name> <amount> == add <amount> to the stock level for the listentry for <name>Q == write the tuple list back to the original file and halt

318

Chapter 12Further SML12.1 IntroductionThis book is intended as an introduction to Standard ML and has concentrated on basic language aspectsand programming techniques. SML has a number of more advanced features, in particular for imperativeprogramming and encapsulation, which we will now consider. Suggestions for further reading are then given.12.2 Functional and imperative languagesWe have treated SML as if it were a pure functional language. Functional languages are a subgroup of thedeclarative languages: the other subgroup is logic programming languages of which the best known example isthe impure Prolog.Pure declarative languages have the common feature that once a name has been associated with a value, thatassociation cannot be changed. Program parts communicate with each other by passing each other values asarguments or by referring to shared names to access their associated values. However, program parts cannotchange the values associated with shared names and so they cannot a�ect indirectly each other's behaviour.Thus, the order in which di�erent program parts are carried out cannot a�ect the �nal result. It may a�ectwhether or not the program ever stops but we will not worry about that here.This evaluation order independence gives pure declarative languages a number of useful theoretical and practicalproperties. Primarily, it is relatively easier to construct formal de�nitions of pure declarative languages as theydo not necessarily have to make explicit any concept of evaluation order. Such formal de�nitions can form thebasis for proving programs correct relative to speci�cations, which is particularly important for safety criticalsystems. They also enable the development of transformation rules for changing programs without a�ectingwhat they do, for example to make them more e�cient. Finally, formal de�nitions may be used to prove thecorrectness of language implementations, that is that implementations are consistent with the formal de�nition.On the practical side, pure declarative languages are good candidates for parallel implementations. If theevaluation order cannot a�ect the �nal result then, in principle, arbitrary program parts may be evaluatedconcurrently on separate processors.In contrast, imperative languages, like C, Pascal and Cobol, are based on changeable associations betweennames and values, and provide commands for assigning new values to names. Thus, program parts can interactwith other by changing the values associated with shared names and so the evaluation order can a�ect the �nalresult. This makes it much harder to construct formal theories about imperative languages as they must eithermake the evaluation order explicit, leading to more complex theories, or leave areas of ambiguity where it is notpossible to identify one unique result for a program. Programming is also more complex as programmers haveto be far more concerned with the precise order in which things happen.The main advantage of imperative languages is that they correspond more closely to digital computer hardware.319

Almost all contemporary computers are based on what is known as the Von Neumann architecture, after JohnVon Neumann, the mathematician who �rst characterised it. At the heart of a Von Neumann computer isa memory whose contents can be accessed and changed by specifying an associated address. This is thehardware basis for assignment; indeed assignment in imperative languages originated as an abstraction fromsuch hardware.Declarative languages correspond less well to the Von Neumann architecture. When they were �rst developedtheir implementations were signi�cantly slower and more demanding of memory than imperative languageimplementations. There are now excellent pure declarative language implementations which come close tothe e�ciency of imperative language implementations. Nonetheless, there are circumstances where imperativeapproaches are advantageous. For example, we have seen that in SML lists and trees are \changed" by makingentire new copies with appropriate di�erences. For large applications, this copying can be very consuming oftime and space. In contrast, in an imperative language lists and trees really can be changed by overwritingtheir elements with new values.SML seeks the best of both worlds. It has a pure functional subset which we have looked at in the rest of thisbook. It also has imperative constructs which we will consider brie
y now.12.2.1 Imperative aspects of SMLIn imperative languages a variable is a changeable association between a name and a value. In declarativelanguages, a variable is a �xed association between a name and a value. The imperative aspects of SML re
ectthis and are based upon a �xed association between a name and a changeable value. The implications of thisdi�erence will be explored below.In SML, the polymorphic constructor ref returns a changeable reference to a value:- ref;> fn : 'a -> 'a refFor example, after:- val x = ref 1;> val x = ref 1 : int refx is associated with a changeable reference to an integer with initial value 1.The assignment operator := is used to change ref values and returns the unit value ():- op :=;> fn : 'a ref * 'a -> unitFor example:- x := 2;> () : unit- x;> ref 2 : int refsets the value of the ref value associated with x to 2.Note that the value of x has not changed, it is still the same ref value. However, the value of the ref value haschanged.Now consider: 320

