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Chapter 1

Introduction

1.1 Overview

Hume is a programming language based on concurrent finite state machines with transitions
defined through pattern matching and recursive functions. A formal definition of Hume may be
found in [?].

This document describes how to write and run programs in Hume 0.1, a prototype implementation
of a substantial Hume subset. Hume 0.1 includes:

• imprecise integer and float types

• bool, char and string types

• tuple, vector and list types

• conditional and case expressions

• local definitions

• recursive function definitions

• constant definitions

• type synonyms

• unions

• exceptions

• pattern matching boxes with unfair and fair matching

• wiring with input initialisation and output tracing

• streams, connected to files and standard input and output

• I/O and comparison overloaded for arbitrary sized structures

Hume 0.1 lacks:

• precise integer and float types

• nat, unicode, word, fixed and exact types
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• ports

• output initialisation and input tracing

The Hume 0.1 implementation:

• offers stepped or continuous mode execution

• offers output tracing in both modes

• displays box and wire states in stepped mode

• runs each box, to completion, with round robin scheduling

• lacks polymorphic type checking

• lacks exception consistency checking

1.1.1 Acquiring Hume

Hume can be acquired via: www-fp.dcs.st-and.ac.uk/hume, or www.macs.hw.ac.uk/~greg/hume

DREADFUL WARNING...

Hume is very much under development. It is likely that this first implementation is full of bugs
and unexpected behaviours. Please report:

• parser problems to Kevin Hammond - kh@dcs.st-and.ac.uk;

• run-time problems to Greg Michaelson - greg@macs.hw.ac.uk.

• compiler problems to Robert Pointon - rpointon@macs.hw.ac.uk.
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Chapter 2

Running Hume programs

2.1 Execution Model

A Hume program consists of one or more boxes with inputs and outputs. Boxes are generalised finite
state machines. A box’s transitions are defined by patterns on the inputs. Boxes are connected to
each other, and to streams and ports by links established by wiring.

When a program is running each box repeatedly tries to match one of its pattern against its inputs.
When a match succeeds, the expression associated with the pattern generates the new values for
the box’s outputs. If all relevant outputs from the previous cycle have been consumed then the
new outputs are established. Otherwise the box blocks without establishing any outputs until the
next cycle.

At the end of each execution cycle a box may be in one of three states:

• runnable: the box completed successfully;

• matchfail: the box lacked appropriate inputs;

• blockedout: the box completed but blocked as at least one output from the previous cycle
was not consumed. On the next cycle, the box will again attempt to establish its outputs.

Matching may be unfair or fair. For unfair matching, on each cycle the matching starts with the
box’s first pattern. For fair matching, on each cycle the matching starts with a least recently used
pattern over all previous cycles.

2.2 Runing Hume

By convention, Hume programs end with .hume.

To run a Hume program in continuous mode;

% hume program.hume
Hume 0.1

RUNNING

...

To run a Hume program in stepped mode:
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% hume -t program.hume
Hume 0.1

STEPPING

ugly print outputs
traces: ...

states
wires: ...

NEXT> return
...

All boxes run for one cycle.

ugly print displays the program in a strange mix of Hume syntax and internal representation.

outputs displays the outputs to std_out.

traces: displays all outputs followed by trace in the corresponding wiring.

states: displays the state of each box.

wires: displays all unconsumed outputs.

Pressing return after NEXT> initiates the next cycle.

To run a Hume program in continuous stepped mode:

% hume -c program.hume

2.3 Halting execution

Control C halts execution and returns to the host system.

2.4 Example 1: Counter

The following program generates a sequence of ascending integers on the standard output, starting
with 0.

Note that line numbers are not part of Hume but are used in subsequent discussion.

1 -- counter - inc.hume

2 program

3 stream output to "std\_out";

4 box inc

5 in (n::int 64)

6 out (n’::int 64,shown::(int 64,char))

7 match

8 x -> (x+1,(x,’\n’));

9 wire inc

10 (inc.n’ initially 0)

11 (inc.n,output);

1: Comments begin with --.
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inc

n’ shown

n

output

std_out

x -> (x+1,(x,’\n’))

Figure 2.1: Counter - inc.hume

2: Programs start with program or module.

3: The stream output is associated with standard output, named through the string "std out".

4: The box is named inc.

5: The box has one input called n, a 64 bit integer.

6: The box has two outputs. n’ is a 64 bit integer. shown is a tuple of a 64 bit integer and a
character.

7-8: If there is a value on input n, then the pattern x will set a new local variable called x to that
value and evaluate the right hand side. Output n’ will be set to x+1. Output shown will be set
to (x+1,’\n’) i.e. x+1 followed by a newline character.

9: Box inc is now wired by position.

10: inc’s input n is wired implicitly to inc’s input n’. n is initialised to 0.

11: inc’s output n’ is wired implicitly to inc’s input n. inc’s output shown is wired to output

and hence to "std out".

The program is illustrated in Figure 2.1.

Thus, on each step, this program:

• sends x+1 round the wire loop from n’ back to n

• displays the old value of n i.e. c, followed by a newline

Running this example in continuous mode:

% hume inc.hume

Hume 0.1
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RUNNING

0

1

2

3

...

Running this example in stepped mode:

% hume -t inc.hume

HUME 0.1

...

STEPPING

0

inc: RUNNABLE

wires: inc.n’:1

NEXT>

1

inc: RUNNABLE

wires: inc.n’:2

NEXT>

2

inc: RUNNABLE

wires: inc.n’:3

NEXT>

...

At each stage:

• n’s value appears on the standard output.

• matching succeeds so inc is runnable;

• n’ is set to one more than n’s value;

2.5 Example 2: Square and double

The following program extends the counter program to generate a sequence of squares and doubles
of ascending integers. A new box sqdouble is added to:

• accept an integer from inc every two cycles;

• on the first cycle, print the integer’s square;

• on the second cycle, print the integer’s double;

• keep track as to whether it is currently squaring or doubling.

1 -- square and double

2 program

3 stream output to "std_out";
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4 union STATE = SQUARING | DOUBLING;

5 box inc

6 in (n::int 64)

7 out (n’::int 64,shown::int 64)

8 match

9 n -> (n+1,n);

10 wire inc (inc.n’ initially 0) (inc.n,sqdouble.n);

11 box sqdouble

12 in (n::int 64,oldn::int 64,s::STATE)

13 out (n’::(int 64,char),oldn’::int 64,s’::STATE)

14 match

15 (x,*,SQUARING) -> ((x*x,’\n’),x,DOUBLING) |

16 (*,x,DOUBLING) -> ((2*x,’\n’),*,SQUARING);

17 wire sqdouble

18 (inc.shown,sqdouble.oldn’,sqdouble.s’ initially SQUARING)

19 (output,sqdouble.oldn,sqdouble.s);

4 introduces a concrete data type STATE with values SQUARING and DOUBLING.

10 wires inc.shown to the new box sqdouble’s input n.

11-16 introduce the new box sqdouble. It has 3 inputs and 3 outputs. Looking at the wiring
in 18-19: the link fromoldn to oldn’ circulates the last value from inc; the link from s to s’

circulates local state information. Initially, s is set to SQUARING.

15-16 define sqdouble’s transitions. For an input n from inc.shown and with s indicating the
SQUARING internal state, oldn is ignored by the *, n is matched to x which is squared and output,
n is circulated as oldn’ back to oldn, and s’ is circulated as DOUBLING back to s.

If s is DOUBLING, the n is ignored, oldn is matched to x which is doubled and output, no output
is generated for oldn’ by the * and s’ is circulated as SQUARING back to s.

