F28HS2 Hardware-Software
Interface

Lecture 1: Programming in C 1

e in this ha
— system
— assemb

Introduction

f of the course we will study:
evel programming in C
y language programming for the ARM

Processor

— the relationship between high level programming
language constructs and low level realisations

— high and low level approaches to manipulating
information

C Overview

e strict, strongly typed, imperative system
programming language

 combines high-level constructs with low level
access to type representations and memory

* Reference: B. Kernighan & D. Ritchie, The C
Programming Language (2"° Ed), Prentice-
Hall, 1988

Overview

C looks like Java BUT IS VERY DIFFERENT!

Java has high-level objects

C exposes low-level memory formats & addresses
must manage memory explicitly

very easy to make programming errors
— almost invariably address errors

Running C programs

* gcc - GNU c compiler

— open source

* generates code for just about every
conceivable platform

$ gcc —o0 name, name,;.cC
* generate code for name; . c
* put executable in name,

S name,

* run program in name,

Running C programs

S gcc .. =0 ..
e generate optimised code

$ gcc —C name;.C .. name,.cC
* generate object files name,.o ... name,.o only

$ gcc —O0 name name;.0 .. Name,.o

* link object files name,.o ... name,.o and put
executable in name

Running C programs

S gcc name.c
 forgot —o name °?
* puts executableina.out !

S man gcc
* Linux manual entry for GNU C compiler

* can often use cc instead of gcc
— proprietary C compiler for host OS/platform

Debugging C programs

$ gcc -g —O name, name,.C
$ gdb name,
* runs GNU debugger with name,
* can now:
— step through program
— display values of variables
— set break points
S man gdb
* Linux manual entry for GNU debugger

Raspberry Pi

e usually runs in user mode

— restricts what user can do

* superuser has full access
— precede every command with: sudo
* or
— run in superuser shell: sudo su

1 O O N W DN

Program layout

#include

#define

extern

declarations

function declarations

main (1int argc,char ** argv)

{ oo}

Program layout

* 1. include files #include ...
. #define ...
— #include “...” == extern . ..
look in current directory declarations

— #include <... == function declarations

look in system directories

main (int argc,
char ** argv)

— import libraries via { \

header files: name.h
e.g. <stdio.h> forl/O

O 31 o O AN W DN R

Program layout

e 2. macro and constant
definitions

* 3. names/types of
variables/functions used
in this file but declared in
linked files

0 1 o O WD

#include ...
#define ...
extern ...
declarations
function declarations
main (int argc,

char ** argv)

{ ...}

Program layout

e 4. & 5. declare all
variables before all
functions

6. & 7. main function
with optional command
line argument count and
array

 declarations and
statements terminated
with a ;

00 Jd o 0 & WD

#include ...
#define ...
extern ...
declarations
function declarations
main (int argc,

char ** argv)

{ ... 1}

Display output 1

printf (“text”)

* system function

* sends text to the display
* \n ==newline

e \t ==tab

Display output 1

* eg.hello.c
#include <stdio.h>

maln (1nt argc,char ** argv)
{ printf("hello\n");

J

S gcc -o hello hello.c
S hello

hello

S

Memory organisation

e stack
— allocated automatically
— global declarations
— local declarations
— function parameters

* heap

— allocated by program
— c.f. Java new

— no garbage collection

top of stack

top of heap

memory

stack

heap

Declarations

* basic types
— char —character
— 1int —integer
— short —short integer
— long —long integer
— float —floating point number
— double — double size floating point number

Declarations

type name;

 allocates space for new variable of type called
name on stack

name
* letters + digits + starting with a letter

e C convention

— lower case = variable name
— UPPER CASE = symbolic constant

Declarations

* can group declarations for same type
type name ;
type name,;

type name,;
->

type name,name,...name,,

Expressions

constant =» value of constant

name =2 value from memory

— NB value may differ depending on what type
context name is used in

unary/binary expression

function call
— NB C function == Java method

Constants

sighed integer
—e.g. 4231 -2579

sighed decimal
—e.g. 886.754
—e.g.-3.9E11 ==
character: ‘letter’

e.g. ‘a’

\\nl

-3.9 * 10

Operator expressions

° unary
op exp
— evaluate exp
— apply op to value
* binary infix
exp, op exp,
— evaluate exp,

— evaluate exp,
— apply op to values

Arithmetic

* unary minus: —

* binary infix

+ == add
— == subtract
* == multiply

/ == division
% == integer modulo/remainder

Arithmetic

e (...) —brackets

* precedence
(...) before...
unary — before...
* or / or % before...
+ or — before ...

function call

* expressions evaluated from left to right

Arithmetic

* mixed mode arithmetic permitted
* always works at maximum precision needed

* for a binary operator:
— char & short convertedto int
— float always converted to double

— either operand is double then the other is
converted to double

— either operand is 1ong then the otheris
converetd to 1ong

Function call

 function called as:
name (exp;...expy)

* evaluate actual parameters exp, to exp,,
— pushing values onto stack

* function will access formal parameters via
stack

* result of function execution is returned

Display output 2

printf (“format” , exp,...exp,)

* displays the values of expressions exp,...exp,
depending on the format characters

$d == decimal integer
$f ==floating point
$x == hexadecimal
s ==string

Display output 2

* NB variable number of arguments
* must have one format for each argument

* any non-format information in string is
displayed as text

Address operator: &

e declaration: type name

e associates name with address of enough memory for
type

shame

* address of 15t byte allocated to variable name

* |lvalue

e on PC Linux/Raspbian: address == 4 bytes

Keyboard input

int scanf (“format”, addr,...addr))