- val y = x;> val y = ref 2 : int refy and x have the same value which is a ref value. Thus, assignment to the ref value associated with y:- y := 3;> () : unit- y;> ref 3 : int refappears to change x:- x;> ref 3 : intIn fact x has not changed. Rather the value of the ref value associated with both y and x has changed.Here lies the di�erence between SML and other imperative languages. The SML ref value is akin to pointersin C or Pascal. In SML, setting one ref variable to the value of another results in both sharing the same refvalue, much like setting two pointer variables in Pascal to the same pointer. However, SML has no concept ofa changeable name/value association and thus is fully in the spirit of functional languages.The polymorphic operator ! is used to get the value from a ref value:- !;> fn : 'a ref -> 'aNote the di�erence between:- x;> ref 3 : int refwhich returns the ref value associated with x and:- !x;> 3 : intwhich returns the value of the ref value associated with x.For example, to increment the ref value associated with x:- x := !x+1;> () : unit- x;> ref 4 : int refNow ; may be used a sequence operator. A bracketed sequence of expressions:(expresion1 ; expression 2 ; ... expressionN)returns the value of the last expression expressionN. For example:321

- (x := !x+1;!x);> 5 : intincrements the ref value associated with x and returns its value.12.2.2 Replacing recursion with iterationSML provides the iterative construct:while expression1 do expression2which repeatedly evaluates expression2 so long as expression1 is true. We can use this construct to convertlinear recursion to iteration.Consider the factorial function:fun fac n =if n=0then 1else n*fac (n-1);An iterative equivalent is:fun fac n =let val i = ref n;val f = ref 1;inwhile !i<>0 do(f := !i * !f;i := !i-1);!fend;Here, instead of repeatedly creating new instances of n through recursion we repeatedly reuse a ref valueassociated with i which is set initially to the value of n. Similarly, instead of repeatedly accumulating the valueof; fac (n-1)we repeatedly reuse a ref value associated with f which is set initially to the base value of the recursion.In general, consider:fun name variable =if condition variablethen base variableelse recursion variable (name (decrement variable))Here, the condition condition, base expression base, recursion expression recursion and decrement expressiondecrement are treated as functions of the de�ned function's bound variables. The recursion expression is alsotreated as a function of the recursion call.This is equivalent to: 322

fun name variable =let val count = ref variable ;val accumulate = ref (base variable)inwhile not (condition !count) do(accumulate := recursion !count !accumulate ;count := decrement !count);!accumulateendNow, a count variable count is initialised to the starting value of the bound variable variable and an accumulationvariable accumulate is initialised to the base expression. Then, so long as the condition is not true, the recursionexpression is applied to the count and accumulation variables to update the accumulation variable, and thedecrement expression is applied to the count variable. Finally, the value of the accumulate variable is returned.For example, consider:fun sumlist l =if l=[]then 0else hd l+sumlist (tl l);condition l == l=[]base l == 0recursion l v == (hd l)+vdecrement l == tl lfun sumlist l =let val ll = ref l;val s = ref 0inwhile !ll<>[] do(s := hd (!ll) + !s;ll := tl (!ll));!send;This extends to functions of several variables. For example, consider:fun power (x,n) =if n=0then 1else x*power (x,n-1);condition (x,n) == n=0base (x,n) == 1recursion (x,n) v == x*vdecrement (x,n) == n-1fun power (x,n) =let val i = ref n;val p = ref 1inwhile !i<>0 do(p := x * !p;i := !i-1); 323