The effect is that for each integer that inc generates, doublesq will generate its square on the
first cycle and its double on the second cycle. After the first cycle, inc will generate a new integer
but will block on output until sqdouble has completed the second cycle and consumes it.

The program is illustrated in Figure 2.2.

Running the program in continuous mode:

%hume sqdouble.hume

HUME 0.1

RUNNING

0

0

1

2

4

4

9

6

...

Running the program in stepped mode:
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inc

n’ shown

n

n

output

std_out

n’

oldn

oldn’

s

s’

sqdouble

(x,*,SQUARING) -> 

((x*x,’\n’),x,DOUBLING)

(*,x,DOUBLING) -> 

((2*x,’\n’),*,SQUARING)

x -> (x+1,x)

Figure 2.2: Square and double - sqdouble.hume
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% hume -t sqdouble.hume

HUME 0.1

...

STEPPING

sqdouble: MATCHFAIL; inc: RUNNABLE

wires: inc.n’:1, inc.shown:0

NEXT>

0

sqdouble: RUNNABLE; inc: RUNNABLE

wires: sqdouble.oldn’:0, sqdouble.s’:DOUBLING, inc.n’:2, inc.shown:1

NEXT>

0

sqdouble: RUNNABLE; inc.shown: BLOCKEDOUT

wires: inc.shown:1, sqdouble.s’:SQUARING

NEXT>

1

sqdouble: RUNNABLE; inc: RUNNABLE

wires: sqdouble.oldn’:1, sqdouble.s’:DOUBLING, inc.n’:3, inc.shown:2

NEXT>

At the end of the first cycle:

• sqdouble could not match any of it’s patterns.

• inc’s n’ is 1 and it’s shown is 0;

At the end of the second cycle:

• sqdouble has output the square of 0 from inc’s shown via it’s own n i.e. 0;

• inc’s n’ is 2 and it’s shown is 1;

• sqdouble’s oldn’ is 0 and it’s s’ is DOUBLING.

At the end of the third cycle:

• sqdouble has ouput the double of 0 from it’s oldn via it’s own oldn’ i.e. 0;

• sqdouble’s s’ is back to SQUARING;

• inc’s shown is 1 but this has been ignored by sqdouble. Thus inc is blocked on output.

At the end of the fourth cycle:

• sqdouble has output the square of 1 from it’s n via inc’s shown i.e. 1;

• inc’s n’ is 3 and its shown is 2;

• sqdouble’s s’ indicates the DOUBLINGinternal state for it’s oldn’ which is now 1.

Thus sqdouble runs twice as often as inc.
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2.6 Example 3: Square and double with fair matching

For this example, the same effect can be achieved through fair matching without the SQUARING/DOUBLING
feedback loop:

1 -- square and double 2

...

10 wire inc (inc.n’ initially 0) (inc.n,sqdouble2.n);

11 box sqdouble2

12 in (n::int 64,oldn::int 64)

13 out (n’::(int 64,char),oldn’::int 64)

14 fair

15 (x,*) -> ((x*x,’\n’),x) |

16 (*,x) -> ((2*x,’\n’),*);

17 wire sqdouble2

18 (inc.shown,sqdouble2.oldn’)

19 (output,sqdouble2.oldn);

We have dropped:

• the s input and s’ output at 12-13;

• the corresponding matches for DOUBLING and SQUARING at 15-16;

• the corresponding wiring for s and s’ at 18-19.

and replaced match with fair at 14.

Now, if the match at 15 succeeds on one cycle then the alternate pattern at 16 will be tried first
on the next cycle, and vice versa. Here, the behaviour is the same as for sqdouble above.

2.7 Profiling

To profile a Hume program:

% hume -pnumber program.hume
RUNNING

...

standard output
...

status counts
longest wire delays
...

total elapsed time
Fail: END PROFILING

The program is run for number cycles displaying standard output. The system then halts displaying
profiling information for each box.

status counts shows how often a box has been RUNNABLE(R), BLOCKED OUTPUT(BO) and
MATCH FAIL(MF). It also shows the cummulative elapsed time for all invocations of that box.

longest wire delays shows for each input to the box, the longest delay between the corresponding
input value being made available and being consumed.

16



total elapsed time shows the overall elapsed time for the number cycles of all boxes, including
startup and inter-cycle administrative costs.

For example:

% hume -p1000 sqdouble.hume

...

sqdouble: R: 999, BO: 0, MF: 1; Cumm. time: 0.22241953 secs

Longest wire delays: oldn’: 3.0394e-2 secs, s’: 4.1939e-2 secs,

shown: 4.2017e-2 secs

inc: R: 501, BO: 499, MF: 0; Cumm. time: 0.103128806 secs

Longest wire delays: n’: 3.0499e-2 secs i

Total elapsed time: 0.351578 secs

Fail: END PROFILING

This shows that:

• sqdouble ran continuously (R: 999) apart from the initial startup delay (BO: 1);

• inc ran for 50% of the time (R: 501, BO: 499), as expected;

2.8 Consume matching with ∗

The pattern ∗ in a box match will behave like wildcard if the corresponding input is present,
and consume it, or like ∗ if no input is present, and succeed.

2.9 Top level expression evaluation

The top level construct:

expression exp;

will display the result of evaluating exp. For example:

-- expression.hume

expression 6*7;

...

will display:

% hume expression.hume

Hume 0.1

RUNNING

42

...

2.10 Importing files

A file may contain directives of the form:

import path

17



where path.hume is a valid file.

The file, and any files imported within it, will be appended together prior to parsing.

Imports may be nested to arbitrary depth. Recursive imports are ignored.

Alas, parser error message line numbers are relative to the fully expanded program.
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Chapter 3

Wiring

3.1 Normal Wiring

Wiring in Hume is used to define the connections between boxes within a Hume program, and the
connection of that program to external streams of data. The normal syntax for wiring is currently:

<wiredecl> ::= "wire" <boxid> <ins> <outs>

where <ins> and <outs> are either tuples of links, or just a single link.

<ins>/<outs> ::= "(" <link1> "," ... "," <linkn> ")"

| <link>

A link attaches inputs to outputs, or vice-versa, or attaches an input or output to a globally named
stream. The links to a given box are specified positionally for the inputs/outputs of that box.

<link> ::= <boxid> "." <id>

| <streamid>

The first form defines a box input or output, the latter attaches a box input or output to a stream.
The predefined streams are given below

Stream Attached
StdIn standard input
StdOut standard output

For example

box parity in ( input, par :: short ) out ( output, par’ :: short )

match

( i, v ) -> let res = i + v in ( res, if even res then 1 else 0 )

;

wire parity ( StdIn, b.par’ ) ( StdOut, b.par );

Initially-clauses may be attached to inputs. This is useful to initialise streams or values that are
internal to a box as par/par’ above.

wire b ( StdIn, b.par’ initially 0 ) ( StdOut, b.par );
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3.2 Templates and Replication

Box templates are defined similarly to boxes:

template <templateid> <ins> <outs>

<body>

;

where <ins> and <outs> are tuples of inputs and outputs respectively. Unlike a box, a template
never generates a runtime process, and may be polymorphic. A template may be instantiated one
or more times to yield concrete boxes.

template t in ( input, par :: short ) out ( output, par’ :: short )

match

( i, v ) -> let res = i + v in ( res, if even res then 1 else 0 )

;

instantiate t as b1;

instantiate t as b2;

wire b1 ( StdIn, b1.par’ initially 0 ) ( b2.input, b1.par );

wire b2 ( b1.input, b2.par’ initially 0 ) ( StdOut, b2.par );