* inputs from keyboard to memory at specified
addresses

— depending on format characters
* typically, addr;is &name,
* i.e. address associated with variable name,

e int return value for success or end of input
or failure

Example: polynomial evaluation

* evaluate AX?+BX+C S poly
a: 3
#include <stdio.h>
b: 8
main (int argc,char ** argv) ce: 4
{ 1int a,b,c,x;
| X: 0
printf ("a: "); scanf ("%d", &a);
printf ("b: "); scanf ("3d", sb) ; 160
printf ("c: "); scanf ("%d", &c);
printf ("x: "); scanf ("%d", &x);
printf ("$d\n", a*x*x+b*x+c) ;

Example: polynomial evaluation

* evaluate AX?+BX+C S poly
a: 3
#include <stdio.h>
b: 8
main (int argc,char ** argv) ce: 4
{ 1int a,b,c,x;
| X: 0
printf ("a: "); Scanf("%d"/gsy
printf ("b: "); scanf ("3d"|sb)] 160
printf("c: "); scanf ("sd"}| &c)
printf ("x: "); scanf ("sd") &x) }
printf ("$d\n", a*x*x+b*x+c)\

} putvahueataddreginy/////////////?

memory for variable

Indirection operator: *

*expression =¥

— evaluate expression to integer
— use integer as address to get value from memory

* SO name in expression =» * (&name)
1. get address associated with name
2. get value from memory at that address

Assignment

expression, = expression, ;
* evaluate expression, to give an address
— Ivalue — on left of assignment

* evaluate expression, to give a value

— rvalue — on right of assignment

e put the value in memory at the address

Assignment

* assignments are expressions
* returns the value of expression,

* value ignored when assignment used as a
statement

Logic and logical operators

* no boolean values

« 0 =» false

* any other value=>»true
* unary

! - not

* binary

&& -logical AND

|| -logical OR

Comparison operators

* binary

== -equality

= -inequality

< - less than

<= -less than or equal
> - greater than

>= - greater than or equal

Precedence

(...) before

& & before

| | before

| before
comparison before
arithmetic before

function call

Block

{ declarations
statements

}

* declarations are optional

e space allocated to declarations

— on stack
— for life of block

Ilteration: while

while (expression)
statement =»

1. evaluate expression
2. if non-zero then

I. execute statement
ii. repeatfrom 1.

3. if zero then end iteration
* Dbreakin statement ends enclosing iteration

Example: sum and average

* sumav.cC
include <stdio.h>

maln (1nt argc,char ** argv)
{ 1nt count;
int sum;

int n;

count = 0;

sum = 0;

Example: sum and average

printf ("next> ") ;

scanf ("sd", &n) ;

while (n!=0)

{ count = count+l;
sum = sum+tn;
printf ("next> ") ;
scanf ("sd", &n) ;

}

printf ("count: %d, sum: %d, average:
$d\n", count, sum, sum/count) ;

Example: sum and average

S sumav
next>
next>
next>
next>

next>

S oo w N

next>

count: 5, sum: 15, average: 3

Ilteration: for

for (exp;;exp,;exp;) 1. execute statement exp,
statement =» 2. repeatedly test exp,

3. each time exp, is true
€XPyr 1. execute statement
while (exp,) 2. execute statement exp3
{ statement all exps and statement

exp;; are optional

Ilteration: for

for (exp;;exp,;exp;)
statement

e usually:
— exp, initialises loop control variable

— exp, checks if termination condition met for control
variable

— exp, changes control variable

e NB must declare control variable before for

Condition: i f

1f (expression)

statement,

else

statement, =»

1. evaluate expression

2. if non-zero then execute statement,
3. if zero then execute statement,

* else statement, is optional

— if expression is zero then go on to next statement

Condition: switch

switch (expression)
{ case constant,: statements,
case constant,: statements,

default: statements,

evaluate expression to a value
for first constant; with same value, execute statements,

w N B

if no constants match expression, evaluate default
statements,,

Condition: switch

switch (expression)
{ case constant,: statements,
case constant,: statements,

default: statements,

 only matches char & int/short/long constants
e break; =2 endswitch

* NBnobreak atend of statements, =» execute
statements,, , |

Example: guessing number

player thinks of a number between 1 and 100
computer has to guess number

each time, player tells computer if guess is:

— correct

— high

— low

computer uses divide and conquer to halve search
space each time

Example: guessing number

e keep track of high and low boundaries
— initially high is 100 and low is 1

e guess humber between boundaries
— if high then set high to guess
— if low then set low to guess

e at end, output count of guesses

Example: guessing number
#include <stdio.h>

maln (1nt argc, char ** argv)

{ 1nt low, high, guess, response, count;

low = 1;
high = 100;

count = 0;

Example: guessing number

while (1)
{ guess = (high+low)/2;
count = count+1l;

printf ("I guess %d.\n",guess);

printf ("Am I correct (0), high (1) or
low (2)2 ");

scanf ("sd", &response);

1f (response==0)

break;

Example: guessing number

switch (response)
{ case 1: high = guess; break;
case 2: low = guess; break;
default: printf ("I don't understand
$d.\n", response) ;

count = count-1;

}

printf ("I took %d guesses.\n",count);

Example: guessing number

[greg@mull 101]S guess

I guess 50.

Am I correct (0), high (1) or low (2)? 1
I guess 25.

Am I correct (0), high (1) or low (2)7? 2
I guess 37.

Am I correct (0), high (1) or low (2)? 9
I don't understand 9.

I guess 37.

Am I correct (0), high (1) or low (2)? 1
I guess 31.

Am I correct (0), high (1) or low (2)? O

I took 4 guesses.