!pend;It also extends to nested functions. For example, consider:fun funsum f n =if n=0then 0else f n+funsum f (n-1);condition f n == n=0base f n = 0recursion f n v = (f n)+vdecrement f n = n-1fun funsum f n =let val i = ref n;val s = ref 0inwhile !i<>0 do(s := f (!i) + !s;i := !i-1);!send;This does not apply universally. Consider:fun map f l =if l=[]then []else f (hd l)::map f (tl l);condition f l == l=[]base f l == []recursion f l v = (f (hd l))::vdecrement f l = tl lfun map f l =let val ll = ref l;val m = ref []inwhile !ll<>[] do(m := f (hd (!ll)) :: !m;ll := tl (!ll));!mend;Here, the result from the second version is a list in reverse order! This arises because :: is not commutative.In the recursive function we build the list from the last element. In the iterative version we build the list fromthe �rst element. In the above examples where the recursive action involved + or * the order did not matter.Note that we have only considered a simple form of recursion. Transformation of all forms of recursion toiteration is possible. However, more complex forms often involve the introduction of explicit data structures tohold partial accumulated values. Recursion is then converted to an initial iteration down to the base case accu-mulating partial values in the structures and then iterating back up again, processing the partial accumulatedvalues, to �nd the �nal value. For more details consult a book on compiler construction.Note that while we save on recursion, we have the new, smaller overhead of dereferencing explicitly the refvalues. 324

12.2.3 Replacing copying with assignmentSuppose we have a list of integers, and that we wish to construct a list of doubles of those integers:fun double [] = [] |double (h::t) = 2*h::double tHere we recurse down the list and then return constructing a copy of the list. Suppose that we no longer needthe �rst list thereafter. We could start with a list of int ref instead of int:- val l = [ref 1,ref 2,ref 3,ref 4,ref 5];> val l = [ref 1,ref 2,ref 3,ref 4,ref 5] : (int ref) listand change the ref elements rather than copying:- fun double [] = () |double (h::t) = (h := 2 * !h; double t);> val double = fn : (int ref) list -> unit- double l;> () : unit- l;> [ref 2,ref 4,ref 6,ref 8,ref 10] : (int ref) listHere, we change the head of the list and discard the unit result. We then recursively change the rest of the list.In the above example, l is still associated with the same list of int refs. The values of those int refs haschanged.For example, consider counting how often each unique letter appears in a string. First of all we build a list oftuples to hold a count of 0 for each alphabetic letter:- fun initcounts l counts =if l<"a"then countselse initcounts (chr ((ord l)-1)) ((l,ref 0)::counts);> val initcounts = fn : string -> (string * int ref) list ->(string * int ref) list- val counts = initcounts "z" [];> val counts = [("a",ref 0), ... ("z",ref 0)] : (string * int ref) listNext we increment the count for one letter. If we cannot �nd that letter then we ignore it:- fun count _ [] = () |count l ((l1,c1)::t) =if l1=lthen c1 := !c1+1else count l t;> val count = fn : string -> (string * int ref) list -> unitFor a list of letters, we increment the count for each letter in turn:- fun countall [] counts = () |countall (h::t) counts = (count h counts; countall t counts);> val countall = fn : string list -> (string * int ref) list -> unit325

For example:- countall (explode "ace cab") counts;> () : unit- counts;> [("a",ref 2),("b",ref 1),("c",ref 2),("d",ref 0),("e",ref 1),...] :(string * int ref) listNote as above that while we have avoided copying we have the new, smaller overhead of dereferencing explicitlyref variables.12.3 Encapsulation with abstract types and modulesIn chapter 6 we introduced the idea of encapsulation. We used local declarations to group a function with theauxiliary functions that only it needs to access and to hide those auxiliary functions from other uses. SMLprovides two more advanced constructs for encapsulation, abstypes and structures, which we will now surveybrie
y.12.3.1 Abstract typesIn chapter 1 we said that a type consists of a range of values along with methods to construct, inspect andchange such values. In chapter 2 we then met the bool, int, real and string basic types and their associatedoperations. Note that we have no need to know just how these types are actually implemented in a computerprovided they behave consistently when we use them in programs. In chapter 1 we also suggested that pro-gramming could be viewed as the crafting of new types to �t particular needs. That is, we use existing typesto de�ne representations for new ranges of values and we build functions to be the methods that manipulatethose new value ranges.Here, we have made our new representations from lists, tuples and datatypes. Such representations are said tobe concrete because their low level SML details are explicit and visible. However, someone using a new typehas no need to know speci�c representation details provided the type behaves consistently when manipulatedthrough the methods.The SML abstype is a way of forming a new type by encapsulating a datatype with method functions so thatonly appropriate functions are visible. There is no access to the low level datatype details. Values of an abstypecan only be constructed and manipulated through the visible method functions. Such a type is said to beabstract rather than concrete as both the representation and method details are hidden.For example, suppose we wish to make a new type to represent word counts for texts:- abstype wordcount= words of (string * int) listwithlocalfun inccount w [] = [(w,1)] |inccount w ((w1,c1)::t) = if w=w1then (w1,c1+1)::telse (w1,c1)::inccount w tand findcount _ [] = 0 |findcount w ((w1,c1)::t) = if w=w1then c1else findcount w tin(* create new count *)fun new() = words [](* increment counts for words *) 326