Boxes may also be replicated to give other (identical) boxes.

replicate box1 as box2;

A common requirement is to replicate a box or instantiate a template several times. A shorthand
form can be used for this:

instantiate <templateid> as <boxid>*<exp>;

where exp yields a compile-time constant integer, n, where n ≥ 1. For some free variable, i, this
is exactly equivalent to the following form:

for i = 1 to <exp>

instantiate <templateid> as <boxid>{i}

;

Wiring declarations may be included within loops. The general form of a wiring loop is:

for <id> = <expr1> to <expr2>

[ except ( <eexpr1>, ..., <eexprn> ) ]

<wiredecl>;

Within the loop, annotations may be used to index variants of names. The annotations (which are
enclosed in braces – ”” ... ””) are constant integer expressions formed from wiring loop variables,
integer literal constants, integer addition, subtraction, multiplication, division, and remainder
operations, named compile-time constants declared in constant declarations, and expansions of
macros that have been declared in macro declarations.
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constant bmax = 8;

macro next n = n + 1;

macro prev n = n - 1;

instantiate t as b*bmax;

for i = 2 to bmax-1

wire b{i} ( b{prev i}.output, b{i}.par’ ) ( b{next i}.input, b{i}.par );

wire b1 ( StdIn, b1.par’ ) ( b2.input, b1.par );

wire b{bmax} ( b{prev bmax}.output, b{bmax}.par’ ) ( StdOut, b{bmax}.par );

It is possible to nest for loops, and loop variables may be used within inner wiring declarations.

3.2.1 Except-Clauses

Except-clauses are used to exclude some values from the loop variable. For example

constant min = 1;

constant max = 8;

constant bypass = 3;

instantiate t as b*max;

for i = min+1 to max-1 except ( bypass )

wire b{i} ( b{i-1}.output, b{i}.par’ ) ( b{i+1}.input, b{i}.par );

wire b{min} ( StdIn, b{min}.par’ ) ( b{min+1}.input, b{min}.par );

wire b{max} ( b{max-1}.output, b{max}.par’ ) ( StdOut, b{max}.par );

3.3 Wiring Macros

Wiring macros allow generic wiring templates to be defined. Within the wiring macro, the pa-
rameters may be used to specify the names of boxes or input/output links. For example,

constant RingSize = 8;

macro predR i = (i-1) % RingSize;

macro succR i = (i+1) % RingSize;

wire Track ( this, prev, next ) =

wire {this} ( {this}.value’, {prev}.outval, {next}.inctl )

( {this}.value, {next}.outctl, {prev}.inval )

;

for i = 0 to RingSize

wire Track ( Ring{i}, Ring{predR(i)}, Ring{succR(i)})

;

The syntax of a wiring macro definition is:
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<wiredecl> ::= "wire" <macroid> <ids> "=" <wiredecl>

Wiring macros are instantiated by passing in concrete parameters to the macro

<wiredecl> ::= "wire" <macroid> <args>

Depending on usage, these arguments may be either box names or names of inputs/outputs. At
present, it is not possible to use unrestricted values such as integers as arguments to wiring macros.

3.4 Extensions and Changes

A more flexible wiring primitive might be:

<wiredecl> ::= "wire" <linko> "to" <linki>

meaning that the output of <linko> should be wired to the input of <linki>. This primitive
would allow more flexible wiring. For example, a wiring loop could set up a number of wires.

The track layout example makes extensive use of named records to set initial values. For example,

initial Ring{Train1Pos} { value = Just "Train1" };

Such uses can considerably simplify initialisation. The full syntax is:

<wiredecl> ::= "initial" <boxid> "{" <wireinits> "}"

<wireinits> ::= <id> "=" <expr> [ "," <wireinits> ]
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Chapter 4

Input/Output

4.1 Overview

In Hume, boxes communicate with the outside world over links to streams, associated with files,
and to ports, associated with devices.

As with all Hume wiring, an individual stream or port can only be linked to one box input or
output.

4.2 Streams

Streams are uni-directional and may be used for either input or output. Streams are declared by:

input: stream streamid from string
output: stream streamid to string

where:

streamid = Hume identifier;
string = file path within "s.

Standard input is from "std in".

Standard output is to "std out".

Streams are linked to inputs and outputs by mentioning their names in the appropriate positions
in wiring.

Streams accept/deliver character sequences from/to sources/destinations. Such sequences are
terminated with the character ’\0’.

For input, streams should only be linked to inputs of determinate size type i.e. character, integer,
float and bool, and arbitrarily nested tuples and vectors of these base types. The source character
sequences will be automatically coerced to values of such types.

For output, streams may be linked to outputs of string and list type, as well as determinate size
types. Link values will be automatically coerced to character sequences.

In both cases a canonical, flat, textual representation is used:

• integer/float/bool - text representation preceded by white space
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• tuple/vector - unbracketed, white space separated element representation

• character - single un-quoted character

• string - output only - un-quoted text representation

• list - output only - unbracketed, white space separated element representation

For input, at the end of a stream, the exception EndOfFile is raised. Note that this implies that
it is not possible for a single box to acummulate input on a feedback loop for output on end of file.
Instead, two boxes must be used, where the first repeatedly sends the next data values from the
stream to the accumulating second. On handling EndOfFile, the first box must send a nominated
end of file value, or an explicit handshake, to enable the second to output the accumulated input.

For example:

stream input from "data.txt";

data FSTATE = OK | EOF;

box getfile

in (n::integer)

out (s::FSTATE,n’::integer)

handles EndOfFile

match

n -> (OK,n)

handle

EndOfFile _ -> (EOF,*);

wire getfile

(input)

(getinput.s,getinput.i);

box getinput

in (s::FSTATE,i::integer,li::[integer])

out (lo::[integer],showRe::[integer] )

match

(OK,n, l) -> (list l n,*) |

(EOF,*, l) -> (*,l);

wire getinput

(getfile.s,getfile.n’,getinput.lo initially [] )

(getinput.li,...);

Here, getfile repeatedly sends integers from data.txt to getinput for accumulation into a list,
along with the flag OK. When getfile handles the EndOfFile exception, it sends getinput the
flag EOF without an integer, and getinput sends the list to the output wire showRe.

Previously, for input, at the end of stream, the character ’\0’ was returned repeatedly. This is
now mostly illegal.

For output, a stream is closed by the character ’\0’.

In both cases, the system ought to shut any associated files...
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4.3 How to...

4.3.1 Input a string

A string is of indeterminate size and delimitatation, and so cannot be input automatically. Instead,
a vector of appropriate size should be used to input a fixed width string:

vector size of char

4.3.2 Socket Input/Output

Since the stream file path is actually a URI we can also define other input/output types. As well
as the plain file format:

stream file from "/home/user/filename.txt";

or:

stream file to "file:///home/user/filename.txt";

Hume also implements data:// and bind://. There is also a very primitive implementation of
http:// but is not much use without the machinery to interpret the HTML read in. These allow
access to socket interfaces (AF INET sockets only). Servers are implemented using bind://:

stream input from "bind://localhost:5555";

This opens a socket to the <host>:<port> combination. A listener is spawned and when the first
client connects the resulting path is connected to the Hume stream and can be read as normal.
Note that only a single connection is possible and that currently, the server exits once the client
disconnects. Clients are implemented using data://:

stream output to "data://localhost:5555";

This simply opens the socket and connects to it, linking the input stream to the associated Hume
stream. The server socket has to exist, otherwise the program is terminated with an error. Note,
however, that there is special provision in Hume’s socket drivers to handle simultaneous read/write
to the same socket:

stream output to "data://localhost:5555";

stream input from "data://localhost:5555";

4.3.3 Low-level Input/Output

For the Renesas M32C target, Hume provides access to low-level input/output ports and can
generate values for some of the interrupts. For example, we can write to the p2 output port with
the memory declaration:

memory p2 to "P2:p8";

We can also read the analogue to digital port 0 with:
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memory ad00 from "AD00L:p8";

The p8 type definition is required to force 8-bit access to these memory locations. The P2 and
AD00L definitions are macros provided in the arch io m32c.txt file provided with the compiler.
A full set of these are provided but initialization of registers upon bootup has to be handled in
the startup code provided with whichever compiler is being used to target the board.