and incwords ws (words wl) = words (foldr inccount wl ws)(* find count for word *)and find w (words wl) = findcount w wl(* find all words *)and allwords (words wl) = map (fn (w,_) => w) wlendend;> type wordcountval new = fn : unit -> wordcountval incwords = fn : string list -> wordcount -> wordcountval find = fn : string -> wordcount -> intval allwords = fn : wordcount -> string listOur new type is called wordcount. It has datatype values with constructor words for lists of pairs of stringwords and integer counts. It also has functions to create an empty wordcount, to increment the counts for a listof words in a wordcount, to �nd the count for a word in a wordcount and to return all the words in a wordcount.Note that these visible functions strip away the outer words and then call hidden auxiliary functions.The user of this new type cannot see how a wordcount is actually represented. They can only construct andmanipulate wordcounts by using the visible functions.For example, we could create a new wordcount:- val c = new();> val c = - : wordcount;Note that the system does not show us a concrete value for the new wordcount. Instead it displays a -.We can now increment the counts for a sentence:- val c1 = incwords ["the","cat","ate","the","haggis"] c;> val c1 = - : wordcountview all the unique words:- allwords c1;> ["ate","cat","haggis","the"] : string listand then check the count for a word:- find "the" c1;> 2 : intNote that abstypes are not equality types so comparison methods must be de�ned explicitly.We might use abstypes as building blocks when developing large systems as a way of controlling system com-plexity. Once a new type has been tested thoroughly it can be treated as pre-given in constructing other systemcomponents. Furthermore, if we supply other people with an abstype then they need not be aware if we decideto change the representation or method details later on, for example to make them more e�cient or extend theirfunctionalities. Provided the methods still behave in the same way then users will not notice the di�erence andneed not change their programs.For example, we might decide to change the representation of the sequence of pairings of words and countsabove from a list to a tree:- abstype wordcount = words of string * int * wordcount * wordcount |327

wcemptywithlocalfun inccount w wcempty = words (w,1,wcempty,wcempty) |inccount w (words (w1,c1,l,r)) =if w=w1then words (w,c1+1,l,r)elseif w<w1then words (w1,c1,inccount w l,r)else words (w1,c1,l,inccount w r)in(* create new count *)fun new() = wcempty(* increment counts for words *)and incwords ws wl = foldr inccount wl ws(* find count for word *)and find _ wcempty = 0 |find w (words(w1,c1,l,r)) = if w=w1then c1elseif w<w1then find w lelse find w r(* find all words *)and allwords wcempty = [] |allwords (words(w,_,l,r)) = allwords l@w::allwords rendend;> type wordcountval new = fn : unit -> wordcountval incwords = fn : string list -> wordcount -> wordcountval find = fn : string -> wordcount -> intval allwords = fn : wordcount -> string listHere, the representation and methods have changed but the methods still have the same names, types andobservable behaviours.12.3.2 StructuresWe have been working with what is called the SML Core language. The SML Modules language extends theCore with constructs which support large scale system development from separate components. We will lookvery brie
y now at these constructs.In general, a module is an independent, self-contained chunk of program, usually consisting of a group of relateddeclarations. For a module to be used elsewhere, what it contains must be made public. Similarly, for somethingdeclared in a module to be used elsewhere, it must be known how to invoke it, what arguments if any it requiresand what results if any it returns.In SML, a module is called a structure and consists of a named sequence of declarations. Corresponding to astructure is a signature which is a sequence of the names of the declared values in the structure along with theirtypes. That signature is all that someone else needs to know to access things from the structure.An abstype must be incorporated in the program that uses it and so its de�nition can be seen by the user eventhough only its visible methods may be used. In contrast, the SML Module language enables the completelyindependent development of program components with only their signatures known to users.For example, suppose we wish to develop a module for ordered integer lists, starting with functions to insert an328

integer into an ascending order list and to sort an integer list into ascending order:- structure ISORTLIST =structfun iinsert i [] = [i] |iinsert (i:int) (h::t) = if i<hthen i::h::telse h::iinsert i tand isort [] = [] |isort (h::t) = iinsert h (isort t)end;> structure ISORTLIST :sigval iinsert : int -> int list -> int listval isort : int list -> int listendThe system shows us the structure's signature, indicating that the structure contains two functions callediinsert and isort.Someone else can use the functions in a module provided they know the signature and a description of thefunctions' behaviours. A function in a module is invoked through what is called a long identi�er, that is thestructure name followed by a \." followed by the function name.For example, iinsert can be invoked from ISORTLIST:- ISORTLIST.iinsert 3 [1,2,4,5];> [1,2,3,4,5] : int listA structure may provide a wide variety of general purpose functions which are not all relevant to a particularproblem. It may then be constrained by an explicit signature that only refers to some of the functions, therebyrestricting those that may be used.For example, we might want to only make the sorting function from ISORTLIST available. The signature:- signature ONLYISORTSIG =sigval isort : int list -> int listend;> signature ONLYISORTSIG =sig val isort : int list -> int list endonly speci�es the sort function. We can now de�ne a new structure which will only allow access to that sortfunction:- structure ONLYISORTLIST : ONLYISORTSIG = ISORTLIST;> structure ONLYISORTLIST : ONLYISORTSIGAttempts to access iinsert from ONLYISORTLIST will result in an error message to say that iinsert is notdeclared.Structures may be generalised as functors through parameterisation. Such parameters may abstract over typesas well as values. Functors are then specialised by being called with speci�c types and values to form newstructures.For example, we might want to provide a more general sorted list module, so we could abstract at the comparisoni<h: 329

- functor SORTLIST (type ANYval order : ANY -> ANY -> bool) :sig type ANYval sort : ANY list -> ANY listval insert : ANY -> ANY list -> ANY listsharing type ANY = ANYend =structtype ANY = ANYfun insert v [] = [v] |insert v (h::t) = if order v hthen v::h::telse h::insert v tand sort [] = [] |sort (h::t) = insert h (sort t)end;> functor SORTLIST : <sig>We have indicated that in SORTLIST, for some type ANY the function order returns a boolean after doingsomething to two values of that type.Note that we have speci�ed SORTLIST's type explicitly. The type and sharing type de�nitions are necessaryto ensure type consistency: for explanation see one of the books below.This functor can be used elsewhere to build new structures to deal with a speci�c types of list. For example,we can construct a structure speci�cally for integer lists by calling SORTLIST with ANY set to int and order setto an appropriate int -> int -> bool function:- fun iless (i1:int) i2 = i1<i2;> val iless = fn : int -> int -> bool- structure ISORTLIST = SORTLIST(type ANY = int;val order = iless);> structure ISORTLIST :sigeqtype ANYval sort : ANY list -> ANY listval insert : ANY -> ANY list -> ANY listendNow ISORTLIST is like SORTLIST with ANY set to int and order set to iless. When we invoke insert or sortfrom ISORTLIST they will only work with integer lists:- ISORTLIST.insert 3 [1,2,4,5];> val it = [1,2,3,4,5] : ISORTLIST.ANY listFor more information about structures, see the further reading below.12.4 Other featuresSML has two other signi�cant features which we will now summarise.As well as tuples, lists and datatypes, SML also provides records for de�ning groups of associated values. Arecord is like a tuple in that it is a �xed sized sequence of elements of di�erent types. However, in a record eachelement has an explicit name which may be used to access it.330