An additional facility is to generate values upon interrupts. For example, we can create an input
stream from the Timer 0 and INT0 interrupts with the following:

interrupt p from "TIMERB0";

interrupt b1 from "INT0";

These statements create Hume streams p and b1 which can be wired to box inputs. Interrupt
service routines are generated by the compiler to service the relevant interrupts and place a unit
“()” value on the associated Hume stream. Note that the code generated is most likely to be
specific to one target platform and one compiler.
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Chapter 5

Timeouts

5.1 timeout and within

The Hume Report envisaged the placing of timeouts on boxes, expressions, inputs and outputs.
However, Hume now distinguishes between:

• within: activity must complete within specified time from start;

• timeout: activity must start within specified time from last completion.

For within

• expression: expression must be evaluated within specified time;

• box: box must generate outputs within specified time of matching inputs;

• input: value on associated output must be consumed within specified time of being placed
there;

• output: value on output must be consumed within specified time of being placed there.

For timeout

• expression: N/A;

• box: box must match input within specified time of last commiting outputs;

• input: value must be present on associated output within specified time of last value there
being consumed;

• output: value must be present on output within specified time of last value there being
consumed.

Note that input withins and timeouts are defined in terms of the associated output.

If a within or timeout does not satisfy its requirements then an exception is generated. The
exception will be handled by the box that specifies the within or timeout. For an input,the
exception is handled by its defining box, not by the box which defines the associated output.

Note that:

• input within and all timeouts are not yet implemented;

• exceptions and exception handling need to be tidied up and made uniform.
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Chapter 6

Foreign Function Interface

The Hume Foreign Function Interface (FFI) currently allows C functions to be called from within
Hume programs. Note that the resource analysis tools are currently unable to analyse code with
such calls although, in future, it may be possible to annotate these calls with resource bound
information which must have been computed and validated externally to the Hume language.

The full Hume standard syntax for defining the call in Hume is as follows:

<foreigndecl> ::=

"foreign" "import" <callconv> [ <safety> ] [ <string> ]

<id> "::" <type>

<safety> ::=

"safe" | "unsafe"

<callconv> ::=

"ccall" | "stdcall" | "cplusplus" | "jvm" | "dotnet"

although currently, only the ccall and stdcall conventions are implemented and the safety clause
is not used at all. The string defines the name of the C function to be called and can optionally
include the names of header files to be included in the wrapper code. The <id> is the name of the
function in Hume’s namespace. For example, to call the sinh function in the C standard library
the following definition is required:

foreign import ccall "math.h sinh" hsin :: float 32 -> float 32;

Note that the contents of the string are actually operating system dependent. The function thus
defined can be used as a standard Hume function:

expression(hsin 0.5);

Functions of more than one argument are handled correctly:

foreign import ccall "math.h powf"

powf :: float 32 -> float 32 -> float 32;

Note, however, that only the types int, float, char, bool and fixed-length strings can be passed
in this way and that the header file is essential in order to construct the call to the library function
correctly.
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To pass and return more complex types, there has to be wrapper code supplied by the user to
unpack and repack the heap data which is supplied to the external function. For example, suppose
we wish to pass a vector to a function:

foreign import ccall "test.h myvecfn"

vecfn :: vector 2 of float 32 -> vector 2 of float 32;

expression(vecfn <<1.0,2.0>>);

In this instance the external function is passed the address of the Hume heap where the data
resides:

float myvecfn(HEAP *x)

{

We then call the heapToBytes function to unpack the data into temporary storage:

float tmpx[2];

heapToBytes((int8 *)tmpx, x);

The heapToBytes function is able to decode the unstructured data (actually of type uint8 t) on
the heap because the type of the data was pushed onto the stack before the function was called.
The temporary data can then be overwritten, if required:

tmpx[0] += tmpx[1];

Note that the entire data structure is copied in this way which has implications for the efficiency
of external function calls.

Conversely, if we wish to return such data, we need to repack the data into the Hume heap:

return bytesToHeap((int8 *)tmpx);

}

For the purposes of this interface, tuples appear identical to vectors:

foreign import ccall "test.h myinv"

myinv :: (float 32,float 32) -> float 32;

expression(myinv (0.5,0.75));

requiring the following decode:

float myinv(HEAP *tup2)

{

float tmp_t2[2];

heapToBytes((int8 *)tmp_t2, tup2);

Vectors and tuples can be arbitrarily nested but it is the responsibility of the external function
call to ensure that the boundaries are respected.

There is also a maximum number of arguments which can be passed, the limit can be deduced
from the ccall.h header file supplied with the compiler, the maximum number being the highest-
indexed CCALL macro (currently 7). However, new macros of this type can be added manually, if
required.
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The usual procedure for costructing more complex calls is to provide temporary storage for all
structured data, unpack them from the heap, perform the required processing including calls to
external libraries and then repack the result data, tupling if multiple return values are required.

As a complete example, suppose we wish to compute the inverse of a 4 × 4 matrix using LU
factorization which is computed by the getrf and getri functions provided by the LAPACK
library. The Hume code would consist of the following:

import inttypes;

exception matinverseLapackErrorCode :: (int32_t);

type t_4x4 = vector (4,4) of float64;

type t_1x4 = vector (1,4) of int32_t;

foreign import ccall "humelapack.h hume_getrf"

hume_getrf_4x4 :: int32_t -> int32_t -> t_4x4

-> (int32_t, t_4x4, t_1x4);

foreign import ccall "humelapack.h hume_getri"

hume_getri_4x4 :: int32_t -> t_4x4 -> t_1x4 -> (int32_t, t_4x4);

matinverse_4x4 a =

case hume_getrf_4x4 4 4 a of

(0,lu,ipiv) ->

(case hume_getri_4x4 4 lu ipiv of

(0,am1) -> am1

| (info,_) -> raise matinverseLapackErrorCode info)

| (info,_,_) -> raise matinverseLapackErrorCode info;

The types used here are Hume equivalents of the inttypes.h header file as part of the C standard
library (it makes it easier to compare with the LAPACK C routines which also use them). We
define two Hume types, t 4x4 which is a 4× 4 matrix and t 1x4 for a 1× 4 vector. Note that we
wish to return the error code provided by the C library function so we have to arrange to tuple
the return value. The C wrapper file might look like:

typedef struct info_res {

int32 info;

} INFO_RES;

HEAP *hume_getrf(int m,int n,HEAP *a)

{

static float64 *A=NULL;

static integer *IPIV=NULL;

static INFO_RES *res=NULL;

static size_t A_size=0,IPIV_size=0,res_size=0;

float64 *rA;

int32 *rIPIV;

integer info;

int i,lda,asize;

lda = max(1,m);

asize = lda*n;

ensure_size((void **)&A,&A_size,asize,sizeof(float64));

ensure_size((void **)&IPIV,&IPIV_size,min(m,n),sizeof(integer));

ensure_size((void **)&res,&res_size,

sizeof(INFO_RES)+(asize*sizeof(float64))+(min(m,n)*sizeof(int32)),

sizeof(int8));

rA = (float64 *)(res+1);

rIPIV = (int32 *)(rA+asize);
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heapToBytes((int8 *)A, a);

dgetrf(m,n,A,lda,IPIV,&info);

res->info = info;

for (i = 0; i < asize; i++) rA[i] = (float64)A[i];

for (i = 0; i < min(m,n); i++) rIPIV[i] = (int32)IPIV[i];

return bytesToHeap((int8 *)res);

}

This function follows the advice concerning the sizes of intermediate data recommended by the
documentation for the central dgetrf function. We also use a system of self-expanding buffers
here (ensure size) which allows the routine to handle any size of input matrix but for fixed
matrix sizes we could just use local storage. The input data is decoded (heapToBytes), the target
function called and then we build up the return tuple. In fact, we create a structure to hold the
info value and then attach the other data (returned matrix rA and the pivot information rIPIV).
Finally, the constructed data is packed back onto the heap using the bytesToHeap function. Don’t
forget the header definition:

extern HEAP *hume_getrf(int,int,HEAP *);

The Hume FFI call here is of a fixed type, here 4 × 4. If we are required to invert other sizes of
matrices we have to create additional foreign definitions. However, the way we have setup the
wrapper code, we can just call the same wrapper for any size of matrix. This is a slight problem
for Hume since potentially we might require numerous instances of the same call.

Note that there currently some limitations of the interface. The C type double is not handled
properly on return from the external C call. However, we can get round this by packing it into a
single element tuple:

foreign import ccall "wvtod"

wvtod_ :: int 32 -> vector 8 of word 8 -> vector 1 of float 64;

wvtod eid v = case wvtod_ eid v of << d >> -> d;

Another problem is that strings are not necessarily null-terminated when they are passed from
Hume to C. A good policy is to pass the size of the string along with the string itself:

foreign import ccall "stdlib.h mysystem"

system :: string -> int 32 -> int 32;

expression(system "ls" 2);

Finally, to compile external code, you can either simply add the wrapper code to the header file
(a bit unethical for correct C programming) or you can compile the external code separately and
include it in Hume as a library:

% gcc -g -march=i386 -m32 -I ~/humec/include/humec/ -c test.c

% humec -lotsaspace -libs test.o ffi4.hume

This would be for a 64-bit architecture where we currently have to use a 32-bit compile.
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Chapter 7

Errors and debugging

7.1 Error detection

In Hume 0.1, errors are detected by the:

• syntax analyser: parses a program and builds an abstract syntax tree (AST);

• name pass: climbs the AST, checking static semantic consistency;

• interpreter: executes the AST.

Errors are also reported by the Haskell run-time system, within which Hume 0.1 is implemented.

It is important to note that Hume 0.1 lacks a type checker. The name pass will check many
structural aspects of static semantics that type checking can encompass, for example consistent
pattern size in matches and appropriate numbers of arguments in function calls. Furthermore, the
interpreter carries out run-time type checking. Nonetheless, many statically detectable errors will
not be picked up, resulting in deviant program behaviour or weird messages refering to failures in
specific interpreter functions. For the latter, please send the Hume source and error message to:
greg@cee.hw.ac.uk so that the error can be checked and documented.

7.2 Error messages

7.2.1 Syntax analyser

For a syntax error, the syntax analyser identifies the line number, character position and most
recently consumed token. For example, for:

fac n = case n

0 -> 1 |

x -> x*fac (x-1);

the message is:

Fail: Parse error at line 2, column 15 (token CInt 1)

i.e. missing of.
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7.2.2 Name pass

The name pass checks for:

• declaration before use

• repeated declaration of same identifier

• pattern size consistency in matches

• argument number consistency in function calls (incomplete)

• wiring consistency

Error messages identify the context of errors and their causes. The error messages are:

name1: name2 not declared

- function name1 has not declared variable name2

name1: name2 declared already

- function name1 has declared variable name2 more than once

name: too many/few args: expression
- function name is called with too many or too few arguments in the call expression

name: too many/few patterns: pattern
- function name contains a match option pattern with more/less elements than the
first match option

box name: missing wire

- there is no wire definition for box name

wire name: missing box

- there is no box definition for name nominated by some wire

name1: name2.name3 not declared

- the wire for name1 refers to undefined link name2.name3

name1: stream.name2 not declared

- the wire for name1 refers to undefined stream name2

name: too many/few wires

- the wire for name has more/less in/out links than specified by its box

name1: can’t wire name2.name3 to itself

- the wire for name1 links name2.name3 to itself

name1: name2.name3 already wired to name4.name5
- one of name2.name3 and name4.name5 refered to in the wire for name1
has already been wired to something else

name1: name2.name3 not wired reflexively to name4.name5
- a relexive link from name2.name3 to name4.name5, refered to in the wire

for name1, is missing

If a program contains name pass errors then it is not executed.
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7.2.3 Interpreter

The interpreter checks for:

• exception catching and handling

• type consistency in operations

Error messages are only generated for

uncaught exception: exception
- the box which raised exception doesn’t handle it

exception mismatch: exception
- the handler for exception has an inappropriate pattern

Other errors generate exceptions.

7.3 Debugging

7.3.1 Tracing

Outputs may be traced by writing trace after an input in a wiring specification. For example,
given the counter program inc.hume:

stream output to "std_out";

box inc

in (n::int 64)

out (n’::int 64,shown::(int 64,char))

match

n -> (n+1,(n,’\n’));

wire inc (inc.n’ initially 0) (inc.n trace,output);

then the trace after inc.n traces inc.n’ to which it is wired:

$ hume inc.hume | more

HUME 0.1

RUNNING

traces: inc.n’:1;

0

traces: inc.n’:2;

1

...

7.3.2 Common problems

Lots of wiring errors: check consistency of spelling of inputs and outputs.

Run-time error attributed to updateinitially: mismatch between number of expressions on right
hand side of box match and number of out wires.
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Box is never runnable: missing input initialisation.

Box never reaches a pattern: inappropriate use of * or fair matching required.

Box blocked on output: check wiring/behaviour of box that consumes output.

Nothing appears on standard output: missing ’\n’ at end of output.

Strange box input match behaviour: mis-spelled constructor in pattern treated as variable.
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Chapter 8

Exceptions

8.1 Exception handling

Checks are made for exception consistency, i.e. that:

• all exceptions that are handled by a box are specified as being handled by that box, and
vice-versa;

• all exceptions that may be raised in a box are handled by that box;

• all exceptions that are handled by a box are defined.

8.2 System exceptions

The current interpreter implementation is compliant with the system exceptions specified in [?].
Note that in the Report the type of the return values of system exceptions is not specified. At
present, the interpreter returns strings representing the offending code where possible.
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Chapter 9

phamc/hami

9.1 Overview

The phamc (prototype Hume abstract machine compiler) and hami (Hume abstract machine
interpreter) tools provide an alternative way of executing Hume programs.