SML enables the de�nition of new in�x operators. A variant of function declarations is used to de�ne theirbehaviour. Their associativity and precedence may also be speci�ed.For more details see the further reading below.12.5 Further readingA wide range of books on Standard ML is available.The essential references for people who want to implement SML or manipulate formally SML programs are:R.Milner, M.Tofte & R.Harper, \The De�nition of Standard ML", MIT, 1990R.Milner & M.Tofte, \Commentary on Standard ML", MIT, 1991which provide a succinct formal de�nition of SML.C.Myers, C.Clack & E.Poon, \Programming with Standard ML", Prentice-Hall, 1993is a thorough introduction which includes coverage of abstypes and structures. It also contains a good annotatedbibliography on both SML and functional programming.�A.Wikstr�om, \Functional Programming Using Standard ML", Prentice-Hall, 1987is another thorough introductory text. It has material on abstypes but not on structures, and covers an olderversion of exceptions.R.Bosworth, \A Practical Course in Functional Programming Using Standard ML", McGraw-Hill,1995is another introduction. It provides two medium sized case studies but has no material on abstypes or structures.R.Harrison, \Abstract Data Types in Standard ML", Wiley, 1993is a second level text. It assumes some knowledge of functional programming and contains detailed coverage ofthe use of abstypes and structures in developing generic abstract data types.J.D.Ullman, \Elements of ML Programming", Prentice-Hall, 1994and R.Stansifer, \ML Primer", Prentice-Hall, 1992are better suited for second language learning of SML. Both cover all of SML. The latter is relatively brief butcontains useful examples.L.C.Paulson, \ML for the Working Programmer", CUP, 1991331

is a more advanced text. As well as full coverage of SML it also includes material on program proof, and theimplementation in SML of an interpreter for � calculus and of a tactical theorem prover.S.Soko lowski, \Applicative High Order Programming: the Standard ML Perspective", Chapmanand Hall, 1991focuses on the use of higher order functions. It includes material on program proof, polymorphism and functionallanguage implementation through compilation to code for an abstract stack machine.C.Reade, \Elements of Functional Programming", Addison-Wesley, 1989covers a wide range of practical and theoretical functional programming topics. An introduction to SML isfollowed by material on lazy evaluation, semantics, polymorphic type checking, � calculus and combinators, andfunctional language implementation through the SECD machine.12.6 SML implementationsThe Usenet news group comp.lang.ml provides a lively forum for discussion of SML. The \Standard ML Fre-quently Asked Questions" posting appears monthly and contains details of how to obtain SML implementations,including those summarised below. It may also be found through anonymous ftp from :pop.cs.cmu.edu:/usr/jgmorris/sml-archive/faq.txtIn particular, Standard ML of New Jersey (NJSML), developed jointly by AT&T Bell Laboratories and Prince-ton University, runs on many UNIX based systems. MicroML, developed at the University of Umea, andMoscow ML, developed at the Keldysh Institute of Applied Mathematics, Moscow, and the Royal Veterinaryand Agricultural University, Denmark, run on IBM PC compatible systems. All are free and may be obtainedby anonymous ftp:NJSML: ftp.research.att.com:/dist/mlMicroML: ftp.cs.umu.se:/pub/umlexe01.uueMoscow ML: ftp.dina.kvl.dk:/pub/mosml
332

Appendix AUsing an SML systemA.1 IntroductionActive use of an SML system is fundamental to this book. It is assumed that you have access to a computerand that you know or can �nd out how to:a) type text into a text �le using an editorb) run the SML systemThe following discussion is pertinent to UNIX and DOS systems. It is assumed for illustrative purposes onlythat the UNIX prompt is:$the DOS prompt is:C>and the SML system command on both UNIX and DOS is:smlNote that the system you are using may well have a di�erent SML command and prompts.On windows based systems you should be able to run SML from within a UNIX shell window or a DOS window.A.2 Getting startedSML systems are interactive, that is you type things at them for immediate processing. Suppose the system isstarted by:$ smlor: 333