9.2 Usage

phamc is a command line tool that takes a .hume file and produces a .ham file for use in hami, in
addition it produces a humestubs.c file for foreign language interfaces. The tool has the following
options:

phamc {options}* <file.hume>

-a show abstract syntax tree

-b compile byte code

-c show compiled

-d dissemble

-t type check

-nc use name pass

hami is a command line tool for executing a .ham file and has the following options:

hami {options}* <file.ham>

Main options:
-c use cost analysis
-h print this help message
-l log execution of abstract machine instructions
-p n run for n scheduler cycles only
-q quiet mode: no banner
-t trace box inputs and outputs
Other Options:
-nr read instructions and initialise only, do not run
-ns do not use the builtin show primitive (as)
-o discard output
-s show execution statistics
-sio show wire statistics
-x box n run box n times only
-R allow incomplete rule matches
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In normal use phamc is given no options, and hami is encouraged to use the costing information:

% phamc program.hume
...

% ls

program.hume program.ham humestubs.c

% hami -c program.ham
...

9.3 Extensions

ehami (extended/embeded hami?) adds several extensions to the hami engine.

Note: ehami is not under current development, as it was a more a vehicle for testing
ideas for humec.

9.3.1 Input/Output

A variety of I/O types are supported:

Variety: Keywords: Parameter: Type:
console in stream from ”std in” char 1,2

console out stream to ”std out” <any> 1

console error stream to ”std err” <any> 1

file in stream from <filename> char 1,2

file out stream to <filename> <any> 1

clock stream from ”clock” int 3

interrupt interrupt from <signalname> ()
memory in memory from <address> int 4

memory out memory to <address> int 4

args stream from ”main args” string
environment stream from ”main envs” (string,string)
exit code stream to ”main exit” int 5

1. Console and file I/O is unbuffered, non-blocking, and signal driven.

2. hami has no type information so cannot do automagic typed reading like the interpreter.

3. Clock is a timebase at ms resolution.

4. Adddress has syntax [’0x’ hexnum | decnum] { ’:’ [p8|p16|p32|0..7] }, where the final part refers to
the size of the integer, or 0..7 to refer to an indivdual bit in a byte.

5. Write once to terminate the program.

A particular implementation may not support all types, and will produce an appropriate runtime
error when that I/O type initialises. The program will continue and the wire will then be treated
as broken.

9.3.2 Termination

The whole program will terminate once all boxes are terminated, where I/O can terminate (e.g.
end of file), and individual boxes can terminate if they deadlock.
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The whole program will terminate if two seconds elapse without any events occuring, this typically
occurs while waiting for console input.
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Chapter 10

humec

10.1 Overview

The humec (humec compiler) provides an alternative way of executing Hume programs by first
compiling them to Ham (via phamc), and then using ham2c to produce C code that is further
compiled to give an executable.

10.2 Usage

humec is a command line tool that takes a file and produces an executable. The tool has the
following options:

humec {options}* <infile>

-lotsaspace Compile with lots of space (heap=10000, stack=10000, wire=10000)
-dham Dump final internal ham format (as used by ham2c), the stop
-g Generate code with interactive debug support
--help Show this information
<infile> Specify the Hume/Ham/C file to compile

FSM-Hume program should compile with no additional arguments, all other levels of Hume will
require the -lotsaspace option to help avoid heap/stack/wire overflow.

% humec program.hume
...

% ls

program.hume program.ham humestubs.c program.c program*

% program
...

Note: Due to the reliance of humec upon phamc it may sometimes be necessary to edit the global
STACKSIZE/HEAPSIZE constants in the intermediate C file, alternatively (and always necessary
for wires overflow issues) the intermediate ham file may need to be edited.
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10.3 Debugging

By compiling with the -g option, an executable is produced that allows stepping through the Ham
opcodes and inspection of heap, stack, wire and box state.

10.3.1 Command Line debugging

At the most primitive level this debugging can run within the command line simply by running
the compiled executable with the -g option.

% humec -g program.hume
...

% program -g
...

<<system>> hp=00000000 sp=0 slp=0 mp=0 fp=0 rp=0 schedules=0

% help

usage := step|boxstep|superstep|quit|run|help ...

10.3.2 GUI debugger

For easy visual debugging, the stand-alone debugger is first started and then the compiled exe-
cutable is feed the address of the debugger to connect with.

% java -jar hamdb.jar

Run programs with -g48049 ...

% program -g48049
...

Upon running the compiled executable, the stand-alone debugger will open a window through
which you can interact with the program.

10.4 humec Status

This section tries to give specific details on how the Hume compiler differs/conforms to the rest of
the Hume report/manual. It describes only the back-end of the compiler, and omits information
about how the front-end (phamc, and Hume parser) may behave.

10.4.1 Recent Changes

1 August 2006

• Added the EndOfFile exception and removed the ’\0’ magic character.

• Exceptions can be passed along wires, this allows I/O devices to throw exceptions in the
reading box.

18 July 2006
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• An unhandled exception will now terminate the program rather than just a single box.

• The user no longer needs to append custom types onto a file name (i.e. a hack) to support
typed reading.

• Typed stream I/O is symmetrical – it will read back the same thing you write.

• Typed stream I/O will now read fixed length strings.

• Added lshl, lshr as builtin operators.

10.4.2 Types

• bool, char, string, tuple, union, vector, exception – supported.

• int – supported, limited to precision 32.

• float – supported, limited to precision 32.

• word, nat – supported by treated internally as int.

• list – supported by treating internally as a union.

• unicode, fixed, exact – unsupported.

Notes: Contrary to what the report says, a string is not a synonym for list(char) and using
the typical list syntax on a string will most probably lead to a type error.

10.4.3 Functions

• Closures – are supported.

• Over/Under-evaluation – may work but is mostly untested.

10.4.4 Builtin Operators

The builtin operators are all supported with the current exception of rotl, rotr.

A few extra functions are provided or the operators are able to support more types:

any: <, <=, ==, >=, !=,

as string1,

write2,

unsafeAssignment3

int/nat/word: +, -, *, **, unary -, div, mod,

&, |, ^, ~, lshl, lshr, as float, as char

float: +, -, *, **, unary -, /, as int

sqrt, exp, ln, sin, cos, tan, asin, acos, atan,

log10, sinh, cosh, tanh, atan2

bool: &&, ||, not

vector: @, length, ++, update, vecdef, vecmap,

unsafeUpdate4
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string: @, length, ++,

list: @, length, ++,

tuple: @, length

Notes:

1. as string::a->string coerce uses the automagic stream output mechanism, but this has
the consequence that there may be an extra trailing space.

2. write::a->b->b dumps the first arg to stderr and returns the second.

3. unsafeAssignment::a->a->a copies the first arg destructively into the second (implies they
are the same size), it then returns the second.

4. unsafeUpdate::Vec a->Int->a->Vec a is the same as update, but does destructive update
rather than returning a new vector.

Precision (under/overflow), and size constrains are not exhaustively checked in the results of the
operations.

10.4.5 Boxes

• fair/match – supported.

• handlers – supported.

Notes: The RTS uses strict superstep scheduling as implied by the report.

Known bugs: The number of output wires on a box is limited to 15 (future versions of the
compiler may increase this to 31).

When using the “expression” statement phamc will wrap it in a special box, this currently only
allows one “expression” per program.

Currently a closure can’t be sent along a wire – should this be allowed?

10.4.6 System Exceptions

• StackOverflow, IndexOutOfBounds – supported.

• EndOfFile – supported.

• Underflow, Overflow – supported, but currently are never raised.

• HeapOverflow – supported, but also distinguishes a special case with WireOverflow.

• Div0 – renamed as DivisionByZero.

• Timeout – renamed and split up into BoxWithin, BoxTimeout, WireWithin, WireTimeout,
but currently are never raised.

• ExpressionWithin – added as not explicitly named in the report.

• MatchFail – added for function pattern match.

• InternalError – added to cover any other (RTS) error, e.g. type error – in general should
not occur in a correct program, only other know place is from malformed input stream data.
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Notes: All system exceptions pass an empty tuple as the exception argument. The RTS inter-
nally also raises so-called SoftStackOverflow and SoftHeapOverflow, but these are invisible to
the program (i.e. cannot be caught by a handler) and instead serve to generate warnings on the
console.

10.4.7 Timeout/Within

Notes: The smallest unit of time is 1ns. During debugging time is effectively frozen so that the
program behavior appears unchanged.

Expressions

• Time – supported (including nesting of), an unnamed exception will raise a ExpressionWithin.

• Heap – supported (including nesting of).

• Stack – supported (including nesting of).

Boxes

Within begins upon start of the evaluation of the box RHS, and stops at the end of this evaluation.
The box pattern matching, exception handling, and writing of expression results to wires is all
considered to be part of the RTS rather than the box itself.

Timeout/Within maximums are available via debugging/instrumentation, but are currently not
used to raise exceptions.

Wires

Timeout/Within maximums are available via debugging/instrumentation, but are currently not
used to raise exceptions.

Known bugs: The wire information collected is wrong.

10.4.8 Foreign Function Interfacing

• ccall, stdcall – supported.

• cplusplus, jvm, dotnet – unsupported.

Structures that can be exchanged to/from C from Hume include:

• simple – int/float/char/bool, fixed length strings.

• structure – vectors/tuples, any nesting of, and the above simple types.

• limited – simple type and variable length strings.

All the limited type values are converted to C equivalents. A structure type is passed as an opaque
heap pointer, which may then be unpacked/packed to/from byte arrays via void heapToBytes(uint8*,

HEAP *) and HEAP *bytesToHeap(uint8*). Note that a structure type is a fixed size type, and
that in this case a fixed length string is an array of chars with no terminating NULL.
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10.4.9 I/O

Variety: Keywords: Parameter: Type:
console in1 stream from “std in” <any>2

console out stream to “std out” <any>

console error stream to “std err” <any>

file in1 stream from <filename> <any>2

file out stream to <filename> <any>

uri in1 stream from <uri>3 <any>2

uri out stream to <uri>3 <any>

clock4 stream from “clock” int
interrupt5 interrupt from <signalname>6 ()
memory in memory from <address>7 int
memory out memory to <address>7 int
args stream from “main args” string
environment stream from “main envs” (string,string)
exit code8 stream to “main exit” int
-unsupported- port to/from
-unsupported- fifo to/from

Notes: A particular implementation/platform may not support all types, and will produce an
appropriate runtime error when that I/O type initialises. The program will continue and the wire
will then be treated as broken.

1. Console/file/uri input use a thread to read and connects via a wire, whereas all other I/O
types are passive and are read/writen immediately on consume/assert to the wire.

2. Stream input only allows reading from fixed size data structures.

3. A uri may refer to local file via file:://localhost..., a tcp socket via data:://..., or create a
single bind tcp local socket via bind:://localhost...

When using a bind socket the program will block in initilisation until a connection is made,
thus behavior will be unpredictable if multiple bind sockets are used.

By addressing a socket with the same address it is possible (and desirable) to steam to and
from the same socket.

4. Clock is a timebase at ms resolution.

5. Quick successive interrupts may be merged.

6. It depends on the target architecture the set of address and signal names that are supported.

7. Adddress has syntax:

<addr> := [0x <hexnum> | <decnum> | <name>6 ] :: <type>

<type> := [p8 | p16 | p32 | 0..7]

Where the type part refers to the size of the integer, or 0..7 to refer to an indivdual bit in a
byte.

This is a temporary solution – some of the info could come from the type, but something is
necessary in order to address a specific bit.

8. Write once to exit the program

Known bugs: Console/file/uri output is blocking.
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10.4.10 Automagic Typed Stream I/O

Output

• int – output as decimal with a trailing space.

• float – output as decimal with a trailing space, guaranteed to be 8 characters or less by
using scientific notation if necessary.

• bool – output as “true” or “false” with a trailing space.

• char, string – output in it’s native form.

• tuple, vector – traversed depth first.

• union – traversed depth first, the tag is ignored in terms of outputing.

• closure – shouldn’t occur, but would result in an InternalError

Known bugs: The last digit of the float may not obey rounding rules. Print a floating larger
than 1e38 may not terminate?!?

Input

Driven by the type signature.

• int – skips any leading white space, supports decimal only, skips one trailing white space.

• float – skips any leading white space, supports decimal including scientific, skips one trailing
white space.

• bool – skips any leading white space, accepts only “true” or “false”, skips one trailing white
space.

• char – reads the current character.

• string (fixed length) – reads the exact number of characters.

• tuple, vector – reads the exact number of items.

• union, closure – not possible.

Notes: raises EndOFile at end of file, and InternalError on malformed input data.

10.4.11 Debugging

Debug support can be optionally compiled into a program (via the -g flag) along with additional
instrumentation (as enabled via editing the RTS "am.h" file).

profile and verify are currently unsupported (but are on the todo list).
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Chapter 11

Standard Prelude

The Hume standard prelude will probably look something like:

module Prelude where

data Maybe a = Just a | Nothing;

maybe :: a -> (b -> a) -> Maybe b -> a;

maybe x f Nothing = x;

maybe x f (Just a) = f a;

data Either a b = Left a | Right b;

map :: (a->b) -> [a] -> [b];

map f [] = [];

map f (a:as) = f a : map f as;

foldr :: (a->b->b) -> b -> [a] -> b;

foldr f x [] = x;

foldr f x (a:as) = f a (foldr f x as);

member :: a -> [a] -> bool;

member x [] = false;

member x (y:ys) = if x == y then true else member x ys;

any, all :: (a->bool) -> [a] -> bool;

any p [] = false;

any p (x:xs) = if p x then true else any p xs;

all p [] = true;

all p (x:xs) = if p x then all p xs else false;

not :: bool -> bool;

not true = false;

not false = true;

type Byte = int 8;

type Short = int 16;

type Int = int 32;
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type Long = int 64;

The standard prelude will eventually be loaded with a Hume program at run time. At present, it
should be inserted at the top of programs.
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Appendix A

Syntax

This appendix gives a BNF definition of the Hume syntax. The meta-syntax is conventional.
Terminals are enclosed in double quotes " . . . ". Non-terminals are enclosed in angle brackets <

. . . >. Vertical bars | are used to indicate alternatives. Constructs enclosed in brackets [ . . . ]

are optional. Parentheses ( . . . ) are used to indicate grouping. Ellipses (...) indicate obvious
repetitions. An asterisk (*) indicates zero or more repetitions of the previous element, and a plus
(+) indicates one or more repetitions.

Programs and modules

<program> ::=

"program" <decls>

<module> ::=

"module" <modid> "where" <decls>
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Declaration Language

<decls> ::=

<decl1> ";" ... ";" <decln> n >= 1

<decl> :: =

"import" <idlist>

| "export" <idlist>

| "exception" <exnid> <exprtype>

| "union" <typeid> <varids> "=" <constrs>

| "type" <typeid> <varids> "=" <type>

| "constant" <varid> "=" <cexpr>

| "stream" <iodes>

| "port" <iodes>

| <boxdecl>

| <wiredecl>

| <fundecl>

<constrs> ::=

<conid1> <type11> ... <type1n> m > 0, n >= 0

"|" ...