C> smlAfter printing various inscrutible start up details, the system will prompt for input from the keyboard with:-After the prompt you can enter any expression followed by a semi-colon:- expression ;If the expression goes over several lines then push `Enter' after each line and the system will prompt for thenext line with a:=Don't forget the `;' at the very end of the expression.The system will carry out the expression and display the result. How this is done depends on the system. Here,we assume that it will print out a right angle bracket followed by the expression's �nal value and type:> value : typeOther SML systems will print out:val it = value : typeThe SML system name it is always set to the last value to be found when an expression is carried out. We willuse the �rst simpler form here.A.3 Leaving the systemYou can usually get out of an SML system by using the underlying system's exit interrupt code, often controlZ or control D. Check for the system you are using. For example, assuming control Z:- ^Z$or - ^ZC>A.4 Panic buttonIf you need to stop an SML program running and return to the SML input prompt then use control C:....^CExecution terminated- 334

A.5 Program developmentUnfortunately, many SML systems will not let you change things once you have typed them in. Thus, it is bestto �rst of all type everything you want to try out into a text �le.Don't forget the `;' after each expression.It is a useful convention to give �les containing SML the su�x .sml so that you can see that they are SML �lesfrom their names. However, this is not a requirement of SML systems.Suppose the �le is called:�leNext, start up the SML system and type in:- use "�le";to read in everything from the �le.Note the double quotes round the �le name: it is a string. For example, if the �le was called:test.smlthen you would enter:- use "test.sml";Once the �le has been read in, the system will go back to prompting for more input from the keyboard.If there are errors then leave the SML system, edit the �le, re-enter the SML system and read the �le back inagain.On a UNIX system, you can suspend a process, in this case the SML system, and return to the system inputprompt without terminating the process. You will need to �nd out what the suspension control sequence is.Often it is control X or control Z. For example:- ^XStopped$You can then edit the �le and restart the SML system, usually by typing fg to move a suspended process intothe foreground. For example:$ fg(sml)Note that the system informs you that you have returned to SML but the SML input prompt may not beprinted. You can now read the �le in again.On a windows based system you could have one window for the SML system and another for editing the �le.First of all, type your SML into the �le and then read it into the SML system, having saved but not closed the�le. If errors are detected in the �le you could move to the edit window, change and save the �le, move to theSML window and read in the �le again, without stopping the SML system in between.335

A.6 Saving system outputIf you want to save the results of an SML session in a �le then you can use �le redirection under DOS or UNIX.You could run everything in:input �leand save the output in:output �leby entering:C> sml < input �le > output �leor $ sml < input �le > output �leFor example, if the input �le is called:test.smland you want the results in:resultsthen you would enter:C> sml < test.sml > resultsor $ sml < test.sml > results
336

Appendix BSML syntaxThese syntax diagrams are for the SML subset covered in chapters 1 to 11. They are loosely adapted from thesyntax in \The De�nition of Standard ML", referenced in chapter 12. The main changes are the con
ation ofvarious independent syntax constructs into uni�ed diagrams and the treatment of di�erent sorts of constructorsimply as name.
declaration

expression

program

;A program is one or more declarations and expressions separated by `;'s.
declaration

val

fun

type

datatype

exception

type binding

value binding

function binding

exception binding

local declaration in declaration end

datatype bindingA declaration may be for a name/value association, value binding, a function, function binding, a type synonym,type binding, a datatype, datatype binding, an exception, exception binding or a local declaration.337

pattern expressionvalue binding =A value binding is one or more associations between patterns and expressions, separated by ands.
pattern

pattern

name pattern
atomic

pattern

type

name pattern

type

pattern ::

:

:

asA pattern is an atomic pattern, a constructor pattern consisting of a structured value constructor name followedby an argument atomic pattern, a list pattern consisting of two patterns separated by the list constructor ::, atyped pattern or a layered pattern associating a possibly typed bound variable name and a pattern.
constant

name

pattern()

_

atomic
pattern

[

()

patterns

patterns

()

]338

An atomic pattern is a wildcard, a constant (i.e. an integer, real, boolean or string value), a bound variableor simple value constructor name, the unit value, a tuple of patterns, an empty list or a list of patterns or abracketed pattern.
pattern

,

patternsA patterns is one or more patterns separated by `,'s.
name

type

type

type

type

type

type

type name

types

(

*

->

)A type is a type name (i.e. a ' followed by a name), a type constructor name (i.e. int, real, bool, string ora type constructor) or a type constructor name preceded by a types (i.e. for a list or a parameterised typeconstructor), a tuple type, a function type or a bracketed type.
type

type type

types

(,)A types is one type, empty or a bracketed sequence of one or more `,' separated types.339

name expression

binding
function casesfunction

function
cases

atomic
=

|

patternA function binding is one or more function cases separated by ands.A function cases is a name followed by one or more bound variable atomic patterns and associated with a bodyexpression, or several of this sequence separated by `|'s.
name typetype names =type binding

andA type binding is an association between a type constructor name and a type. It may be parameterised by typenames. A sequence of such associations is separated by ands.
type names

type name

)type name,type name(A type names is a single type name, empty or a bracketed sequence of one or more type names separated by `,'s.
340

name

name

datatype

binding
type names = constructor binding

constructor

binding
of type

|A datatype binding associates a type constructor name with a constructor binding. It may be parameterised bya type names. A sequence of such associations is separated by ands.A constructor binding is a value constructor name which may be typed. A sequence of these is separated by `|'s.
name

type

exception
binding

and

ofAn exception binding is a constructor name which may be typed. A sequence of these is separated by ands.

341

expression

expression

expression

expression

expression

expression expression expression

expression

expression

expression

andalso

orelse

raise

if then else

handle match

matchfn

case of match

expression

An expression is an in�x expression, two expressions separated by an in�x boolean operator, an expressionwith a handler match, a raised exception expression, a conditional expression, a case expression matching anexpression to a match, or a function value de�ned by a match.
expression
application

expression
infix

expression
infix

infix

operator

expressionAn in�x expression is a function call application expression or two in�x expressions separated by an in�xoperator.
expression
atomicapplication

expressionAn application expression is a single atomic expression or a function atomic expression followed by argumentatomic expressions. 342

name

expressions

expressions

expression

declaration expression

()

(

[

expression
atomic)

]

(

let

)

in endAn atomic expression is a constant, a bound variable or constructor name, the unit value, a tuple, an emptylist or a non-empty bracketed list, a let expression, or a bracketed expression.
expressionexpressions

,An expressions is one or more expressions separated by `,`s.
pattern expressionmatch =>

|A match is an association between a pattern and an expression. A sequence of such associations is separated by`|'s.
343

Appendix CSML standard functions and operatorsIn the type of an overloaded numeric function or operator, all occurrences of the type num may be replaced byeither int or real.C.0.1 Standard functionsThe following standard functions are introduced in the text:abs : num -> num~ : num -> numfloor : real -> intreal: int -> realnot: bool -> boolsize : string -> intord : string -> intchr : int -> stringexplode : string -> string listimplode : string list -> stringmap : ('a -> 'b) -> 'a list -> 'b listrev : 'a list -> 'a listSML also provides the following arithmetic and trigonometric functions:sqrt : real -> real - square rootsin : real -> real - sine of radianscos : real -> real - cosine of radiansarctan : real -> real - arctangent; returns radiansexp : real -> real - ex for argument xln : real -> real - natural logarithm344

C.0.2 I/O streams and functionsThe following streams and functions are discussed in chapter 11:open_in : string -> instreaminput : instream * int -> stringend_of_stream : instream -> boolclose_in : instream -> unitstd_in : instreamopen_out : string -> outstreamoutput : outstream * string -> unitclose_out : outstream -> unitstd_out : outstreamSML also provides the function:lookahead : instream -> stringwhich returns the next character in the speci�ed input stream as a string without removing it from the stream.C.0.3 Standard operatorsThe number preceding each operator is its precedence.7 div : int * int -> int7 mod : int * int -> int7 / : real * real -> real7 * : num * num -> num6 + : num * num -> num6 - : num * num -> num6 ^ : string * string -> string5 :: : 'a * 'a list -> 'a list5 @ : 'a list * 'a list -> 'a list4 = : ''a * ''a -> bool4 <> : ''a * ''a -> bool4 < : num * num -> bool4 <= : num * num -> bool4 >= : num * num -> bool4 > : num * num -> bool3 o : ('b -> 'c) * ('a -> 'b) -> 'a -> 'c345