"|" <conidm> <typem1> ... <typemn>

<iodes> ::=

( <strid> | <portid> ) ( "from" | "to" ) <string>

[ "timeout" <cexpr> ]

<fundecl> ::=

<varid> "::" <type>

| <varid> <args> "=" <expr>

| <patt1> <op> <patt2> "=" <expr>

<args> ::=

<patt1> ... <pattn> n >= 0

<fundecls> ::=

<fundecl1> ";" ... ";" <fundecln> n >= 1
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Types

<type> ::=

<exprtype>

| "stream" <exprtype> stream type

| "port" <exprtype> port type

| "time" time type

| "bandwidth" bandwidth type

<exprtype> ::=

<basetype> base type

| "vector" <intconst1> "of" <type> vector

| "()" empty tuple

| "(" <type> "," <types> ")" tuple

| "[" <types> "]" list

| <typeid> <type1> ... <typen> discr. union, n >= 0

| <type> "->" <type> function type

| "view" <type> view as type

| "(" <exprtype> ")" grouping

<types> ::=

<type1> "," ... "," <typen> n >= 0

<basetype> ::=

"int" <precision>

| "nat" <precision>

| "bool"

| "char"

| "unicode"

| "string" [ <intconst> ]

| "word" <precision>

| "float" <precision>

| "fixed" <precision>

[ @ ( "2" | "10" | "16" ) [ "**" <intconst> ] ]

| "exact"

<precision> ::=

"1" | ... | "64"
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Expression Language

<expr> ::=

<constant>

| <varid> variable/constant

| <expr1> <op> <expr2> binary operator

| <varid> <expr1> ... <exprn> function appl., n >= 1

| <conid> <expr1> ... <exprn> constructor appl., n >= 0

| "[" <exprs> "]" list

| "()" empty tuple

| "(" <expr> "," <exprs> ")" tuple

| "<<" <exprs> ">>" vector

| "case" <expr> "of" <matches> case expression

| "if" <expr1> "then" <expr2> conditional

"else" <expr3>

| "let" <fundecls> "in" <expr> local definition

| <expr> "::" <exprtype> type cast/view

| <expr> "as" <exprtype> type coercion

| "raise" <exnid> <expr> raise an exception

| <expr> "within" <cexpr> timeout

| "(" <expr> ")" grouping

<cexpr> ::= <expr> constant expression

<exprs> ::=

<expr0> "," ... "," <exprn> n >= 0

<matches> ::=

<match1> "|" ... "|" <matchn> n >= 1

<match> ::=

<patt> "->" <expr>

Constants

<constant> ::=

<intconst>

| <floatconst>

| <boolconst>

| <charconst>

| <stringconst>

| <wordconst>

| <timeconst>

Patterns

<patt> :: =

<constant>

| <varid> variable

| <conid> nullary constructor

| "_" wildcard

| "[" <patts> "]" list pattern
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| "<<" <patts> ">>" vector pattern

| "()" empty tuple pattern

| "(" <patt> "," <patts> ")" tuple pattern

| <conid> <patt1> ... <pattn> discr. pattern, n >= 1

| "(" <patt> ")" grouping

| <varid "@" <patt> alias variable

<patts> ::=

<patt0> "," ... "," <pattn> n >= 0

Coordination language

<boxdecl> ::= <prelude> <body>

<prelude> ::=

"box" <boxid>

"in" <inoutlist>

"out" <inoutlist>

[ "handles" <exnidlist> ]

<inoutlist> ::=

"(" <inout1> "," ... "," <inoutn> ")" n >= 1

<inout> ::=

<varid> "::" <exprtype>

Boxes

<body> ::=

"match"

<boxmatches>

[ "timeout" <cexpr> ]

[ "handle" <handlers> ]

<handlers> ::=

<handler1> "|" ... "|" <handlern> n >= 1

<boxmatches> ::=

<matches>
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<handler> ::=

<hpatt> "->" <cexpr>

<hpatt> ::=

<exnid> <patt1> ... <pattn> n >= 1

Replication

<replication> ::=

"replicate" <boxid> "as" <boxid> [ "*" <intconst> ]

Wiring

<wiredecl> ::=

"wire" <boxid> <sources> <dests>

<sources>/<dests> ::=

"(" <link1> "," ... "," <linkn> ")" n >= 0

<link> ::=

<connection>

| <strid>

| <portid>

<connection> ::= <boxid> "." <varid>

Identifiers

<id> ::= [ <modid> "." ] <localid>

<idlist> ::= <id1> "," ... "," <idn> n >= 1

<varids> ::= <varid1> ... <varidn> n >= 0

<exnidlist> ::= <exnid1> "," ... "," <exnidn> n >= 1

<boxid> ::= <id>

<modid> ::= <id>

<exnid> ::= <id>

<conid> ::= <id>

<typeid> ::= <id>

<varid> ::= <id>

<strid> ::= <id>

<portid> ::= <id>
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Lexical Syntax

<localid> ::= ("_" | <letter>) ( <letter> | <digit> ) *

<op> ::= ( "+" | "-" | "*" | "/" ... ) *

<intconst> ::= <digit> +

<floatconst> ::= <intconst> "." <intconst> [ "e" <intconst> ]

<boolconst> ::= "true" | "false"

<charconst> ::= "’" <char> "’"

<stringconst> ::= """ <char> * """

<wordconst> ::= "0x" <hexdigit> +

<timeconst> ::= <intconst><timedes>

<spaceconst> ::= <intconst><spacedes>

<timedes> ::= "ps" | "ns" | "us" | "ms" | "s" | "min"

<spacedes> ::= "B" | "KB" | "MB"

<char> ::= "A" | ... | "Z" | " " | "\t" | "\n" | "\\" |

"0x" <hexdigit> +

Hume Functions and Operators

Operations on int p types

+, -, *, div, ** :: Int -> Int -> Int

==, !=, <=, <, >, >= :: Int -> Int -> Bool

Operations on nat p types

+, -, *, div, ** :: Int -> Int -> Int

==, !=, <=, <, >, >= :: Int -> Int -> Bool

Operations on word p types

+, - :: Word -> Nat -> Word

==, !=, <=, <, >, >= :: Word -> Word -> Bool

rotl, rotr, lshl, lshr :: Word -> Nat -> Word

Operations on float p types

+, -, *, /, ** :: Float -> Float -> Float

sin, cos, tan, asin, acos, atan, log, exp, sqrt,

ln, log10, sinh, cosh, tanh :: Float -> Float

atan2 :: Float -> Float -> Float

==, !=, <=, <, >, >= :: Float -> Float -> bool

Operations on vector types

length :: <<a>> -> Int

@ :: <<a> -> Int -> a

vecdef :: Int -> (Int->a) -> <<a>>

vecmap :: <<a>> -> (a->b) -> <<b>>
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vecfoldr :: <<a>> -> b -> (a->b->b) -> b

update :: <<a>> -> Int -> a -> <<a>>

==, !=, <=, <, >, >= :: <<a>> -> <<a>> -> Bool

Operations on tuple types

length :: (a1, .., an) -> Int

@ :: (a1, .., an) -> Int -> ax

==, !=, <=, <, >, >= :: (a1, .., an) -> (a1, ..., an) -> Bool

Operations on list types

length :: [a] -> Int

@ :: [a] -> Int -> a

++ :: [a] -> [a] -> [a]

hd :: [a] -> a

tl :: [a] -> [a]

==, !=, <=, <, >, >= :: [a] -> [a] -> Bool

Operations on string p types

length :: String -> Int

@ :: String -> Int -> a

++ :: String -> String -> String

==, !=, <=, <, >, >= :: String -> String -> Bool
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